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Abstract 21 

The log-linear regression model is one of the most commonly used models to estimate flood 22 

quantiles at ungauged sites within the regional frequency analysis (RFA) framework. However, 23 

hydrological processes are naturally complex in several aspects including nonlinearity. The aim 24 

of the present paper is to take into account this nonlinearity by introducing the generalized 25 

additive model (GAM) in the estimation step of RFA. A neighbourhood approach using 26 

canonical correlation analysis (CCA) is used to delineate homogenous regions. GAMs possess a 27 

number of advantages such as flexibility in shapes of the relationships as well as the distribution 28 

of the output variable. The regional model is applied on a dataset of 151 hydrometrical stations 29 

located in the province of Québec, Canada. A stepwise procedure is employed to select the 30 

appropriate physio-meteorological variables. A comparison is performed based on different 31 

elements (regional model, variable selection and delineation). Results indicate that models using 32 

GAM outperform models using the log-linear regression as well as other methods applied to this 33 

dataset. In addition, GAM is flexible and allows including and showing non linear effects of 34 

explanatory variables, in particular basin area effect (scale). Another finding is the reduced effect 35 

of CCA delineation when combined with GAM. 36 

 37 
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1. Introduction 42 

Knowledge of flood characteristics is very important for resource management and design of 43 

hydraulic structures. Estimation of design flows is often needed at locations where little or no 44 

information is available. In this case, regional frequency analysis (RFA) is often used for the 45 

estimation of flow characteristics. Ouarda et al. (2008) presented a detailed review of the various 46 

available RFA methods (Blöschl et al. 2013). Generally, RFA is composed of two main steps: the 47 

identification of groups of hydrologically homogeneous basins and the application of a regional 48 

estimation method within each delineated region (GREHYS 1996a; Ouarda 2013). Since flow 49 

characteristics are highly dependent upon physiographical and meteorological basin 50 

characteristics, these can be used to estimate flood quantiles at un-gauged sites. The hydrological 51 

literature abounds with studies dealing with the development and evaluation of methods for the 52 

delineation of hydrological regions and for the study of their homogeneity. However, much less 53 

attention has been dedicated to the development of new regional estimation methods.  54 

In the present study, canonical correlation analysis (CCA) is used to delineate homogenous 55 

regions. In GREHYS (1996b), it was shown that this method produced the best performances in 56 

comparison to other ones. Among RFA estimation methods, regression models and index-flood 57 

models are commonly used. GREHYS (1996b) showed that their performances are equivalent 58 

and are superior to other models. Generally, regression models such as linear regression models 59 

(LRM) or log-linear regression models (LLRM) are preferred for their simplicity and rapidity, as 60 

well as their performances. LLRM has been used in conjunction with CCA in many studies 61 

(Chokmani and Ouarda 2004; Ouarda et al. 2001). Linear models imply that the relations 62 

between the dependent variable (hydrologic) and the predictors (physio-meteorological) are 63 

linear. This is generally not realistic and can be problematic in some situations such as the effect 64 
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of the basin size on flood quantiles, where it is documented that small basins behave differently 65 

than large ones. The basin hydrologic response is also not linearly related to the slope of the 66 

basin, as larger basin slopes (which are often associated to smaller size basins) lead to much more 67 

intense flood responses and very extreme specific peak values.  68 

The generalized additive models, GAMs (Hastie and Tibshirani 1986) allow to take into account 69 

possible nonlinearities which is not possible through linear models or by using simple variable 70 

transformations such as log, power or square root. The use of a nonlinear model is justified by the 71 

fact that hydrological processes are naturally nonlinear (Kundzewicz and Napiórkowski 1986; 72 

Wittenberg 1999). Pandey and Nguyen (1999) compared a number of regional flood quantile 73 

estimation methods for the power regression model (equivalently log-linear) and found that 74 

nonlinear estimation methods (within the same power model) outperformed the log-linear one. 75 

Shu and Ouarda (2007) used an artificial neural network approach, which represents a nonlinear 76 

model, and obtained better results than with linear regression methods. 77 

GAMs are an extension of the generalized linear models, GLMs (Nelder and Wedderburn 1972). 78 

The latter brought flexibility to regression methods by allowing non-normal residuals as well as a 79 

general link between predictors and the response variable. In addition, GAMs use non-parametric 80 

smooth functions to link the dependant variable to the predictors. Therefore, they are more 81 

flexible and can capture more realistically the relation between variables. GAMs have been 82 

attracting high attention in statistical developments as well as in practical applications (Hastie and 83 

Tibshirani 1986; Kauermann and Opsomer 2003; Marx and Eilers 1998; Morlini 2006; 84 

Schindeler et al. 2009; Wood 2003). Recently, additional methodological developments and the 85 

availability of implemented computer programs made GAMs increasingly popular in practical 86 

research, mainly in the public health and epidemiology fields (Bayentin et al. 2010; Cans and 87 
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Lavergne 1995; Leitte et al. 2009; Rocklöv and Forsberg 2008; Vieira et al. 2009) and in 88 

environmental studies (Borchers et al. 1997; Wen et al. 2011; Wood and Augustin 2002). In the 89 

field of meteorology, GAMs were used to model the effect of traffic and meteorology on air 90 

quality (Bertaccini et al. 2012), to predict air temperature from satellite surface temperature 91 

(Kloog et al. 2012), as well as to model mean temperature in mountainous regions (Guan et al. 92 

2009). In hydrological modeling, very few studies employed GAMs. For instance, Tisseuil et al. 93 

(2010) used GLM and GAM for the statistical downscaling of general circulation model outputs 94 

to local-scale river flows. GAMs were used to estimate nonlinear trends in water quality by 95 

Morton and Henderson (2008) and in hydrological extreme series modeling by Ramesh and 96 

Davison (2002). Recently, Asquith et al. (2013) employed GAMs to develop readily 97 

implemented procedures for the estimation of discharge and velocity from selected predictors at 98 

ungauged stream locations. However, to the author’s best knowledge, GAMs have never been 99 

used in the context of RFA of hydrological variables.  100 

The objective of the present study is to introduce GAMs in a complete regional model to estimate 101 

flood quantiles. A set of 151 basins in the province of Québec, Canada, is considered as case 102 

study. It is used in combination with the neighborhood approach using CCA. A cross validation 103 

is used to evaluate performances. In previous studies dealing with the estimation of flood 104 

quantiles with the same dataset (Chokmani and Ouarda 2004; Kamali Nezhad et al. 2010; Shu 105 

and Ouarda 2007), explanatory variables have been selected based on correlation with specific 106 

quantiles. In the present study an attempt is made to select optimal variables with a stepwise 107 

method. The regional model adopting GAM is compared with a model using LLRM, which is 108 

commonly used in RFA. Comparisons are also carried out for models with and without the 109 

delineation of homogenous regions with CCA, and also with and without the use of the stepwise 110 
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method for the selection of variables. The latter is important to separate the impacts of using the 111 

GAM model and the stepwise variable selection procedure.  112 

This paper is organized as follows. Section 2 presents the theoretical background on linear 113 

regression models, GAMs and the CCA approach for the delineation of neighborhoods in RFA. 114 

The considered dataset as well as the study design are presented in section 3. Section 4 includes 115 

the obtained results, while the last section contains the conclusions of the study. 116 

2. Theoretical Background 117 

In this section, the required statistical tools are briefly presented and their use in RFA is 118 

discussed. 119 

2.1. Linear regression models 120 

Regression analysis is used to find a relationship between a random variable Y, called the 121 

response variable or dependant variable, and one or several random variables X, called the 122 

explanatory or predictor variables (or independent variables). Let us define X, a matrix whose 123 

columns are X1, X2,…, Xm,, a set of m explanatory variables. The linear regression model is 124 

defined by: 125 

0

1

m

j j

j

Y Xβ β ε
=

= + +∑  (1) 126 

where 0β  and jβ  
are unknown parameters and ε  is the error term which is assumed to be 127 

normally distributed ( )20,N σ . The model parameters are often estimated by the least squares 128 

estimator ( ) 1ˆ Yβ −′ ′= X X X .  129 
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A power product model is generally used to express the relationship between flood quantiles and 130 

explanatory variables (Ouarda et al. 2008; Pandey and Nguyen 1999). A log transformation 131 

allows expressing this model as follows (log-linear model): 132 

( )0

1

log( ) log
m

j j

j

Y Xβ β ε
=

= + +∑  (2)  133 

Note that the log transformation introduces a bias in the prediction since the aim is the estimation 134 

of the variable expectation rather than its logarithm (Girard et al. 2004). 135 

2.2. Generalized additive models 136 

The generalized linear models (GLMs) are a generalization of the well-known ordinary linear 137 

model presented previously. They allows for a response distribution other than normal and for a 138 

degree of nonlinearity in the model structure (Wood 2006). The GLM can be expressed as 139 

follows:  140 

0

1

( )
m

j j

j

g Y Xβ β ε
=

= + +∑  (3) 141 

where g is a monotonic link function, and Y could have whatever distribution from the 142 

exponential family which includes, for instance, Poisson, Binomial and Normal distributions. 143 

For more flexibility, GLMs are themselves extended to GAMs by allowing non-parametric fits of 144 

the Xj where the linear forms are replaced by smooth functions fj (Hastie and Tibshirani 1986; 145 

Wood 2006): 146 

1

g( ) ( )
m

j j

j

Y f Xα ε
=

= + +∑  (4) 147 



 

 

8 

 

GAM has several advantages over linear models. It is more flexible due to the smooth functions fj 148 

where there is no need for a transformation to achieve linearity. Hence, it is possible to identify 149 

more realistically the effect of each explanatory variable Xj on Y. 150 

In order to estimate the smooth function fj, a spline is used. A spline is a curve composed of 151 

piecewise polynomial functions, joined together at points called knots. A number of spline types 152 

have been proposed in the literature, such as cubic splines, P-splines and B-splines. The thin plate 153 

regression splines have some advantages such as fast computation, lack of requirement for a 154 

choice of knot locations, and optimality in approximation of the smoothing, for more details see 155 

(Wood 2003, 2006). In the present study, the latter splines are considered.  156 

In general, a smooth function fj can be defined by a set of q spline basis functions ( )jib x  such 157 

that: 158 

1

( ) ( )
q

j ji ji

i

f x b xβ
=

=∑  (5) 159 

where jiβ  represents the smoothing coefficients related to the jth function. To avoid overfitting, 160 

the estimator β̂  of β is obtained by maximizing the penalized log-likelihood: 161 

1

1
( ) ( )

2

m
T

p j j

j

l lβ β λ β β
=

= − ∑ S  (6) 162 

where lp(.) is the log-likelihood function, λ j  
is the smoothing parameter of the j

th
 smooth 163 

function  fj and Sj is a matrix with known coefficients (Wood 2008). The parameter λ j controls 164 

the smoothness degree of the curve fj. Its value ranges from 0 to 1, with 0 corresponding to the 165 

un-penalised case and 1 to the completely smoothed curve. The optimum value of λ j is a right 166 
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balance between best fitting and smoothing. The function lp(.) is maximized by the penalized 167 

iteratively reweighted least squares, P-IRLS (Wood 2004). The smoothing parameter λ  can be 168 

selected according to a criterion such as the generalized cross validation, GCV (Wahba 1985), 169 

unbiased risk estimator, UBRE (Craven and Wahba 1978) or maximum likelihood (ML).  170 

2.4. CCA Approach in RFA 171 

This section briefly presents the CCA approach and its connection to the delineation step of RFA. 172 

This method is explained in more details in Ouarda et al. (2001) in the RFA context. Let us 173 

define two sets of random variables 1 2{ , ,..., }rX X X=X  and 1 2{ , ,..., },sY Y Y s r= ≥Y . In the 174 

present study, the set X contains basin physiographical and meteorological variables, e.g. 175 

drainage area and mean annual precipitation, and Y contains basin hydrological variables such as 176 

flood quantiles. In general, all variables should be standardized and transformed for normality. 177 

Mainly, CCA aims to identify the dominant linear modes of covariability between the vectors X 178 

and Y, and then make inference about Y given the vector X.  179 

Consider the linear combinations V and W of the variables of X and Y: 180 

1 1 2 2 r ra X a X a X ′= + + + =V a X⋯  and 1 1 2 2 s sbY b Y b Y ′= + + + =W bY⋯  (7) 181 

CCA allows to identify vectors a and b for which , ( , ) 1,...,i CCA i icorr V W i pδ = =  are maximized 182 

as well as ( , ) 0,i jcorr W V i j= ≠   with unit variance.  183 

For each basin kB , 1, ,k K= …  within a given set of basins B, the corresponding values for iV  184 

and iW  are denoted as ,i k
v  and ,i k

w . Let 0v  denote the physio-meteorological canonical score 185 

for a target site, associated to the obtained canonical variables. The vector 0v  is known whereas 186 

the interest is the estimation of the unknown hydrological canonical score 0w . The 187 
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approximation can be obtained through 0Λv such that 1, ,( ,..., )CCA p CCAdiag δ δΛ = . This leads to the 188 

definition of the 100(1-α)% confidence level neighbourhood for 0Λv  containing sites with 189 

realizations w of W  such that: 190 

2 1 2

0 0 ,( ) ( ) ( )T

p pI αχΛ Λ Λ−−−−− − − ≤− − − ≤− − − ≤− − − ≤w v w v  (8) 191 

where Ip is the p p×  identity matrix and 2

, pαχ  is such that 2 2

,( ) 1pP αχ χ α≤ = − . All the aspects 192 

related to the CCA in the RFA context are developed in Ouarda et al. (2001).  193 

3. Dataset and study design 194 

The considered dataset has already been studied in the context of RFA in a number of previous 195 

studies (Chebana and Ouarda 2008; Chokmani and Ouarda 2004; Kamali Nezhad et al. 2010; Shu 196 

and Ouarda 2007), which provides an opportunity for comparative evaluation of the results. The 197 

dataset consists of 151 hydrometric stations located in the southern half of the province of 198 

Québec (between 45°N and 55°N), Canada. The hydrological variables are represented by 199 

specific flood quantiles (quantiles divided by the basin area), denoted by QS10, QS50 and QS100. 200 

The physiographical and meteorological variables, available for each basin, are summarized in 201 

Table 1. To avoid redundancy with the previously mentioned studies, details concerning the 202 

dataset are not reported here. The reader is referred to the references listed above for information 203 

concerning the geographic location of the stations and the scatter plots of the basins in the 204 

canonical spaces. 205 

The CCA in conjunction with LLRM has been proven to perform well (GREHYS 1996b). 206 

However, it is suspected that the more general GAM approach can improve the estimations. In 207 

this study, LLRM and GAM are compared as regional estimation models. The fitting of data for 208 
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GAM is performed with the R package mgcv (Wood 2004). Smooth parameters, λ j in (6), are 209 

estimated with the P-IRLS procedure where the ML score is employed as criterion 210 

Homogenous regions are delineated with the CCA method on the basis of the variables BV, 211 

PMBV, PLAC, PTMA and DJBZ. These variables are selected on the basis of maximizing 212 

correlations with the hydrological variables. Since CCA requires normality, these variables are 213 

transformed for the regional analysis as in the previous studies for this region, i.e. a logarithmic 214 

transformation for the hydrological variables, PMBV, PTMA and DJBZ, and a square root 215 

transformation for PLAC. Figure 3 (not reported here to avoid repetition) in Shu and Ouarda 216 

(2007) shows clear nonlinearities in different levels for some variables. This represents a 217 

motivation for the use of the GAM model with the present dataset. 218 

The design of the present study aims to check the performance of three elements: i) adoption of 219 

the CCA delineation step or considering all stations, ii) consideration of the nonlinearity in the 220 

regression model through either LLRM or GAM during the regional estimation step and iii) the 221 

variable selection method (stepwise or correlation). This leads to 8 combinations denoted as 222 

follows: 223 

- LLRM|ALL|CORR: LLRM with all stations (no delineation) and with the 5 selected variables 224 

(from correlation); 225 

- LLRM|ALL|STPW: LLRM with  all stations (no delineation) and variables selected using the 226 

stepwise method; 227 

- LLRM|CCA|CORR: LLRM with homogeneous regions defined by CCA and with the 5 228 

selected variables (from correlation); 229 

- LLRM|CCA|STPW: LLRM with homogeneous regions defined by CCA and variables 230 

selected using the stepwise method; 231 
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- GAM|ALL|CORR: GAM with all stations (no delineation) and with the 5 selected variables 232 

(from correlation); 233 

- GAM|ALL|STPW: GAM with  all stations (no delineation) and variables selected using the 234 

stepwise method; 235 

- GAM|CCA|CORR: GAM with homogeneous regions defined by CCA and with the 5 selected 236 

variables (from correlation); 237 

- GAM|CCA|STPW: GAM with homogeneous regions defined by CCA and variables selected 238 

using the stepwise method. 239 

The selection method used in this study is the backward stepwise selection method. It starts with 240 

an initial model including all available variables. The regression method is then applied with the 241 

current model and the variable with the highest p-value is excluded, corresponding to the 242 

hypothesis that 0
j

β =
 
in (5) where j is the jth variable. At each step, one variable is excluded. 243 

The procedure ends when the p-values of all the remaining and significant variables are under a 244 

given threshold (5%). 245 

Once a model is established, its performance can be evaluated. A jackknife procedure is applied 246 

to assess the performance of the models. In this procedure, gauged sites are in turn considered 247 

ungauged in order to carry out regional estimation. This procedure allows assessing the following 248 

performance criteria:  249 

the coefficient of determination     

2

2 1

2

1

ˆ( )

R 1

( )

n

i i

i

n

i

i

z z

z z

=

=

−
= −

−

∑

∑
   (9) 250 

the root mean square error         2

1

1
ˆRMSE ( )

n

i i

i

z z
n =

= −∑     (10) 251 
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the relative root mean square error   
2

1

1
ˆrRMSE 100 ( ) /

n

i i i

i

z z z
n =

 = − ∑    (11) 252 

the mean bias      
1

1
ˆBIAS ( )

n

i i

i

z z
n =

= −∑     (12) 253 

the relative mean bias   
1

1
ˆrBIAS 100 ( )

n

i i i

i

z z z
n =

= −∑     (13) 254 

 255 

where iz  and ˆ
iz  are respectively the local (at site) and regional quantile estimates at station i, z  256 

is the local mean of the hydrological variable and n is the number of stations. 257 

4. Results and discussion 258 

The CCA is applied on the dataset with the normalized variables BV, PMBV, PLAC, PTMA and 259 

DJBZ. An optimal value of 0.05α =  is obtained with the optimisation procedure of Ouarda et al. 260 

(2001). This optimal value is used to delineate the neighborhood at each station. Each regional 261 

model, when considering CCA delineation, uses the same neighbourhood for a given station. 262 

When CCA is applied to the whole dataset, the two physiographical-meteorological canonical 263 

variables are defined as: 264 

( ) ( ) ( ) ( )1 0.24log 0.07 log 0.58 0.33log 0.03logV BV PMBV PLAC PTMA DJBZ= − + − −      (14) 265 

( ) ( ) ( ) ( )2 0.48log 0.25log 0.45 1.05log 1.10logV BV PMBV PLAC PTMA DJBZ= − − + +       (15) 266 

and the two hydrological canonical variables are defined as: 267 

( ) ( ) ( )1 10 50 1002.14 log 13.14 log 10.03log= − +W QS QS QS           (16) 268 

( ) ( ) ( )2 10 50 1006.27 log 2.45 log 8.84 log= + −W QS QS QS          (17) 269 

The non-negligible values of the BV coefficient in V1 and V2 confirm the need to include BV in 270 

the CCA despite the fact that specific hydrological quantiles are used.  271 
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The stepwise selection of variables is applied for each specific quantile separately and for each 272 

regression model LLRM and GAM. Table 2 indicates that the selected variables are the same for 273 

a given model and a given selection method, independently of whether CCA is used for 274 

homogeneous region delineation. Therefore, the delineation step seems not to have an effect on 275 

the selected variables. 276 

The results of the application of the jackknife procedure for the performance evaluation of each 277 

regional model are presented in Table 3. The best overall performances are obtained with 278 

GAM|ALL|STPW and GAM|CCA|STPW with CCA leading to slightly better performances. 279 

More precisely and in particular based on the rRMSE, GAM always performs better than LLRM 280 

for combinations using the same variable selection approach and the same delineation approach 281 

(CCA or ALL). 282 

The use of CCA to delineate hydrologically homogeneous regions generally leads to 283 

improvements in regional estimation in comparison to the ALL approach for the same selection 284 

of variables and the same regression model (GAM or LLRM). However, when GAM is used, the 285 

difference between CCA and ALL is not significant especially when using the stepwise 286 

procedure for the selection of variables. These results show that the use of GAM makes the 287 

procedure more robust and compensates for the advantages of using CCA. This is not the case for 288 

LLRM where the use of CCA was shown to lead to significant improvements, see e.g. Chokmani 289 

and Ouarda (2004). In other words, this indicates that the use of GAM reduces the importance of 290 

delineating the appropriate hydrological neighborhood. A possible interpretation for this result is 291 

that the consideration of non-linear formulations in the relation between the explanatory 292 

physiographical and meteorological variables on one side and the hydrological variables on the 293 
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other side leads to a reduction of the weight of basins that are not hydrologically similar to the 294 

target site.   295 

The stepwise method for variable selection improves quantile estimations in comparison to those 296 

obtained with the fixed 5 variables. This can be explained by the fact that the correlation-based 297 

selection of physiographical and meteorological variables to be used in the model is mainly based 298 

on a linear relationship between variables. It must also be noted that the variables are originally 299 

selected for CCA purposes (delineation) rather than for regression modeling (estimation). 300 

Figures 1 and 2 present the smooth functions fj of the response variable log(QS100) with the 301 

explanatory variables of the fitted models GAM|ALL|CORR and GAM|ALL|STPW respectively. 302 

It can be seen that the variables BV, PLAC, LAT and DJBZ show nonlinear relations. 303 

Furthermore, the nonlinear relation is more complex for some variables. For instance, the 304 

relationship between log(QS100) and DJBZ decreases for small values of DJBZ, increases for 305 

midrange values and decreases again for high values of DJBZ. This result reflects the seasonality 306 

effect of temperature, through DJBZ, on the flood regime. Another particular example of interest 307 

concerns the BV variable. Indeed, it can be seen that small basins have a different effect than 308 

moderate basins. This result is important since nonlinearity allows appropriately including the 309 

variable BV in the model which eliminates the need to develop specific models for small, 310 

moderate or large basins. Variables PMBV, LONG, PLMA and PTMA have approximately 311 

linear relations.  312 

In the present study, the proposed approach based on GAM is mainly compared with the basic 313 

formulation of one of the most popular RFA approaches, which is the log-linear estimation model 314 

combined with the CCA delineation approach. The comparison can be extended to other regional 315 

flood frequency models, such as the ensemble artificial neural networks-CCA approach (EANN-316 
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CCA) (Shu and Ouarda 2007; Shu and Ouarda 2008), the kriging-CCA approach (Chokmani and 317 

Ouarda 2004), and the depth-based approach (Chebana and Ouarda 2008; Wazneh et al. 2013a, 318 

2013b). In order to widen the comparison, results corresponding to the above approaches are 319 

considered since they are already available for the data set considered in the present study. Table 320 

4 summarizes the obtained results for all these methods. The results indicate that the GAM-based 321 

approach outperforms significantly all the above listed approaches in terms of rRMSE. In terms 322 

of rBIAS, the optimal depth-based approach seems to lead to slightly better results, although the 323 

difference is not significant. 324 

5. Conclusions 325 

GAM is commonly used in health, epidemiological and environmental studies. However, it 326 

remains unutilized in the field of hydrology, especially in RFA. The multiple linear regression 327 

model is the most employed estimation model in RFA mainly because of its simplicity. However, 328 

it assumes a log linear relationship between the response variable and the explanatory variables. 329 

This assumption is not always true and does not reflect the complexity of the hydrological 330 

processes involved. The purpose of the present study is first to introduce GAM in RFA and then 331 

to compare its results with those obtained by LLRM. GAM is a flexible model that relaxes the 332 

assumptions of the LLRM model (normality and linearity).  333 

Results of this study indicate that significantly better estimations are obtained from regional 334 

models with GAM. For some explanatory variables, the logarithmic relationship of the response 335 

variable with the explanatory variables is not linear. Smooth curves allow for a more realistic 336 

understanding of the true relationship between response and explanatory variables. The 337 

performance gain is not significant using CCA in conjunction with GAM compared to LLMR. 338 

This indicates that GAM is robust and is efficient in RFA even without use of a neighborhood 339 
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approach. Further efforts are required to generalize this conclusion and to test the benefits of 340 

GAM modeling in other hydrological applications.  341 

In summary, the use of GAM in RFA is valuable not only in terms of performance but also in 342 

terms of other practical aspects (e.g. explicit formulation of the smooth functions, flexibility, 343 

reduced number of assumptions, and less subjective choices). 344 
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Table 1. Descriptive statistics of hydrological variables and physio-meteorological variables. 457 

Variable Unit Notation Min Moy Max SD 

Specific flood of 10 year return period m³/s.km² QS10 0.03 0.22 0.53 0.13 

Specific flood of 50 year return period m³/s.km² QS50 0.03 0.28 0.77 0.18 

       

Specific flood of 100 year return period m³/s.km² QS100 0.03 0.31 0.94 0.20 

Area of Watershed km
2
 BV 208 6 265 96 600 11 713 

Length of main channel  km LCP 17 157 855 142 

Slope of main channel m/km PCP 0.20 3.23 23.60 3.22 

Mean slope of watershed ° PMBV 0.96 2.43 6.81 0.99 

Percentage of the basin occupied by forest % PFOR 18.00 83.05 99.80 16.61 

Percentage of the basin occupied by lakes % PLAC 0.03 7.72 47.00 7.99 

Mean annual total precipitations mm PTMA 646 988 1 534 154 

Mean annual liquid precipitations mm PLMA 423 717 1625 176 

Mean annual solid precipitations cm PSMA 166 302 720 86 

Mean annual liquid precipitations during 

summer and fall 
 

PLME 306 455 664 72 

Mean annual degree-days over 0°C dgr-day DJBZ 8 589 16 346 29 631 5 385 

Latitude of the station ° LAT 45 48 54 2 

Longitude of the station ° LONG 58 72 79 4 

Altitude of the station m ALT 5 157 555 125 

 458 

Table 2. Variables selected for each regional model. 459 

Regional Models Quantile Selected explanatory variables 
[LLRM|ALL|STPW], [LLRM|CCA| STPW] QS10 BV, PMBV, PFOR, PLAC, PLMA, DJBZ, LONG 

QS50 BV, PMBV, PFOR, PLAC, PLMA, LONG 

QS100 BV, PLAC, PLMA, LONG 

   

[GAM|ALL|STPW], [GAM|CCA|STPW] QS10 BV, PFOR, PLAC, PTMA, LAT, LONG 

QS50 BV, PLAC, PLMA, LAT, LONG 

QS100 BV, PLAC, PLMA, LAT, LONG 

   

[LLRM|ALL|CORR], [LLRM|CCA|CORR], 

[GAM|ALL|CORR], [GAM|ALL|CORR] 
QS10 BV, PMBV, PLAC, PTMA, DJBZ 

QS50 BV, PMBV, PLAC, PTMA, DJBZ 

QS100 BV, PMBV, PLAC, PTMA, DJBZ 

 460 

461 
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Table 3. Performances obtained with the eight combinations (model, delineation and variable 462 

selection). 463 

  LLRM GAM 

  ALL CCA ALL CCA 

 Quantiles CORR STPW CORR STPW CORR STPW CORR STPW 

R
2
 QS10 0.62 0.63 0.76 0.78 0.77 0.82 0.79 0.82 

 QS50 0.56 0.63 0.68 0.72 0.68 0.75 0.73 0.76 

 QS100 0.53 0.53 0.64 0.65 0.65 0.72 0.69 0.67 

RMSE  QS10 0.078 0.077 0.062 0.060 0.061 0.054 0.059 0.054 

(m3/s.km2) QS50 0.117 0.108 0.100 0.094 0.099 0.088 0.092 0.087 

 QS100 0.137 0.137 0.120 0.118 0.118 0.106 0.112 0.115 

rRMSE  QS10 51.4 48.7 44.2 41.5 41.4 37.6 39.1 33.7 

(%) QS50 56.4 55.5 48.5 48.9 47.0 41.0 43.4 43.5 

 QS100 58.9 60.0 50.7 50.9 49.3 42.1 45.6 37.0 

BIAS  QS10 -0.006 -0.005 -0.012 -0.009 0.007 0.004 0.009 0.009 

(m3/s.km2) QS50 -0.010 -0.011 -0.021 -0.015 0.013 0.009 0.018 -0.003 

 QS100 -0.013 -0.015 -0.026 -0.022 0.016 0.011 0.023 0.043 

rBIAS  QS10 7.6 7.4 5.6 5.3 -5.4 -5.1 -4.8 -3.5 

(%) QS50 8.9 8.8 6.0 7.5 -6.8 -6.1 -4.7 -11.4 

 QS100 9.6 10.0 6.3 7.7 -7.6 -6.5 -4.9 3.4 

Best performances are in bold character for each criterion and quantile 464 

 465 

Table 4. Results of several RFA approaches applied to the same data set considered in this study 466 

    

  QS10 QS100 

Method References rBIAS 

(%) 

rRMSE 

(%) 

rBIAS 

(%) 

rRMSE 

(%) 

Linear regression Table 3 above -9 55 -11 64 

Nonlinear regression
 

Shu and Ouarda 2008 -9 61 -12 70 

  Nonlinear regression with regionalization approach Shu and Ouarda 2008 -19 67 -24 79 

Linear regression-CCA
 

Table 3 above -7 44 -8 52 

Kriging in the CCA Physiographical Space  Chokmani and Ouarda 2004 -20 66 -27 86 

Kriging in the PCA Physiographical Space
 

Chokmani and Ouarda 2004 -16 51 -23 70 

Adaptive Neuro-Fuzzy Inference Systems
 

Shu and Ouarda 2008 -8 57 -14 64 

Artificial Neural Networks
 

Shu and Ouarda 2008 -8 53 -10 60 

Single Artificial Neural Networks-CCA space
 

Shu and Ouarda 2007 -5 38 -4 46 

Ensemble Artificial Neural Networks
 

Shu and Ouarda 2007 -7 44 -10 60 

Ensemble Artificial Neural Networks -CCA space Shu and Ouarda 2007 -5 37 -6 45 

Optimal depth-based approach
 

Wazneh et al. 2013a -3 38 -2 44 

GAM|CCA|STPW Table 3 above -3.5 33.7 3.4 37 
Best results are in bold character      
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 467 

Figure 1. Smooth functions of QS100 for the explanatory variables included in the regional model 468 

GAM|ALL|CORR. The dotted lines represent the 95% confidence intervals. The y-axes are 469 

named s(var,edf) where var is the name of the explanatory variable and edf is the estimated 470 

degree of freedom of the smooth. 471 
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 472 

Figure 2. Smooth functions of QS100 for the explanatory variables included in the regional model 473 

GAM|ALL|STPW. The dotted lines represent the 95% confidence intervals. The y-axes are 474 

named s(var,edf) where var is the name of the explanatory variable and edf is the estimated 475 

degree of freedom of the smooth. 476 


