3,3’-Diindolylmethane (DIM) and its ring-substituted halogenated analogs (ring-DIMs) induce differential mechanisms of survival and death in androgen-dependent and −independent prostate cancer cells

Alexander A. Goldberg1,2,*, Hossam Draz1,3,*, Diana Montes-Grajales4, Jesus Olivo-Verbél4, Stephen H. Safe5 and J. Thomas Sanderson1

1 INRS-Institut Armand-Frappier, Laval, Québec, Canada
2 Critical Care Division and Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
3 Department of Biochemistry, National Research Centre, Dokki, Cairo, Egypt
4 Environmental and Computational Chemistry Group, University of Cartagena, Colombia
5 Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States

* These authors have contributed equally to this work

Correspondence to: J. Thomas Sanderson, email: thomas.sanderson@iat.inrs.ca

Keywords: prostate cancer, LNCaP, C42B, DU145, mitochondrial function

Received: January 29, 2015 Accepted: April 16, 2015 Published: April 26, 2015

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

We recently reported that novel ring-substituted analogs of 3,3’-diindolylmethane (ring-DIMs) induce apoptosis and necrosis in androgen-dependent and −independent prostate cancer cells. In this paper, we have focused on the mechanism(s) associated with ring-DIM-mediated cell death, and on identifying the specific intracellular target(s) of these compounds. The 4,4’- and 7,7’-dichloroDIMs and 4,4’- and 7,7’-dibromoDIMs induced the death of LNCaP, C42B and DU145 prostate cancer cells,