Assessment of the European flounder responses to chemical stress in the English Channel, considering biomarkers and life history traits

Célie Dupuy a,b,*, Claire Galland a, Vianney Pichereau a, Wilfried Sanchez c, Ricardo Riso a, Maylis Labonne a,d, Rachid Amara e, Grégory Charrier a, Michel Fournier b, Jean Laroche a

a Université Européenne de Bretagne, Université de Bretagne Occidentale, UMR 6536 CNRS/UBO/I2R, Diderot, Laboratoire des Sciences de l’Environnement Maria LEMAR, Institut Universitaire Européen de la Mer, 25250 Plozévet, France
b Institut National de la Recherche Scientifique, Institut Armand-Frappier (INRS-IAF), 31 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
c Institut National de l’Environnement Industriel et des Risques, Plate “Dangers et impact sur le vivant”, Unité d’écotoxicologie in vitro et in vivo, Parc Technologique AlATA, 60550 Verneuil en Halatte, France
d Centre I2R de Bretagne, BP 70, 29280 Plozévet, France
e Université Lille Nord de France, ULC2 LOG CNRS UMR 8187, F-62930 Villeneuve, France

ARTICLE INFO

Article history:
Available online 8 December 2014

Keywords:
Pollution
Estuaries
Fish
Immunotoxicity
Gene expression
Life-history traits

ABSTRACT

A multi-biomarker approach was developed to evaluate responses of European flounder (Platichthys flesus) in three contrasted estuaries over the English Channel: the Canche (pristine site), Tamar (heavy metals and PAHs contamination) and Seine (heavily polluted with a complex cocktail of contaminants). The condition factor and several biomarkers of the immune system, antioxidant enzymes, energetic metabolism and detoxification processes were investigated in young-of-the-year (0+) and one-year-old (1+) flounder. Results underlined the difference between the pristine site and the Seine estuary which showed a lower condition factor, a modulation of the immune system, a higher Cytochrome C oxidase activity, and an up-regulation of RHMT expression. The moderate biomarker responses in the Tamar fish could be linked to the specific contamination context of this estuary. Flounder life history traits were analyzed by oolith microchemistry, in order to depict how the fish use their habitat and thus respond to chemical stress in estuaries.

© 2014 Elsevier Ltd. All rights reserved.