
 

1 
 

Current topics in HIV-1 pathogenesis: The emergence of deregulated 

immuno-metabolism in HIV-infected subjects 

 

 

Xavier Dagenais-Lussier
1
, Aounallah Mouna

1
, Jean-Pierre Routy

2
, Cecile 

Tremblay
3
, Rafick-Pierre Sekaly

4
, Mohamed El-Far

3
, and Julien van 

Grevenynghe
1,5

.
 

 

1
INRS-Institut Armand Frappier, 531 boulevard des Prairies, Laval, Quebec H7V 1B7, 

Canada. 

2
Division of Hematology and Chronic Viral Illness Service, McGill University Health 

Centre, Glen site, Montreal, Quebec H4A 3J1, Canada. 

3
CR-CHUM, Montreal, Quebec H2X 0A9, Canada. 

4
Case Western University, department of pathology, Cleveland, Ohio 44106, USA 

5
Corresponding author (Julien.VanGrevenynghe@iaf.inrs.ca; fax: 450-686-5501; tel: 

450-687-5010 4120) 

 

 

 

 

 

 

 

*Manuscript
Click here to view linked References

mailto:Julien.VanGrevenynghe@iaf.inrs.ca
http://ees.elsevier.com/cgfr/viewRCResults.aspx?pdf=1&docID=370&rev=0&fileID=7052&msid={81A610CB-5997-44DB-9255-DD7B5F3D5642}


 

2 
 

Keywords: Immuno-metabolism, HIV-1, inflammation, innate/adaptive immunity 

Abstract. HIV-1 infection results in long-lasting activation of the immune system 

including elevated production of pro-inflammatory cytokine/chemokines, and bacterial 

product release from gut into blood and tissue compartments, which are not fully restored 

by antiretroviral therapies. HIV-1 has also developed numerous strategies via viral 

regulatory proteins to hijack cell molecular mechanisms to enhance its own replication 

and dissemination. Here, we reviewed the relationship between viral proteins, immune 

activation/inflammation, and deregulated metabolism occurring in HIV-1-infected 

patients that ultimately dampens the protective innate and adaptive arms of immunity. 

Defining precisely the molecular mechanisms related to deregulated immuno-metabolism 

during HIV-1 infection could ultimately help in the development of novel clinical 

approaches to restore proper immune functions in these patients. 

 

1. Introduction: when metabolism meets immunology. 

Immunology and metabolism have always been considered as distinct disciplines. 

However, recent advances in the understanding of immune functions under normal and 

disease conditions associate these branches with intricate networks. In this context, most 

cancer cells predominantly undergo high rate of glycolysis, up to 200 times higher than 

those of their normal tissues even in the absence of oxygen. Such effect is called 

"Warburg effect" and results in major changes in inflammation and the immune response 

[1-3]. Thus immuno-metabolism has become a burgeoning field of research, dissecting 

the crosstalk between key metabolic pathways and immune cell development, fate, and 

behavior in the context of physiologic processes, anti-tumoral and anti-microbial defense. 

The immuno-metabolism underlies each aspect of our lives representing all nutriment 

https://en.wikipedia.org/wiki/Glycolysis
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transformations that are required for every function and physiological process spanning 

from hematopoietic cell development to microbial defense. Mounting an immune 

response per se requires major changes to metabolic processes, since significant amounts 

of energy and molecule biosynthesis are needed for both innate (pro-inflammatory 

cytokine/chemokine release, antigen processing, and phagocytose from 

monocyte/macrophages and dendritic cells; DC) and adaptive arms of immunity (T-cell 

differentiation, proliferation and IFN- production) [4-6]. The fact that the metabolism is 

intimately involved in immune cell regulation and physiology is of particular relevance in 

the context of HIV-1 infection, since the virus is entirely dependent on the host cells for 

providing the metabolic resources for completion of the viral replication cycle and the 

production of virions [7]. 

 

2. Immuno-metabolism in HIV-1-infected patients: from friend to foe. 

In addition to the progressive loss of CD4 T-cells, HIV-1 infection is characterized by 

hyper immune-activation, persistent inflammation, and elevated pro-inflammatory 

cytokine/chemokine (IL-1, IL-6, IL-18, TNF-, and interferon -inducing protein 10; 

IP-10) released from monocyte/macrophages everywhere in the organism [8, 9]. A 

hallmark of acute phase of HIV-1 primary infection is the disruption of gut integrity and 

subsequent release of bacterial products within the bloodstream and lymphoid tissues, 

increasing the immune activation/inflammation [10, 11]. It is worth noting that, even if 

antiretroviral therapy (ART) is effective in suppressing viral replication and significantly 

increasing life-expectancy of treated patients, it does not fully inhibit HIV-1-related 

inflammation, particularly in the gut [12-15]. Since metabolism control depends on 
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signals that are deregulated during HIV-1 infection, it is not surprising that infected 

patients, even those under ART, display a number of systemic metabolic abnormalities 

that negatively impact the immune functions and contribute to viral pathogenesis (Fig.1).  

 

3. Oxidative stress during HIV-1 infection 

3.1. Physiologic functions of reactive oxygen species (ROS). ROS are chemically highly 

reactive molecules containing oxygen, such as hydrogen peroxide (H2O2), superoxide 

anion (O2
.
-), nitrite oxide (NO

.
), and hydroxyl radical (OH

.
). These molecules are formed 

as natural by-products of the physiological metabolites of oxygen, playing a key role in 

cell signaling, homeostasis, and are also required to ensure anti-tumoral and anti-

microbial protection [16-18]. Over-production of ROS occurring upon inflammation-

related diseases results in the establishment of oxidative stress, a deleterious process that 

can be an important mediator of damage to cell structures, including lipids and 

membranes, proteins, and DNA [19, 20]. Of note, ROS worsens inflammation status by 

promoting the production of pro-inflammatory cytokines including IL-1, IL-6, 

interferons (IFN) and TNF- that subsequently induces further ROS generation. To 

protect itself against oxidative stress, the immune system has at its disposal a number of 

(i) antioxidant enzymes including superoxide dismutase (SOD), catalase, glutathione 

peroxidase/reductase, (ii) vitamins, such as vitamin A, C and E, and (iii) small redox 

proteins such as glutathione (GSH) and thioredoxin (THX).  

3.2. Elevated levels of ROS during HIV-1 infection. HIV-1 infection has been associated 

with profound deregulation of ROS production and the antioxidant system. For instance, 

HIV-1-infected patients exhibit increased oxygen consumption rates, elevated plasmatic 
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levels of hydroperoxides, oxidized low density lipoprotein (oxLDL), and 

malondialdehyde (MDA), both by-products of lipid peroxidation [21, 22], whereas their 

GSH, SOD and THX levels are significantly reduced [23, 24]. There is now convincing 

evidences that both HIV-1-related inflammation and viral proteins such as Tat, Vpr, Nef, 

and Gp120 can induce ROS production, which further results in significant immune 

dysfunction and several tissue injuries (Table 1).  

3.3. Impact of HIV-1-related oxidative stress on T-cell function and survival. HIV-1 can 

hijack host cellular machinery to its benefit by producing higher amounts of ROS in T-

cells. ROS induce HIV-1 long terminal repeat (LTR) and viral replication via post-

translational regulation of Nf-B [25]. In this context, HIV-1 regulatory protein Tat has 

pro-oxidant properties via the activation of NADPH oxidase and the inhibition of 

intracellular GSH levels, which contributes in inducing LTR transactivation [26-28]. The 

viral protein Vpr also activates the oxidative stress pathway to positively regulate HIV-1 

promoter, but in a hypoxia factor 1 alpha (HIF-1)- and MAP3K7-dependent manner [29, 

30]. Of note, the elevated ROS production occurring in T-cells during HIV-1 infection 

results in reduced response to -chain receptor cytokines, T-cell dysfunction, and cell 

death. Several studies demonstrated that HIV-1-induced T-cell apoptosis is mediated 

through oxidative stress in part by down-regulating vitamin D receptor (VDR) and 

inducing PD-1 expressions [31-33]. Furthermore, elevated ROS levels impair IL-7 

responsiveness in CD8 and central memory CD4 T-cells from chronically-infected 

viremic patients [21]. Our own observations demonstrate that ROS negatively impact IL-

2 signaling in memory CD4 T-cells during the early phase of primary infection, a defect 

that can be restored by the use of antioxidant N-acetyl cysteine (NAC) (J.vG. data not 
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published). Neutrophils purified from the blood of HIV-1-infected patients suppress T 

cell function (IFN- production) via several mechanisms including PD-L1/PD-1 

interaction and production of ROS [34]. In turn, elevated TGF- activation by ROS leads 

to the differentiation of HIV-1-infected CD4 T-cells into FoxP3
+
CD25

+
 immuno-

suppressive T-regulatory (Treg) cells [35].  

3.4. Adverse effect of HIV-1-related oxidative stress on myeloid cells. Monocytes from 

HIV-infected patients spontaneously produced increased amounts of H2O2 that enhance 

cell activation and production of pro-inflammatory cytokines [36, 37]. The viral protein 

Nef also induces the release of superoxide anions from macrophages [38]. Enhanced 

ROS generation within macrophages during the course of HIV-1 infection results in cell 

depletion by TRAIL-induced apoptosis [39]. Activation of monocytes with IFN- in 

HIV-1 infection increase ROS production and lipid peroxidation that may enhance cell 

activation [22, 37]. In the brain, activation of pro-inflammatory resident 

monocyte/macrophages contributes to the pathophysiology of severe cognitive problems, 

such as HIV-related dementia (HAD) and HIV-associated neurocognitive disorders 

(HAND) [40]. In this context, HIV-1-related oxidative stress mediates up-regulation of 

monocyte adhesion, and loss of neurons and astrocytes, and gene delivery of antioxidant 

enzymes (SOD, glutathione peroxidase) or NAC amide treatment restore effective 

neuroprotection [41-45]. Finally, HIV-1 Gp120 induces the expansion of immuno-

suppressive CD33
+
CD14

+
 myeloid derived suppressor cells, which have the capacity to 

reduce IFN- release by activated T-cells, a phenomenon that is restored upon ROS 

inhibition [46]. 
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4. Up-regulated tryptophan metabolism in HIV-1 infection. 

4.1. Physiologic function of L-tryptophan (Tryp) metabolism. Tryp, one of eight essential 

amino acids found in the human diet, is tightly involved in a number of metabolic 

functions and has been widely used as an effective tools in clinical interventions [47]. 

Tryp catabolism generates by-products such as kynurenines (Kyn), precursors of several 

molecules including the coenzymes nicotinamide adenine dinucleotide (NAD) and NAD 

phosphate (NADP) that are key factors for redox reactions in all living cells. In 

hematopoietic cells, formation of Kyn is driven by the indoleamine 2,3-dioxygenase type 

1 (IDO-1) that plays a key role in regulating T-cell-mediated immunity [48]. Several 

soluble factors including IFN-, TNF-, IL-1, soluble CD40 (sCD40), Toll-like receptor 

(TLR) ligation, CTLA-4, and IL-32, are known to induce IDO-1 activity that is 

characterized by a higher ratio of Kyn to Tryp (Kyn/Tryp ratio) [49-53] (Fig. 2). Strain-

dependent HIV-1 infection, direct attachment of Gp120 to CD4, or Tat also induced IDO-

1 activity through direct mechanisms, but also indirectly following IFN- production [54-

58]. Since these molecules are usually up-regulated in HIV-1-infected patients, 

particularly those with detectable viremia and heightened inflammation [59], up-

regulated IDO-1 activity in their system is expected. 

4.2. Elevated Tryp metabolism in HIV-1-infected patients. A number of studies and 

reviews reveal that plasma from HIV-1-infected patients display reduced levels of Tryp, 

and up-regulated Kyn concentrations, indicating that HIV-1 infection is associated with 

tryptophan catabolism at higher rate [54, 60-65]. Elevated IDO-1 activity in HIV-1-

infected patients positively correlates with inflammation markers such as neopterin, and 

negatively with CD4 T-cell counts [66, 67]. Whereas many studies demonstrate that ART 
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significantly reduced, but fails to normalize IDO-1 activity to levels observed within the 

control uninfected subjects [65, 67, 68], recent data provided by Jenabian M-A. et al. 

show full normalization of IDO-1 activity in ART recipients with their cohorts of 

subjects [11]. This discrepancy is likely to be due the fact that last study included infected 

subjects who initiated ART within the first weeks of the primary infection, thus 

underscoring the benefit of early treatments to restore proper tryptophan metabolism. The 

Kyn pathway independently predicts poor CD4 T-cell count recovery and increased 

mortality among HIV-1-infected patients initiating ART [69, 70]. 

4.3. Immuno-suppressive effects of elevated Kyn metabolism on adaptive and innate 

immune responses. A. Adaptive immunity. Loss of Th22 cells, specialized in maintaining 

intestinal barrier integrity and in stimulating antimicrobial defence, is associated with 

increased immune activation and IDO-1 activity in HIV-1 infection, which can be 

partially reversed by ART [71]. By lowering the availability of Tryp, HIV-1 also inhibits 

CD4 T-cell proliferation by inducing IDO-1 in myeloid and plasmacytoid dendritic cells 

(pDC), an effect that is partially prevented by the use of IDO-1 competitive blocker 1-

methyl tryptophan (1MT) [54, 57, 72, 73]. Furthermore IDO-1 signaling pathway is 

essential for pDC-mediated Treg generation from CD4 T-cells and implicates the 

generation of Kyn and other Tryp catabolites as the critical factors of this process [74]. 

The increased Tryp catabolism observed in HIV-1-infected humans and SIV-infected 

macaques also correlates with the loss of Th17 cells, important players in mucosal 

immunity, thus changing the balance of Th17 to Treg and increasing immuno-suppressive 

responses [61, 63, 75-77]. Interestingly, a small group of HIV-1-infected subjects, called 

elite controllers (EC) who are able to spontaneously control viral replication and to 
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display normal CD4 counts in the absence of ART [78], show similar IDO-1 activity 

compared to uninfected subjects [63].  This confirms the key role of Tryp metabolism in 

HIV-1 control and the maintenance of proper T-cell response [63]. Furthermore, 

increased IDO-1 activity in primary HIV-1-infected patients correlates positively with the 

levels of CD8 T-cell activation [11]. 

B. Innate immunity. In diverse anatomical compartments such as gut, lymph nodes and 

blood, the early induction of IDO-1 activity in macrophages, and dendritic cells dampens 

the antiviral responses and thus contributes to disease progression in SIV and HIV 

infections [52, 77, 79]. Elevated IDO-1 activity during primary infection positively 

correlates with monocytic pro-inflammatory cytokines including IL-6, IL-18, and TNF-, 

and negatively with the frequency of dendritic cells [11]. Furthermore, increasing 

observations indicate that HIV-1 and SIV-1 infections mediate heightened production of 

toxic metabolites such as Kyn and quinolinic acids by brain-resident macrophages, 

contributing to the neuron/astrocyte cell death, and the neuropathogenesis of HIV-

associated dementia (HAD) and HIV-associated myelopathy (HAM) [80-82].  

 

5. Increased glucose metabolic activity during HIV-1 infection 

5.1. Glucose management, a key factor for bioenergetic needs, is deregulated in HIV-1 

infection. Glucose is readily utilized by cells of the immune system and is used to 

generate energy and biosynthetic precursors. Activation of immune cells is associated 

with increased glucose utilization and this is facilitated, in part, by increased expression 

of glucose transporters [83]. For instance, T-cell activation requires the up-regulation of 

glycolysis (catabolism of glucose) to meet the biosynthetic and bioenergic needs of cell 
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proliferation, survival, and immune function including the synthesis of cytokines [2, 5, 

84]. As mentioned earlier, since HIV-1 infection is characterized by long-lasting and 

excessive inflammation/cell activation, most of infected patients display up-regulation in 

glucose metabolic activity [6, 85-88]. These observations are consistent with higher 

glucose uptake/trafficking in HIV-1-infected patients and elevated metabolite pool sizes 

such as sedoheptulose 7-phosphate and ribose-phosphate [86]. 

5.2. High glucose up-take in CD4 T-cells enhances cell permissiveness to HIV-1. HIV-1 

infection causes an increase in glycolytic flux which brings the glycolytic capacity of 

primary infected CD4 T-cells close to its maximum [89]. The study shows that glycolysis 

is particularly required for virion production and additionally worsens the sensitivity of 

the infected cell to virus-induced apoptosis. Palmer C.S. et al. recently reported 

significant increase in the percentage of circulating CD4 T-cells expressing Glut-1 (major 

glucose transporter on T-cells) which is associated with cell activation and depletion 

during chronic HIV-1 infection and is not fully diminished following combination 

antiretroviral therapies [88]. Interestingly, IL-7 stimulation renders CD4 T-cells 

susceptible to HIV-1 entry by up-regulating the surface expression of Glut-1 and glucose 

transport into T-cells [90]. Hyperglycemia (condition with excessive amounts of glucose 

in plasma) also has the potential to enhance HIV-1 entry into T-cells through the up-

regulation of CXCR4 expression [91]. Taylor H.E. et al. have shown that phospholipase 

D1 links T-cell activation signals to increased permissiveness to HIV-1 by triggering 

specific transcriptional programs involving glucose uptake and nucleotide synthesis [92]. 

5.3. Protection of infected macrophages by counteracting glucose metabolism. In contrast 

to infected CD4 T-cells, HIV-1-producing macrophages has significant reductions in 
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glucose uptake and steady glycolytic intermediates [86]. The viral protein Vpr, protects 

infected macrophages from apoptosis by the inhibition of hexokinase-1 (HK-1) activity, 

an enzyme that converts glucose to glucose-6-phosphate, therefore playing a non-

metabolic role in maintaining mitochondrial integrity [93, 94]. HIV-1 Vpr can also hijack 

several pathways related to glucose management by inducing the expression of HK-1, 

glucose-6-phosphate dehydrogenase, and pyruvate kinase muscle type 2 [95].  

 

6. Deregulation of lipid metabolism and compositions 

6.1. Physiologic function. Lipids are fats that are either absorbed from food or 

synthesized by the liver. Triglycerides (TG) and cholesterol contribute most to diseases, 

although all lipids are physiologically important. Whereas, the primary function of TG is 

to store energy in adipocytes and muscle cells, cholesterol is a ubiquitous constituent of 

cell membranes, steroids, bile acids, and signaling molecules. All lipids are hydrophobic 

and mostly insoluble in blood, so they require transport within hydrophilic, spherical 

structures called lipoproteins. Lipoproteins are classified by size and density (defined as 

the ratio of lipid to protein) and are important because high levels of low-density 

lipoproteins (LDL), most cholesterol-rich of all molecules, represents a major risk factors 

for atherosclerotic heart disease. 

6.2. Lipid metabolism and composition during HIV-1 infection. Following several years 

of HIV-1 infection, patients can develop multiple lipid abnormalities including insulin 

resistance, diabetes, hyperlipidemia and hypertension [96-99]. HIV-1 replication alone 

through the expression of viral proteins and the induction of inflammation can enhance 



 

12 
 

production of free fatty acids, LDL and many key enzymes and proteins involved in lipid 

metabolism such as fatty acid synthase and Apolipoprotein A-1 [100].  

Furthermore, HIV-1 envelope-mediated membrane fusion occurs in cholesterol-rich lipid 

domains. In this context, the viral protein Nef can modulate the lipid composition of 

virion and host cell micro-domains ("lipid raft") to enhance virus infectivity and 

propagation, by specific enrichment of sphingomyelin and cholesterol specifically in 

these sites [101-103]. 

6.3. Elevated lipogenesis, innate cells, and atherosclerosis incidence. In addition to ROS 

production, the activation of monocytes with IFN- during HIV-1-infection increases 

acetylated LDL up-take and synthesis, participating to the establishment of 

atherosclerosis and other arterial diseases [37, 104]. In fact, increased incidence to 

atherosclerosis and dyslipidemia (abnormal amount of lipids such as cholesterol in the 

blood) occurring in HIV-1-infected patients is tightly associated with up-regulated levels 

of pro-inflammatory cytokines such as IL-6 and TNF- from activated 

monocytes/macrophages [105-107]. 

 

7. Foxo3a: potential candidate to explain deregulated immuno-metabolism in HIV-

1. 

Forkhead box O 3a (Foxo3a) is a transcriptional factor constitutively expressed on 

hematopoietic cells. In addition to pro-apoptotic and anti-proliferative targets, active 

Foxo3a induces the transactivation of genes implicated in the ROS detoxification (SOD, 

catalase) [79, 108, 109], and genes regulating glucose metabolism (glucose-6-

phosphatase) [110, 111]. Although we and others have shown that HIV-1-infected 



 

13 
 

individuals display up-regulation in Foxo3a activity in infected macrophages, memory 

CD4 T-, and B-cells, even under ART, this leads to the expression of pro-apoptotic 

targets such as Bim, FasL, and TRAIL rather than metabolism-related genes [112-114]. 

However, the viral protein Vpr inhibits the ability of hypoglycemic peptide hormone 

insulin to suppress the transcriptional expression of glucose-6-phosphatase and SOD by 

inhibiting forkhead transcriptional factor (Foxo) activity in hepatocytes [115, 116]. 

Neurons undergo massive Foxo3a-dependent apoptosis in the presence of TNF- and 

high glucose concentrations, conditions usually observed in infected patients developing 

HAD and HAND [117]. 

 

8. Modulation of autophagy in HIV-1 infection. 

8.1. Physiologic functions and impact on T-cells during HIV-1 infection. 

Autophagy represents the basic catabolic mechanism that involves degradation of 

unnecessary or dysfunctional cellular components through the actions of specialized 

lysosomal structures called autophagosomes. The role of autophagy consists of degrading 

damaged or aged organelles, protein aggregates, but is also involved in microbial 

defence, antigen processing, and lymphocyte development and function [118-120]. 

Activation of autophagy occurs in response to nutrient deprivation, and recognition of 

pathogen associated patterns including HIV-1-related molecules [121-124]. In contrast to 

productively infected T lymphocytes, HIV-1-infected cells can induce autophagy in 

bystander uninfected CD4 T-cells through HIV-1 Gp120 exposure, leading to caspase-

dependent apoptosis and cell depletion [126-129]. Interestingly, blood cells from HIV-1-

infected elite controller subjects display more efficient autophagic response that leads to a 

https://en.wikipedia.org/wiki/Catabolic
https://en.wikipedia.org/wiki/Lysosome
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reduced viral production, thus confirming key role of autophagy in long-term immune 

protection against accelerated HIV-1-mediated disease progression [125].  

8.2. Autophagy in myeloid cell lineage in HIV-1. Although there are relatively few studies 

that have assessed the role of autophagy in DC, Blanchet F.P. et al. show that exposure of 

DC to HIV-1 Gp120 down-regulates the formation of autophagic vacuoles, therefore 

resulting in altered cell response to LPS and increased DC-mediated HIV-1 trans-

infection into CD4 T-cells [130]. During HIV-1 infection, IL-10, and viral proteins such 

as Tat and Nef suppress the induction of autophagy-associated genes (Beclin-1, 

autophagocytosis-associated protein 3; Atg-3) and inhibits the formation of 

autophagosomes in macrophages, dampening the anti-HIV-1 mechanism in these cells 

[131-133]. 

 

9. Potential strategies to restore proper immuno-metabolism in infected patients. 

It now is well recognized by the scientific community that a large proportion of HIV-1-

infected individuals, including those receiving ART treatment, can experience profound 

deregulations in immune-metabolism. Some of these metabolic defects may take place as 

early as the first weeks of primary infection, and might be reversed if ART is initiated 

during this early phase of infection [11]. However, ART usually improves, but does not 

always normalize all metabolic and clinical parameters (e.g. glucose uptake and gut 

inflammation) [12, 15, 88, 134]. Moreover, the long-term administration of antiretroviral 

molecules per se, particularly anti-proteases, results in abnormal fat distribution and 

impaired glucose homeostasis in more than 50% of treated patients [135-138]. Therefore 
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it is critically needed to develop new strategies aiming to improve metabolic conditions 

in HIV-1-infected patients in order to enhance innate and adaptive protective immunity.  

The wise old saying, we are what we eat, may be particularly true in the context of 

immune fight against HIV-1. Although there is no clear evidence of beneficial effects of 

diets on premature immune ageing during chronic HIV-1-infection, the use of antioxidant 

vitamins, minerals, amino acids, and other dietary supplements is widespread in the HIV-

infected community. Furthermore, enhancing the lifestyle represents another first-line 

approach, with a focus on smoking cessation in addition to exercise and diet modification 

(Mediterranean-style dietary pattern) to decrease cholesterol and triglyceride levels in 

HIV-1-infected patients [139-142]. Metformin and thiazolidinediones, molecules used to 

treat type 2 diabetes, have been shown to significantly improve glucose management, and 

prevent atherosclerosis in HIV-1 patients [143-145]. The in vivo administration of 

antioxidant N-acetylcystein amide or gene delivery of antioxidant enzymes is effective in 

protecting the blood brain barrier from oxidative stress-and inflammation-induced 

damage in Gp120- or Tat-exposed animals, and thus could be a viable therapeutic option 

for patients with HAD [41, 42, 146]. Similarly, the treatment of mice with 1-MT 

significantly inhibits IDO-1 activity, and enhance the elimination of virus-infected 

macrophages in an in vivo model of HAD [82]. In SIV-1-infected rhesus macaques, 1-

MT synergizes with ART in inhibiting viral replication without interference with the 

beneficial immunologic effects of the antiretroviral treatment [147]. The administration 

of Niacin, a B vitamin, has shown encouraging preliminary results in reducing cholesterol 

and LDL, and reducing the levels of the up-stream Kyn in HIV-1-infected patients [148, 

149]. A randomized trial is currently in progress to fully evaluate the potential benefit of 



 

16 
 

oral extended-release niacin in reducing immune activation, increasing CD4 T-cell 

recovery, and improving neurocognitive function in ART recipients [150]. 

 

10. Conclusion. 

Despite the significant advances in HIV treatments and the reduction of both mortality 

and morbidity associated with infection, it is largely believed that current regimens 

cannot achieve HIV cure. This necessitates the implementation of complementary 

approaches by switching towards unconventional concepts. In this regard, there is now a 

growing evidence that deregulated immuno-metabolism represents a central element to 

the biased immunity against HIV-1 infection that leads to viral dissemination and 

pathogenesis. Understanding these immuno-metabolic defects in a timely manner and 

identifying novel biomarkers that can either predict or reflect their outcome is then a 

critical need in the fight against HIV and its associated clinical complications. This will 

ultimately pave the way to find innovative approaches to counteract these defects and 

reduce cell activation and chronic inflammation that will likely prevent massive T-cell 

loss and reinforce anti-HIV-1 defence and eventually achieve HIV cure.  
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Figure legends. 

Table 1. Host and viral molecules mediating oxydative stress in HIV-1-infected cells. 

This table also includes related health complications that occurs when the virus infiltrates 

tissues and induces heightened activation of resident macrophages. 

Figure 1. Interplay between inflammation, viral proteins, prolonged HAART treatment, 

and deregulated metabolism resulting in immune dysfuntion and tissue injuries, 

particulalry at mucosal sites. In turn, gut mucosal insult leads to bacterial translocation 

that further fuels chronic inflammation and mediates metabolic defects. Other factors 

such as co-infections, drug abuse, and aging that could potentially interfere with and 

negatively impact on immuno-metabolism in infected subjects are also highlighted. 
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Figure 2. Schematic representation for the HIV-mediated deregulated tryptophan 

metabolism and the subsequent immune/tissue impairments during infection. (i) 

Increased IDO-1 activity leads to higher levels of tryptophan catabolites. Both kynurinine 

and the downstream quinolic acid mediates the initiation of HAD and HAND and (ii) 

Higher levels of tryptophan metabolism mediated by interaction of CTLA-4 (expressed 

by T-cells) with its ligands (B7-1 and B7-2) expressed by antigen presenting cells is also 

associated with profound effects in T-cell activation, cytokine production, proliferation 

and differentiation.  

 

 

 



                                                         Table 1 

Cell type Inducer 
Oxidative 

stress 
Host mechanisms Immune Dysfunction Reversibility Reference 

Adaptive Immunity 

CD25
neg

CD4 
T-cells 

T-cell receptor 
triggering 

↑(O2
.
-) ↑(TGF-; FoxP3) ↑Treg differentiation yes [35] 

Jurkat cells H2O2 / 
↑(TNF-; Nf-B; TAK1; 

AP-1) 
↑HIV-1 LTR activation yes [25]; [30] 

CD4
+
MAGI 

cells 
Tat 

↑(H2O2); 
↓(GSH) 

↑(Nrf2; Nox2; AKT; Nf-

B) 
↑HIV-1 LTR activation yes [27]; [28] 

CD8; 
memory CD4 

T-cells 
HIV-1 infection ↑(H2O2, MDA) 

↓(induced pSTAT-5; 
CD127) 

↓response to IL-7 non specified [21] 

T-cells  HIV-1 infection ↑(H2O2, O2
.
-) 

↑(Ras; VDR methylation; 
PD-1) 

↑T-cell apoptosis yes [31]; [32]; [33] 

Innate Immunity 

macrophages HIV-1 infection ↑(H2O2, O2.-) 
↑(pJNK); ↓(TRAIL decoy 

receptors) 
↑macrophage apoptosis non specified [39] 

monocytes 
HIV-1 infection; IFN-

 
↑(ROS, oxLDL) 

↑(LDL up-take; MX-1 and 
CXCL10) 

↑inflammatory 
CD16

+
monocytes 

non specified [22]; [37] 

CD33
+
MDSC gp120; IL-6 ↑(ROS) ↑(IL-6; pSTAT3) 

↑MDSC; ↓ T-cell function (ROS 
dependent) 

yes [46] 

Table 1
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