Genipin Cross-Linked Nanocomposite Films for the Immobilization of Antimicrobial Agent

Avik Khan,† Stéphane Salmieri,† Carole Fraschini,§ Jean Bouchard,§ Bernard Riedl,‡ and Monique Lacroix*†‡

†Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre (CIC), INRS-Institut Armand-Frappier, Université du Québec, 331 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
‡Département des Sciences du Bois et de la Forêt, Faculté de Forsterie, Géographie et Géomatique, Université Laval, Québec City, Québec G1V 0A6, Canada
§FPInnovations, 570 Boulevard St. Jean, Pointe-Claire, Québec H9R 3J9, Canada

ABSTRACT: Cellulose nanocrystal (CNC) reinforced chitosan based antimicrobial films were prepared by immobilizing nisin on the surface of the films. Nanocomposite films containing 18.65 µg/cm² of nisin reduced the count of L. monocytogenes by 6.73 log CFU/g, compared to the control meat samples (8.54 log CFU/g) during storage at 4 °C in a Ready-To-Eat (RTE) meat system. Film formulations containing 9.33 µg/cm² of nisin increased the lag phase of L. monocytogenes on meat by more than 21 days, whereas formulations with 18.65 µg/cm² completely inhibited the growth of L. monocytogenes during storage. Genipin was used to cross-link and protect