Transient complement inhibition promotes a tumor-specific immune response through the implication of natural killer cells.

Valérie Janelle¹,², Marie-Pierre Langlois¹, Esther Tarrab¹, Pascal Lapierre¹, Laurent Poliquin² and Alain Lamarre¹,²

¹Immunovirology Laboratory, Institut national de la recherche scientifique, INRS-Institut Armand-Frappier, Laval, Québec, Canada
²Biomed Research Center, Department of Biology, Université du Québec à Montréal, Montréal, Québec, Canada

Correspondence should be addressed to:
A. Lamarre: Immunovirology Laboratory, Institut national de la recherche scientifique, INRS-Institut Armand-Frappier, Laval, Québec, Canada, H7V 1B7
Phone: 450-687-5010 ext: 4262,
Fax: 450-686-5501,
E-mail: alain.lamarre@iaf.inrs.ca

Running title: Anti-tumor immune response induced by decomplementation

Keywords: cancer; complement; NK cell; immunotherapy; melanoma

Disclosure: The authors disclose no potential conflicts of interest.

Word count: 2594

Figures: 4
ABSTRACT

While the role of the complement system in cancer development has been studied, its involvement in the development of an anti-tumoral immune response remains poorly understood. Using cobra venom factor to inhibit the complement cascade via C3 molecule exhaustion in immunocompetent mice bearing B16gp33 melanoma tumors, we show that transient inhibition of the complement system allowed for the development of a more robust gp33-specific anti-tumoral CD8+ T cell response. This immune response proved to be NK-dependent suggesting an interaction of complement proteins with this cellular subset leading to T lymphocyte activation and enhanced cytotoxic T cell activity against tumor cells. This study demonstrates for the first time the implication of the complement system in the development of NK-mediated cytotoxic T cell-dependent anti-tumoral immune responses. The complement pathway could therefore be a potent therapeutic target in cancer patients to improve NK-dependent anti-tumoral immune responses.
INTRODUCTION

Historically, the complement system has been considered a ‘complementing’ player in the innate immune response that mediated clearance of various pathogens or dead cells and could induce inflammation (1). In cancer, activated complement proteins were primarily described for their role in tumor defense either through complement-dependent cytotoxicity (2) or antibody-dependent cell-mediated cytotoxicity (3). However, the complement anaphylatoxins C3a and C5a can increase the activation of phosphatidylinositol 3-kinase (PI3K), Akt and mammalian target of rapamycin (mTOR) (4), proteins strongly associated with neoplasia when overexpressed, suggesting a more complex role for complement proteins in tumorogenicity. Furthermore, mice deficient in C3 or C4 show significantly decreased TC-I subcutaneous tumor proliferation compared with wild-type mice (5) while the C5a protein can be involved in CD8+ T cell inhibition (6).

NK cells are large granular lymphocytes part of the innate immune system implicated in host defense against tumors and pathogens (7). NK cells express FcγR, which interacts with immunoglobulin bound to antigen on target cells, leading to NK cell activation (8) and production of IFNγ and TNFα (9). NK cells can also complement cytotoxic T lymphocytes (CTLs) by killing MHC-I-deficient cells that failed to be recognize by T cells (7). NK cells have been shown to cross-talk with dendritic cells (DCs); their effector functions being stimulated through direct contact with activated DCs (10). However, DC/NK-cell interactions are bidirectional, resulting not only in NK-cell activation but also DC maturation depending on the activation status of both cells (11). Soluble factors such as TNFα and IFNγ, as well as cell-to-cell contact, are required for NK-mediated DC activation (12).
Little is known about the link between complement and NK cells but evidence suggests that complement receptor CR3, a receptor implicated in phagocytosis mediated by complement fragment iC3b-opsonized targets (13), is expressed by NK cells and cytotoxic T cells displaying similar functions as CR3 expressed on phagocytes (14). Given that NK cells can be involved in tumor control and that proteins from the complement pathway may interact with NK cells to suppress or limit their functions, we hypothesized that proteins in the complement pathway may favor tumor growth through the impediment of NK cells. Herein, we found that transient inhibition of complement increased NK cell numbers in spleen and tumor leading to the induction of an increased anti-tumoral CTL response.
MATERIAL & METHODS

Cell lines

Murine B16 and B16gp33 melanoma cells were obtained from Dr. A. Ochsenbein (Bern, Switzerland). The B16gp33 cell (H2-Db) were derived from B16.F10 cells transfected with a DNA minigene encoding the immunodominant CD8+ T cell epitope of the lymphocytic choriomeningitis virus (glycoprotein aa 33-41) (15). Cells were grown in Dulbecco's modified Eagle's medium (Life Technologies, Rockville, MD) supplemented with 10% fetal bovine serum (FBS) and 200 μg/ml of G418 to select for retention of the gp33 minigene.

Enzyme-linked immunosorbent assay.

C3 molecule concentration was tested in mice sera at the indicated time points by ELISA. Briefly, blood was harvested and incubated at 37°C to coagulate. Samples were centrifuged and the serum fraction was used. Serial dilutions were added onto an IgM-coated 96-well plate (5μg/ml; Sigma-Aldrich, Oakville, ON). Mouse anti-C3 coupled to biotin (Cedarlane, Burlington, ON) followed with streptavidin-horseradish peroxidase (Southern Biotech, Birmingham, AL) were incubated with samples. A solution of o-Phenylenediamine dihydrochloride (Sigma-Aldrich, Oakville, ON) was then used for the detection of C3 molecules. Optical density was measured by spectrophotometry at 490 nm.

In vivo studies.

All procedures were approved by the INRS Institutional Animal Care and Use Committee. To establish subcutaneous tumors, 5 × 10^5 B16 or B16gp33 cells in 100 μl PBS were injected into the flank of C57Bl/6 mice. Six days after tumor implantation, mice were injected with cobra venom factor (CVF; 20 μg/mouse; Quidel, Santa Clara, CA) intraperitoneally. For NK depletion experiments, 200 μg of purified monoclonal anti-NK1.1 antibodies from PK136
hybridoma, kindly provided by Dr. Suzanne Lemieux (Laval, Canada), were injected intraperitoneally two days prior to decomplementation (Fig. S2).

Flow cytometry.

Spleen and tumors were recovered from mice and dissociated *in vitro* to achieve single-cell suspensions using nylon 100 μm cell strainers (BD Falcon). Cells were washed, resuspended in phosphate-buffered saline containing 1% bovine serum albumin and 0.1% sodium azide (FACS buffer), and incubated with directly conjugated primary antibodies for 30 minutes at 4°C. Cells were then washed and resuspended in 200 μl FACS buffer containing 1% paraformaldehyde. Samples were acquired on a FACS Fortessa (BD Biosciences, San Diego, CA) and analyzed using Flowjo software (Tree Star, Ashland, OR). Anti-CD45 PE/CF-594, anti-CD25 APC and anti-NKp46 Alexa 700 were purchased from BD Biosciences. Anti-CD4 APC/Cy7, anti-CD4 FITC, anti-CD8 PE/Cy7, anti-CD62L Alexa 700, anti-CD44 PercP/Cy5.5, anti-B220 APC/Cy7, anti-CD11b Pacific Blue, anti-Gr1 PE/Cy5, anti-CD11c FITC and anti-F4/80 APC were purchased from BioLegend (San Diego, CA).

Dendritic cell activation.

Single-cell suspensions were prepared from spleen and draining lymph node harvested 9 days after CVF injection. Red blood cells were lysed and remaining cells were resuspended in FACS buffer prior to CD11c-FITC and CD86-PE labeling (BioLegend, San Diego, CA). Samples were acquired on a FACS Fortessa (BD Biosciences, San Diego, CA) and analyzed using Flowjo software (Tree Star, Ashland, OR).

NK intracellular staining assay.

For IFNγ intracellular staining, single-cell suspensions were prepared from spleen and tumor harvested 9 days after CVF injection. Cells were cocultured with YAC-1 cells (provided
by Dr. Suzanne Lemieux, Laval, Canada; at 10:1 effector-target ratio) with or without PMA-ionomycin. Cytokine production was measured in presence of monensin A (20 μg/ml), brefeldin A (10 μg/ml) and anti-CD107a FITC antibody for 5 hours. Cells were stained for surface markers, fixed, and permeabilized for intracellular staining using fixation and permeabilization buffers from BioLegend according to the manufacturer's instructions. IFNγ-PE and CD107a-FITC were obtained from BioLegend (San Diego, CA.)

T lymphocyte intracellular staining assay.

For IFNγ and TNFα intracellular staining, single-cell suspensions were prepared from spleen (three mice per group) 9 days after CVF injection. Cytokine production in response to tumor antigen, was measured by incubation with the gp33 peptide (KAVYNFATC 1 μg/ml) in the presence of brefeldin A (10 μg/ml) and IL-2 (100 U/ml) for 5 hours. Cells were stained for surface markers then fixed, and permeabilized for intracellular staining using fixation and permeabilization buffers as described above. For degranulation assay and granzyme B intracellular staining, cells were incubated with the peptides in the presence of monensin A (20 μg/ml) and anti-CD107a FITC antibody for 5 hours. Cells were stained for surface markers, then fixed, and permeabilized for intracellular staining. IFNγ-PE and TNFα-APC were obtained from BioLegend (San Diego, CA) and granzyme B eFluor 450 was purchased from eBiosciences (San Diego, CA).

Statistical analyses.

A Student T test was used for group comparison and P values of less than 0.05 were considered significant.
RESULTS AND DISCUSSION

CVF-mediated decomplementation slows down early tumor progression and promotes immune cell infiltration

In recent years, there has been regained interest in the role of complement in various disease conditions. In cancer, the role of complement is unclear since it has been reported to play a role in both tumor clearance and progression (2, 3). Nevertheless, studies have indicated that blocking complement proteins might improve the efficacy of anti-tumor immunotherapy (16). Some complement activation products, like the anaphylatoxins C3a and C5a, are potent proinflammatory mediators and it is now well recognized that inflammation is able to both promote and exacerbate tumor growth.

To establish the role of the complement system in the generation of an anti-tumoral immune response, transient decomplementation was performed using cobra venom factor (CVF) 6 days following tumor administration, at the time when T cell priming is expected to occur. CVF is a structural and functional analog of the C3 molecule, which will act as a C3/C5 convertase. CVF-containing convertases are more stable and resistant to regulatory inhibitors and deplete complement activity by C3 consumption (17). Unlike complement protein knockout mice (eg. C3\(^{-/-}\), C4\(^{-/-}\) or C5\(^{-/-}\)), CVF does not affect splenic architecture thus allowing a complete and unaltered immune response to be mounted and analyzed (18). Since CVF-mediated complement depletion lasts approximately three days in treated mice (Fig. S1), we hypothesized that this short period of time could affect T cell priming. CVF-mediated transitory decomplementation soon after tumor implantation efficiently led to a significant slowdown of B16 melanoma tumor growth (Fig. 1A). Even if this was not associated with a significant increase in the percentage of tumor-infiltrating immune cells 9 days following decomplementation (Fig. 1B), it modulated the
composition of infiltrating cells. Strikingly, CVF treatment affected NK cell proportions, but had little to no effect on the proportions of CD4$^{+}$ T cells, regulatory T cells, CD8$^{+}$ T cells, B cells, neutrophils, macrophages and DCs (Fig. 1C).

An important mechanism used by malignancies to suppress immune responses against tumor antigens is abnormal myelopoiesis and the recruitment of myelomonocytic cells to the tumor microenvironment and peripheral lymphoid organs (19). In concordance with the study by Markiewski et al. (5), complement inhibition also significantly decreased myeloid-derived suppressor cells (MDSC) in tumor and spleen (Fig. 1C and Fig. S2). MDSC are a population of intermediately differentiated myeloid cells known to abolish cancer immunosurveillance therefore potentiating neoplastic proliferation (2). These cells express high levels of membrane C5aR (5). C5a/C5aR binding on MDSC promotes their migration and increases their production of immunosuppressive molecules such as reactive oxygen and nitrogen species, consequently inhibiting cytotoxic CD8$^{+}$ T lymphocytes and NK cells and stimulating tumorigenic cytokine production and angiogenesis (5, 20). MDSC can also be recruited to tumors by anaphylatoxin C5a deposited in the tumor vasculature (5).

CVF treatment promotes a better NK cell availability

NK cell proportions were greatly increased following decomplementation both in the tumor (eight-fold) and in the spleen (three-fold) (Fig. 2A). We next wanted to assess whether decomplementation also modulated NK cell function. Tumoral and splenic NK cells harvested 9 days after CVF treatment were not impaired functionally compared to non-treated animals, as determined by degranulation assay (CD107a) and IFNγ production after exposure to YAC-1 target cells. Furthermore, NK cells retained their ability to respond to ex vivo stimulation (Fig. 2B). Complement proteins are known to induce the production of transforming growth factor-β
(TGF-β) (21) which may facilitate angiogenesis, invasion and metastasis (22) and downregulation of IL-2Rβ expression as well as IFNγ secretion by NK cells (23). Our results suggest that it is unlikely that this pathway is involved here since NK cells harvested from CVF-treated mice are fully functional and respond normally.

The complement system limits systemic T cell activation

It is well recognized that the clearance of apoptotic cells through iC3b opsonisation and CR3 phagocytosis can be accompanied by a reduction in the expression of co-stimulatory molecules and an impaired maturation of dendritic cells (24). The recruitment of large numbers of NK cells may therefore be critical for optimal DC activation and subsequent induction of T cell responses in these low-inflammation conditions. Given that NK cells can cross-talk with DCs to mediate their activation, we wanted to assess their activation status after transient inhibition of the complement system. We did not observe any modulation of CD86 expression levels in splenic or draining lymph node DCs (Fig. 3A). We then sought to determine if the enhanced NK cell proportions at the tumor site could nevertheless lead to an increased T cell activation. The majority of CD4+ and CD8+ T cells present in the tumor were of the effector/effector memory phenotype and their proportions did not change following complement inhibition. However, in the spleen, CVF-mediated depletion of complement led to reduced proportions of naive T cells associated with increased proportions of effector CD4+ and CD8+ T cells (Fig. 3B). It is therefore likely that, in the absence of complement proteins, functional DCs have access to more tumor antigens due to increased NK-mediated cell lysis allowing for a better presentation to CD8+ T lymphocytes.

The enhancement of tumor-specific CTL responses in decomplemented mice is NK-dependent
It has been reported that complement components can interfere with the binding of NK cells to monoclonal antibodies (mAbs) used in certain cancer treatments thus limiting NK cell-mediated lysis of antibody-coated target cells (25). It was also showed that this inhibition was dependent on C3b, likely by its binding to CR3 molecules abrogating signaling via Fcγ receptor III (CD16) (25). Furthermore, depletion of complement has been shown to enhance survival rates following mAb therapy in a syngeneic mouse model of lymphoma (26).

To ascertain if the enhanced tumor control we observed in decomplemented mice was a direct consequence of the increased proportions of NK cells in these mice, we depleted NK cells 4 days after tumor implantation. It is of importance to note that in vivo depletion with anti-NK1.1 antibody is complement-mediated, thus required prior to CVF treatment. We found that in the absence of NK cells, CVF treatment had no effect on tumor implantation and early development demonstrating that NK cells were necessary for the decreased tumor growth observed following decomplementation (Fig. 4A).

Considering that T cell activation in the spleen is also increased in the absence of complement, we wanted to determine if decomplementation also affected the induction of tumor-specific cytotoxic T lymphocytes. As assessed by intracellular cytokine staining of gp33 peptide-stimulated T cells from decomplemented and control B16gp33-bearing mice, we found that complement inhibition led to higher levels of tumor-specific (gp33) T cells secreting mainly TNFα (Fig. 4B). Accordingly, the enhancement of gp33-specific CTL induction by CVF was also abolished in the absence NK cells indicating that the effect of decomplementation on early tumor growth is largely mediated by CTLs (Fig. 4B). However, CVF-mediated decomplementation did not lead to superior levels of gp33-specific cytotoxicity as assessed by CD107a expression, a marker of recent degranulation (Fig. 4C). Thus, in the B16 melanoma
model, we demonstrate that CVF treatment limits early tumor growth and promotes a better availability of splenic and tumoral NK cells. This suggests that complement components and NK cells interact thus modulating tumor-specific CTL induction.

Therefore, our study has identified a previously unrecognized function for complement in tumor biology. We have shown that complement and NK cells interact and influence tumor growth by limiting tumor-specific CTL induction. Factors from the complement system may restrict NK cell availability in tumor tissue where NK cells would normally participate in the induction of a tumor-specific CTL response via, among other things, tumor cell lysis. Furthermore, complement proteins could also promote infiltration of the tumor by MDSCs that could then suppress lymphocyte function (Fig. 4D).

Many drugs targeting complement proteins are currently in clinical trials and few side effects have been reported (1, 27). CVF has also been used in laboratory animals for the treatment of various diseases. One of the limits of this treatment alternative in the clinic is the high immunogenicity of this compound (28). However, a human C3 hybrid, containing crucial regions of the CVF β chain (so-called humanized CVF or HC3-1496), has been created for this purpose (29). It will be of great interest to test other complement inhibitors currently in development in various solid tumor models to determine if sustained treatment will favour the induction of a better tumor-specific immune response and promote CD8+ T cell expansion. Thus, a better understanding of the link between complement proteins and NK cells in the development of tumors could lead to the design of new therapeutic strategies against cancer.
ACKNOWLEDGMENTS

The authors thank Simon Janelle for his help on the schematic illustration of the proposed model. This work was supported by the Jeanne and J.-Louis Lévesque Chair in Immunovirology to A.L. from the J.-Louis Lévesque Foundation. V.J. and M.-P.L. acknowledge studentship support from the Fondation Armand-Frappier. P.L. holds a Fonds de recherche du Québec - Santé (FRQS) postdoctoral award and a Thomas F. Nealon, III Postdoctoral Research Fellowship from the American Liver foundation.
REFERENCES

FIGURE LEGENDS

Figure 1. Effect of CVF treatment on B16 tumor growth and immune cell infiltration. C57Bl/6 mice were injected subcutaneously with B16 (day 0) and CVF was administered by intra-peritoneal injection on day 6. **A,** Tumor growth was measured at indicated time points. Data show the mean ± SEM and are representative of two independent experiments. **P < 0.01.** **B,** Nine days following CVF treatment, tumor and spleen were harvested and total tumor CD45⁺ cells and **C,** immune cell subpopulation proportions of CD4⁺ T cells (CD4⁺CD25⁻), regulatory T cells (CD4⁺CD25⁺), CD8⁺ T cells, B cells (B220⁺), NK (NKp46⁺), MDSC (Gr1⁺CD11b⁺), neutrophils (Gr1⁺CD11b⁻), dendritic cells (Gr1⁻CD11b⁺CD11c⁻) and macrophages (Gr1⁻CD11b⁻F4/80⁻) were determined.

Figure 2. Decomplementation increases NK cell availability without affecting their effector function. B16gp33-bearing mice were treated or not with CVF. On day 9 following treatment, spleen and tumor were harvested. **A,** Percentage of NK cells among CD45⁺ cells. Mean ± SEM are shown (n=9). **P < 0.001.** **B,** NK degranulation assay in YAC-1 co-cultures (10:1 Effector-target ratio) with or without PMA-ionomycin. Data are the mean ± SEM of three independent experiments (n=9).

Figure 3. Increased systemic T cell activation following CVF treatment. **A,** Spleen and draining lymph nodes were harvested 9 days following CVF treatment and DC activation was assessed by CD11c and CD86 staining. Data are the mean ± SEM of two independent experiments (n=6). **B,** T cell activation was assessed by CD62L and CD44 staining on spleen and tumor. Naïve (CD62L⁺CD44⁻), effector/effector memory (CD62L⁻) and central memory T cells
(CD62L⁺CD44⁺) are shown. Data are the mean ± SEM of three independent experiments (n=9).

*P < 0.05, **P < 0.01

Figure 4. Influence of NK cells on CVF therapy. A, C57Bl/6 mice were injected subcutaneously with B16 cells (n=6-8), NK-depleted or not at day 4 and treated or not with CVF at day 6. Tumor growth was measured at indicated time points. Data show the mean ± SEM and are representative of two independent experiments. *P < 0.05, **P < 0.01. B, C57Bl/6 mice were injected subcutaneously with B16gp33 cells, NK-depleted or not at day 4 and treated or not with CVF at day 6. Nine days following CVF treatment, spleen was harvested and an ex vivo stimulation with the gp33 (KAVYNFATC) peptide was performed to analyze cytokine secretion and C, degranulation. Data are the mean ± SEM of two independent experiments (n=6). D, Proposed model for the influence of complement proteins and NK cells in the B16 melanoma model. Inhibition of the complement system by CVF allows for increased NK cell availability in tumor tissue. This expanded proportion of NK cells leads to increased tumor cell lysis and antigen release thus facilitating activation of tumor-specific CD8⁺ T lymphocytes. Inhibition of complement proteins also acts on MDSC and limits the immunosuppressive tumor microenvironment leading to increased CTL activation. Abbreviations: CTL, cytotoxic T lymphocyte; CVF, cobra venom factor; IFNγ, interferon gamma; iDC, immature dendritic cell; mDC, mature dendritic cell; MDSC, myeloid-derived suppressor cell; NK, natural killer cell; TNFα, tumor-necrosis factor alpha.

Supplemental Figure 1. Complement system inhibition by CVF. C57Bl/6 mice (n=3) were injected intraperitoneally with CVF (20 μg) at day 0. C3 molecule concentration in sera was
measured every following day and ratios over non-treated animals are shown. Data show the mean ± SEM and are representative of three independent experiments.

Supplemental Figure 2. MDSC proportions following CVF treatment. B16-bearing mice were treated or not with CVF. On day 9 following treatment, spleen and tumor were harvested. Percentage of MDSC among CD45+ cells is shown. Mean ± SEM (n=9). ***P < 0.001.

Supplemental Figure 3. Effectiveness of NK cell depletion. C57Bl/6 and RAG-/- mice (which are known to possess high numbers of NK and NKT cells) were injected intra-peritoneally with either 100 or 200μg of anti-NK1.1 antibody (clone PK136). Spleen was harvested two days later and analyzed. NKp46 and NK1.1 staining of CD3- cells are shown. Complete depletion was achieved with 200μg in both mouse strains.
Figure 1.
Figure 2.
Figure 3.
Figure 4.

A) Graph showing the tumor area (mm²) over days post-inoculation with different treatments: NT, CVF, anti-NK, anti-NK + CVF.

B) Bar chart showing the percentage amongst CD8 T cells under different conditions: TNFα, IFNγ, TNFα + IFNγ.

C) Bar chart showing the percentage of CD107a+ granzyme B+ activated CD8 T cells for NT and CVF.

D) Diagram outlining the immune response pathways: DC maturation, tumor antigen uptake, IFNγ, TNFα, NK cell, MDSC, C5a deposition on tumor vasculature, migration to lymphoid organs, tumor-specific CTL response, and CTL activation.