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ABSTRACT Extreme hydrological events, such as floods and droughts, are one of the natural 

disasters that occur in several parts of the world. They are regarded as being the most costly 

natural risks in terms of the disastrous consequences in human lives and in property damages. 

The main objective of the present study is to estimate flood events of Abiod wadi at given 

return periods at the gauge station of M’chouneche, located closely to the city of Biskra in a 

semi-arid region of Southern-East of Algeria. This single gauge station drains an important 

area.  The motivation of the station and area choices is due to the existence of a dam to the 

downstream. This is a problematic issue in several ways including the field of the 

sedimentation and the water leaks through the dam during floods. A complete frequency 

analysis is performed on a series of observed daily average discharges, including classical 

statistical tools as well as recent techniques. The obtained results show that the Peaks-Over-

Threshold approach based on the Generalized Pareto distribution (GPD) is more appropriate in 

this case. This study also indicates the importance of the continuous data monitoring at this 

station. 

Key words : Frequency analysis ; Peaks-Over-threshold ; Generalized Pareto distribution ; 

Threshold selection ; Flood discharges ; Extreme quantiles ; Biskra ; Algeria. 
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1. Introduction  

The study of floods is a subject which arouses more and more interest in the field of water 

sciences. In spite of their low rainfall, the basins of the arid and semi-arid areas represent a 

hydroclimatic context where the overland flows phenomena are significant and feed a network of 

very active wadis. The activity of these wadis is far from being negligible from the flood in terms 

of their frequency and intensity. One observes on these rivers exceptional flows which sometimes, 

surprise by their magnitude [18]. The Abiod wadi, in the area of Biskra, is a very representative 

river of these basins. Moreover, the existence of Foum El Gherza dam to the downstream for the 

irrigation of the palm plantations makes the area more sensitive with regard to the floods. The 

flood events of the years 1963, 1966, 1971, 1976 and 1989 remain engraved in the memory of the 

inhabitants. The flood event of 11- 12
th

 September 2009 was one of the historic floods in the 

Zibans area [7]. It rains 80 mm in 24 hours, while the annual total of Biskra city reaches 100 mm. 

The damage were 9790 palm trees, 164 flooded houses, 744 destroyed greenhouses, 200 hectares 

of lost cultures.  The last flooding at the time of this drafting paper is that produced in October 

29
th

 2011.  All the populations living downstream of the Foum El Gherza dam were evacuated. 

The floods mainly occur in September and October and especially originate from exceptional 

storm events. 

Describing and studying these situations could help in preventing or at least reducing severe 

human and material losses. The strategy of prevention of flood risk should be founded on various 

actions such as risk quantification.  On this aspect, various methodological approaches can 

contribute to this strategy, among which flood Frequency Analysis (FA). Frequency analysis of 

extreme hydrological events, such as floods and droughts, is one of the privileged tools by 

hydrologists for the estimation of such extreme events and their return periods. The main 



4 

objective of FA approach is the estimation of the probability of exceedance  TP X x , called 

hydrological risk, of an event Tx  corresponding to a return period T [16]. This process is 

accomplished by fitting a probability distribution F to large observations in a data set. Two 

approaches were developed in the context of extreme value theory (EVT). The first one, usually 

based on the generalized extreme value distribution (GEV), describes the limiting distribution of 

a suitably normalized annual maximum (AM) and the second uses the generalized Pareto 

distribution (GPD) to approximate the distribution of Peaks-Over-Threshold (POT). For more 

details regarding this theory and its applications, the reader is referred to the textbooks of 

Embrechtes et al. [23], Reiss and Thomas [54] and Beirlant et al. [6]. 

Many FA models should be tested to determine the best fit probability distribution that describes 

the hydrologic data at hand. Specific distributions are recommended in some countries, such as 

the Log-normal (LN) distribution in China [10]. In the United States, the Log-Pearson type 3 

distribution (LP3) has been, since 1967 [NRC, 47], the official model to which data from all 

catchments are fitted for planning and insurance purposes. By contrast, the United Kingdom 

endorsed the GEV distribution [NERC, 48, 49] up until 1999. The official distribution in this 

country is now the generalized logistic (GL), as for precipitation in the United States [61]. There 

are several examples where a number of alternative models have been evaluated for a particular 

country, for example Kenya [46], Bangladesh [35], Turkey [5] and Australia [60]. Nine 

distributions were used with data from 45 unregulated streams in Turkey by Haktanir [26] who 

concluded that two parameter Log-normal (LN2) and Gumbel distributions were superior to other 

distributions. Recent research was conducted by Ellouze and Abida [22] in ten regions of Tunisia. 

They found that the GEV and GL models provided better estimates of floods than any of the 

conventional regression methods, generally used for Tunisian floods. Rasmussen et al [53] 
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reveals that the POT procedure is more advantageous than the AM in the case of short records.  

Lang et al. [41] develop  a set of comprehensive practice-oriented guidelines for the use of the 

POT approach. Tanaka and Takara [57] has examined several indices to investigate how to 

determine the number of upper extremes rainfall best for the POT approach. 

In the Algerian hydrological context, during the last two decades many authors have used several 

approaches to study the associated risks. Recently, Hebal and Remini [28] studied flood data 

from 53 gauge stations in northern Algeria, between 1966 and 2008. They found that 50 %, 25 % 

and 22 % of the samples follow respectively the Gamma, Weibull and Halphen A distributions. 

Bouanani [12] performed a regional flood FA in the Tafna catchments and concluded that the 

AM flows fit better to asymmetric distributions such as LP3, Pearson 3 and Gamma. The FA was 

also used in the sediment context by Benkhaled et al. [8] where the LN2 distribution was selected 

in the case of the same station considered in the present study, i.e. M’chouneche gauge station on 

Abiod wadi. 

To the best knowledge of the authors, apart from Benkhaled et al. [8], the flood FA approach has 

not yet been performed on data collected at this station. The primary aim of this paper is to 

perform a FA to the Abiod wadi flow data. Specifically, the objective of this analysis is to choose 

the appropriate approach among AM and POT. In methodological terms, all the steps constituting 

FA are performed from data examination to risk assessment including hypotheses testing and 

model selection. Due to the high importance of the latter and its impacts, more recent techniques 

are employed to select the appropriate distribution that fit better to the tail. A relatively large 

number of known distributions fit well the center of the data whereas the focus in FA is on the 

distribution tail. To this end, tail classification and specific graphical tools are employed, see El 

Adlouni et al. [21] for more technical details. 
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The paper is organized as follows. In Section 2, the study area and the data set are briefly 

described. Section 3 is devoted to the FA methodology. The results of the study are presented and 

discussed in Section 4. Concluding remarks are reported in Section 5. 

2. Study area and data  

In this section, we present the region where the site of interest is located, followed by a 

description of the available data. 

2.1 Study Area 

The Abiod wadi watershed, with an area of 1300 Km
2
, is located in the Aurès massif in the 

southern east of Algeria in North Africa (Figure 1). It is part of the endorheic watershed Chott 

Melghir. The wadi length is 85 km from its origin in the Chelia (2326 m high) and Ichemoul 

(2100 m high) mountains. After crossing Tighanimine, the wadi gradually flows into the canyons 

of Ghoufi and M’chouneche gorges, and then opens a path to the plain until the Saharian gorge 

Foum el Gherza. The valley of the wadi is mainly composed of sedimentary rocks, comprising 

alternating limestone, marl, soft sediments (sandstones, conglomerates) and some evaporates 

(gypsum) dated of Paleogene.  

The watershed is characterized by its asymmetry, a mountainous area in the north to over 2000 m 

(Chelia) and another low area in the south (El Habel 295 m). The relief is rugged with slopes 

ranging between 12.5% and 25% for half of the area, and from 3% to 12.5% for another 40% of 

the area. Land cover is a mix of rocky outcrops, highly eroded soil, sparse vegetation, a few 

forests, crops, gardens and pastures [27]. In the orographic and hydrographic points of view, 

Abiod wadi is characterized by two distinct climatic regions: the Aurès, where rainfall averages 
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450 mm/year, and the Sahara plain with mean rainfall 100-150 mm/year. The climate of Abiod 

wadi watershed is thus semi-arid to arid. Along Abiod wadi to the Foum El Gherza dam there are 

six rainfall stations, and one hydrometric station located 18 km upstream of the dam, as shown in 

Figure 1.  

2.2 Data Description 

The data set used in this study is provided by the National Agency of Hydraulics Resources 

(ANRH) of Biskra. It consists of the daily average discharges 1, , NQ Q
 (with 8034N  ), 

collected at the gauge station of M’chouneche over 22 years from 1972 to 1994. The entire time 

series is represented in Figure 2. In addition, this figure shows the daily flow for each 

hydrological year (i.e. from September 1
st
 to August 31

th
).   

Note that the IACWD Bulletin 17B [1] suggests that at least 10 years of record are necessary to 

warrant a statistical analysis. For instance, Tramblay et al. [59] used a minimum of 10 years of 

daily data. The short data size can affect the choice of distributions, the quantile estimations, 

particularly those corresponding to large return periods and the extent of confidence intervals. 

The size of the used data in the present study is relatively large, to perform a FA, as in a number 

of similar studies [15]. 

In order to select the extreme data series used in FA, two approaches are considered: AM and 

POT, usually associated to GEV and GPD approximations respectively [30, 43]. Therefore, the 

estimation of flood magnitudes can be achieved by making use of two types of flood peak series, 

to be detailed in the next section.  
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3. Methodology 

In this section, after defining the types of series, we briefly present the required elements to 

perform a hydrological FA. The latter is a statistical approach of prediction commonly used in 

hydrology to relate the magnitude of extreme events to a probability of their occurrence [16]. It 

allows, for the selected station, to estimate the flood quantiles of given return periods. In general, 

FA involves four main steps:  

(i) characterization of the data and determination of the usual statistical indicators, such as 

the mean, the standard-deviation, the coefficients of skewness (Cs), kurtosis (Ck) and 

variation (Cv) and detection of outliers,  

(ii) checking the basic hypotheses of FA, i.e. homogeneity, stationarity and independence, 

applicability on the studied data set,  

(iii) fitting of probability distributions, estimation of the associated parameters and selection 

of the best model to represent the data, and  

(iv)  risk assessment based on quantiles or return periods, [e.g. 11, 14, 26, 52]. 

3.1. Annual Maximum Series 

In the AM series framework, the daily flow series for each jth hydrological year, is replaced by 

its largest flood  denoted Mj (see Figure 3) for the data of the present study. The extracted series 

1, , nM M
 (n is the number of years, here 22n  ), is a random sample from some underlying 

population. Statistically, the distribution of the flood peaks Mj can be determined by using the 
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EVT. Indeed, the AM series can be modeled by one of the extreme value distributions referred to 

as GEV distributions and briefly described in the following.  

Let 
1, 2, ,r r r rX X X    be the order statistics pertaining to a sample 1, , rX X from a non-

negative random variable X with cumulative distribution function (cdf) F. The GEV approach is 

based on the well-known result by Fisher and Tippett [24]. This result show that the limiting 

distribution of the (suitably normalized) maximum 
,r rX  is a non-degenerate cdf defined for 

𝑥 ∈  𝑅 such that 1 0x  , by 

  
  

 

1/
exp 1 0,

:
exp 0,x

x if
H x

e if





 







   
 

 


  (1) 

where   is a real parameter, called extreme value index (EVI) or tail index, which governs the 

thickness of the distribution tail. Depending on the sign of this crucial index, X belongs to the 

class of Gumbel (Type I) if it is null, the class of Fréchet (Type II) if it is positive and to the class 

of Weibull (Type III) if it is negative. The first two models are the mostly used in real life 

applications. They include such distributions as exponential, Pareto, Burr, GPD, GEV, t-Student, 

 -stable ( 0 2  ) and log-gamma known to be appropriate for fitting heavy-tailed data very 

often encountered in fields like hydrology, meteorology, insurance and finance. 

In the present paper, X represents the daily average discharge ( Q ) of the jth year ( j=1, ,22 ), r  

the number of days of the same year and
, j  Mr rX  . 

All AM flows obtained from the extraction process are thus considered as reasonable maxima. In 

terms of quantity, a majority of years are with low Q as shown in Figure 4a. However, the events 



10 

with very high amplitude are rare but not negligible which is consistent with their extreme 

aspects and also shows the importance of their study. More description is given in the result 

section. As seen in Figure 3, the culmination of September is very obvious because of the 

frequency of hydro meteorological events, which represent approximately 27%  ( 6 / 22  

observations) of all data, as shown in Figure 4b. This would reflect the influence of the local 

climate. 

3.2. Peaks Over Threshold Series 

The data to be extracted and then used in this approach consist in the observations that exceed a 

selected relatively high threshold u . Let uN  denote the number of daily discharges exceedingu . 

Then, the sample of excesses is defined as  

  . . ; 1, .
j jj i i uE Q u s t Q u j N   

 

In this approach the selection of an appropriate threshold is crucial. This approach is useful and 

has some advantages compared to the AM one, even though the latter is widely used. It is of 

particular interest in situations where the AM could not perform well especially in situation with 

little extreme data or the extracted extremes by AM cannot be considered as extremes in a 

physical or hydrological meaning. 

3.2.1. GPD Approximation 

Statistically, the distribution of the POT series
1, ,

uNE E , can be determined by making use of 

the GPD which is a cdf 
,G   defined, for    , : 0,x S     if 0  and  0, /   if 0  , by: 
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 

1/

,

/

1 1 , 0,

1 , 0,x

x

G x

e



 



 








  
       


 

                                                                                (2) 

where 𝛾 ∈  𝑅  and 0   are respectively shape and scale parameters [31].  

Let    uF x P Q u x Q u     denote the excess cdf of Q over a given thresholdu . Then, we 

have the following result: 

      ,
0

lim sup 0,
F

F

u u
u q x q u

F x G x
 

   

    (3) 

where Fq  is the right end point of the cdf F . This result, due to Balkema and de Haan [4] and 

Pickands [51], is one of the most useful concepts in statistical methods for extremes. It says that 

for large threshold u , the excess cdf uF  is likeley to be well approximated by a GPD.    

3.2.2. Threshold Selection 

In order to obtain the asymptotic result in (3), the threshold u should be large enough which has 

as a consequence a satisfactory GPD approximation. The choice of the threshold is a crucial issue 

in the POT procedure. Indeed, selecting a threshold that is too low results in a large bias in the 

estimation, whereas taking one that is too high yields a big variance [23, section 6.4 and 6.5]. 

Hence, a compromise between bias and variance is to be found. To this end, one can minimize 

the asymptotic mean squared error, which is composed by the bias and variance. Furthermore, 

several graphical procedures are available to select u , such as the mean residual life (MRL), 

threshold choice (TC) and dispersion index (DI) plots. On the other hand, the choice of u can be 
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based on physical considerations, e.g. by identifying the flood level of the river of interest. For a 

survey of the main selection procedures, see e.g. the paper of  Lang et al [41].                                                                                                                                                                                                                                                   

3.3. Exploratory Data Analysis 

The first step allows to check the data quality and to screen the data to avoid outlier effects. It 

also permits to obtain prior information, e.g. the shape, regarding the distribution to be selected. 

The presence of outliers in the data can have an important effect and causes difficulties when 

fitting a distribution [3] especially on the distribution upper part. The Grubbs and Beck [25] 

statistical test, based on the assumption of normality data,  is designed to detect  low and high 

outliers. In the case where the original data are not normal, they should be appropriately 

transformed. According to Section 1.8.3 in [52], this test is based on the following quantities:  

  exp ,H nx x k s    (4) 

  exp ,L nx x k s    (5) 

where x and s  are respectively the mean and standard deviation of the natural logarithms of the 

sample, and nk  is the Grubbs-Beck statistic tabulated for various sample sizes and significance 

levels by Grubbs and Beck [25]. For instance, at the 10% significance level, the following 

approximation is used 

 
1/4 1/2 3/4.62201  6.28446  – 2.49835   0.491436  –  0.037911 ,3n n n nk n      (6) 

where n is the sample size. 
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The observations greater than Hx are considered to be high outliers, while those less than Lx are 

taken as low outliers. 

3.4. Testing Independence, Stationarity and Homogeneity 

Three basic assumptions are required to correctly apply FA of extreme hydrological events, 

namely independence, stationarity and homogeneity of the data [11]. To verify these 

assumptions, three tests are widely used in the literature. The Wald-Wolfowitz test is employed 

for the independence, the homogeneity test of Wilcoxon is applied to check whether the data 

come from the same distribution or not and the Mann-Kendall test allows to verify stationarity of 

the data, i.e. the series does not present a trend over time. These three tests have the advantage of 

being non-parametric and are widely used in hydrological FA. In other words, they do not require 

any prior knowledge on the distribution of the data. 

3.5. Parameter Estimation and Model Selection 

The choice of the appropriate model is one of the most important issues in FA. In practice the 

distribution of hydroclimatic series is not known. Using the fitted probability distribution, it is 

possible to predict the probability of exceedance for a specified magnitude, i.e. quantile, or the 

magnitude associated with a specific exceedance probability. To estimate the parameters 

associated to the appropriate probability distribution from the data, popular techniques of 

parameter estimation are used in hydrology, including the methods of Maximum Likelihood 

(ML) [e.g. NERC, 17, 49], Moments (MM) and Probability Weighted Moments (PWM) [e.g. 13, 

32]. The latter is equivalent the L-moment method which is widely used in hydrological FA [29]. 

Several studies are presented by focusing on the parameter estimation of a specific distribution to 
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indicate the appropriate method, such as the EVI using the generalized ML method [44]. Chebana 

et al [13] estimated the Halphen distribution parameters using a mixed method. 

The choice of the adequate distribution is determined on the basis of numerous classical and 

recent statistical tools, including graphical representations and goodness-of-fit tests. Due to the 

importance of the distribution impact in FA, these tools should be exploited. This point is widely 

studied in the literature [8, 19, 21, 28, 31, 39, e.g. 50]. 

In the literature, it is well-known that graphical display is essential whenever the user is  

confidante that a derived flood frequency model is consistent with the data [IH, 34, NERC, 49]. 

The problem with this approach lies in its subjective character owing to the fact that it is based 

only on the judgment of the hydrologist. Therefore, complement non-graphical tools should be 

considered. 

Several standard statistical goodness-of-fit tests are reported in the literature for data modeling.  

We can cite the general tests of Pearson (Chi-squared, Chi2), Kolmogorov-Smirnov (KS), 

Cramer-von Mises and the normality specific Shapiro-Wilk (SW) test. Nonetheless, these 

decision procedures are not perfectly suited for extreme value distributions, because they are not 

sensitive enough to deviations in the distribution tails. Several transformations have been 

proposed to overcome the limitations of the aforementioned tests [36, 40, 42]. Since we focus on 

the tail of the distribution, the Anderson-Darling test is more appropriate (Ahmad et al., 1988). 

The probability distributions that are appropriate for hydrology data are those with heavy tails. A 

number of them are listed for instance in [37, 52, 55].  In order to select the appropriate 

distribution among those which passed the goodness-of-fit tests, one or more criteria are required. 
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To this end, one  can consider the Akaike and Bayesian information criterion (AIC, BIC) 

respectively proposed by Akaike [2] and Schwartz [56]. They are given by: 

 2ln 2 ,AIC L k     (7) 

 2ln 2 lnBIC L k m     (8) 

where L is the likelihood function,  the number of parameters and  m the sample size. 

The best fit is the one associated with the smallest criterion AIC or BIC values [19, 28, 52]. 

3.6. Quantile Estimation  

Once the appropriate distribution selected, the quantiles and return periods can be evaluated. The 

quantile estimation for various recurrence intervals is the main goal in hydrological practice. The 

notion of return period for hydrological extreme events is commonly used in FA, where the 

objective is to obtain reliable estimates of the quantiles corresponding to given return periods of 

scientific relevance or government standard requirements [52]. In the FA context the uncertainty 

decreases with the sample size whereas it increases with the return period when estimating 

quantiles. The uncertainty can be seen as the unexplained variance [38].  

In many environmental applications the sample size is rarely sufficient to enable good extreme 

quantiles estimations. Usually, a quantile of return period T can be reliably estimated from a data 

record of length n if T<n. However, in many cases, this condition is rarely satisfied –since 

typically n<50 for hydrological applications based on annual data [31]. 

 

 

k
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4. Results and discussion The application of the presented methodology in section 3 to the data 

described in section 2 leads to the following results, obtained by the means of the packages stats, 

evir and POT of the statistical software R [33] and also by using the HYFRAN-PLUS software 

[20].  

4.1. Exploratory Analysis and Outlier Detection 

From Figure 5, it appears that the whole daily data series vary from a minimum value of 
30 /m s  

corresponding to many dry days, to a maximum value of 
378.57 /m s recorded on September 21

st
, 

1989. The average flow of 
30.39 /m s is a relatively low in comparison with other tributary wadis 

of Chott Melghir like El Hai wadi and Djamorrah wadi [45]. The standard-deviation of 

32.48 /m s  yields a coefficient of variation equal to 6.39 .  The box-plot in Figure 6 Figure 6 

clearly shows the existence of extreme values. Indeed, the median (
30.10 /m s ) is close to both 

25
th

 and 75
th

 percentiles (
30.04 /m s and

30.20 /m s ). In addition to this graphical consideration, 

the values of skewness and kurtosis (
320.51 /m s  and 

3498.59 /m s  respectively) eliminate the 

Gaussian model. In particular the very large value of the kurtosis indicates longer and fatter 

distribution tails, urging us to focus on heavy-tailed models 

From Figure 2 we observe that the AM approach is not relevant for the Abiod wadi data. Indeed, 

for some years even the highest discharges are very low and probably are not extreme events (for 

example 1973-1975, 1978-1979, 1984-1985, ...). On the other hand, for some years several high 

discharges are observed like in 1972-1973, 1976-1977, but only one is selected by the AM 

sampling at each of those years. This suggests that the POT approach would be more appropriate, 

and would lead to a more homogeneous sample of extreme discharges. This method starts with 



17 

the selection of a convenient threshold, then the consideration of the observations that exceed this 

threshold. 

4.1.1. Threshold Selection 

In this study, we adopt one of the available graphical tools, namely the TC-plot. From Figure 7 

we can choose a threshold value
35.6 /u m s , which results in an excess series of size 58. 

However, as recommended by many authors [9, 41, 58], this data set must be reduced in order to 

avoid the effects of dependence. We eliminated the peaks being obviously part of the same flood, 

and in order to keep the character of flood seasonality, we retain three peaks per year over the 

recorded period. Thus, the length of the data series becomes 42 . Figure 8 shows the distribution 

of these excesses and Table 1 summarizes their elementary statistics. 

The positive skewness coefficient Cs=1.62 reveals that the data is right skewed relative to the 

mean excess, as shown in Figure 8a. 

In Figure 8a, the data Ej are arranged by classes, of length 10 m
3
/s each, with the associated 

frequencies. It can be seen that some values are more frequent than others and that the majority of 

excesses have a low value varying between 0 and 10 m
3
/s. Figure 8b, where the data are arranged 

according to the months of appearance, shows that the peaks generally occur in the fall season.  

In order to detect outliers, the quantities Hx  and Lx  are found to 508.31 and 0.08 respectively. 

Since there is no value greater than Hx and nor less than Lx , we conclude that, at the significant 

level of 10 %, no outlier exist among the excesses.  
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4.2. Testing the Basic FA Assumptions  

The results of the required hypothesis testing on the considered data are given in Table 2. 

Applying Wilcoxon, Kendall and Walf-Wolfowitz tests respectively, we conclude that the 

homogeneity, stationarity and independence of the excesses are accepted at any of standard 

significance levels (1%, 5% and 10%). Note that for the homogeneity test, we split the data in 

two sub-series 1972-1981 and 1982-1994 (any other subdivision led to the same conclusion. The 

homogeneity can also be noted in Figure 8a where there is only one mode (the highest frequency). 

4.3. Model Fitting  

To fit a statistical distribution, we consider three commonly used estimation methods of the GPD 

parameters (ML, MM, and PWM). Then we perform the Anderson-Darling test to check the 

goodness-of-fit of the model. The results are summarized in Table 3. In view of the large P-

values, we deduce that the GPD can be accepted as an appropriate model for the excess at any 

standard significance level (for instance 5%). 

To discriminate between the obtained models, we use the AIC and BIC criteria. The last two 

columns of Table 3 as well as Figure 9b favor the GPD of the ML fitting method. We illustrate 

the goodness of fit of the excesses to this model in Figure 9a. Furthermore, this ML-based will be 

used for quantile estimation in the following section.  

Note that the ML and PWM results are very similar whereas those of the MM results are slightly 

different but remain in the same range.  
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4.4. Quantile Estimation 

The estimation of extreme quantiles for different return periods should take into consideration the 

record period and the right tail of the distribution. The formally gauged record represents a 

relatively small sample of a much larger population of flood events. Thus, the extrapolation for 

long return periods is less accurate. In the M’chouneche station only the following return periods 

were considered for the estimation of quantiles: 2, 5, 10, 20 and 50 years as presented in Table 4. 

From this result, the highest flood observed in the 1972-1994 period would correspond to an 

event with a 30-year recurrence interval. 

The confidence interval is a way to show the uncertainty. It is based on the distribution of the 

quantity of interest (papameter, quantile, etc). For the GPD, the confidence intervals associated to 

the estimation of parameters and quantiles are obtained through asymptotic results (Hosking and 

Wallis, 1987). For the present case-study, this can be seen from Figure 9c. 

5. Conclusions 

The study of the Algerian wadis floods remains a quasi-unknown field as only some very specific 

indications are given in the Algerian hydrological directories. Floods are one of the basic features 

of a stream regime. The present study, which is the first one carried out in southern east of 

Algeria, in the context of FA. Mean daily discharges data recorded at the gauging station of 

M’chouneche in Abiod wadi, near Biskra, are available and considered in the present study. Due 

to the high inter-annual variability of the data as well as to the relatively short record length, the 

AM approach is not adapted to this analysis. Hence, in this paper, we considered a more 

appropriate procedure, namely the POT method. 
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The purpose of this work is to provide a suitable model for the excesses over a chosen threshold. 

This allows to estimate extreme flood events of given return periods. A complete FA  was applied 

including appropriate tools, commonly used in hydrology. 

The issue of threshold selection was dealt by the means of a graphical tool. Several fitting 

methods have led to different GPD models and according to the results, the ML-based 

distribution was adopted. 

Because of the short record length, only return periods of 2, 5, 10, 20 and 50 years were 

considered. It was found that most of extracted data corresponded to frequent events. The return 

period of the largest recorded flood is about 30 years. 

As a conclusion, we should emphasis that, in addition to the quality of data and sample size, the 

right choice of a GPD model heavily depends on the threshold. To improve the flood FA at this 

site, future studies should focus on the importance of data monitoring. However, this conclusion 

even it is not new in FA, it is important for the studied area where this is the first time to be 

studied. It emphasis and confirms the importance of this issue, especially for local government 

and decision makers. 
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Table 1. Statistics summary of excess data set. 

 

 Size 42 

 Minimum 0.02 

 Qu1 3.36 

 Median 7.83 

 Average 15.72 

 Qu2 19.92 

 Sd 19.70 

 Maximum 72.97 

 Cs 1.62 

 Ck 4.48 

     

Qu1 and Qu2: 25
th

 and 75
th

 percentiles respectively. 

 

Table 2. Stationarity, independence and homogeneity tests results. 

Tests Statistic Value P-value 

Stationarity (Kendall) 0.48 0.63 

Independence (Wald-Wolfowitz)  0.94 0.35 

Homogeneity (Wilcoxon) 0.79 0.43 
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Table 3. GPD parameter estimation, Anderson-Darling goodness-of- fit test and information 

criterion results. 

 

Method Scale Shape Statistic value P-value AIC BIC 

ML 10.19 0.39 -0.55 0.49 315.68 326.63 

MM 12.86 0.18 -0.83 0.58 316.61 327.56 

PWM 10.10 0.36 -0.86 0.59 315.72 326.68 

  

 

Table 4. Estimated quantiles of excess flows from the ML-based GPD. 

 

Return period (years) Estimated quantile 

2 8.11 

5 22.80 

10 37.96 

20 57.82 

50 93.82 

  

dionpa
Texte tapé à la machine

dionpa
Texte tapé à la machine
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Figure 1. Presentation of the Abiod wadi watershed. 
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Figure 2. Time series plot of the daily average discharge at M’chouneche station covering the period 01/09/1972-31/08/1994 

(8034 observations, every hydrological year). 



31 

 

Figure 3. Time series plot of the AM flows at M’chouneche station covering the period 01/09/1972-31/08/1994 (22 

observations). 
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 a)                                                                         b) 

Figure 4. Histogram of the AM flows at M’chouneche station covering the period 01/09/1972-

31/08/1994, observations selected by a) flow classes b) month. 
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Figure 5. Time series plot of the daily average discharge at M’chouneche station covering the period 01/09/1972-31/08/1994. 
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Figure 6. Box plot of daily average discharge at M’chouneche station. 

 

Figure 7. Graphical results of threshold selection applied for daily average discharge of Abiod 

wadi at M’chouneche station (tc-plot), vertical line corresponding to the threshold. 

 



35 

 

 a)                                                                         b) 

 

c) 

 

Figure 8. Distribution of excess series Ej at M’chouneche station a) Histogram by flow classes b) 

Histogram by month c) boxplot. 
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a) 

   

b)                                                                      c) 

Figure 9. Best fitted distributions of excess flows at M’chouneche station a) distributions b) 

qqplot of ML-based GPD c) Return level plot 
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