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Abstract

Parametric models are commonly used in Frequency Analysis of extreme hydrological

events. To estimate extreme quantiles associated to high return periods, these models are

not always appropriate. Therefore, estimators based on Extreme value Theory (EVT) are

proposed in the literature. The Weissman estimator is one of the popular EVT-based semi-

parametric estimators of extreme quantiles. In the present paper we propose a new family

of EVT-based semi-parametric estimators of extreme quantiles. To built this new family of

estimators, the basic idea consists in assigning the weights to the k observations being used.

Numerical experiments on simulated data are performed and a case study is presented. Re-

sults show that the proposed estimators are smooth, stable, less sentitive, and less biased

than Weissman estimator.
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1 Introduction1

Extreme events and natural disasters (e.g. earthquakes, floods, storms, droughts, nuclear ac-2

cidents, stock market crashes) dominate the daily news by their unpredictable nature. Given3

their considerable economic and social impacts, it is of high importance to develop the ap-4

propriate models for the prediction of these events. Frequency analysis (FA) procedures are5

commonly used for the analysis of extreme hydrological events. The main goal of the FA of6

flood events is the assessment of the probability of exceedence of an event xT , i.e. P(X > xT ).7

Alternatively, given a return period T , it is also of interest to estimate the quantity xT such8

that P(X > xT ) = 1/T . The event xT corresponds to the quantile associated to a return9

period T (e.g. Salvadori et al., 2007, chapter 1).10

In hydrology, the floods xT of interest are typically such that T is larger than n, where n11

denotes the sample size (for instance, the number of years of record at the gauging site). The12

traditional estimation procedure of xT or T consists in choosing a parametric probability13

model f(x; θ) that is fully indexed by a finite parameter set θ (e.g. shape, scale and location14

parameters). Once the parameters θ of the model are estimated, the exceedance probability15

1/T (resp. quantile xT ) is evaluated directly through the Cumulative Distribution Function16

(CDF) F (x; θ) of the fitted distribution (resp. via an estimator of the generalized inverse of17

F (x; θ)) (e.g. Young-Il et al., 1993; Haddad and Rahman, 2011).18

Despite all efforts, the topic of the choice of the best fitting parametric probability model19

f(x; θ) and parameter estimation method for flood FA remains elusive (Bobée et al., 1993).20

In some countries, standard distributions are recommended to fit hydrometeorological vari-21

ables, e.g. the Generalized Extreme Value (GEV) distribution in the United Kingdom for flood22

FA and in the United States for precipitation, the Log-Pearson type 3 distribution in the United23

States and China for streamflows, the Lognormal distribution in China for low flows and24

floods (e.g. Chen et al., 2004; Chebana et al., 2010). Nevertheless, in practice several prob-25

lems remain to be solved.26

The FA approach based on the selection of a parametric probability distribution has a27

number of drawbacks especially for large T . First, this approach relies heavily on the initial28

choice of the parametric family of probability distributions. If this choice of distribution is in-29

appropriate then, especially for large values of T , significant errors in quantile estimates are30
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obtained. Second, the sample sizes of hydrological records are often too short for the appro-31

priate selection of the best fitting distribution. Stedinger (2000) recommended a minimum32

sample size (n = 50) for robust estimates of quantiles. However, this size is often not suffi-33

cient to make the judicious choice of the appropriate distribution by using goodness-of-fit34

tests (e.g. Adlouni et al., 2008). The latter are rather sensitive to the behavior of the tail of the35

distribution. Third, the classical parametric estimation procedures are heavily weighted to-36

wards fitting the main body (central region) of the assumed probability density. On the other37

hand, they attribute a relatively low weight to the estimation of the distribution tail. More-38

over, Young-Il et al. (1993) argued that this estimation procedure is an onerous mismatch in39

objectives since such parametric fits are not robust to outliers in the tail of the sample distri-40

bution. Also, as natural disasters may come from different causes, this can lead to mixtures41

of distributions. The tail behavior of a mixture is often dictated by the tail behavior of the42

distribution with the heaviest tail and by the relative proportion of events that correspond to43

each component (e.g. Young-Il et al., 1993).44

The above drawbacks indicate that the parametric approach can be relatively unreliable.45

Since non-parametric approaches capture better any distributional features homogeneous46

or heterogeneous exhibited by the data, Apipattanavis et al. (2010) proposed a non-parametric47

FA estimator based on local polynomial regression. Notice that Adamowski et al. (1998) showed48

the advantages of using non-parametric methods in flood FA for both annual maximum and49

partial duration flood series. The local polynomial regression does not require a “priori” as-50

sumption of the underlying CDF and the estimation is local and data driven. The local as-51

pect of the estimation provides the ability to capture any arbitrary features that might be52

present in the data. Kernel-based estimators have been studied respectively by (Lall et al.,53

1993; Moon and Lall, 1994), and Quintela-del-Río and Francisco-Fernández (2011) for flood54

FA and air quality modeling. In Regional flood frequency estimation, Epanechnikov kernel55

has been used by Ouarda et al. (2001)56

Moreover, several authors have investigated methods based on the extreme value theory57

(EVT) (Fisher and Tippet, 1928; Gnedenko, 1943). These methods are based on the prop-58

erties of the k upper order statistics of the sample and on extrapolation methods. Currently,59

three main categories of methods can be identified : (i) extrapolation method based on (GEV)60
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(e.g. Prescott and Walden, 1980; Smith, 1985; Hosking et al., 1985; Guida and Longo, 1988);61

(ii) extrapolation method based on the excesses method and Generalized Pareto Distribu-62

tions (GPD) (e.g. Balkema and de Haan, 1974; Pickands, 1975; Hosking and Wallis, 1987; Lang et al.,63

1999) with its variants so-called exponential tail and quadratic tail (Breiman et al., 1990); (iii)64

the semi-parametric and non-parametric methods (e.g. Hill, 1975; Pickands, 1975; Weissman,65

1978; Dekkers and de Haan, 1989; Beirlant et al., 2005). All three categories are based on the66

statistical model given by the maximum domain of attraction (MDA) condition that governs67

EVT. Some comparison studies (theory and simulation) between the different methods can68

be found in Rosen and Weissman (1996); de Haan and Peng (1998); Tsourti and Panaretos (2001).69

In the semi-parametric approach, one seeks to develop estimators of the right tail quan-70

tiles according to the tail behavior of the distribution. Thus, one assumes a parametric form71

only for the tail part and not for the entire probability density. The methods based on this ap-72

proach are more flexible than parametric ones. The well-known Weissman (1978) estimator73

is a semi-parametric estimator of extreme quantiles. However, most semi-parametric estima-74

tors of quantiles xT share a number of common problems. Most importantly, they are biased75

and sensitive to the selection of the k upper order statistics of the sample (Gomes and Oliveira,76

2001).77

The main objective of the present paper is to show that the usual practice in hydrologi-78

cal FA to estimate quantiles by inverting the CDF is not appropriate for extreme quantiles.79

Therefore, we present a number of alternatives to estimate these quantiles including, for in-80

stance, the Weissman (1978) estimator. In addition, we propose a new family of EVT-based81

semi-parametric estimators of extreme quantiles that are smooth, stable, less sentitive to the82

number of observations being used, and less biased than Weissman (1978) estimator.83

The paper is organized as follows. In section 2, we present the statistical framework of the84

study and the background of EVT. In section 3, we propose the estimators of quantiles from85

heavy-tailed distributions. The numerical experiments on simulated data are presented and86

discussed in section 4 and the case study is carried out in section 5. Conclusions and some87

directions for future work are presented in section 6.88
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2 Statistical framework and background of EVT89

2.1 General statistical framework90

Let us denote by F the CDF of a random variable X and xp the associated quantile of order

1 − p defined by :

P(X ≤ xp) = 1 − P(X > xp) = F (xp) = 1 − p, for p ∈ (0, 1). (1)

We consider a sample {Xi, i = 1, . . . , n} of independent and identically distributed random

variables with distribution function F . We denote by X1,n ≤ . . . ≤ Xn,n their associated order

statistics. From the observations of these variables, the aim is to built an estimator of the

quantile xp when p = 1/T is very small, i.e. close to zero since the return period T is large. In

this context, we talk about high return period. Given any p ∈ (0, 1), the quantile xp is defined

via the generalized inverse of the CDF, i.e. xp = F←(1 − p). Thus a natural estimator of xp is

given by :

x̂p = F̂n
←

(1 − p), (2)

where F̂n is an estimator of the CDF F . In Extreme value analysis, in order to preserve (in the

asymptotic analysis) the fact that the number of observations np above the quantile xp should

be much smaller than any positive constant, one assumes that p depends on n, i.e. p = pn,

and that pn → 0 as n increases (e.g. Dekkers and de Haan, 1989; de Haan and Ferreira, 2006).

The terms extreme quantile, large quantile or high quantile mean that pn converges to zero,

see e.g. Gardes et al. (2010) and Embrechts et al. (1997, chapter 6). In particular, for n large

enough, the non-exceedance probability P(Xn,n < xp), can be approximated as :

P (Xn,n < xp) & e−npn as pn → 0, (3)

which represents the probability that the quantity of interest xp falls outside the range of the91

sample. From a mathematical point of view, two cases can be considered from (3). Depend-92

ing on the rate of convergence of pn to zero, the probability in (3) could be 0 or not :93

First, if pn → 0 and npn → ∞ as n → ∞, then P(Xn,n < xp) → 0. In this situation, pn goes94

to zero slower than 1/n and xp is eventually almost surely smaller than the largest observation95
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Xn,n. Consequently, the estimation of the extreme quantile requires to interpolate inside the96

sample. In this context, the natural and basic estimator of xp is given by (2). For instance, the97

(npn)-th largest observation of the sample {Xi, i = 1, . . . , n}, i.e. Xn−#npn$+1,n, is an option98

(refer to Rényi, 1953; Dekkers and de Haan, 1989), where the symbol (•) denotes the floor99

function.100

Second, if pn → 0 and npn → c *= ∞ as n → ∞, then P(Xn,n < xp) → e−c. In this context,101

the estimation of extreme quantiles may need extrapolation beyond the observations since102

xp could be outside the sample, i.e. after the largest observation. According to the value of c,103

two situations arise :104

When c ∈ [1,∞), it is possible to estimate xp by (2), or basically by the (c)-th largest ob-105

servation of the sample, since the estimation is based on the largest observations located106

near the border of the sample, but still within the data set. Nevertheless, recall that the (c)-th107

largest observation of a sample is asymptotically not Gaussian (Embrechts et al., 1997, corol-108

laire 4.2.4).109

When c ∈ [0, 1), then pn goes to zero at the same speed or faster than 1/n and xp is even-110

tually larger that the maximal observation Xn,n with probability e−c ≥ e−1. In this case, the111

estimation of xp is more difficult since it requires an estimation outside the sample. For in-112

stance, the quantile of order (1−pn) with pn < 1/n is extreme and is eventually larger than the113

maximum observation of the sample. Therefore, it is not appropriate to estimate it simply by114

inverting the CDF F . In predictions, the values of quantiles exceeding the length of the series115

are generally extrapolation values that exceed the largest observation of the sample.116

We illustrate in Figure 1 the difference between large quantiles within and outside the117

sample. More precisely, Figures 1-(a) and 1-(b) describe the large quantile within the sample,118

while Figure 1-(c) describes the large quantile outside the sample. To illustrate the difference119

between the two quantiles, we generated a Fréchet distributed sample of size n = 500. In120

hydrology, this distribution is applied to extreme events such as river discharges and annual121

maximum 1-day rainfall (e.g. Coles, 2001).122

In Figure 1-(a), p = 1/25 = 0.04 and the quantile x1/25 is clearly smaller than the largest123

observation of the sample. Since we have c = 20 observations above x1/25, then a non-124

parametric estimator of quantile x1/25 obtained by interpolation is the 20-th largest obser-125
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vation, i.e. X481,500. In Figure 1-(b), p = 1/250 = 0.004 and the estimation of the quantile126

becomes difficult since it is based on the c = 2 observations above x1/250 and located near127

the border of the sample. In the case of Figure 1-(c) p = 1/600 & 0.0017 and the quantile128

x1/600 is larger than the largest observation of the sample. To estimate x1/600 one needs to129

extrapolate beyond the largest observation of the sample.130

When the number of observations above xp is finite, i.e. c *= ∞, one has to extend the131

empirical distribution function beyond the sample. EVT studies the behavior of the k largest132

observations of a sample and provides laws governing these values, and as such forms the133

natural framework for estimating the event xp when c ∈ [0, 1), where the quantile of interest134

is eventually larger than the maximal observation.135

de Haan (1984) has established the first result in the case where c = 0. Dekkers and de Haan136

(1989) have studied the case c = ∞ and c ∈ [0, 1). A summary of these results can be137

found in (Embrechts et al., 1997, Theorem 6.4.14 and Theorem 6.4.15). Gardes et al. (2010),138

Daouia et al. (2011) and Lekina (2010) provide an extension of situations c = ∞, c ≥ 1 and139

c ∈ [0, 1) in the conditional case, that is to say in the situation where the variable of interest X140

is recorded simultaneously with some covariate information. In the next section, we present141

a brief summary of EVT.142

2.2 EVT background143

In the literature, several estimation methods of the extreme quantile xp where p & 0 have

been proposed, for instance in finance (Embrechts et al., 1997), in engineering structures

(Ditlevsen, 1994) and in hydrology (Smith, 1987, 1986). These methods are based on the sta-

tistical model given by the MDA condition that governs EVT (Fisher and Tippet, 1928; Gnedenko,

1943). The main result of EVT shows that under some regularity conditions on the CDF F of

X, there exist a parameter γ ∈ R and two sequences (an)n≥1 > 0 and (bn)n≥1 ∈ R such that

for all x ∈ R,

lim
n→∞

P

[

Xn,n − bn
an

≤ x

]

= Hγ(x), (4)
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where Hγ(.) is a non-degenerate extreme value distribution defined by

Hγ(x) =











exp
[

−(1 + γx)−1/γ
]

if γ *= 0

exp [− exp(−x)] if γ = 0
and for all x such that 1 + γx > 0. (5)

The main result in (4) is true for most usual distributions F . If we make a parallel with the144

Central Limit Theorem (CLT), the sequence an plays the role of n−1/2σ(X) where σ(X) de-145

notes the standard deviation of X and the sequence bn plays the role of the mathematical ex-146

pectation of X. The sequences an and bn are respectively interpreted as scale and location pa-147

rameters. Note that these sequences are not unique. The reader is referred to Embrechts et al.148

(1997) for some examples of an and nn in the fields of insurance and finance. A limited num-149

ber of examples are presented in Table 1.150

The parameter γ in (5) is called extreme value index and it has no equivalent in CLT. This151

index is known to be the crucial indicator for the decay behaviour of the distribution tail.152

It clearly governs the tail behavior, with larger values indicating heavier tails. If the cdf F153

satisfies the Fisher and Tippet (1928) theorem conditions, then F belongs to MDA of Hγ(.).154

According to the sign of γ, we distinguish the cases :155

• Fréchet MDA (γ > 0) includes the distributions with polynomially decreasing Pareto-156

type tails, e.g. Cauchy, Pareto and Burr. This family has a rather heavy right tail;157

• Weibull MDA (γ < 0) includes the distributions with finite right endpoint, e.g. uniform158

and beta;159

• Gumbel MDA (γ = 0) includes distributions with exponentially decreasing tails, e.g. nor-160

mal, exponential and Gamma. The distributions of this MDA are rather light tailed.161

To check the assumption that F belongs to MDA of Hγ(.), several techniques are available.

For a review on exploratory data analysis methods for extremes the reader is refereed e.g. to Embrechts et al.

(1997, section 6.2). In extreme value-analysis, the Pareto quantile plot (PQ-plot) is based on :

{(

log
n + 1

j
, Xn−j+1

)

, j = 1, . . . , n

}

, (6)

and is widely used to graphically check if data are distributed according to a MDA(Fréchet) or

not. If F is heavy-tailed, i.e. belongs to MDA(Fréchet), then the PQ-plot will be approximately
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linear with a positive slope for small values of j associated to the extremes points. Alternately,

we can use the quantile-quantile plot (QQ-plot) or the generalized quantile plot (GQ-plot).

The GQ-plot is based on (e.g. Willems et al., 2007) :

{(

log
n + 1

j
,
Xn−j

j

j
∑

i=1

log
Xn−i+1,n

Xn−j,n

)

, j = 1, . . . , n

}

. (7)

According to the curve of this graph, we can deduce the MDA associated to F . If for the162

extreme points, i.e. small value of j, the slope is positive, then F belongs to MDA(Fréchet)163

and if it is approximately constant, then F belongs to MDA(Gumbel). Finally, the case of a164

linear decrease means that F belongs to MDA(Weibull).165

3 Proposed extreme quantile estimators166

The aim of this section is to propose estimators of extreme quantiles when c *= ∞. We deal

with an estimation problem within the case where the CDF F is heavy-tailed or Pareto-type.

The case where the distribution F is light-tailed or finite endpoint will be examined in future

work. However, there exist abundant literature on light-tailed distributions (e.g. Diebolt et al.,

2008; Beirlant et al., 1995, 1996a; Dierckx et al., 2009) and finite endpoint distributions (e.g.

Falk, 1995; Hall and Park, 2002; Girard et al., 2012; Li and Peng, 2009). In the considered situ-

ation, for all x > 0 and for some unknown tail index γ > 0, the CDF F is of the form :

F (x) = 1 − x−1/γL(x), (8)

where L(.) is a slowly varying function at infinity, i.e. for all λ > 0,

L(λx)/L(x) → 1 as x → ∞. (9)

Assumption (8) is also equivalent to stating that F̄ = 1 − F is regularly varying at infinity

with an index −1/γ. The reader is referred to Bingham et al. (1987) for a detailed reference

on regular variation theory. The heavy-tailed model in (8) can also be stated in an equivalent

way in terms of the quantile function as :

xpn = p−γn %(p−1n ), (10)
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where pn ∈ [0, 1] and %(.) is a slowly varying function at infinity (see Bingham et al., 1987,167

Theorem 1.5.12). Property (10) characterizes heavy-tailed distributions. Note that from con-168

dition (9) and property (10), the quantile xpn decreases towards 0 at a polynomial rate driven169

by γ. We remark that model (8) (resp. (10)) includes a parametric part x−1/γ (resp. p−γn ) de-170

pending only on a parameter γ and a non-parametric part L(.) (resp. %(.)). Hence, (8) and (10)171

represent semi-parametric models.172

Let (kn)n≥1 be an intermediate sequence corresponding to the fraction sample such that

1 ≤ kn < n. Under (10), Weissman (1978) proposed to estimate, semi-parametrically, the

extreme quantile xpn by :

x̂Wpn := x̂Wpn(kn) = Xn−kn+1,n

(

kn
npn

)γ̂H

kn

, (11)

where γ̂Hkn is the Hill (1975) estimator of γ defined by :

γ̂Hkn =
1

kn

kn
∑

j=1

j {logXn−j+1,n − logXn−j,n} . (12)

Often used in hydrology (e.g. Young-Il et al., 1993), Weissman estimator (11) includes two173

terms. The first term, Xn−kn+1,n is the kn-th largest observation of the sample, and the second174

term, (kn/(npn))γ̂
H

kn is the extrapolation factor that allows to estimate extreme quantiles of an175

order (1 − pn) arbitrarily large, i.e. pn arbitrarily small.176

The accuracy of estimators (11) and (12) depends on a precise choice of the sample frac-177

tion kn, that corresponds to the number of order statistics, on which the estimation is based.178

The Weissman plot {(kn, x̂Wpn), kn = 1, . . . , n−1} described in section 4 shows a large volatility179

which represents a practical difficulty if no prior indication on kn is available. Moreover, this180

estimator is biased. Indeed most semi-parametric estimators of extreme quantile xpn or tail181

index γ have similar problems : high variance for small values of kn and high bias for large182

value of kn (e.g. Gomes and Oliveira, 2001).183

The limiting distributions for several semi-parametric estimators of γ and xpn , especially

γ̂Hkn and x̂Wpn , are established usually under a second order condition, not too restrictive, on

the tail behavior. This second order condition assumes that there exists a constant ρ < 0 and
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the bias function b(x) → 0 as x → ∞, such that for all λ > 1,

log
%(λx)

%(x)
∼ b(x)

λρ − 1

ρ
as x → ∞. (13)

To improve the bias of the estimators γ̂Hkn and x̂Wpn , the most common approach consists in184

assuming that the second order condition (13) holds with the bias function b(x) = γDxρ185

where ρ < 0 is a second order shape parameter and D *= 0 is a second order scale parame-186

ter (de Wet et al., 2012; Goegebeur et al., 2010; Caeiro and Gomes, 2006; Caeiro et al., 2009).187

Thus, the problem of estimation of γ or xpn can be summarized in the estimation of the sec-188

ond order parameters ρ and D. This is the currently challenging estimation problem. Con-189

cisely, the second order parameter ρ < 0 tunes the convergence rate of %(λx)/%(x) to 1 in (9).190

The closer ρ is to 0, the slower the convergence will be, and the estimation of the tail param-191

eter γ or quantile xpn will typically be difficult in practice.192

In order to obtain an estimator of extreme quantile that is less sensitive to the selection193

of the sample fraction kn, the basic idea of the present work involves doing the geometric194

mean of Weissman estimators. Intuitively, this idea is due to the fact that the bias of extreme195

quantiles increases for large values of kn. Thus, instead of considering only the kn-th largest196

observation of the sample as in Weissman (1978), one proposes to attribute equal importance197

to the kn largest observations of the same sample. It consists in assigning the same weight to198

each observation of the subsample {Xn−i+1,n, i = 1, . . . , kn}. Note that Drees (1995) applied199

a similar idea for the tail index estimator proposed by Pickands (1975). Here, unlike in bias200

correction methods, prior knowledge of new tuning parameters (especially the second-order201

parameters ρ and D) is not required and thus there is no need for an analysis related to these202

extra parameters. Therefore, the second-order refinements are not used in the remainder of203

the paper.204

In order to estimate extreme quantiles of an order (1− pn) arbitrarily large, we propose an

estimator of high quantiles originally introduced in Lekina (2010, chapter 2) and defined by :

x̂WG
pn =

[

kn
∏

i=1

Xn−i+1,n

(

igkn
npn

)γ̂H
i

]1/kn

, (14)

where gkn = exp [log(kn + 1) − 1 − log(kn!)/kn] and γ̂Hi is the Hill tail index estimator defined
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in (12). In order to obtain properties of the extreme quantile estimator in (14), x̂WG
pn can be

decomposed as follows (see Lekina, 2010, Proposition 2.2.1) :

log x̂WG
pn

D
= γ̂Hkn − γ log Vkn+1,n + log % (1/Vkn+1,n) + log

(

1

e

(kn + 1)

npn

)

γ̂πkn , (15)

where %(.) is a slowly varying function at infinity, Vkn+1,n is the (n−kn)-th upper order statistic

of a sample of independent random variables {Vi, i = 1, . . . , n} uniformly distributed on

(0, 1) and γ̂πkn is a tail index estimator given by :

γ̂πkn =
kn
∑

j=1

j {logXn−j+1,n − logXn−j,n}πj

/

kn
∑

j=1

πj , (16)

with {πj , j = 1, . . . , kn} is a weighted function defined by

πj =
kn
∑

i=j

1

i
log

(

igkn
npn

)

. (17)

Notice that the weights {πj , j = 1, . . . , kn} are a consequence of decomposition (15) and

are not to be selected and one cannot attribute to them other quantities. Recall that the

decomposition of the Weissman estimator is (e.g. Beirlant et al., 2004) :

log x̂Wpn
D
= −γ log Vkn,n + log % (1/Vkn,n) + log

(

kn
npn

)

γ̂Hkn , (18)

where Vkn,n is the (n − kn + 1)-th upper order statistic of a sample of independent random205

variables {Vi, i = 1, . . . , n} uniformly distributed on (0, 1).206

By comparing (15) and (18), notice that the representation of x̂WG
pn involves an additional207

tail index estimator γ̂πkn . This estimator is a weighted sum of the log-spacings between the208

kn largest order statistics Xn−kn+1,n, . . . ,Xn,n. According to Feuerverger and Hall (1999) and209

Beirlant et al. (2002), it is possible to establish the asymptotic distribution of γ̂πkn . In addi-210

tion, under a restrictive condition log(kn)/ log(npn) → 0, Lekina (2010) has shown that the211

tail index estimator γ̂πkn and the least-squares estimator of the tail index so-called Zipf (see212

Kratz and Resnick, 1996; Schultze and Steinebach, 1996) have the same limiting distribution.213

Thus, we can build confidence intervals for estimates of the extreme quantile x̂WG
pn . Indeed,214

12



decomposition (18) shows that the extreme quantile x̂Wpn inherits its limiting distribution of215

the tail index estimator γ̂Hkn or the largest upper order statistic Xn−kn+1,n, in fact of Vkn,n, (e.g.216

Gardes et al., 2010, for more details). Decomposition (15) shows that the limiting distribu-217

tion of x̂WG
pn may depend on the behavior of both Xn−kn,n (or Vkn+1,n), γ̂Hkn and γ̂πkn . In the218

EVT-literature, the limiting distribution of γ̂Hkn and the upper order statistics have been estab-219

lished, for instance, respectively in Haeusler and Teugels (1985) and (Dekkers and de Haan,220

1989; Rényi, 1953). Under the conditions log(kn)/ log(npn) → 0 and k1/2n b(n/kn) → λ ∈ R as221

n → ∞, Lekina (2010, Theorem 2.2.1) showed that estimator x̂WG
pn is asymptotically Gaussian222

and the asymptotic bias is given by b(n/kn)/(1 − ρ)2. The latter is better, apart from the scale223

factor 1/(1 − ρ), than the bias of estimator x̂Wpn .224

The direct consequence of decomposition (15) is the introduction of an adaptation of the

Weissman estimator given by :

x̂Lpn = Xn−kn+1,n

(

kn
npn

)γ̂π
kn

, (19)

which is valid for pn < 2/(ne) and 1 ≤ kn < n. The condition pn < 2/(ne) is not restrictive225

since it ensures that the weight function {πj , j = 1, . . . , kn} is always positive and decreasing.226

If pn = 2/(ne) then, πj = 0 for j = kn = 1 and estimator (19) is valid for 2 ≤ kn < n. Otherwise,227

if pn > 2/(ne) then for some integer j ≤ kn < n, the weight function is non-monotonous and228

can be even negative for small values of kn. The decomposition in the distribution of x̂Lpn is229

similar to that of x̂Wpn . It is sufficient to replace γ̂Hkn in (18) by γ̂πkn . However, unlike x̂Lpn , x̂Wpn can230

be used for pn ∈ (0, 1) and 1 ≤ kn < n.231

It is also possible to redefine estimator (14) by replacing γ̂Hi by γ̂πi . However, in this case,

one needs to exactly reassess the renormalizing sequence gkn . In (14), gkn was computed

by studying the asymptotic behaviour of estimator x̂Wpn . One can therefore use the same ap-

proach to evaluate the sequence fkn in definition (20) of the extreme quantile below. Nev-

ertheless, since estimator (14) is interpreted as a geometric mean of (11), it follows that, for

kn large enough, gkn & 1. Thus, it is still possible to fix gkn = fkn = 1 for the applications.

Let fkn be a positive and non-decreasing sequence such that fkn & 1 for kn large enough. We
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introduce a second geometric estimator of extreme quantiles defined by :

x̂LGpn =

[

kn
∏

i=1

Xn−i+1,n

(

ifkn
npn

)γ̂π
i

]1/kn

with pn < 2/(ne). (20)

The following section provides an evaluation of the performance of this estimator.232

4 Numerical experiments on simulated samples233

In this section, we evaluate and compare the performance of the estimators x̂Wpn , x̂WG
pn , x̂Lpn234

and x̂LGpn given in section 3 on a number of finite simulated samples. In order to evaluate235

the influence of the sequence fkn , we compute two versions of the estimator x̂LGpn . Thus, we236

denote by x̂LG(1)
pn (resp. x̂LG(2)

pn ) the corresponding estimator associated to fkn = 1 (resp. fkn =237

gkn).238

Let m, s and ρ be respectively a location, scale and second order parameter. We consider239

the following distributions which belong to the MDA(Fréchet) and are commonly used in240

hydrological frequency analysis (e.g. Brunet-Moret, 1969; Coles, 2001) :241

• Fréchet with CDF F(x; γ, s,m) = exp

(

−
(

x−m

s

)−1/γ
)

where x > 0, m ∈ R and s > 0,242

• Burr with CDF B(x; γ, ρ) = 1 −
(

1 + x−ρ/γ
)1/ρ

where x > 0 and ρ < 0,243

• Pareto with CDF P(x; γ, s) = 1 −
(x

s

)−1/γ
where x ≥ s > 0,244

• Student with CDF ST (x; ν) =
1

2
+

xΓ
(

1
2(ν + 1)

)

2F1

(

1
2 ,

1
2(ν + 1); 3

2 ;
−x2

ν

)

(νπ)1/2 Γ

(

1

2
ν

) where ν is the245

number of degrees of freedom, x ∈ R, Γ(z) is the gamma function and 2F1(a, b; c; z) is a246

hypergeometric function.247

These four distributions satisfy models (8) and (10) but the Pareto distribution is the one for248

which the slowly varying functions L(.) and %(.) are constant.249

For each of the distributions of Fréchet F(.; 3/4, 1, 0), Burr B(.; 3/4,−1), Pareto P(.; 1, 2)

and Student ST (.; 10), we generate N = 1000 samples of size n ∈ {30, 50, 100, 500}. Results

for N > 1000 are not significantly different. The main goal is to estimate the extreme quantile

of order (1 − pn) with pn = 1/(5n), i.e. for a return period T = 5n. For such a return period,
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an extrapolation is needed since c = 1/5 ∈ [0, 1) (the reader is referred to section 2). For each

distribution and each sample size, we evaluate the mean for the bias and the modified mean

square error (noted AMSE) of the considered estimators. The AMSE associated to estimator

x̂•pn is defined by E
(

log2(x̂•pn/xpn)
)

which is estimated for a fixed sample fraction kn by the

quantity :

AMSE
(

x̂•pn
)

=
1

N

N
∑

j=1

log2(x̂•,jpn/xpn). (21)

As those are the logarithms of extreme quantiles that are Gaussian, in EVA the logarithm em-250

ployed in (21) is to insure the asymptotic normality (e.g. Beirlant et al., 2004, p. 120). We are251

also interested in the median estimator. This one is the estimator associated to median error.252

For each sample size and for each of the four distributions, we superimposed in Figure 2253

the mean estimators and the true theoretical quantile xpn , in Figure 3 the median estimators254

and xpn and in Figure 4 the AMSE corresponding to estimators x̂Wpn , x̂WG
pn , x̂Lpn and x̂LGpn . For255

visualization, we use a logarithmic scale in Figures 2 and 3. For each of the three Figures, we256

have sixteen pictures that we numbered for clarity (i)–(xvi).257

In the remainder of the paper, for the sake of simplicity, the symbols ↑ and ↓ are employed258

to denote the expressions increases and decreases respectively. The discussion is done first259

and foremost by distribution, afterwards by sample size if there is no redundancy. Otherwise260

case are grouped.261

Mean estimators262

In Figure 2, except for the behavior of the mean estimators of x̂Lpn when kn & n with n ≥ 50,263

the graphs of x̂Wpn , x̂WG
pn , x̂Lpn , x̂LG(1)

pn and x̂LG(2)
pn are convex. Except for the Pareto distribution264

for which the slowly varying %(.) is constant, the simulations show that for the three other265

distributions (Fréchet, Burr and Student) the bias of the extreme quantile estimators ↑ as the266

sample size n ↑. This is due to the fact that the estimation of extreme quantiles of an order267

(1 − 1/(5n)) is more difficult when n ↑. In other words, this phenomenon is a consequence268

of 1/150 < 1/2500 which means that estimating x1/2500 in Figures 2-(d) is more difficult than269

estimating x1/150 in Figures 2-(a).270

For the distributions of Fréchet and Burr, the estimators x̂Wpn , x̂WG
pn and x̂Lpn have high bias271

for large values of the fraction sample kn. For large values of kn this bias ↑ as kn ↑ while, for272

15



its small values this bias ↓ as kn ↑. We note a different behavior of the estimators x̂LG(1)
pn and273

x̂LG(2)
pn : (1) for sample size n ∈ {30, 50}, the bias of these estimators ↓ as kn ↑; (2) for n = 100,274

this bias ↓ and becomes almost constant for large values of kn; (3) when n = 500, for small275

values of kn the bias ↓ as kn ↑ and for large values of kn the bias ↑ very slowly as kn ↑.276

Regarding the Student distribution, all estimators have high and ↑ bias for large values of277

kn whatever the sample size. For very small values of kn, this bias ↓ as kn ↑.278

In addition, whatever the sample size and for each of the three distributions viz Fréchet,279

Burr and Student, the bias of estimators x̂WG
pn , x̂Lpn , x̂LG(1)

pn and x̂LG(2)
pn becomes significantly less280

important than the one of x̂Wpn as kn ↑. Given a sample fraction kn not too small, e.g. kn & 2n/5,281

the simulations in Figure 2 show that, for the small sample sizes n ≤ 100, the bias of estima-282

tors x̂WG
pn , x̂Lpn , x̂LG(1)

pn and x̂LG(2)
pn is lower than the bias of Weissman estimator x̂Wpn . Thus, for283

these three distributions, the estimators x̂WG
pn , x̂Lpn , x̂LG(1)

pn and x̂LG(2)
pn improve the bias of x̂Wpn .284

Regarding the Pareto distribution, since its slowly varying function %(.) is constant and285

therefore its bias function b(.) ≡ 0 then, there is no asymptotic bias, i.e. the bias decreases286

and becomes negligible as the sample size n and the fraction sample kn ↑. For small n, the287

Weissman estimator seems to be better than the other estimators. Nevertheless, when the288

sample size n ↑, all these estimators are approximately similar.289

Median estimators290

Generally, we observe from Figure 3 that the median estimators of x̂WG
pn , x̂Lpn , x̂LG(1)

pn and x̂LG(2)
pn291

are smooth and more stable than the Weissman estimator x̂Wpn whatever the sample size. The292

previous findings in Figure 2 on the bias of the estimators x̂Wpn , x̂WG
pn , x̂Lpn , x̂LG(1)

pn and x̂LG(2)
pn are293

generally valid. Like the Weissman estimator x̂Wpn , the other estimators have high variance for294

small values of kn and high bias for large values of kn. Indeed for the Fréchet, Burr and Student295

distributions, if kn is large then the approximation %(.) is constant becomes worse and this296

implies a high bias. Nevertheless, the bias of x̂WG
pn , x̂Lpn , x̂LG(1)

pn and x̂LG(2)
pn is less significant297

than x̂Wpn . However for the Pareto distribution, the bias is negligible when kn is large since %(.)298

is constant. If kn is small, one has too few observations, this implies then a high variance and299

a small bias since one remains in the tail of the distribution.300

AMSE301

In Figure 4, for the four distributions we observe that AMSE(x̂Wpn) is slightly less smooth than302
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those of its competing estimators. Except for AMSE(x̂Lpn) when kn & n with n ≥ 50, the303

graphs of AMSE(x̂Wpn), AMSE(x̂WG
pn ), AMSE(x̂Lpn), AMSE(x̂LG(1)

pn ) and AMSE(x̂LG(2)
pn ) are con-304

vex. The geometric shape of these graphs is similar to the ones in Figure 2. The AMSE of all305

the estimators ↑ as the sample size n ↑ since the estimation of extreme quantiles of an order306

(1 − 1/(5n)) is more difficult when n ↑.307

For the Pareto distribution, AMSE of all the estimators ↓ as kn ↑ and, when the sample size308

n ↑ these AMSE are approximately similar for large values of kn. This can be explained by the309

fact that there is no asymptotic bias. For this distribution, AMSE(x̂WG
pn ) and AMSE(x̂Wpn) are310

approximately equal whatever kn and n. Moreover, AMSE(x̂LG(1)
pn ) seems to be higher than311

the one of its competing estimators for the small sample sizes n ≤ 100.312

Unlike the Pareto distribution, for the Student distribution AMSE of all the estimators ↑313

as kn ↑. Moreover from a fraction sample kn not too small, AMSE(x̂Wpn) are clearly higher314

than AMSE(x̂WG
pn ) which is in turn higher than AMSE(x̂Lpn) which is finally itself higher than315

AMSE(x̂LG(1)
pn ) and AMSE(x̂LG(2)

pn ). The two latter AMSE are approximately equal whatever kn316

and n.317

Regarding the Fréchet and Burr distributions, in general AMSE(x̂Wpn) is higher than AMSE(x̂WG
pn ),318

AMSE(x̂Lpn) and AMSE(x̂LG(2)
pn ) whatever the sample size. For small values of the fraction sam-319

ple, AMSE(x̂Wpn) is smaller than AMSE(x̂LG(1)
pn ) and for large values of kn the opposite occurs,320

i.e. AMSE(x̂LG(1)
pn ) < AMSE(x̂Wpn). Once the function AMSE reaches its minimum, we observe321

that : (1) AMSE(x̂LG(1)
pn ) and AMSE(x̂LG(2)

pn ) ↑ slowly as kn ↑; (2) AMSE(x̂WG
pn ) and AMSE(x̂Lpn)322

↑ slightly faster as kn ↑; (3) AMSE(x̂Wpn) ↑ very faster as kn ↑. When the sample size n ↑, the323

difference between AMSE(x̂LG(1)
pn ) and AMSE(x̂LG(2)

pn ) ↓ as kn ↑.324

As by definition, AMSE is equal to the sum of the variance and squared bias of the esti-

mator, i.e.

AMSE(x̂•pn) = Avar(x̂•pn) + ABias2(x̂•pn), (22)

where letter “A” at the beginning of the notation refers to “asymptotic”, Figure 4 suggests the325

following interpretations :326

• The variance of estimators x̂WG
pn , x̂Lpn , x̂LG(1)

pn and x̂LG(2)
pn seems smaller than the variance327

of x̂Wpn . The behaviour of the median estimators of x̂WG
pn , x̂Lpn , x̂LG(1)

pn and x̂LG(2)
pn in Fig-328
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ures 3 tend to confirm these statements. They are more stable than x̂Wpn . Notice that329

the variance of x̂Wpn can be approximated by γ2

kn

(

1 + log2
(

kn
npn

))

(see e.g. Beirlant et al.,330

2004, p. 120).331

• The standard deviation of the proposed estimators may be negligible compared to their332

bias, i.e. Avar1/2(x̂•pn) 0 ABias(x̂•pn). Thus, since the bias of estimators x̂WG
pn , x̂Lpn , x̂LG(1)

pn333

and x̂LG(2)
pn are smaller than the bias of Weissman estimator x̂Wpn at a scale factor to be de-334

termined, then AMSE(x̂Wpn) is larger than AMSE(x̂WG
pn ), AMSE(x̂Lpn), AMSE(x̂LG(2)

pn ) and,335

from a sample fraction kn not too small AMSE(x̂WG
pn ) > AMSE(x̂LG(1)

pn ).336

Choice of the optimal sample fraction

The proposed estimators depend on the fraction sample kn. Basically, the direct minimiza-

tion of the AMSE errors can be used as a criterion to select kn. However, this method can not

be considered in practice since the AMSE is unknown. A number of methods for the selec-

tion of sample fraction kn can be found in Beirlant et al. (1996b); Drees and Kaufmann (1998);

Guillou and Hall (2001); Gomes and Oliveira (2001). Another option consists in choosing kn

corresponding to the range of stability of the estimators with respect to the fraction sample.

In this study, one proposes to choose the largest integer kn which minimizes a dissimilarity

measure between the four estimators x̂Wpn , x̂WG
pn , x̂Lpn and x̂LG(2)

pn , i.e.

k̂n = arg min
kn=1,...,n−1

{

∣

∣x̂Wpn − x̂WG
pn

∣

∣+
∣

∣x̂Wpn − x̂Lpn
∣

∣+
∣

∣

∣
x̂Wpn − x̂LG(2)

pn

∣

∣

∣

+
∣

∣x̂WG
pn − x̂Lpn

∣

∣+
∣

∣

∣
x̂WG
pn − x̂LG(2)

pn

∣

∣

∣
+
∣

∣

∣
x̂Lpn − x̂LG(2)

pn

∣

∣

∣

}

. (23)

This heuristic is used in non-parametric estimation. It relies on the idea that, if k̂n is prop-337

erly chosen, all estimates should approximately give the same value. We refer to Gardes et al.338

(2010) for an illustration of this procedure on simulated data. In addition, we illustrated, in339

Figures 5 and 6, the dissimilarity procedure on the median estimators for N = 1000 simulated340

samples from the Fréchet and Burr distributions respectively. In both Figures, the selected k̂n341

produce good results. Nevertheless, when selecting kn independently for each estimator, bet-342

ter results may be produced as it is the case for instancex̂Lpn in Figure 5-a and x̂Wpn in Figure343

5-d. In the other Figures, the dissimilarity procedure performs as well as selecting kn inde-344

pendently for each estimator by minimization of the error.345
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A brief summary346

To summarize, these numerical experiments confirm that, for a large enough fraction sample347

kn and large simple size (n > 100), x̂LG(1)
pn & x̂LG(2)

pn which means that it is reasonable to fix348

fkn = 1. However, they show that the choice fkn = 1 is not optimal since x̂LG(2)
pn is better than349

x̂LG(1)
pn in almost all cases, especially whenn ≤ 100. Finally, despite the fact that we know there350

is no optimal estimator for all cases, the simulations confirm that estimators x̂WG
pn , x̂Lpn and351

x̂LG(2)
pn are better than the Weissman estimator x̂Wpn especially for the bias and the AMSE for352

the distributions where the function %(.) is not constant. The performance of all estimators353

are approximately equal when %(.) is the constant.354

5 Case study : estimation of high flood return period355

In this section, we adapt and apply the proposed estimators to flood events. As illustrated356

in 7, a flood event is mainly described with three variables obtained from a typical flood hy-357

drograph. These variables are the flood peak (Q), flood volume (V ) and flood duration (D).358

The data set used in this case study is taken from Yue et al. (1999) and consists in daily nat-359

ural streamflow measurements from the Ashuapmushuan basin (reference number 061901).360

The gauging station, located in the province of Quebec (Canada) is near the outlet of the361

basin, at latitude 48.69◦N and longitude 72.49◦W. In this region, floods are generally caused362

by high spring snowmelt. Data are available from 1963 to 1995. The flood annual observa-363

tions of flood peaks, durations and volumes were extracted from a daily streamflow data set.364

The proposed estimators of extreme quantiles are built by assuming that the CDF is heavy

tailed. An exploratory study is performed using the PQ-plot in (6) and the GQ-plot in (7).

Figures 8-a and 8-b illustrates respectively the PQ-plots and GQ-plots corresponding to three

variables characterising the flood event. These plots show that the flood peak and the flood

volume belong to the MDA(Fréchet). Indeed, for extreme points, the PQ-plots in Figure 8-

(iii, v) seem to be approximatively linear and the GQ-plots in Figure 8-(iv, v) reveal a positive

slope. On the other hand, the duration is not heavy-tailed since the curves of its PQ-plot

in Figure 8-(i) and GP-plot in Figure 8-(ii) are approximately constant for extremes points.

Thus, we are only interested in estimating of peak and volume. We considered the return

period T ∈ {66, 99, 132, 165} years according to the sample size n = 33. Mathematically, the
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problem is to estimate the quantile of order

(1 − p) ∈ {0.9848485, 0.989899, 0.9924242, 0.9939394}.

For each T , the extreme quantile is estimated with x̂Wp , x̂Lp , x̂WG
p and x̂LG(2)

p . The fraction365

sample on which the estimation is based was chosen by using criterion (23). For each value of366

T , for each of the two selected variables (V and Q), we compute the mean and the standard367

deviation (stdev) of the estimators. The estimated peaks and volumes are presented, with368

their computed mean and standard deviation, in Table 2 and Table 3 respectively.369

Unlike the stdev of the estimated volumes Table 3, we notice that the stdev of the esti-370

mated peaks in Table 2 do not ↑ too fast as the return period T ↑. Also, stdev is large for the371

estimated volumes. Thus, for this case study, the estimate of volume V deteriorates faster372

than the estimate of the peak as T ↑. The estimation remains more stable when the extreme373

quantile is not too far from the boundary of the sample, i.e. for a reasonable value of the374

return period T . Indeed, estimation errors increase with the return period.375

Figure 9 illustrates the selected fraction sample kn and the estimators associated to each376

one of the considered variables Q and V for the return periods T = 66 and T = 165 years.377

For both variables of interest, we observe that the estimators x̂Lp , x̂WG
p and x̂LG(2)

p are smooth378

and more stable compared to x̂Wp . In addition, the difference between x̂Wp and the three other379

estimators ↑ as the fraction sample kn ↑. This indicates a high bias for large values of kn.380

For Q series, criterion (23) suggests k̂n = 16 respectively for T = 66 and T = 165 years.381

Nevertheless, Figures 9-(a, b) show that we can choose k̂n in the set {6, . . . , 16} where the382

four estimators seem to have similar values. Moreover, for the estimator x̂Lp , Figures 9-(a, b)383

indicate that k̂n can also be larger than 16 since this estimator is less sensitive to the selected384

kn. x̂WG
p have a large volatility and for kn > 16 the difference between this estimator and385

the other ones becomes important. Taking kn > 16 could lead to an overestimation of the386

extreme quantiles.387

Regarding the series of V , criterion (23) indicates that k̂n = 8 is a good choice for T = 66388

and T = 165 years. In Figures 9-(c, d), the observation of the range of stability of the four389

estimators with respect to the fraction sample shows that k̂n could be reasonably estimated390

in {5, . . . , 10}. Figures 9-(c, d) confirm that x̂Lp , x̂WG
p , x̂LG(2)

p are smooth and less sensitive391
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than x̂Wp . Figure 9-(d) shows that one can build the estimator x̂Lp not only with the kn largest392

observations but also with the entire sample, i.e. kn = n.393

Even through the estimator values in Tables 2 and 3 are relatively similar, Figure 9 indi-394

cates that x̂Wp is very sensitive to kn. Therefore, a bad choice of kn could lead to very different395

estimator values whereas the other proposed estimators have a very small volatility with re-396

spect to kn. Despite the fact that all the estimators are similar for a reasonable choice of kn,397

the results of the case study suggest that it is advantageous to estimate extreme quantiles398

with x̂WG
p , x̂LG(2)

p and x̂Lp instead of x̂Wp . The case study results confirm the findings of the399

simulation study, in particular the stability of the proposed estimators with respect to kn.400

6 Conclusions401

The present paper introduced (1) the geometric estimators of extreme quantiles and (2) a402

“weighted” estimator of quantiles for high return periods T ≥ 2/(ne) where n is the sam-403

ple size. Simulation results show that the proposed estimators given in (14), (19) and (20)404

are smooth and more stable than the Weissman estimator (11). In addition, they improve405

the bias. Since the accuracy of estimators depends on the precise choice of the number of406

order statistics kn, a method of selection of kn is proposed and illustrated in the case study.407

The case study shows that x̂Wp is very sensitive to the selected kn which is not the case of the408

proposed estimators. Given the good performance of estimators (14), (19) and (20), we pro-409

pose to explicit in future work, their asymptotic distributions. More precisely, we propose410

to study asymptotic properties of the proposed estimators under less restrictive conditions411

than those in Lekina (2010). This statistical result will allow, for instance, to build more ac-412

curate estimation confidence intervals. In other respects, this result would allow to validate413

the behaviour of the observed AMSE in the simulations and to identify the most efficient es-414

timator. Finally, despite the fact that in EVA, it is often recommended to consider at the same415

time several estimators of extreme quantiles since there is no optimal estimator for all cases,416

according to the simulation results on simulated data in the present paper, we suggest to use417

estimateur x̂LG(2)
p . Numerical experiments indicate that its AMSE is smaller than the one of418

its competitors especially for the small samples i.e. n ≤ 100.419
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Distribution Density Sequences

Normal f(x) =
1√
2π

exp

(

−
1

2
x2

)

an = (2 logn)−1/2

x ∈ R bn = (2 logn)1/2 −
log log n+ log 4π

2 (2 logn)1/2

Exponential f(x) = λ exp(−λx) an = 1/λ
x ≥ 0 bn = log (n)/λ

Cauchy f(x) =
1

π

1

1 + x2
an = 0

x ∈ R bn = n/π

Beta f(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 an =

(

n
Γ(a+ b)

Γ(a)Γ(b+ 1)

)−1/b

0 < x < 1, a, b > 0 bn = 1

Table 1: Limited number of examples of the theoretical normalized sequences an et bn.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!

Estimator
Return period T

66 99 132 165

x̂W
1/T 2435.00 2583.10 2693.62 2782.58

x̂L
1/T 2456.14 2607.50 2720.55 2811.61

x̂WG
1/T 2433.15 2583.25 2695.34 2785.62

x̂LG(2)
1/T 2432.61 2584.59 2698.14 2789.64

mean 2439.45 2590.01 2702.45 2793.02
stdev 11.22 11.68 12.13 12.55

Table 2: Estimated flood peak Q.

!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!
!!

Estimator
Return period T

66 99 132 165

x̂W
1/T 84979.31 89238.64 92389.53 94909.97

x̂W
1/T 84267.36 88418.86 91485.84 93937.06

x̂WG
1/T 84970.60 89146.48 92233.20 94700.84

x̂LG(2)
1/T 84761.40 88953.95 92053.78 94532.40

mean 84957.27 89158.70 92264.57 94747.80
stdev 652.10 708.26 751.46 786.86

Table 3: Estimated flood volume V .
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Figure 1: Difference between large quantiles within and outside the sample. Scatter plot of the
Fréchet distributed sample {Xi, i = 1, . . . , 500} (× ××) with tail index γ = 0.5, location param-
eter m = 0 and scale parameter s = 1, the extreme quantile xp (− − −) and observations higher
than xp (⊗⊗⊗) with p = 1/T , for (a) T = 25, (b) T = 250 and (c) T = 600.
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Figure 2: Mean estimators of log x̂W
pn (——), log x̂WG

pn (· · · · · · ), log x̂L
pn (−−−), log x̂LG(1)

pn (— — —)
and log x̂LG(2)

pn (− ·−) for N = 1000 simulated samples of size n ∈ {30, 50, 100, 500} from the distri-
butions of Fréchet (i)–(iv), Burr (v)–(viii), Pareto (ix)–(xii) and Student (xiii)–(xvi). The horizontal
line indicates the true value of log-quantile,i.e. log xpn .The horizontal axis corresponds to the
fraction sample kn = 1, . . . , n− 1.
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Figure 3: Median estimators of log x̂W
pn (——), log x̂WG

pn (· · · · · · ), log x̂L
pn (−−−), log x̂LG(1)

pn (— — —)
and log x̂LG(2)

pn (− ·−) for N = 1000 simulated samples of size n ∈ {30, 50, 100, 500} from the distri-
butions of Fréchet (i)–(iv), Burr (v)–(viii), Pareto (ix)–(xii) and Student (xiii)–(xvi). The horizontal
line indicates the true value of log-quantile,i.e. log xpn . The horizontal axis corresponds to the
fraction sample kn = 1, . . . , n− 1.
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Figure 4: AMSE of the estimators x̂W
pn (——), x̂WG

pn (· · · · · · ), x̂L
pn (−−−), x̂LG(1)

pn (— — —) and x̂LG(2)
pn

(− ·−) for N = 1000 simulated samples of size n ∈ {30, 50, 100, 500} from the distributions of
Fréchet (i)–(iv), Burr (v)–(viii), Pareto (ix)–(xii) and Student (xiii)–(xvi). The horizontal axis cor-
responds to the fraction sample kn = 1, . . . , n− 1.
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Figure 5: Choice of the sample fraction k̂n (vertical dotted line) obtained by minimizing a
dissimilarity measure between the estimators log x̂W

pn (——), log x̂WG
pn (· · · · · · ), log x̂L

pn (−−−)
and log x̂LG(2)

pn (− ·−) for N = 1000 simulated samples of size n ∈ {30, 50, 100, 500} from the
Féchet distribution F(x; 0.75, 1, 0). The horizontal axis corresponds to the fraction sample
kn = 1, . . . , n− 1.
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Figure 8: PQ-plots and GQ-plots obtained for duration (i)-(ii), flood volume (iii)-(iv) and flood
peak (v)-(vi).
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(c) T = 66 and k̂n = 8 for V (d) T = 165 and k̂n = 8 for V

Figure 9: Estimated flood peaks (a)-(b) and estimated flood volumes (c)-(d) with x̂W
p (——), x̂WG

p

(− − −), x̂L
p (− + −) and x̂LG(2)

pn (− · −) for the indicated return period T , the selected fraction
sample k̂n (· · · · · · ).
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