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Abstract: The prevention of flood risks and the effective planning and management of water13

resources require river flows to be continuously measured and analyzed at a number of stations.14

For a given station, a hydrograph can be obtained as a graphical representation of the temporal15

variation of flow over a period of time. The information provided by the hydrograph is essen-16

tial to determine the severity of extreme events and their frequencies. A flood hydrograph is17

commonly characterized by its peak, volume and duration. Traditional hydrological frequency18

analysis (FA) approaches focused separately on each of these features in a univariate context.19

Recent multivariate approaches considered these features jointly in order to take into account20

their dependence structure. However, all these approaches are based on the analysis of a num-21

ber of characteristics, and do not make use of the full information content of the hydrograph.22

The objective of the present work is to propose a new framework for frequency analysis using23

the hydrographs as curves: functional data. In this context, the whole hydrograph is considered24

as one infinite dimensional observation. This context allows to provide more effective and effi-25

cient estimates of the risk associated with extreme events. The proposed approach contributes26

to addressing the problem of lack of data commonly encountered in hydrology by fully em-27

ploying all the information contained in the hydrographs. A number of functional data analysis28

tools are introduced and adapted to flood FA with a focus on exploratory analysis as a first stage29

towards a complete functional flood FA. These methods, including data visualization, location30

and scale measures, principal component analysis as well as outlier detection, are illustrated in31

a real-world flood analysis case study from the province of Quebec, Canada.32

Key Words: Functional data, frequency analysis, hydrology, flood, outliers, exploratory analy-33

sis, principal component analysis.34
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1 Introduction35

Extreme hydrological events such as floods, droughts and rain storms may have significant eco-36

nomic and social consequences. Hydrological frequency analysis (FA) procedures are essential37

and commonly used for the analysis and prediction of such extreme events, which have a direct38

impact on reservoir management and dam design. Flood FA is based on the estimation of the39

probability P (X > xT ) of exceedence of the event xT corresponding to a quantile of a given40

return period T e.g. T = 10, 50 or 100 years. The random variable X is commonly taken to be41

the peak of the flood which is the maximum of the daily streamflow series during a hydrologi-42

cal year or season. Relating the magnitude of extreme events to their frequency of occurrence,43

through the use of probability distributions, is the principal aim of FA (Chow et al., 1988).44

The accurate estimation of the risk associated with the design and operation of water infras-45

tructures requires a good knowledge of flood characteristics. Indeed, an overestimation of the46

design flood leads to an over-sizing of hydraulic structures and, would therefore involve ad-47

ditional costs, while underestimation of design floods leads to material damages and loss of48

human lives. Flood FA is commonly employed to study this risk. It has been traditionally car-49

ried out for the analysis of flood peaks in a univariate context. The reader is referred, e.g. to50

Cunnane (1987) and Rao and Hamed (2000).51

In general, a flood is described through a number of correlated characteristics, e.g. peak, volume52

and duration. The univariate treatment of each flood characteristic ignores their dependence53

structure. Consequently, the univariate framework is less representative of the phenomenon and54

reduces the risk estimation accuracy. Thereafter, several authors focused on the joint treatment55

of flood characteristics through the use of a number of multivariate techniques such as multi-56
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variate distributions and copulas (e.g. Yue et al., 1999; Shiau, 2003; Zhang and Singh, 2006;57

Chebana and Ouarda, 2011a). Multivariate studies contributed to the improvement of the esti-58

mation accuracy and provide information concerning the dependence structure between flood59

characteristics. The multivariate framework is applied in several hydrological events, such as60

floods, droughts and storms. For instance in floods, it is used for hydraulic structure design and61

extreme event prediction purposes (see Chebana and Ouarda, 2011a for recent references).62

Despite their usefulness, univariate and multivariate FA approaches have a number of limita-63

tions and drawbacks. The separate or joint use of hydrograph characteristics constitutes a major64

simplification of the real phenomenon. Furthermore, the way these characteristics can be deter-65

mined is neither unique nor objective (in particular, flood starting and ending dates). In addition,66

each flood characteristic can be seen as a real-valued transformation of the hydrograph, e.g. the67

peak is the maximum. For hydrological applications, the bivariate setting is largely employed to68

treat two hydrological variables. A limited number of studies deals with the trivariate one, e.g.69

Serinaldi and Grimaldi (2007) and Zhang and Singh (2007). The trivariate models generally70

suffer from less representativity and formulation complexity. Note that, in general, the number71

of associated parameters grows up rapidly with the dimension of the model and therefore the72

generated uncertainty increases. In addition, higher dimensions are not considered in hydrolog-73

ical practice. Finally, given the lack of data in hydrology, working with a limited number of74

extracted characteristics represents a loss of information in comparison to the overall available75

series.76

The main data source in FA is daily streamflow series, which during a year constitutes a hydro-77

graph, from which the univariate and multivariate variables are extracted. The total information78
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that is available in a hydrograph is necessary for the effective planning of water resources and79

for the design and management of hydraulic structures. The entire hydrograph, as a curve with80

respect to time, can be considered as a single observation within the functional context. In the81

univariate and the multivariate settings an observation is respectively a real value and a vector.82

Therefore, the functional framework which treats the whole hydrograph as a functional obser-83

vation (function or curve) is more representative of the real phenomena and makes better use of84

available data. Figure 1 illustrates and summarizes the three frameworks.85

In the hydrological literature, there were some efforts towards a representation of the hydro-86

graph as a function, such as in the study of the design flood hydrograph, e.g. Yue et al. (2002),87

and in the flow duration curve study e.g. by Castellarin et al. (2004) where the mean, median88

and variation are presented as curves. These studies underlined the importance to consider the89

shape of the hydrograph which is necessary, for instance, for water resources planning, design90

and management. The shape of flood hydrographs for a given river may change according to91

the observed storm or snowmelt events. More practical issues and examples related to the hy-92

drograph can be found for instance in Yue et al. (2002) or Chow et al. (1988). Note that the93

main flood characteristics, i.e. peak, volume and duration, can not completely capture the shape94

of the hydrograph. The study of the hydrographs in Yue et al. (2002), and similar studies, are95

simplistic and limited, as they approximated the flood hydrograph using a two-parameter beta96

density and considered only single-peak hydrographs. On the other hand, the flow duration97

curve approach (Castellarin et al., 2004) is in the univariate setting and the presented functional98

elements (e.g. mean and median curves) are important but remain limited. The previous studies99

show the need to introduce a statistical framework to study the whole hydrograph and to per-100
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form further statistical analysis. The functional framework is more general and more flexible101

and can represent a large variety of hydrographs.102

Functional data are becoming increasingly common in a variety of fields. This has sparked a103

growing attention in the development of adapted statistical tools that allow to analyze such kind104

of data. For instance, Ramsay and Silverman (2005), Ferraty and Vieu (2006) and Dabo-Niang105

and Ferraty (2008) provided detailed surveys of a number of parametric and nonparametric106

techniques for the analysis of functional data. In practice, the use of functional data analysis107

(FDA) has benefited from the availability of the appropriate statistical tools and high perfor-108

mance computers. Furthermore, the use of FDA allows to make the most of the information109

contained in the functional data. The aims of FDA are mainly the same as in the classical110

statistical analysis, e.g. representing and visualizing the data, studying variability and trends,111

comparing different data sets, as well as modeling and predicting. The majority of classical112

statistical techniques, such as principal component, linear models, confidence interval estima-113

tion and outlier detection, were extended to the functional context (e.g. Ramsay and Silverman,114

2005). The application of FDA has been successfully carried out, for instance, in the case of the115

El Niño climatic phenomenon (Ferraty et al., 2005) and radar wave curve classification (Dabo-116

Niang et al., 2007). Dabo-Niang et al. (2010) proposed a spatial heterogeneity index to compare117

the effects of bioturbation on oxygen distribution. Delicado et al. (2008) and Monestiez and118

Nerini (2008) considered spatial functional kriging methods to model different temperature se-119

ries. Sea ice data are treated in the FDA context by Koulis et al. (2009).120

The functional methodology constitutes a natural extension of univariate and multivariate hy-121

drological FA approaches (see Figure 1). This new approach uses all available data by em-122
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ploying the whole hydrograph as a functional observation. In other words, FDA permits to123

exhaustively analyze hydrological data by conducting one analysis on the whole data instead124

of several univariate or multivariate analysis. In addition, the approach proposed by Yue et al.125

(2002) can be generalized in the FDA context where it becomes more flexible and includes hy-126

drographs with different shapes such as multi-peak ones.127

Given the above arguments, for hydrological applications, the functional context could be seen128

as an alternative framework to the univariate and multivariate ones, or it can also be employed129

as a parallel complement to bring additional insight to those obtained by the two other frame-130

works. The main objective of the present paper is to attract attention to the functional nature131

of data that can be used in all statistical techniques for hydrological applications through the132

FDA framework. A second objective is to introduce some of the FDA techniques, point out133

their advantages and illustrate their applicability in the hydrological framework. In the present134

paper, we focus on hydrological FA.135

Four main steps are required in order to carry out a comprehensive hydrological FA: i) de-136

scriptive and exploratory analysis and outlier detection, ii) verification of FA assumptions, i.e.137

stationarity, homogeneity and independence, iii) modeling and estimation and iv) evaluation and138

analysis of the risk. The first step (i) is commonly carried out in univariate hydrological FA as139

pointed out, e.g. by Rao and Hamed (2000), Kite (1988) and Stedinger et al. (1993) whereas in140

the multivariate framework it was investigated recently by Chebana and Ouarda (2011b). Con-141

trary to the univariate setting, exploratory analysis in the multivariate and functional settings is142

not straightforward and requires more efforts. Table 1 summarizes the four FA steps and their143

status in each one of the three frameworks. It is indicated that the specific aim of the present144
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paper is to treat step (i) which deals with data visualization, location and scale measures as well145

as outlier detection. A new non-graphical method to detect functional outliers is also proposed146

in the present paper. The presented techniques are applied to floods based on daily streamflow147

series from a basin in the province of Quebec, Canada.148

Exploratory data analysis as a preliminary step of FA is useful for the comparison of hydrologi-149

cal samples and for the selection of the appropriate model for hydrological variables. It consists150

in a close inspection of the data to quantify and summarize the properties of the samples, for151

instance, through location and scale measures. Outliers can have negative impacts on the se-152

lection of the appropriate model as well as on the estimation of the associated parameters. In153

order to base the inference on the right data set, detection and treatment of outliers are also154

important elements of FA (Barnett and Lewis, 1998). Therefore, it is essential to start with the155

basic analysis (step i) in order to perform a complete functional FA.156

This paper is organized as follows. The theoretical background of functional statistical methods157

is presented in Section 2 in its general form. In Section 3, the functional framework is adapted158

to floods. The functional FA methods are applied, in Section 4, to a real-wold case study rep-159

resenting daily streamflows from the province of Quebec, Canada. A discussion as well as a160

comparison with multivariate FA are also reported in Section 4. Conclusions and perspectives161

are presented in the last section.162

2 Functional data analysis background163

This section presents the general functional techniques. It is composed of four parts represent-164

ing FDA phases: first, data smoothing is discussed, second location and scale parameters are165
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introduced, then functional principal component analysis (FPCA) is described and finally data166

visualization and outlier detection methods are presented.167

Data are generally measured in discrete time steps such as hours or days. Therefore, the first168

phase in FDA consists in the conversion of observed discrete data to functional data. Once169

the discrete data are transformed to curves, they can be analyzed in the functional framework.170

In a descriptive statistical study, it is of interest to obtain estimates of the location and scale171

parameters within FDA. The next phase in the considered FDA is to extract information from172

functional data using FPCA where the corresponding scores to these components are the basis173

for visualization and outlier detection.174

2.1 Data smoothing175

The objective of this step is to prepare data to be used in the FDA context. As a preparation176

step of the data to be employed, it is analogous to the step of extracting peaks in univariate177

FA or peak and volume series in the multivariate FA. Note that the statistical object of FDA is178

a function (curve) as shown in Figure 1. However, the curves are not observed, instead, only179

discrete measurements of the curves are available. In the case where data series are of good180

quality and long enough records, one can simply interpolate the measurements to obtain the181

curves, e.g. for rainfall series. Otherwise, smoothing can be required. This is typically the182

case for diffusive processes like in the present study of floods. However, even in the first case,183

smoothing could be necessary depending on the goal of the study (e.g. Ramsay and Silverman,184

2005).185

Let Yi = (yi(t1), ..., yi(tT )), i = 1, ..., n be a set of n discrete observations where each tj ∈186
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C ⊂ R+, j = 1, ..., T is the jth record time point from a given time subset C. For a fixed187

observation i, each set of measurements (yi(t1), ..., yi(tT )) is converted to be a functional data188

(curve) denoted yi(t) by using a smoothing technique where the index t covers the continuous189

subset C. To this end, we suppose that the discrete observation (yi(tj))j=1,...,T is fitted using the190

regression model:191

yi(tj) = xi(tj) + ϵij i = 1, ..., n and j = 1, ..., T (1)

where ϵij are the errors and the functions xi(.) are linear combinations of basis functions ϕk(.),192

that permit to explain most of the variation contained in the functional observations:193

xi(t) =

p∑
k=0

cikϕk(t) for t ∈ C. (2)

The functional data set (yi(t))i=1,...,n are then given by:194

yi(t) = x̂i(t) =

p∑
k=0

ĉikϕk(t), t ∈ C (3)

where the estimated coefficients ĉik are obtained by minimizing the following sum:195

SSE(i) =
T∑

j=1

(yi(tj)− xi(tj))
2, for i = 1, ..., n (4)

For more details, the reader is referred, for instance, to Ramsay and Silverman (2005). A num-196

ber of possible types of basis ϕk(.) have been presented in the literature. Most of the practical197

situations are treated with the well-known basis, such as, polynomial, wavelet, Fourier and the198

various Spline versions. Fourier and B−Spline basis are widely employed in the FDA context.199

The functional representation uses Fourier series for periodic or near periodic data. When the200

data are far from being periodic, spline approximations are commonly used in FDA for most201
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problems involving non-periodic data (Ramsay and Silverman, 2005). Splines are more flexible202

but more complicated than Fourier series. The latter allows capturing the seasonal variability203

while the Spline series captures high and low values of the data (Ramsay and Silverman, 2005,204

Koulis et al., 2009). In general, the basis functions or the smoothing method to use should be205

based on objective considerations depending mainly on the nature of the data to be studied.206

Fourier basis functions (ϕk(.))k=0,...,p are defined by:207

ϕ0(t) = 1, ϕ2j−1(t) = sin(jwt), ϕ2j(t) = cos(jwt), w = 2π/T. (5)

Splines are piecewise polynomials defined on subintervals of the range of the observations.208

In each subinterval, the Spline is a polynomial function with a fixed degree but could be with209

different shapes. For instance, when the polynomial degree is three, we talk about cubic splines.210

For a comprehensive review about splines, the reader is referred to De Boor (2001).211

Note that the aim of using the above expansion (3) is to obtain smooth functions to be employed212

as observations in FDA. In this case, the expansion series need not to be interpreted since the213

interest is not to extract a signal from the whole series. However, the number of basis functions214

to be selected is important where a large number leads to over-fitting of the data while a small215

number leads to under-fitting. Hence, the smoothing degree of the obtained functions to be216

employed as observations depends on the aim of the analysis, e.g. in principal component217

analysis, the aim is to capture a large variability rather than to reach the peaks. For more218

flexibility, a penalty term can be added to (4) to ensure the regularity of the smoothed functions.219

More details can be found for instance in Ramsay and Silvermann (2005) and Wahba (1990).220
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2.2 Location and scale parameters for functional variables221

In a descriptive statistical study, we generally begin by looking for centrality and dispersion222

properties of a given sample. A location parameter summarizes the data and indicates where223

most of the data are located. Scale parameters are useful to measure the dispersion of a sample224

and also to compare different samples. These notions are useful in hydrology since they appear225

in almost all commonly employed probability distributions and models. In hydrology, location226

curves can also be used to characterize a given basin and to proceed to comparison or grouping227

of a set of basins. The scale measures can be used in a similar way but at a second level. In the228

setting of real or multivariate random variables, this is usually done through the mean, median,229

mode, variance, covariance and correlation. To avoid the possibility of missing important in-230

formation, it is generally recommended to employ more than one measure for each feature. For231

instance, by looking only at the mean of the sample one might miss a possible heterogeneity232

in the population which would be captured by the mode. Obviously, these same problems will233

also appear when one studies a sample composed of curves {yi(t), t ∈ C}, i = 1, ..., n. In this234

setting, it is straightforward to define the mean curve ȳ(.) of the sample as:235

ȳ(t) =
1

n

n∑
i=1

yi(t), t ∈ C. (6)

One has to use this mean curve carefully according to the shape of the data. For instance, if the236

data exhibit a high roughness degree the mean curve could be less informative.237

Robust and efficient alternatives to the sample mean are the median and the trimmed mean (e.g.,238

Ouarda and Ashkar, 1998). In the functional context, both measures are based on the statistical239

notion of depth function which is initially introduced in the multivariate context. The aim of240
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depth functions is to extend the notion of ranking for a multivariate sample. These functions241

are introduced by Tukey (1975) and are introduced and applied to water sciences by Chebana242

and Ouarda (2008). Recently, the notion of depth has been extended to functional data (e.g.243

Fraiman and Muniz, 2001 and Febrero et al., 2008). The reader is referred to Chebana and244

Ouarda (2011b) for hydrological applications and a brief review and to Zuo and Serfling (2000)245

for a general and detailed description.246

Fraiman and Muniz (2001) presented the definition of trimmed means in the functional con-247

text which are based on the empirical α-trimmed functional region. It is defined by TRα :=248

{x, Dn(x) ≥ α} for 0 < α < 1 where Dn(.) is an empirical functional depth function, as the249

various ones defined, e.g. in Fraiman and Muniz (2001) and Febrero et al. (2008) where the250

corresponding formulations are explicitly given. A depth-based functional trimmed mean can251

be defined as the average over the yi(t), i = 1, ..., n that belong to the empirical trimmed region252

TRα:253
ȳα(t) =

1

|TRα|
∑

yi∈TRα

yi(t), t ∈ C (7)

where |A| is the cardinal of the set A. For functional observations, the median curve is the254

deepest function in the sample {y1, ..., yn}. It maximizes the depth function Dn(.):255

Ymedian = argmaxx∈{y1,...,yn}Dn(x) (8)

where argmaxz∈A g(z) stands for the element in the set A that maximizes the function g.256

From a theoretical point of view, the mode as a location measure, when it exists, is the value257

that locally maximizes the probability density f of the underlying variable. Developments and258

applications related to nonparametric density estimation in this context can be found in Dabo-259

Niang et al. (2007). An estimator of the modal curve can be obtained by:260
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Ymode = argmaxx∈{y1,...,yn} fn(x) (9)

where fn is an estimate of the density f .261

The median and mode given respectively in (8) and (9) are natural extensions of their multi-262

variate counterparts. However, they are rarely used in practice because of their complex com-263

putations. Alternatively, they are commonly defined on the basis of the bivariate scores of a264

functional principal component analysis of the curves observations as described in Section 2.4265

below.266

Variability is one of the important quantities to be evaluated and analyzed in statistics. For mul-267

tivariate data, the reader is referred to Liu et al. (1999) and Chebana and Ouarda (2011b). The268

simplest way to define a variance function in the functional context is by:269

vary(t) =
1

n− 1

n∑
i=1

(yi(t)− ȳ(t))2 , t ∈ C (10)

The covariance function summarizes the dependence structure across different argument values:270

271

covy(s, t) =
1

n− 1

n∑
i=1

(yi(s)− ȳ(s)) (yi(t)− ȳ(t)) , s, t ∈ C (11)

The variability of the functional sample is analyzed by plotting the surface covy(s, t) as a func-272

tion of s and t as well as the corresponding contour map.273

Note that, for functional observations, several types of variability can occur such as the274

variability within the same observation or between the different observations. In addition, func-275

tional principal component analysis is also employed to explore the variability between obser-276

vations. The reader is referred to Ramsay and Silverman (2005) and the following sections for277
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a presentation of the functional principal component analysis.278

2.3 Functional principal component analysis (FPCA)279

Principal component analysis (PCA), as a multivariate procedure, is usually employed to re-280

duce the dimensionality by defining new variables as linear combinations of the original ones281

and which capture the maximum of the data variance. After converting the data into functions,282

functional PCA (FPCA) allows to find new functions that reveal the most important type of283

variation in the curve data. Note that these new functions cannot be in the Fourier or Spline284

basis since their aim is not to smooth but rather to produce a reasonable summary of the data by285

maximizing the capture of the variability. The FPCA method maximizes the sample variance286

of the scores (defined below) subject to orthonormal constraints. It decomposes the centered287

functional data in terms of an orthogonal basis as described in the following.288

Let yi(t), i = 1, ..., n be the functional observations obtained by smoothing the observed dis-289

crete observations (yi(t1), ..., yi(tT )), i = 1, ..., n.290

By definition, the mean curve is a way of variation common to most curves that can be291

isolated by centering. Let (y∗i (t) = yi(t)− ȳ(t))i=1,...,n be the centered functional observations292

where ȳ(t) is the mean function of (y1(t), ..., yn(t)) given by (6). A FPCA is then applied to293

(y∗i (t))i=1,...,n to create a small set of functions, called also harmonics, that reveals the most294

important type of variation in the data.295

The first principal component of (y∗i (t))i=1,...,n denoted by w1(t) is a function such that the296

variance of the corresponding real-valued scores zi,1 written as:297

zi,1 =

∫
C
w1(s)y

∗
i (s)ds, i = 1, ..., n (12)

15



is maximized under the constraint
∫
C w1(s)

2ds = 1. The next principal components wk(t) are298

obtained by maximizing the variance of the corresponding scores zi,k:299

zi,k =

∫
C
wk(s)y

∗
i (s)ds, i = 1, ..., n (13)

under the constraints
∫
C wk(s)wj(s)ds = 0, k ≥ 2, k ̸= j. As in the multivariate setting, the300

interpretation of the principal component function wk is slightly difficult as it depends on the301

type of data being used and may require nonstatistical considerations. A useful way consists302

in examining the plots of the overall mean function and perturbations around the mean based303

on wk’s. The perturbation functions are obtained as suitable multiples of the considered wk,304

namely:305
ȳ ± 2σωk

∗ ωk, k = 1, ..., K (14)

where σωk
is the square root of the variance (eigenvalue) of the corresponding kth principal306

component. This presentation allows to isolate the perturbations about the mean across time307

and then assess the variability of the observations. Note that the principal components wk are308

optimal, according to the maximization in (12) or (13), but are not unique. Therefore, any rota-309

tion with an orthogonal matrix of the wk is also optimal and orthonormal. A well-known choice310

of such matrices is the VARIMAX. These rotated components can be useful for the interpreta-311

tion. More technical details can be found, for instance, in Ramsay and Silverman (2005). On312

the other hand, the regularity of the harmonics wk(.) can be controlled. Rice and Silverman313

(1991) and Silverman (1996) extended this traditional functional PCA to the regularized FPCA314

(RFPCA) that maximizes the sample variance of the scores subject to penalized constraints.315
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2.4 Functional data visualization and outlier detection methods316

In general, outliers represent gross errors, inconsistencies or unusual observations and should317

be detected and treated (Barnett and Lewis, 1998). Univariate outliers are well defined and318

their detection is straightforward (e.g. Hosking and Wallis, 1997; Rao and Hamed, 2000). This319

topic is also relatively well developed in the multivariate setting (e.g. Dang and Serfling, 2010).320

The identification and the treatment of outliers constitute an important component of the data321

analysis before modeling. For hydrologic data, outlier detection is a common problem which322

has received considerable attention in the univariate framework. In the multivariate setting, the323

problem is well established in statistics. However, in the hydrologic field the concepts are much324

less established. A pioneering work in this direction was recently presented by Chebana and325

Ouarda (2011b). As it is the case in the univariate and multivariate settings, outliers may have326

a serious effect on the modeling of functional data.327

In this section, we focus on visualization methods that help to explore and examine certain fea-328

tures, such as outliers, that might not have been apparent with summary statistics. Different329

outlier detection methods exist in the functional context literature(e.g. Hardin and Rocke, 2005;330

Febrero et al., 2007; Filzmoser et al., 2008). However, Hyndman and Shang (2010) showed, on331

the basis of real data, that their methods are more able to detect outliers and computationally332

faster. The methods proposed by Hyndman and Shang (2010) are graphical and consist first in333

visualizing functional data through the rainbow plot, and then in identifying functional outliers334

using the functional Bagplot and the functional highest density region (HDR) boxplot. The lat-335

ter two methods can detect outlier curves that may lie outside the range of the majority of the336

data, or may be within the range of the data but have a very different shape. These methods can337
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also exhibit curves having a combination of these features. In practice, depending on the nature338

of the data, the two outlier detection methods can give different results.339

As pointed out by Jones and Rice (1992) and Sood et al. (2009), the considerable amount340

of information contained in the original functional data is captured by the first few principal341

components and scores. The outlier identification methods of Hyndman and Shang (2010) con-342

sidered here are based on these first two score vectors. Let yi(t), wk(t) and zi,k be respectively343

the smoothed observed curves, the principal component curves and the corresponding scores344

obtained from the FPCA decomposition (Section 2.3). Let (z1,1, ..., zn,1) and (z1,2, ..., zn,2) be345

the first two vector scores and zi = (zi,1, zi,2) the bivariate score points. At the end of this346

section, a non-graphical outlier detection method is proposed on the basis of zi = (zi,1, zi,2).347

2.4.1 Rainbow plot348

The rainbow plot, proposed by Hyndman and Shang (2010), is a simple presentation of all the349

data, with the only added feature being a color palette based on an ordering. In the functional350

context, this ordering is either based on functional depth or data density indices. These indices351

are evaluated from the bivariate score depths and kernel density. The bivariate score depth is352

given by:353
OTi = d(zi, Z), Z = {zj ∈ R2; j = 1, ..., n} (15)

where d(., .) is the halfspace depth function introduced by Tukey (1975). Tukey’s depth function354

at zi is defined as the smallest number of data points included in a closed half-space containing zi355

on its boundary. The observations are decreasingly ordered according to their depth values OTi.356

The first ordered curve represents the median curve, while the last curve can be considered as the357

outermost curve in a sample of curves. As indicated in Section 2.2, this median curve based on358
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Tukey depth function of the bivariate principal scores zi will be used in the following adaptation359

to floods. Let θ be this Tukey bivariate depth median defined as θ = argmaxz d(z, Z). If there360

are several maximizers, the Tukey bivariate depth median can be taken as their center of gravity.361

The second way of ordering functional observations is based on the kernel density estimate (e.g.362

Scott, 1992) at the bivariate principal component scores :363

ODi = f̂(zi) =
1

n

n∑
j=1

1

hj

K

(
zi − zj
hj

)
, i ̸= j, i = 1, ..., n (16)

where K(.) is the kernel function and hj is the bandwidth for the jth bivariate score points {zj}.364

The functional data {yi(t)} are then ordered in a decreasing order with respect to ODi. Hence,365

the first curve with the highest OD is considered as the modal curve while the last curve with366

the lowest OD can be considered as the most unusual curve. This modal curve will also be used367

in the following application.368

The smoothed observations are presented with colors according to the values of OT and OD.369

The curves close to the center are red while the most outlying curves are violet.370

2.4.2 Functional Bagplot371

The bivariate Bagplot is introduced by Rousseeuw et al. (1999) and is based on the halfspace372

depth function. It is employed by Chebana and Ouarda (2011b) for multivariate hydrological373

data. The functional Bagplot version is obtained from the bivariate Bagplot based on the first374

two principal scores zi = (zi,1, zi,2) given in Section 2.3. Each curve in the functional Bagplot is375

associated with a point in the bivariate Bagplot. Similar to the bivariate Bagplot, the functional376

Bagplot is composed by three elements: the Tukey median curve, the functional inner region377

and the functional outer region. The inner region includes 50% of the observations whereas378
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the outer region covers either 95% or 99% of the observations. The outer region is obtained by379

inflating the inner region by a factor ϱ. Hyndman and Shang (2010) suggested that the factor ϱ380

could take the values 1.96 or 2.58 in order to include respectively 95% or 99% of the curves in381

the outer region. These values of ϱ correspond to the case where the bivariate scores follow the382

standard normal distribution. Finally, points outside the outer region are considered as outliers.383

2.4.3 Functional HDR boxplot384

The functional HDR boxplot corresponds to the bivariate HDR boxplot of Hyndman (1996)385

applied to the first two principal component scores zi ∈ R2. The bivariate HDR boxplot is386

constructed using the bivariate kernel density estimate f̂(z). An HDR with order α ∈ (0, 1) is387

defined as:388
R1−α = {z ∈ R2 : f̂(z) ≥ f1−α, } (17)

where f1−α is such that
∫
R1−α

f̂(t)dt = 1− α and f̂ is defined by (16). An HDR can be seen as389

a density contour with expanding coverage decreasing with α. The associated bandwidth hj in390

f̂ is selected by a smooth cross validation procedure (Duong and Hazelton, 2005).391

The functional HDR boxplot is composed of the mode defined as arg supz f̂(z), the 50% inner392

region (R50%) and the 99% outer highest density region (R1%). For an HDR with 95% outer393

region, one can take R5% instead of R1%. Curves excluded from the outer functional HDR are394

considered as outliers.395

The difference between detecting outliers by the Bagplot and by the HDR boxplot lies mainly in396

the way the inner and outer regions are established. The Bagplot uses a depth function (Tukey)397

and the estimated median curve (based on the Tukey depth function of the first bivariate scores398

zi) while the HDR uses the density estimate of the zi and its mode. Hence, the most outlier399

20



curves from HDR are unusual compared to the mode curve whereas those detected by the Bag-400

plot are unusual with respect to the median curve.401

In connection with the multivariate setting, as indicated in Chebana and Ouarda (2011b), the402

points outside the fence of the Bagplot are considered as extremes rather than outliers. Chebana403

and Ouarda (2011b) considered the approach proposed by Dang and Serfling (2010) to detect404

outliers. This approach is based on the evaluation of the outlyingness of each observation, the405

determination of a threshold and then the identification of the observations that exceed this406

threshold are considered as outliers. The outlyingness values are simple decreasing transforma-407

tions of depth functions. In the present study, we propose to consider this approach based on the408

first two scores. A brief presentation of the approach is given in Chebana and Ouarda (2011b),409

section 2.6.410

The above graphical approaches should be considered as preliminary indications for suspected411

observations. The latter could be seen as extremes rather than outliers (see e.g. Chebana and412

Ouarda, 2011b). In addition, the approach by Dang and Serfling (2010) is based on the outliyn-413

gness criteria and the corresponding threshold is empirical and not necessarily normally-based414

(instead of the values of the inflating central region 1.96 or 2.58).415

3 Adaptation to floods416

The first and most important adaptation for floods lies in the nature of hydrological data. The417

main data source in hydrology is daily flow from a given station. Flows can also sometimes be418

available on an hourly, instantaneously or any other time scale. In the following, we focus on419

daily data and we assume it is recorded during a number n of years of measurements, Yi =420
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(yi(t1), ..., yi(tT ))
′, i = 1, ..., n, j = 1, ..., T , with T = 365 days and yi(tj) is the flow measured421

at the day tj of the ith year. The time subset index C is then the interval [1, 365]. According422

to this kind of data, we have n discrete observations {yi(tj), j = 1, ..., 365}, i = 1, ..., n.423

The observation {yi(tj), j = 1, ..., 365} denotes the daily flow for the ith year. A functional424

observation constitutes a year starting from January 1st to December 31st. However, it can be425

cut out in different ways according to the seasonal characteristics of the geographical area of426

interest. For instance, for most parts of Canada, it is possible to define the March-June season427

for spring floods and the July-October season for fall floods.428

The discrete observed data (yi(tj))j=1,...,T are to be converted to smooth curves yi(t) as tempo-429

ral functions with a base period of T = 365 days and with p = 52 weeks non-constant basis430

functions as in (2). This smoothing can be obtained through the two well-known Fourier and431

B−Spline basis. Usually, the flow data of the whole series present some seasonal variability432

and periodicity over the annual cycle. Therefore, Fourier basis are preferred. Although the two433

smoothing methods do not give identical results, the differences between them in this adapta-434

tion are generally insignificant to affect interpretations. The choice of p = 52 can be justified435

to capture the flow variation within a week. Since in flood studies, the peak value is important,436

in order to ensure that the smooth curves reach the associated peaks, it may be recommended437

to consider values of p greater than 52. Nevertheless, this could lead to irregular curves which438

could not reasonably capture the entire flow variation.439

The nonparametric approach presented in Section 2.4.3, using the kernel density estimate of440

zi’s, is employed for curve ordering and outlier detection and not for estimation purposes. Note441

that even though nonparametric approaches have been employed in hydrological FA in the uni-442
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variate context (see e.g. Adamowski and Feluch, 1990; Ouarda et al., 2001), they are still of443

limited use for the hydraulic design of major structures (Singh and Strupczewski, 2002). In444

addition, the mode as a location measure is useful to detect the presence of inhomogeneity in445

the data. In hydrological FA, the mode is not commonly used since, generally, data should pass446

a homogeneity test. Therefore, the fitted models should be unimodal.447

Generally, in hydrology, there are two main sources of outliers. The data may be incorrect448

and/or the circumstances around the measurement may have changed over time (Hosking and449

Wallis, 1997). However, a detected outlier can also represent true but unusual observed data. In450

the present functional context, outlier curves have different magnitudes and shapes compared451

to the rest of the observed curves.452

4 Case study453

The methods described in Section 2 are applied to hydrological data series by using the adap-454

tation presented in Section 3. In the following, the data are described, and functional as well455

as analogous multivariate results are presented and discussed. More precisely, the conversion456

of the discrete data to be employed as continuous functions is the first preliminary step. Then,457

the different location functions are obtained and the variability of the sample is studied directly458

as well as using the FPCA. The latter are also used for data visualization and as a preliminary459

tool to identify outliers. These outliers are checked by the previously presented approaches460

and interpreted on the basis of meteorological data. The last subsection provides results using461

multivariate approaches for comparison purposes.462
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4.1 Data description and smoothing463

The data series is a daily flow (m3/s) from the Magpie station with reference number 073503. It464

is located at the outflow of the Magpie lake in the Côte-Nord region in the province of Quebec,465

Canada. The area of the drainage basin is 7 230 km2 and the flow regime is natural. Data466

are available from 1979 to 2004. Figure 2 indicates the geographical location of the Magpie467

station.468

According to the present dataset, we have n = 26 discrete observations yi(tj), tj ∈ C =469

[1, 365], i = 1, ..., n. The ith discrete observation {yi(tj), j = 1, ..., 365} denotes the daily470

flow measurements for the ith year which is converted to a smooth curve {yi(t), t ∈ C}. This471

is done through the technique based on Fourier series expansion. This smooth representation472

of flow data is done with a 365-day base period (T = 365 days) and 52-week non-constant473

basis functions (p = 52). The obtained functional observations are given in Table 2 with the474

corresponding univariate and bivariate samples. This table allows to have an overall view of the475

data within the three frameworks.476

Figure 3a illustrates the whole daily flow series. It shows that the data are nearly periodic. As477

indicated above, this periodicity can justify the use of Fourier basis. A number of observed478

hydrographs with the corresponding Fourier and B-splines smoothing curves are presented in479

Figure 3b. They show that the Fourier and B-Splines smoothing are similar and indicate also480

that the peaks are generally reached. Figure 4 displays the standard deviation of the residuals481

ϵ̂ij = yi(tj)− x̂i(tj) over j after smoothing the flow data. It gives the residual variations across482

days, within each year. We observe that these errors are generally very small and do not exceed483

32 m3/s. The highest errors are associated with the years 1981, 1999 and 2002.484
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Note that, other values of p, both smaller and larger than 52, e.g 4, 12, 90, 122, 182, 300,485

were also tested. Even though, large values of p, e.g. close to the number of observations per486

year (here 365), allow to reach almost all the daily flow points including the peaks, the obtained487

curves are not smooth or regular enough and also do not allow to capture enough of the variance488

by the first few principal components. Small values of p, e.g. 4,12 give a very bad quality of489

smoothing, where a large amount of daily flow points are not reached, particularly the high and490

low values. Therefore, it is reasonable to choose a number p which combines the quality of491

smoothing (related to (4)) and a high percentage of explained variance by PCA analysis. In the492

present application, the choice p = 52 fits reasonably the discrete data except for some extreme493

points corresponding to a number of years (e.g. 1980, 1989 and 1993) where the resulting494

differences between the real peaks and the smooth ones are less than 150 m3/s, see Table 2.495

4.2 Functional results496

Figure 5 presents the smooth location curves (mean, median and mode). It shows that generally497

the maximum flow occurs in late April and early May followed by a recession during May and498

June. This phenomenon is common in Canada where floods are mainly caused by snow melt499

during the Spring season. On the right tail of the curves, we observe a small flood which oc-500

curs in the autumn and which is caused generally by liquid precipitations. This kind of flood is501

exhibited by the mode. In both floods, spring or autumn, we observe that the mode is always502

higher than the mean and the median. The mean seems to be more regular and can not reach503

high flow values. Therefore, it is useful to consider all these location measures. These location504

curves lead to different basin characterization through the whole event rather than just some of505

its parts or summaries and therefore allow for comprehensive basin comparisons.506
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The bivariate (temporal) variance-covariance surface obtained from (11) as well as the corre-507

sponding contour are presented in Figure 6. We observe that the main part of the variability508

occurs in the middle of the year and it is negligible elsewhere. That is, the highest variability509

occurs approximately between April and late June. This period corresponds approximately to510

the highest flows. This measure has the advantage of providing information concerning the511

variance structure and also when it occurs.512

The principal components are obtained by FPCA on the centered observations y∗(.). The vari-513

ance rates accounted for by each one of the first four principal components are respectively514

39.5%, 24.0%, 14.4% and 5.4%. These components account for 83.3% of the total variance of515

the flow. The centered principal components are presented in Figure 7a. The perturbations of516

these first four principal components about the mean, as given in (14), are presented in Figure517

7b.518

From Figure 7, where the first two principal components accumulate 63.5% of the total variance,519

one can observe that the station flow is most variable between April and July. This variation520

dominates the variation occurring between July and the end of the year and which is associated521

with the third and fourth components, and represents 19.9% of the total variance. This finding522

is, for all practical purposes, consistent with the one obtained from the variance-covariance sur-523

face (Figure 6). More precisely, the first two principal components w1 and w2 are representative524

of the spring floods whereas w3 and w4 are more likely to represent autumn floods.525

The scores corresponding to the first four principal components are given in Table 3. Given526

the high variation rate captured by the first principal components, the corresponding variation527

indicates that the years for which the first or the second principal score is higher (resp. lower)528
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have higher (resp. lower) flow during April to July. Therefore, the year 1981 represents the529

highest variability during this period followed by the year 1999. On the other hand, the small-530

est variability of the flow during April-July is associated with the year 1987. Other years531

could be considered also with low flow variability, such as 1986 and 2002. The flow variability532

associated with the years 1981, 1986, 1987, 1999 and 2002 is unusual where some of the533

corresponding curves (1981,1987, 1999) are displayed with the location curves in Figure 8.534

In order to check the above unusual years, the outlier detection methods described in Section 2535

are employed. Other functional methods are also tested, such as the functional depth method of536

Febrero et al. (2007) and the Integrated squared error method of Hyndman and Ullah (2007).537

However, these two methods gave either too many or no outliers. Hence, the corresponding538

results are omitted.539

Figure 9 presents the rainbow plots based on the bivariate depth ordering and the density order-540

ing indices (15) and (16) respectively. The colors indicate the ordering of the curves where the541

blue curves are the closest to the center. The red and black outlier curves correspond to 1981542

and 1999 respectively. Results show that both methods lead to a similar ordering especially for543

the years associated with high or low ordering.544

The bivariate Bagplot associated with the first two principal scores as well as the corresponding545

functional Bagplot for both 95% and 99% of probability coverage are presented in Figure 10.546

We observe that the curve corresponding to the year 1981 is outside the outer bivariate Bagplot547

region for both 95% and 99% cases. It corresponds to the red curve in the associated functional548

Bagplot (Figure 10c,d). Hence, this year is considered as an outlier according to Tukey depth,549

as described in Section 2. However, when considering the 95% Bagplot, the additional outlier550
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curve that is detected is the one corresponding to 1987 as shown in Figure 10b. Note that gen-551

erally when outliers are relatively near the median, the functional Bagplot is not a good way to552

detect them (Hyndman and Shang, 2010). Even though it is not the case here, it is also more553

appropriate to use the functional HDR boxplot.554

The bivariate HDR and the associated functional HDR boxplots of the smooth flow curves are555

presented in Figure 11 for both 95% and 99% of probability coverage. The only detected outlier556

with 99% coverage probability is 1981 which is outside the bivariate HDR outer region. In the557

present case, we can deduce that the flow corresponding to the year 1981 is the most outlier,558

has a different magnitude and shape compared to the other curves and is not near the median.559

Hence, we can conclude that 1981 is an effective outlier according to the HDR Boxplot. When560

the probability coverage is 95%, another outlier is detected and corresponds to the year 1999 as561

shown in Figure 11b. This curve is closer to the median than the curve corresponding to 1981562

(Figure 8), that is why the functional HDR boxplot is more able to detect it as outlier than the563

functional Bagplot.564

As discussed in Section 2.4, the HDR boxplot and the Bagplot are graphical outlier detection565

methods and their thresholds are based on normality. Therefore, the above detected years can be566

considered as extreme curves and could be outliers. The approach developed by Dang and Ser-567

fling (2010) is applied on the first two functional principal component scores Z of the dataset.568

We evaluated Spatial, Mahalanobis and Tukey outlyingness functions for the bivariate score569

series. The corresponding thresholds are obtained by selecting the ratio of false outliers to 15%570

and the true number of outliers as 5 (the same choices as in Chebana and Ouarda, 2011b and571

Section 4.3 below). Hence, the threshold corresponds to the 0.97-quantile of the outlyingness572
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values. Figure 12 presents the detected outliers. We observe that the Tukey outlyingness func-573

tion detects several years as outliers (including 1981, 1987, 1999 and 2002) whereas the year574

1981 is detected by the three outlyingness functions. In addition, the year 1987 corresponds575

to the second largest Spatial and Mahalanobis outlyingness values and its value is very close576

to 1999 with the Mahalanobis function. Note that Tukey outlyingness is not recommended by577

Dang and Serfling (2010). Therefore, the year 1981 can be considered as an effective outlier to578

be checked. The years 1987 and 1999 could be detected by Spatial and Mahalanobis outlying-579

ness and considering a larger true number of outliers than 5 (with values of 5%, 10% and 20%580

of the ratio of false outliers, the results remain the same). Note that the above suspected years581

of 1986 and 2002 can be considered as extremes and not outliers.582

Even though the curve of 1981 is the only effective outlier, in the following we examine also583

the years 1987 and 1999 since they are close to the thresholds. We observe from Figure 8 that584

the curves of 1981, 1987 and 1999 are clearly different from the location curves and from the585

general shape of curves. Indeed, based on the corresponding hydrographs, the curve of 1981 is586

characterized by very high peak and volume whereas 1987 seems to correspond to a dry year587

since the flow was the lowest during the Spring season. The flood corresponding to the year588

1999 has also a high peak, although lower than the one corresponding to 1981.589

The detected outliers can be explained on the basis of meteorological data. The following in-590

terpretations are drawn on the basis of the data available in Environment Canada’s Web site591

http://www.climat.meteo.gc.ca/climateData/canada_f.html. For 1981, which corresponds to the592

most important flood for this basin, an important amount of snow was accumulated in early593

Winter (October-November to January) followed by thaw and rain during February-March. For594
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the outlier corresponding to 1987, the comparison with the preceding and following years re-595

veals that during the fall of 1987 there was much less rain and the temperatures were very cold,596

whereas the end of Winter was hot. Hence, all the snow melted earlier compared to other years.597

The curve of 1999 is relatively higher than the location curves and corresponds to an important598

quantity of snow on the ground with high temperatures in March. In conclusion, the above599

detected years seem to be actually observed and do not correspond to incorrect measurements600

or circumstance changes over time. Hence, these observations should be kept and employed601

for further analysis. However, it is recommended to use robust statistical methods to avoid602

sensitivity of the obtained results (e.g. modeling and risk evaluation) to outliers.603

4.3 Multivariate results604

For comparison purposes, a multivariate study based on Chebana and Ouarda (2011b) is carried605

out on the present dataset. We focus here on the flood peak Q and the flood volume V as they606

are among the most important and studied flood characteristics (e.g. Yue et al., 1999 and Shiau,607

2003). The bivariate series (Q,V), given in the first three columns of Table 4, are obtained from608

the daily flow series using an automated version of the algorithm of Pacher (2006). Note that the609

multivariate approaches presented in Chebana and Ouarda (2011b) are mainly based on depth610

functions. The Tukey depth function is considered in the present section. The corresponding611

depth values of each bivariate observation are reported in the fourth column of Table 4. The612

location and scale results are presented in Table 5. Results with other measures (such as the613

trimmed mean and dispersion) are obtained but not presented due to space limitations and in614

order to maintain the coherence with the FDA approach.615

We observe that Q and V of the bivariate median correspond to those of the median curve616
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obtained in the previous section. Indeed, in both multivariate and functional frameworks, the617

median corresponds to the year 1980. However, the Q and V of the bivariate mean vector are618

quite different from those resulting from the mean curve. The mean vector is (Q = 859.15, V619

= 2138.70) whereas, when using Pacher’s (2006) algorithm, the Q and V of mean curve are620

respectively 673.09 and 2230.46. We observe also that the difference is larger for the peak than621

for the volume. This result could be explained by the effect of the detected outliers on the mean622

which is not the case for the median. Note that the outliers do not necessarily have the same623

impact in the multivariate and the functional frameworks.624

Figure 13a presents the bivariate (Q, V )-Bagplot where the median, the central and the outer625

regions are indicated as well as some particular observations (corresponding to years suspected626

as outliers from Section 4.2). Note that the outer region is obtained by inflating the central627

region by a factor of 3 instead of 1.96 or 2.58 as in the functional Bagplot (Figures 10a,b). We628

observe that the shape of the bivariate (Q, V )-Bagplot is not similar to the functional Bagplot629

and to the HDR boxplot based on the first two functional principal component scores zi =630

(zi,1, zi,2). The values in Tables 3 and 4 as well as the corresponding figures (Figures 10a,b,631

13a) indicate that the first two functional principal component scores zi capture the information632

from the hydrograph in a different way than do (Q, V ). The former are based on an optimization633

procedure whereas the latter have physical significance. Nevertheless, both ways are useful to634

understand flood dynamics and should be used in a complementary manner. This finding should635

be studied more thoroughly in future research by considering a number of case studies.636

The bivariate (Q, V )-variability is evaluated both in a matrix form (Table 5) and by using scalar637

curve (Figure 13b). Note that the variability is particularly useful when comparing at least two638
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data sets for the same kind of series (e.g. same variable or same vector). It is appropriate to639

compare the univariate peak scale with the functional one since the flood peak has the same640

unit and scale as the daily flow which is not the case for the volume. Hence, we observe that641

the peak variance has the same magnitude as in the functional context as it can be seen from642

Table 5 and Figure 6. One can also appropriately standardize the Q and V variables in order to643

compare the variances of the vector (Q, V ) and the functional context.644

The procedure employed in Chebana and Ouarda (2011b) for outlier detection is based on depth645

outlyingness measures and the corresponding thresholds. The reader is referred to Chebana and646

Ouarda (2011b) or Dang and Serfling (2010) for more details about the outlyingness expressions647

and threshold determination. In the present section, three outlyingness measures are evaluated648

on the (Q, V ) series, i.e. Tukey (TO), Mahalanobis (MO) and Spatial (SO). Their values are649

presented in the last three columns of Table 4. To obtain the threshold that the outlyingness650

of an outlier should exceed, we considered a ratio of false outliers of 15% among the allowed651

ones and we also allowed 5 true outliers (the same choices as in Chebana and Ouarda, 2011b).652

Hence, the threshold corresponds to the empirical 97%-quantile of the outlyingness values. The653

obtained threshold values are 0.9231, 0.8676 and 0.9462 respectively for TO, MO and SO.654

Consequently, 1981 is detected by all measures, 1987 is detected only by TO and it has also the655

second highest outlying value by MO and SO but smaller than the corresponding thresholds.656

The measure TO detects several other outliers, including 1999 and 2002, which all have the657

same TO value (equal to the threshold). However, if a quantile of order higher than 97% is658

considered, by modifying the parameters related to the threshold, the TO does not detect any659

outliers. These results are consistent with those of the functional framework in the sense that the660
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most unusual observations are detected in both frameworks. However, the proposed approach661

that consists in applying the Dang and Serfling (2010) technique on the first two score series zi662

seems to be justified and more reliable.663

5 Summary and concluding remarks664

The first aim of the present paper is to introduce the functional framework to hydrological665

applications based on the curve nature of the data to be employed and analyzed. The FDA666

framework can be seen as a natural extension of the multivariate FA where the latter is gaining667

popularity and usefulness in meteorological and hydrological studies. In the present study we668

introduced a number of FDA notions and techniques and adapted them to the hydrological669

context, and more specifically to floods. The techniques within the first functional FA step deal670

with visualization, location estimation, variability quantification, principal component analysis671

and outlier detection. A new non-graphical (numerical) outlier detection method is proposed672

which combines multivariate and functional techniques.673

An application is carried out to demonstrate the potential of employing FDA techniques in674

hydrology. The application deals with the natural streamflow series of the Magpie station in the675

province of Quebec, Canada. Results regarding location measures such as mean, median and676

modal curves, are obtained. The variability is studied as a simple bivariate function surface and677

also by using principal component analysis. Outlier curves are identified by the most efficient678

methods and interpretations are given based on meteorological data. For comparison purposes, a679

brief bivariate study of flood peak and volume is carried out. Even though FDA is an extension680

of multivariate analysis, it is recommended to perform both approaches to obtain a complete681
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understanding of floods and to make the appropriate decisions.682

From the elements discussed in the introduction and the results obtained in the case study, the683

following concluding remarks can be drawn and a number of limitations and perspectives are684

given:685

I) Drawbacks of previous approaches: The following drawbacks represent the motivation and686

the need to introduce the functional framework in hydrological applications:687

1. The separate or joint use of hydrograph characteristics constitutes a major simplification688

of the real phenomenon;689

2. Given the lack of data in hydrology, working with a limited number of extracted charac-690

teristics represents a loss of a part of the available information;691

3. The way these characteristics are determined is neither unique nor objective;692

4. The multivariate analysis is a simplification of the hydrological phenomena since it is693

based on flood characteristics which are simple transformations of the hydrograph;694

5. In the multivariate setting, the complexity of the models, the fitting and estimation diffi-695

culty, the number of parameters and the associated uncertainty increase with the dimen-696

sion;697

6. The importance of the hydrograph shape is shown in studies such as Yue et al. (2002)698

where the approaches approximating the flood hydrograph using probability densities are699

limited for instance to single-peak hydrographs;700

7. The main flood characteristics, peak, volume and duration, can not completely capture701

the shape of the hydrograph;702
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8. Even though, in the flow duration curve studies, e.g. Castellarin et al. (2004), a number703

of functional elements, such as mean and median curves, are presented, they are limited704

and do not have a functional statistical foundation;705

II) Conceptual advantages of the functional framework: The functional framework presents706

some general advantages which contribute to overcome the previous drawbacks at different707

levels:708

1. The functional framework treats the whole hydrograph as a functional observation (func-709

tion or curve) which is more representative of the real phenomena;710

2. It employs the maximum of the available information in the data where the impact of the711

lack of data in hydrology can be reduced;712

3. The functional framework is more general and more flexible and can represent a large713

variety of hydrographs;714

4. The functional methodology constitutes a natural extension of univariate and multivariate715

hydrological FA approaches;716

5. The location curves and functional scale measures can be used to characterize a given717

basin and to proceed to comparison or grouping of a set of basins;718

6. FDA allows to perform a single analysis on the whole data instead of several univariate719

or multivariate analysis;720

7. The approaches dealing with hydrograph shape, e.g. the one proposed by Yue et al.721

(2002), can be generalized in the FDA context using smoothing techniques;722
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8. The functional setting avoids the definition and the evaluation of flood characteristics.723

Therefore, it does not require specific algorithms and avoids subjective evaluations; and724

the associated uncertainty can be reduced in the analysis;725

III) Concluding remarks from the application: The following points are drawn as specific726

results of the FDA application to the case study:727

1. The location curves (mean, median and mode) give more information concerning the hy-728

drological regime in the basin than the univariate and multivariate approaches by adding729

temporal aspects. These curves allow to summarize the information contained in the data730

for a given basin, and hence make comparisons between basins and group basins with731

similar regime;732

2. The bivariate (temporal) variance-covariance surface as well as the corresponding contour733

give an additional insight to the hydrological regime variability than the real-value or734

matrix in the univariate and multivariate contexts;735

3. In addition to quantifying the variability, functional scale measures indicate when it oc-736

curs;737

4. The case study results show that the mode is useful to characterize high flood values,738

the variability is very high during spring season and the principal components are shown739

to describe the variability in spring floods and autumn floods. The detected outliers are740

checked to be real observations and therefore it is suggested to use robust methods in any741

further analysis;742

5. The first two functional principal components capture the information from the hydro-743
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graph in a different way than do (Q, V ). Nevertheless, both ways are useful to understand744

flood dynamics and should be used in a complementary manner;745

6. The FPCAs represent a new way to distinguish the different flood events in a given year.746

Indeed, the few first principal components can be used to identify where in the hydro-747

graph the variation dominates and can be used to characterize flood events, e.g the first748

two principal components are representative of the spring floods whereas the two others749

represent autumn floods;750

7. In the functional context, outlier curves have different magnitudes and shapes compared751

to the rest of the observed curves. In the univariate and multivariate settings, the shape is752

not considered and can not be captured even by using several variables;753

8. The functional results obtained in this study are generally coherent with those of the754

multivariate analysis but give more insight to the hydrological phenomena such as in755

terms of location measures, variability and principal components;756

IV) Limitations and perspectives of the functional framework: The present study presented757

exploratory functional tools that are important on their own and it constitutes also a basis for758

the next steps for a reliable FDA-based hydrological FA, especially in terms of model selec-759

tion and risk evaluation. Several perspectives are promising and can be carried out in future760

research:761

1. Although the study focused on floods, the presented FDA methodology can be adapted762

and applied to treat other hydro-meteorological variables such as droughts, precipitations,763

storms and heat waves;764
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2. FDA relies on the smoothing step. Therefore, a careful inspection of the resulting curves765

is recommended, for instance, to ensure the regularity of the smoothed functions, to reach766

a majority or special points such as peaks or to capture enough of the variance by the767

first few principal components. Even though a number of elements in this direction are768

given in the present study, it could be of interest to develop general criteria and objective769

choices depending on the objective of the analysis;770

3. The classification of the curves of a given site as well as the clustering of sites in a region771

on the basis of the full hydrograph are also topics of interest;772

4. Inferential aspects, such as modeling for prediction purposes, represent also important773

issues for future research efforts;774

5. Future investigations should also deal with hypothesis testing as well as regression mod-775

eling.776
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Framework
FA Steps Univariate Multivariate Functional

i) Exploratory
analysis &
outlier detection

Large literature :
Cunnane 1987
Kite 1988
Stedinger et al 1993
Rao & Hamed 2000

Very sparse literature :
Chebana & Ouarda 2011b

The specific
aim of the
present paper

ii) Checking the
FA assumptions:
stationarity
homogeneity
independence

Large literature:
Yue et al 2002
Kundzewicz et al 2005
Khaliq et al 2009

Very sparse literature :
Chebana et al 2010 To be developed

iii) Modeling &
estimation

Large literature :
Cunnane 1987
Bobée & Ashkar 1991

Large recent literature:
Shiau 2003
Zhang & Singh 2006
Salvadori et al 2007

To be developed

iv) Risk
evaluation
& analysis

Large literature :
Chow et al. 1988

Little but
growing literature :
Shiau 2003
Chebana & Ouarda 2011a

To be developed

Table 1: FA steps in the three frameworks.

Note: in the univariate framework, step (i) is straitforward and is generally not treated sep-

arately;

The references are given only as examples from the literature for space limitation.
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Year z1 z2 z3 z4

1979 -1180.34 1174.70 1457.11 373.28
1980 42.34 329.59 -115.61 121.06
1981 2613.26 2046.54 -448.91 225.00
1982 1947.70 -704.01 500.88 -600.22
1983 -1673.67 1095.67 1936.68 -133.87
1984 843.83 822.51 -10.20 -238.71
1985 903.82 -1171.34 0.07 -419.37
1986 -1737.16 -185.44 466.40 36.39
1987 -1671.02 -1615.92 285.93 10.93
1988 -130.59 393.79 -732.23 18.73
1989 -633.73 -176.40 -663.42 87.96
1990 -669.66 -519.85 -375.08 -324.09
1991 529.43 -604.15 -281.41 -52.87
1992 -465.75 -725.79 -342.08 944.50
1993 -374.77 -753.53 -315.64 19.32
1994 1058.79 68.18 451.04 1281.09
1995 -268.43 463.72 -933.12 -268.28
1996 748.05 235.06 560.82 -575.86
1997 1085.56 -516.08 447.61 482.64
1998 -1557.15 428.41 -504.03 -165.38
1999 -1306.02 1809.15 -621.20 -641.45
2000 879.38 -20.22 145.23 -178.76
2001 -1173.90 -702.48 -837.66 133.55
2002 1134.07 -1692.79 796.87 -433.89
2003 -67.68 120.028 -1087.29 315.00
2004 1123.65 400.67 219.25 -16.70

Table 2: First four principal component scores. The bold characters indicate the largest and the
smallest values for the first and the second component.
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Year Peak Volume TD MO SO TO
1979 886.67 2088.92 0.2692 0.0571 0.1361 0.4615
1980 849.67 2357.02 0.3846 0.1971 0.1567 0.2308
1981 1456.67 3909.14 0.0385 0.8851 0.9563 0.9231
1982 1270.00 2443.15 0.0385 0.8032 0.6246 0.9231
1983 974.67 3012.18 0.0769 0.6700 0.8500 0.8462
1984 1056.67 2751.69 0.1154 0.4713 0.6857 0.7692
1985 787.00 1574.21 0.1538 0.4623 0.4815 0.6923
1986 610.33 1536.34 0.1154 0.5306 0.6026 0.7692
1987 344.33 1069.86 0.0385 0.8225 0.9204 0.9231
1988 843.33 2374.49 0.3077 0.2390 0.2455 0.3846
1989 678.67 1534.53 0.1923 0.4534 0.5395 0.6154
1990 506.33 1752.06 0.0769 0.7223 0.5603 0.8462
1991 740.00 2260.57 0.1538 0.4461 0.3003 0.6923
1992 710.80 1128.71 0.0385 0.7223 0.8923 0.9231
1993 666.80 1407.32 0.1538 0.5400 0.6964 0.6923
1994 932.90 2722.55 0.1538 0.4802 0.6113 0.6923
1995 868.77 2192.44 0.3462 0.0068 0.0324 0.3077
1996 886.90 2476.36 0.3077 0.2644 0.3562 0.3846
1997 697.30 2665.87 0.0385 0.7817 0.6607 0.9231
1998 825.00 1843.60 0.3077 0.1963 0.2717 0.3846
1999 1306.67 2652.26 0.0385 0.8042 0.7450 0.9231
2000 858.90 2492.65 0.2308 0.3526 0.4095 0.5385
2001 732.50 1188.92 0.0769 0.7053 0.8076 0.8462
2002 999.60 1485.36 0.0385 0.8045 0.6758 0.9231
2003 1004.93 1883.80 0.1538 0.6236 0.4102 0.6923
2004 842.57 2802.32 0.0769 0.6783 0.7252 0.8462

Table 3: Multivariate results for flood peak and volume. TD: Tukey Depth, MO: Mahalanobis
Outlyingness, SO: Spatial Outlyingness, and TO: Tukey Outlyingness. Bold characters indicate
the values of the outlying measure corresponding to the detected outlier.

Peak Volume
Mean (vector) 859.15 2138.70
Tukey median (vector) 847.72 2216.22
Dispersion (matrix) 57316.61 113915.10

113915.10 457040.80

Table 4: Multivariate results for flood peak and volume: location and scale parameters.
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(a)

 
Flow

 

Time 

Flood 

Peak

 Q
 

Framework: univariate
Variable : peak Q
Nature : real value
Series : q1, ..., qn
Duration: n years
References: Rao and Hamad (2000)
Cunnane (1987)

(b)

 

Flood 

Volume V 

Flow

 

Time 
Flood Duration D 

Flood 

Peak

 Q
 

Ending flood date Starting flood date  

Framework: multivariate
Variables: peak Q, volume V and duration D
(the most important and most studied)
Nature: vector
Series : e.g. (q1, v1, d1), ..., (qn, vn, dn)
Duration: n years
References: Yue et al. (1999)
Shiau (2003)
Zhang and Singh (2006)
Chebana and Ouarda (2011a)

(c)

 
Flow

 

Y(t), t in C 

Time 

Framework: functional
Variable: Y (t), t ∈ C,
the whole hydrograph
Nature: function
Series: (Y1(t), ..., Yn(t)), t ∈ C
Duration: n years
References: The object of the present paper

Figure 1: Illustration of the different approaches (a) univariate (b) multivariate and (c) functional
with the corresponding types of variables, series and a number of references.
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Figure 2: Geographical location of the Magpie station.
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Figure 3: Data for each one of the three frameworks: univariate, bivariate and functional.
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Figure 4: The representation of all the data (in (a)) and illustration of discrete hydrographs and
the corresponding smoothing curves (Fourier in blue and B-Splines in red) for some selected
years (in (b))
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Figure 8: First four smoothed principal components: (a) centered components; (b) components
with variation about the mean ȳ. Negative and positive perturbations are indicated respectively
by the minus (-) and plus (+) symbols. 53
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Figure 9: Curves corresponding to the suspected years (based on principal component scores)
with the mean, median and mode curves
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Figure 10: Rainbow plots of the flow curves for years 1979 to 2004 using (a) the bivariate score
depth and (b) the kernel density estimate.
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Figure 11: Bivariate score Bagplot with (a) 99% and (b) 95% of probability coverage and
the corresponding functional Bagplot with (c) 99% and (d) 95% of probability coverage. The
solid black curve shows the median curve and in blue are presented its 95% or 99% point-wise
confidence intervals while in (a) and (b) the red asterisk is the Tukey median of the bivariate
principal scores
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Figure 12: Bivariate score HDR boxplot with (a) 99% and (b) 95% of probability coverage and
the corresponding functional HDR boxplot with (c) 99% and (d) 95% of probability coverage.
The solid black curve shows the modal curve and in blue are presented its 95% or 99% point-
wise confidence intervals while in (a) and (b) the red asterisk is the mode
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Figure 13: Outlier detection using the Outlyingness approach applied on the first two scores
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Figure 14: Bivariate results : (a) Bagplot with the median and some particular years and (b)
Scalar scale function
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