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Abstract: 

 In regional frequency analysis, the examination of the regional homogeneity represents 

an important step of the procedure. Flood events possess multivariate characteristics which can 

not be handled by classical univariate regional procedures. For instance, classical procedures do 

not allow to assess regional homogeneity while taking into consideration flood peak, volume and 

duration. Chebana and Ouarda (2007) proposed multivariate discordancy and homogeneity tests. 

They carried out a simulation study to evaluate the performance of these tests. In the present 

paper, practical aspects are investigated jointly on flood peak and flood volume of a data set 

from the Côte-Nord region in the province of Quebec, Canada. It is shown that, after removing 

the discordant sites, the remaining ones constitute a homogeneous region for the volumes and 

heterogeneous region for the peaks. However, if both variables are jointly considered, the 

obtained region is possibly homogeneous. Furthermore, the results demonstrate the usefulness of 

the bivariate test to take into account the dependence structure between the variables 

representing the event, and to take advantage of more information from the hydrograph. 



 3

1. Introduction 

Most hydrological events are described by several correlated variables. Multivariate 

representations of hydrologic phenomena include, for instance, storm duration and intensity (Yue, 

2001a; Salvadori and De Michele, 2004); flood peak, volume and duration (Ashkar, 1980; Yue et 

al., 1999; Ouarda et al., 2000; Yue, 2001b; Shiau, 2003; De Michele et al., 2005; Zhang and 

Singh 2006) and drought volume, duration and magnitude (Kim et al., 2003; Ashkar et al., 1998). 

It is essential to understand the multivariate characteristics of such events for several engineering 

planning, design and management activities. Snyder (1962) and Wong (1963) can be considered 

as the first authors to carry out multivariate analysis in hydrology. 

The study of the joint probabilistic behaviour of two or more correlated random variables 

that characterize the event is necessary for a thorough understanding of multivariate hydrological 

events. Copulas have recently been shown to represent a useful statistical tool for hydrological 

applications bringing the dependence behaviour between variables (e.g. Salvadori and De 

Michele, 2004). To represent the joint probability distribution of flood peak and volume and the 

joint probability distribution of flood volume and duration, Yue et al. (1999) used the Gumbel 

mixed model with standard Gumbel marginal distributions. Yue (2001b) and Shiau (2003) used 

the Gumbel logistic model with standard Gumbel marginal distributions to model flood volume 

and peak for different basins. El Adlouni et al. (2004) presented several copulas to model flood 

peak and volume with respectively Gumbel and Gamma marginal distributions. 

Generally, extreme events are rare and the records are short. Consequently, the at-site 

frequency estimation is difficult and/or not reliable. Regional frequency analysis (RFA) is 

proposed as a method to overcome this lack of data. Hence, RFA is commonly used for the 

estimation of extreme hydrological events at sites where little or no data is available. It is based 

on the transfer of data available from other stations in the same hydrologic region. The 

delineation of hydrological homogeneous regions and the regional estimation are the two main 

steps of a RFA. Several authors investigated this procedure with different approaches including 
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Stedinger and Tasker (1986), Burn (1990), Hosking and Wallis (1993), Durrans and Tomic 

(1996), Nguyen and Pendey (1996), Alila (1999, 2000) and Ouarda et al., (2001). An 

intercomparison of various regional flood estimation procedures was presented by GREHYS 

(1996a,b).  

The literature on flood frequency analysis can be classified into four classes according to 

the local/regional and univariate/multivarite aspects. In the first two classes there are the local- 

univariate and regional-univariate studies where many references can be found in the literature. 

The third class contains local-multivariate flood frequency analysis (e.g., Ashkar, 1980; Yue et 

al., 1999; Ouarda et al., 2000; Yue, 2001b; Shiau, 2003; De Michele et al., 2005 and Zhang and 

Singh, 2006). However, very little attention has been given to the forth class which consists in 

regional-multivariate studies (Ouarda et al., 2000 and Chebana and Ouarda, 2007). Ouarda et al. 

(2000) carried out a canonical correlation analysis procedure for a joint regional study of flood 

peak and volume in the province of Quebec, Canada.  

Chebana and Ouarda (2007) proposed discordancy and homogeneity tests based on 

multivariate L-moments and copulas. The proposed multivariate discordancy and homogeneity 

tests are extensions of those given by Hosking and Wallis (1993). Chebana and Ouarda (2007) 

evaluated the performances of these multivariate tests using simulations. They demonstrated, for 

a given extreme event, the importance of jointly and simultaneously treating all variables and 

identifying a single homogeneous region. In the present paper, practical aspects of these 

multivariate tests are studied based on a real-word regional data set. The data set corresponds to 

sites from the Côte-Nord region in the eastern part of the province of Quebec, Canada. The 

application is carried out on flood event and the focus is on the volume and peak variables. 

The paper is organized as follows. Section 2 contains the theoretical background, 

including flood characteristics, bivariate modeling, multivariate L-moments and the discordancy 

and homogeneity tests. Section 3 is devoted to the description of the case study. The procedure 
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followed in this study is presented in Section 4 whereas Section 5 deals with the corresponding 

results. Concluding remarks are presented in Section 6. 

2. Background 

In this section, the background elements to apply the multivariate discordancy and 

homogeneity tests are presented. Flood characteristics, bivariate modeling including copulas and 

marginal distributions, and the discordancy and homogeneity tests are briefly described.  

2.1 Flood characteristics  

In Figure 1, a typical flood hydrograph is illustrated. A flood hydrograph is mainly 

characterized by its volume, duration and peak. Flood duration has to be determined first in order 

to compute flood volume. Flood duration can be determined whenever the start date si and end 

date ei are identified for the ith series as Di = ei - si. The annual flood volume series can be 

constructed using the following formula (see e.g., Yue et al., 1999): 

1
( ),  1,2,...,

2

i

i

e

i ij is ie
j s

V q q q i
=

= − + =∑     (1) 

where ijq represents the observed streamflow value at the jth day of the ith year, isq and ieq  are 

respectively the observed daily streamflow values on the start date and end date of flood runoff 

for the ith year. The annual flood peak series is given by 

{ }max , , 1,...,i ij i i iQ q j s s e= = +     (2)  

2.2 Bivariate flood modeling  

In bivariate modeling, one should obtain a joint bivariate distribution for the variables. 

However, one should also distinguish the dependence structure from the margins. To this end, 

one needs to specify three elements: a copula to describe the dependence structure between the 

two random variables, along with a marginal distribution for each variable.  

 

 



 6

2.2.1 Copulas 

In the remainder of the paper we denote 1 2 and F F  the marginal distribution functions of 

given random variables (1)X  and (2)X , and 1,2F  is the joint distribution function of ( )(1) (2),X X .  

 Independently of the marginal distributions, a copula is a description and a model of the 

dependence structure between the two random variables. To overcome the limitations of classical 

dependence measures, copulas have recently received increasing attention in various science 

fields (see for instance Nelsen, 1999). A copula is a function C: I I I× →  (I = [0, 1]) such that: 

• for all u, v I∈ : C(u, 0) = 0, C(u, 1) = u, C(0, v) = 0, and C(1,v) = v;  

•  for all 1 2 1 2, , v , v  u u I∈ such that 1 2 1 2 and v vu u≤ ≤ :
2 2 2 1 1 2 1 1

( ,v ) ( ,v ) ( ,v ) ( ,v ) 0C u C u C u C u− − + ≥  

The link between copulas and bivariate distributions is provided by Sklar’s (1959) result. It states 

that there exists a copula C such that: 

( )1,2 1 2 1 1 2 2 1 2( , ) ( ),  ( )   for all real  and  F x x C F x F x x x=  (3) 

When 1 2 and F F  are continuous, the copula C is unique.  

 Archimedean and extreme value (EV) copulas represent classes of particular interest. The 

class of EV copulas is given by the formula (Pickands, 1981):  

( ) log
( , ) exp log log ,   0 , 1

log log

u
C u v u v A u v

u v

  = + < <  +  
 (4) 

where the dependence function A is convex and defined on [0, 1] with { }max ,1 ( ) 1.t t A t− ≤ ≤  A 

bivariate Archimedean copula is characterized by the expression: 

( )1( , ) ( ) ( ) ,    0 , 1C u v u v u vψ ψ ψ−= + < <   (5) 

where the generator (.)ψ  is a convex decreasing function satisfying (1) 0ψ = .  

As it is already shown in previous studies, e.g. Salvadori and De Michele (2004), 

Archimedean copulas represent convenient multivariate models for hydrological flood events. 
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When the multivariate context is involved, some practical questions can be raised regarding 

copulas, for instance:  

− How a copula can be fitted to a given sample?  

− How copula’s parameters can be estimated?  

− And how a sample can be generated from a model defined through a given copula?  

Partial answers to these questions are given for the Archimedean and extreme value copulas. 

First, the fitting problem is resolved for Archimedean copulas. According to Genest and 

Rivest (1993), an Archimedean copula, with a generator function ψ , is characterized by the 

following function: 

( )
( )

'( )

z
K z z

zψ
ψ
ψ

= −      (6) 

which can be estimated by: 

�

1 1 2 2
[ ] [ , ]

1 1

1 1
( ) 1    where   1 ,  1,..,

1
t i t i

i

N N

w z i x x x x
i t

K z w i N
N N≤ < <

= =

= = =
−∑ ∑   (7) 

 
for a given bivariate sample 1 1 2 2

1 2 1 2 1 2( , ), ( , ),..., ( , )N Nx x x x x x . It is shown in Genest and Rivest (1993) 

that �K  is a consistent estimator of K under weak regularity conditions. 

It is shown in several studies (e.g. Yue, 2001b and Shiau, 2003) that an interesting copula to 

model flood characteristics is the Gumbel logistic copula given by: 

{ }1/
( , ) exp ( log ) ( log ) ,  1,  0 , 1

mm m
mC x y x y m x y = − − + − ≥ ≤ ≤    (8) 

which is an Archimedean copula with generator function ( ) ( log )mx xψ = − , and it is also an 

extreme value copula with dependence function ( )1/
( ) (1 )

mm mA t t t= + − . The corresponding 

function K defined in (6) for the Gumbel logistic copula is given by  
log (z)

( )m

z
K z z

m
= − . 

Second, the parameter estimation problem for Archimedean copulas is also resolved. In 

particular, the parameter m of the copula mC  is related to the correlation coefficient ρ through 

the equation (Gumbel and Mustafi, 1967): 
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1
,    0 1

1
m ρ

ρ
= ≤ <

−
     (9) 

Hence, it can be estimated by a plug-in of the empirical version of the correlation coefficient in 

equation (9). However, it can also be estimated by: 

1,2

1,2

ˆ
ˆ   1

ˆ1
m

τ
τ

= +
−

 (10) 

where 1,2τ̂ is the empirical estimator of  

(1) (2)
1,2 1,24 ( , ) 1E F X Xτ  = −    (11) 

which is a version of the Kandall’s tau coefficient for the random vector ( )(1) (2),X X . A simple 

estimator of the Kandall’s tau coefficient is given by 1,2ˆ 4 1Gτ = −  where G is the mean of the 

“pseudo-sample” { }(1) (2) (1) (1) (2) (2)1
# ( , ) : , ,   1,...,

1i j j j i j iG X X X X X X i n
n

= < < =
−

(see Genest 

and Rivest, 1993). 

Regarding the last question, related to the generation of samples from the variables 

( )(1) (2),X X  according to the extreme value copula, an algorithm is developed by Ghoudi et al. 

(1998). The algorithm is summarized in the following. Let 1 2,  U U be uniform random variables 

and Z be a random variable with a cumulative distribution function ZG and probability density 

function Zg  given by ( ) (1 ) '( ) / ( ),ZG z z z z A z A z= + − 0 1.z≤ ≤ This algorithm consists of the 

following steps: 

1. Simulate Z;  

2. Given Z, take 1W U= with probability ( )p Z  and 1 2W U U= with probability 

1 ( )p Z− , where ( )( ) (1 ) ''( ) ( ) ( ) ;Zp z z z A z A z g z= −  

3. Set (1) / ( ) (2) (1 ) / ( ) and .Z A Z Z A ZX W X W −= =  
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When using this algorithm in practice it is important to take into consideration the numerical 

nonparametric smoothing, since it depends on functions related to the first and second 

derivatives of the function A. Despite the general validity of this procedure, extra information 

about the model, e.g. parametric form of A, can be useful to increase the speed and accuracy of 

the generation algorithm. 

2.2.2 Marginal modeling  

The 2-parameter Gumbel distribution can be used to model the marginal flood variables (Yue, 

2001b and Shiau, 2003). However, as it is indicated in Hosking and Wallis (1993) and Chebana 

and Ouarda (2007), it is preferable to employ a 4-parameter Kappa distribution for the 

homogeneity test. Its cumulative distribution function is given by: 

( )
1

1

( ) 1 1

h

x u
F x h

κ
κ

α

 −  = − −     

    (12) 

with parameters u (position), α  (scale), κ  and h (shape).  

The parameters of the Kappa distribution can be estimated by the L-moment method 

(Hosking and Wallis, 1997). Indeed, if we denote respectively by kλ the L-moment and kt the L-

moment coefficient of order k, the first Kappa L-moments are given by: 

1 1

2 1 2

3 1 2 3 1 2

4 1 2 3 4 1 2

(1 )

( )

( 3 2 ) ( )

( 6 10 5 ) ( ) ,  

u g

g g

t g g g g g

t g g g g g g

λ α κ

λ α κ

= + −

= −

= − + − −

= − + − + −

   (13) 

where  

1

1

(1 ) ( )
,          0

(1 )

(1 ) ( )
,    0

( ) (1 )

r

r r h
h

h r h
g

r r h
h

h r h

κ

κ

κ
κ

κ κ

+

+

Γ + Γ > Γ + +=  Γ + Γ − − <
 − Γ −

    (14) 
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 Therefore its parameters can be estimated by the use of equations (13) but there are no simple 

and direct expressions. Hosking (1996) developed a routine to find numerically the Kappa L-

moment parameter estimators. 

2.3 Multivariate L-moments 

Instead of traditional moments, for statistical inference of hydrological variables, the L-

moment approach offers strong advantages for modeling heavy-tailed distributions. For a review 

related to L-moments the reader can consult Hosking and Wallis (1997). Multivariate L-moments 

are principally developed by Serfling and Xiao (2007).  

By analogy with the covariance representation of the L-moment of order k , multivariate 

L-moments are matrices kΛ  with L-comoment elements defined by: 

( )( )( ) * ( )

[ ] 1
Cov , ( ) ,  , 1,2 and 2,3,...i j

k ij k j
X P F X i j kλ

−
= = =   (15) 

where *
kP  is the so-called shifted Legendre polynomial. As it can be seen, the elements [ ]k ijλ  and 

[ ]k jiλ  are not necessarily equal. The first L-comoment elements are given by: 

( )
( )( )

( ) ( )( )

(1) (2)
2[12] 2

2(1) (2)
3[12] 2

3(1) (2) (2)
4[12] 2 2

2Cov , ( )

6Cov , ( ) 1/ 2

Cov ,20 ( ) 1/ 2 3 ( ) 1/ 2 1

X F X

X F X

X F X F X

λ

λ

λ

=

= −

= − − − +

 (16) 

The L-comoment coefficients are given by: 

2[12]
2[12] (1)

1

λ
τ

λ
=   and  

[12]
[12] (1)

2

,  for 3,4,...k
k k

λ
τ

λ
= =  (17) 

where 
( )

[ ]
j

k k jjλ λ=  is the classical univariate kth L-moment of the variable ( )jX . The matrix of 

the L-comoment coefficients is written as: 

( ) [11] [12]*
[ ] , 1,2

[21] [22]

,  for  2, 3,...k k

k k ij i j
k k

k
τ τ

τ
τ τ=

 
Λ = = = 

 
  (18) 
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and for k = 1, the first order bivariate L-moment corresponds to the mean vector 

(1) (2)
1 ( , )tE X Xλ = . 

2.4 Discordancy and homogeneity tests 

2.4.1 Discordancy  

A preliminary screening step, before proceeding with the homogeneity analysis, consists in 

identifying discordant sites among a set of N sites. A multivariate extension of the Hosking and 

Wallis (1993) discordancy test is proposed by Chebana and Ouarda (2007). It is defined for each 

site i using the matrix *(i) *(i) * (i)
2 3 4  t

iU  = Λ Λ Λ   which is composed by the three L-moment matrices 

*(i) *(i) * (i)
2 3 4,  and Λ Λ Λ  defined by (18). Hence, a site i is discordant, with respect to the considered 

set of sites, if iD  takes large values, where: 

( ) ( )11

3

t

i i iD U U S U U−= − − , (19) 

( ) ( )
1

1

1

N t

i i
i

S U U U U
N =

= − −
− ∑ , (20) 

1

1 N

i
i

U U
N =

= ∑ , (21) 

A  denotes the spectral norm of a matrix A given by tmaximum eigenvalue of A A A=  and 

tA  is the transpose of a matrix or a vector A. Note that Chebana and Ouarda (2007) considered 

other matrix norms and indicated that no significant difference was observed in the results 

obtained with the other norms. 

The constant 1 0.05(3) 3 2.6c χ −= =  may be considered as a critical value for iD  for 

large regions, where 1 ( )dαχ −  denotes the quantile of a chi-square distribution of order α with d 

degrees of freedom. Chebana and Ouarda (2007) proposed the use of a bootstrap technique to 

determine a critical value for short values of N. Hosking and Wallis (1997) advised to examine 

the data for sites with the largest iD  values, regardless of the magnitude of these values.  
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2.4.2 Homogeneity test 

The following multivariate homogeneity test is proposed by Chebana and Ouarda (2007). It 

is an extension of the univariate test proposed by Hosking and Wallis (1993). It can be 

summarized in the followings. Let .V  be the statistic defined as: 

2
* ( ) *
2 2

2 1
.

1

N
i

i
i

N

i
i

n
V

n

=

=

Λ − Λ
=
∑

∑
 (22) 

where 
1

* *( )
2 2

1 1

N N
i

i i
i i

n n
−

= =

 Λ = Λ 
 
∑ ∑  and *( )

2
iΛ  is the L-covariation coefficient matrix for site i, with 

record length in , 1,...,i N= . In order to get interpretable results of the computed value of the 

statistic .V  from the observations, it is convenient to standardize it by the use of a large number 

of simulated homogeneous regions. The simulated regions are homogeneous with sites having 

the same record lengths as their observed counterparts. Hence, the statistic that measures the 

heterogeneity of a set of sites is given by: 

.

.

Vsim

Vsim

V
H

µ
σ
−

=  (23) 

where Vsimµ  and Vsimσ are respectively the mean and standard deviation of the simN  values of 

.V of simulated regions. The EV or Archimedean copulas with the marginal 4-parameter Kappa 

distributions are the bivariate distributions on which the simulations are carried out to compute 

Vsimµ  and Vsimσ . A region of sites is declared to be homogeneous if . 1H < , acceptably 

homogeneous if .1 2H< <  and definitely heterogeneous if. 2H > . Note that in the univariate 

framework, the statistics .V  and .H  are equivalent to the classical statistics defined by Hosking 

and Wallis (1993). For more details concerning the multivariate homogeneity test, the reader is 

referred to Chebana and Ouarda (2007).  
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The test statistic .H  is standardized on the basis of the mean and standard-error of simN  

simulated homogeneous regions. The value of simN = 500 is shown to be appropriate to allow the 

test to perform well. However, higher values of simN  allow to improve the estimation of Vsimµ  

and Vsimσ  and hence to make the right decisions when the values of .H  are close to the 

thresholds 1 and 2. 

3. Case study  

The application of the multivariate discordancy and homogeneity tests concerns a 

regional data set of interest for the Hydro-Québec company. The phenomenon to be studied is 

the flood, with bivariate characteristics, that is, volume V and spring peak Q. The data is from 

sites of the Côte Nord in the north part of the province of Quebec, Canada. The data set counts 

N = 26 stations with record lengths ni from 14 to 48. Some information about the data are given 

in Table 1. The geographical location of the underlying sites is presented in Figure 2.  

4. Study procedure 

The procedure of the study is composed in the following three main steps: 

1. Correlation: Assessment of the correlation coefficient between the variables V and Q for 

each site.  

2. Discordancy:  

a. Evaluation of the discordancy of each site on the basis of each variable V and Q and on 

the joint variable (V,Q).  

b. Identification of the corresponding discordant sites. 

3. Homogeneity: To carry out the homogeneity test given in equation (23), the following steps 

are required:  

a.  Removing the discordant sites identified in 2.b, and using the remaining sites in the 

following steps. 
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b. Modeling the joint variable (V,Q): Employing the Archimedean copula characterization (7).  

The marginal of both V and Q is taken to be the Kappa distribution (12).  

c. Estimating the model parameters: For the marginal Kappa distribution the estimation is 

based on the L-moment ratios 2 3 41, ,  ,  t t t with ( )i
k i k i

i i

t n t n=∑ ∑ . Their parameters are 

estimated using equations (13) and (14). The parameter m of the copula (8) can be 

estimated by: 

( )
1,2

1,2 1
1,2

1,2

1

ˆ
ˆ   1 , where  

1

N
i

i
i

N

i
i

n
m

n

ττ
τ

τ
=

=

= + =
−

∑

∑
     (24) 

where ( )
1,2ˆ iτ  is the empirical at-site estimator of  1,2τ  defined in (11). 

d. Computation of the homogeneity tests :  

i. Computation of observed V  statistics (equation 22) both on the margins and on 

the joint variables. 

ii.  Computation of the statistics Vsim, based on Nsim = 500 generated homogeneous 

regions. The bivariate regions are generated according to the model defined 

through the Gumbel logistic copula (8) and Kappa distribution (12) for the 

margins.  For both V and Q univariate regions are generated according to the 

inversion formula of (12). The sampling procedure for the bivariate samples is 

based on the algorithm developed by Ghoudi et al. (1998) and the inversion 

formula of (12).  

iii.  Assessment of the mean simµ  and the standard deviation simσ  on the basis of the 

Nsim values of Vsim.  

iv. Evaluation of homogeneity statistics H , respectively for the variables V, Q and 

(V,Q),  by combining V , simµ  and simσ  using the expression (23). 
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5.   Results and discussion 

Results of the correlation between the variables V and Q are reported in Table 1. Their 

values are positive and generally exceed 0.5. This means that the variables V and Q are generally 

highly correlated. Hence the use of bivariate analysis is of interest compared to the use of two 

univariate homogeneity tests. Table 2 presents the discordancy results. The sites that may be 

discordant are identified and their respective L-moment values that may cause the discordancy 

are also identified. Namely, sites 2 and 16 for V; site 2 or sites 2 and 3 for Q; and sites 2 and 21 

for (V, Q). These sites are eliminated to allow application of the respective homogeneity tests. 

Clearly, the discordant sites are not the same for V, Q or (V,Q).  

The application of the Archimedean copula characterization (6) with the estimate (7) 

leads to fit the Gumbel logistic copula to the bivariate data of each site. The illustration of this 

fitting is presented in Figure 3 for each site of the data set. Regarding the marginal distributions, 

the fitting is based on the empirical cumulative distribution function. One of the most used 

expressions is given by Cunnane (1978):  

0.4

0.2k

k
P

N

−=
+

 (25) 

for a sorted sample (1) ( ) ( )... ...k Nx x x≤ ≤ ≤ ≤ . Figure 4 illustrates, as an arbitrary selected 

example, the fitting of the marginal distributions and the dependence structure for the data of 

station 02RF001 (the 7th station). Hence, for both variables V and Q the samples are fitted with 

the Gumbel distribution, for which the cumulative distribution function is given by: 

( ){ }( ) exp exp ,  real,  0 and realxF x xβ
α α β−= − − >       (26) 

The use of the Gumbel distribution in this context was discussed in several previous studies (e.g., 

Yue et al., 1999; Yue, 2001b and Shiau, 2003). Note that the Gumbel distribution is covered by 

the Kappa distribution, since the latter contains the generalized extreme value as a special case. 

The detected discordant sites present some special characteristics in terms of their L-

moments or their physiographical attributes. Site 2 is discordant for all variables. Site 2 has the 



 16

lowest mean 1l , the largest L-CV 2t  and the lowest L-skewness 3t  for the volume. However, for 

the peak, site 2 has the lowest mean 1l , the largest  L-CV 2t  and the lowest  L-kurtosis 4t . 

Furthermore, site 2 represents the smallest basin in the region. Also, 50% of its basin area is 

controlled by a reservoir. All this could explain its rejection. Site 3, which may be discordant for 

Q, has a very small value of the L-skewness 3t . Site 16 is particular because of its short record 

length (n = 16, Table 1) as well as the small values of the three characteristics 2t , 3t  and 4t for the 

volume. Site 21 is detected to be discordant for the joint variables (V,Q) because of the poor 

fitting of the Gumbel logistic copula as can be seen from Figure 3.  

After removing the discordant sites, the weighted L-moments and corresponding model 

parameters are computed. These results are presented in Table 3. The estimated parameters are 

those of the distribution of the homogeneous generated regions.  

Homogeneity results are reported in Table 4. The decision about the homogeneity of the 

remained sites is taken according to the values of the test statistics .H . In the bivariate 

framework, the region is possibly homogeneous since the value of .H  is in the range] [1,2 . 

When considering only the volume, the value of the statistic .H  is less than 1. Hence, the region 

is homogeneous. As for the peak, the region is declared to be heterogeneous since the statistic 

.H  has a value greater than 2. Note that the decision concerning the regional homogeneity in 

relation to the peak variable remains the same whether site 3 is removed or not. Indeed, from 

Table 3, we observe that removing site 3 has no effect on the values of the weighted L-moments 

and has no significant effect on the values of Kappa parameter estimates. 

The advantage of choosing a Kappa distribution is that it allows to include several 

distributions used in hydrology. This in turn allows to fit the same distribution to all sites 

avoiding hence the subjective choice of a different distribution for each site. However, a 

disadvantage of this choice is the high number of parameters to be estimated, especially in the 
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multivariate context. Consequently, the estimation of these parameters increases the uncertainty 

of the model. In order to reduce this uncertainty, based on the parsimony principle, one looks for 

a model with the smallest number of parameters.  

6. Conclusions and recommendations  

The multivariate discordancy and homogeneity tests based on L-moments are applied to a 

set of sites from the Côte-Nord region in the eastern part of the province of Quebec, Canada. 

These tests are proposed by Chebana and Ouarda (2007) where a simulation study was carried 

out to evaluate their performance. The main conclusion highlights the importance of considering 

jointly and simultaneously all variables characterizing the extreme event and hence identifying a 

single homogeneous region. In the present paper, practical aspects of these multivariate tests are 

investigated jointly on flood peak and flood volume. Some of such aspects include the selection 

of the bivariate distribution using goodness-of-fit tests for the each marginal distribution as well 

as for the copula, the estimation of the corresponding parameters and a description of the 

discordant sites. 

After removing the discordant sites, the remaining ones represent a homogeneous region 

for the volume, heterogeneous region for the peak and possibly homogeneous region if both 

variables are simultaneously considered. The results concerning the volume present a certain 

level of concordance with the bivariate results with respect to the values of the statistics .H . 

Physically, this can be explained by the fact that the volume contains more information than the 

peak concerning the whole hydrograph. This shows the interest of the bivariate test to take into 

account the dependence structure between the variables, and to take advantage of more 

information from the hydrograph. The implementation and the use of the multivariate tests are 

simple similarly to the univariate ones. The corresponding Matlab® programs are available from 

the authors on request.  
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Table 1. Information concerning the data set. 

# Station number 
Station  
name Area (km2) ni 

(V,Q) correlation 
coefficient 

1 02RH049 Petit Saguenay 729     24     0.50 

2 02RH048 Des Ha Ha 564     19     0.73 

3 02RH034/35 Aux Écorces 1120     34     0.50 

4 02RH027 Pikauba 489     34     0.34 

5 02RG005 Métabetchouane 2270     30     0.54 

6 02RC011 Petite Péribonka 1090     31     0.62 
7 

 
02RF001 Chamouchouane  

(Ashuapmushuan) 
15300 

 
43     0.70 

 

8 02RD002 Mistassibi 8690     39     0.52 

9 02RD003 Mistassini 9620     43     0.52 

10 02RD004 Manouane 3720     23     0.39 

11 02RH045 Valin 740     31     0.42 

12 02RH046 Ste-Marguerite 1100     21     0.48 

13 02SC001 DesEscoumins 779     19     0.49 

14 02SC002 Portneuf 2580     20     0.80 

15 02UA003 Godbout 1570     30     0.75 

16 02UC003 Aux-Pékans 3390     16     0.54 

17 02VA001/3 Tonerre 674     40     0.64 

18 02VB004 Magpie 7200     27     0.66 

19 02VC001 Romaine 13000     48     0.68 

20 02WA001 Nabisipi 2060     25     0.78 

21 02WA002 Aguanus 5590     19     0.60 

22 02WB002 Natashquan 15600     39     0.75 

23 02WC001 Etamamiou     2950     19     0.82 

24 02XB001 St Augustin 5750     14     0.73 

25 02XC001 St Paul 6630     25     0.73 

26 02UC002 Moisie 19000     39     0.65 
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Table 2. Values of L-moments and discordancy statistics for each site in the region. 

 
Volume Peak 

Volume 
and Peak 

# site
1l  2t  3t  4t  VD  1l  2t  3t  4t  QD  ,V QD  

1 234.97 0.16 0.17 0.11 0.80 132.05 0.15 0.02 0.08 0.40 1.09
2 89.65 0.27 -0.12 0.12 3.60 56.17 0.29 0.15 0.02 4.44 3.88
3 293.35 0.19 0.03 0.13 0.16 171.29 0.17 -0.02 0.18 2.42 0.69
4 133.63 0.20 -0.03 0.06 0.89 101.34 0.20 0.24 0.30 1.16 1.22
5 573.30 0.19 -0.02 0.18 1.22 305.96 0.25 0.28 0.19 1.23 1.59
6 235.76 0.19 0.08 0.14 0.26 118.42 0.16 0.09 0.07 0.45 0.98
7 3622.78 0.17 0.10 0.10 0.13 1405.96 0.15 0.06 0.15 0.14 0.26
8 2459.44 0.15 0.04 0.08 0.32 1084.08 0.11 0.03 0.16 0.78 0.88
9 2310.05 0.17 0.11 0.15 0.62 1230.75 0.14 0.06 0.12 0.19 0.53

10 1040.77 0.14 0.05 0.11 0.55 541.43 0.15 0.13 0.23 0.47 2.38
11 275.02 0.16 0.04 0.13 0.40 166.93 0.14 0.12 0.13 0.46 2.37
12 428.91 0.18 0.02 0.20 1.50 253.76 0.15 0.01 0.06 0.55 1.30
13 244.40 0.22 0.13 0.10 1.14 139.65 0.21 0.27 0.33 1.81 1.27
14 904.78 0.22 0.09 0.07 0.99 466.45 0.19 0.10 0.10 0.32 1.06
15 511.32 0.23 0.07 0.10 0.91 322.19 0.23 0.25 0.23 0.89 1.29
16 984.44 0.11 0.01 -0.01 3.19 454.63 0.13 0.07 0.17 0.38 2.25
17 273.02 0.17 0.13 0.13 0.51 147.53 0.17 0.26 0.18 1.65 2.25
18 2427.84 0.20 0.06 0.11 0.12 871.31 0.15 0.10 0.28 1.23 1.11
19 4195.56 0.16 -0.09 0.11 1.62 1555.02 0.16 0.02 0.10 0.48 0.57
20 833.33 0.16 -0.04 0.05 1.12 368.48 0.15 -0.01 0.11 0.64 0.54
21 2237.82 0.13 0.19 0.10 1.53 929.32 0.11 0.02 0.08 0.84 3.07
22 5014.35 0.18 0.06 0.06 0.28 1943.34 0.18 0.20 0.16 0.39 1.02
23 1176.24 0.21 0.14 0.08 1.06 440.95 0.19 0.11 0.00 1.33 1.32
24 2398.37 0.17 -0.03 0.13 0.62 1219.86 0.18 0.22 0.25 0.67 0.92
25 2222.21 0.17 0.08 0.14 0.31 1339.62 0.19 0.23 0.09 1.35 1.11
26 5534.18 0.16 0.10 0.02 1.16 2222.26 0.15 0.10 0.11 0.32 0.54
Numbers written in bold and italic character indicate the discordant sites; those written in bold character represent 
the particular values of L-moments that possibly caused the discordancy. 
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Table 3. Weighted L-moments and corresponding model parameters 

 

 
  

The weighted L-moments after 
removing the discordant sites 

Kappa parameters 
 

Copula 
parameter 

 

 

Removed 
discordant 

sites 1l  2t  3t  4t  h κ  α  β  

 
 

m 
Univariate Volume 2 and 16 1.00 0.18 0.06 0.11  0.1053 0.2258 0.3196 0.8569 - 
 Peak 2 1.00 0.17 0.12 0.15 -0.2887 0.0024 0.2150 0.9090 - 
 Peak 2 and 3 1.00 0.17 0.12 0.15 -0.2370 0.0061 0.2197 0.9016 - 

Bivariate Volume 2 and 21 1.00 0.18 0.05 0.10  0.1200 0.2411 0.3250 0.8552 
1.8280 

 Peak 2 and 21 1.00 0.17 0.12 0.15 -0.3089 -0.0061 0.2138 0.9098 

 

 

Table 4. Homogeneity results 

 Discordant sites obsV  
simµ  simσ  H  Decision 

Bivariate (V, Q) 2 and 21 0.0296 0.0251 0.0029 1.5962 possibly homogeneous 
Univariate V 2 and 16 0.0231 0.0218 0.0031 0.4279 homogeneous 

Univariate Q 
2 0.0321 0.0232 0.0035 2.5664 heterogeneous 
2  and 3   0.0329 0.0228 0.0035 2.8681 heterogeneous 
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Figure 1. Typical flood hydrograph 

 

Figure 2. Geographical chart of the location of the sites 
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Figure 3. Fitting Gumbel logistic copula to each site of the data  
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Figure 4. Distribution of volume (a), peak (b) and joint volume and peak (c) for the data of   
station 02RF001 (the 7th station) 


