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Abstract:

In regional frequency analysis, the examinatiorthef regional homogeneity represents
an important step of the procedure. Flood eventsgrs multivariate characteristics which can
not be handled by classical univariate regionatedores. For instance, classical procedures do
not allow to assess regional homogeneity whilengknto consideration flood peak, volume and
duration. Chebana and Ouarda (2007) proposed rat#te discordancy and homogeneity tests.
They carried out a simulation study to evaluate ghgformance of these tests. In the present
paper, practical aspects are investigated jointlyflood peak and flood volume of a data set
from the Cote-Nord region in the province of Quel@anada. It is shown that, after removing
the discordant sites, the remaining ones constaut®@mogeneous region for the volumes and
heterogeneous region for the peaks. However, ih batriables are jointly considered, the
obtained region is possibly homogeneous. Furthezribe results demonstrate the usefulness of
the bivariate test to take into account the depecelestructure between the variables

representing the event, and to take advantage o mformation from the hydrograph.



1. Introduction

Most hydrological events are described by seveoatetated variables. Multivariate
representations of hydrologic phenomena includeini&tance, storm duration and intensity (Yue,
2001a; Salvadori and De Michele, 2004); flood peakime and duration (Ashkar, 1980; Yue et
al., 1999; Ouarda et al., 2000; Yue, 2001b; Shz@®3; De Michele et al., 2005; Zhang and
Singh 2006) and drought volume, duration and magdei(Kim et al., 2003; Ashkar et al., 1998).
It is essential to understand the multivariate abtaristics of such events for several engineering
planning, design and management activities. Sn{i#82) and Wong (1963) can be considered
as the first authors to carry out multivariate sl in hydrology.

The study of the joint probabilistic behaviour wiot or more correlated random variables
that characterize the event is necessary for atighr understanding of multivariate hydrological
events. Copulas have recently been shown to ragreseseful statistical tool for hydrological
applications bringing the dependence behaviour &etwvariables (e.g. Salvadori and De
Michele, 2004). To represent the joint probabitiigtribution of flood peak and volume and the
joint probability distribution of flood volume anduration, Yue et al. (1999) used the Gumbel
mixed model with standard Gumbel marginal distiitmg. Yue (2001b) and Shiau (2003) used
the Gumbel logistic model with standard Gumbel nmaigdistributions to model flood volume
and peak for different basins. El Adlouni et alD@2) presented several copulas to model flood
peak and volume with respectively Gumbel and Gammaayinal distributions.

Generally, extreme events are rare and the rea@wshort. Consequently, the at-site
frequency estimation is difficult and/or not reliab Regional frequency analysis (RFA) is
proposed as a method to overcome this lack of ddé¢ace, RFA is commonly used for the
estimation of extreme hydrological events at sibgre little or no data is available. It is based
on the transfer of data available from other stegion the same hydrologic region. The
delineation of hydrological homogeneous regions #aedregional estimation are the two main
steps of a RFA. Several authors investigated tlosqulure with different approaches including
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Stedinger and Tasker (1986), Burn (1990), Hosking ®vallis (1993), Durrans and Tomic
(1996), Nguyen and Pendey (1996), Alila (1999, 20@@d Ouarda et al., (2001). An
intercomparison of various regional flood estimatiprocedures was presented by GREHYS
(1996a,b).

The literature on flood frequency analysis can lagsified into four classes according to
the local/regional and univariate/multivarite agpedn the first two classes there are the local-
univariate and regional-univariate studies wher@ynaferences can be found in the literature.
The third class contains local-multivariate flooddquency analysis (e.g., Ashkar, 1980; Yue et
al., 1999; Ouarda et al., 2000; Yue, 2001b; SH2@03; De Michele et al., 2005 and Zhang and
Singh, 2006). However, very little attention hagmeiven to the forth class which consists in
regional-multivariate studies (Ouarda et al., 2608 Chebana and Ouarda, 2007). Ouarda et al.
(2000) carried out a canonical correlation analpsecedure for a joint regional study of flood
peak and volume in the province of Quebec, Canada.

Chebana and Ouarda (2007) proposed discordancyhambgeneity tests based on
multivariate L-moments and copulas. The proposed multivariateodiency and homogeneity
tests are extensions of those given by Hosking\datlis (1993). Chebana and Ouarda (2007)
evaluated the performances of these multivarias tesing simulations. They demonstrated, for
a given extreme event, the importance of jointlgd @amultaneously treating all variables and
identifying a single homogeneous region. In thesen¢ paper, practical aspects of these
multivariate tests are studied based on a real-wegobnal data set. The data set corresponds to
sites from the Coéte-Nord region in the eastern pérthe province of Quebec, Canada. The
application is carried out on flood event and theus is on the volume and peak variables.

The paper is organized as follows. Section 2 costdhe theoretical background,
including flood characteristics, bivariate modelimgultivariateL-moments and the discordancy

and homogeneity tests. Section 3 is devoted taéseription of the case study. The procedure



followed in this study is presented in Section Zeveas Section 5 deals with the corresponding
results. Concluding remarks are presented in Seétio
2. Background
In this section, the background elements to apply multivariate discordancy and

homogeneity tests are presented. Flood charaatsribivariate modeling including copulas and
marginal distributions, and the discordancy and dgeneity tests are briefly described.

2.1 Flood characteristics

In Figure 1, a typical flood hydrograph is illuged. A flood hydrograph is mainly
characterized by its volume, duration and peakodFlduration has to be determined first in order
to compute flood volume. Flood duration can be meitged whenever the start daeand end
datee are identified for theth series a®; = e - s. The annual flood volume series can be

constructed using the following formula (see eYgle et al., 1999):
1 :
V=26 -5(@* Q) =12, (1)

where g, represents the observed streamflow value aftthday of theith year,q and q, are

respectively the observed daily streamflow valueghe start date and end date of flood runoff

for theith year. The annual flood peak series is given by
Q=maxq{q .j=5,5+1..8 2)
2.2 Bivariate flood modeling
In bivariate modeling, one should obtain a joinvdniate distribution for the variables.
However, one should also distinguish the dependstroeture from the margins. To this end,
one needs to specify three elements: a copuladoride the dependence structure between the

two random variables, along with a marginal disttibn for each variable.



2.2.1 Copulas

In the remainder of the paper we den&ieandF, the marginal distribution functions of
given random variableX® and X®, and F,, is the joint distribution function o(fx‘l), X(z)).

Independently of the marginal distributions, a wapis a description and a model of the
dependence structure between the two random vasiabb overcome the limitations of classical
dependence measures, copulas have recently receimexhsing attention in various science
fields (see for instance Nelsen, 1999). A copukafignctionC: | xI - 1 (I =[O0, 1]) such that:

o forallu, viIl : C(u, 0) =0,C(u, 1) =u, C(0, v) =0, andC(1,v) = v;
e forall u, u,, v,, v,01 such thaty, <u, and v < v,:C(u,,v ) - C(u,v)- Ay,v )+ Qyv)=0
The link between copulas and bivariate distribwgiaprovided by Sklar's (1959) result. It states

that there exists a copulasuch that:

FL(%, X,) = C(F(x), Fx,)) forallrealx, andx (3)
When F, andF, are continuous, the copulais unique.

Archimedean and extreme value (EV) copulas reptedasses of particular interest. The

class of EV copulas is given by the formula (Pidgrl981):

C(u, V)= exp{( logu+ Iog\)lE logu j} & u,x 4)

logu+logv
where the dependence functians convex and defined on [0, 1] Wirhax{t 1= t} <At)<1A
bivariate Archimedean copula is characterized leyetkpression:
CluV=¢ (@+¢(V), 0<uw] 5)
where the generata#(.) is a convex decreasing function satisfyififl) = 0.

As it is already shown in previous studies, e.glv&bkori and De Michele (2004),

Archimedean copulas represent convenient multitenaodels for hydrological flood events.



When the multivariate context is involved, somecpcal questions can be raised regarding
copulas, for instance:

— How a copula can be fitted to a given sample?

— How copula’s parameters can be estimated?

- And how a sample can be generated from a modeiatkthrough a given copula?
Partial answers to these questions are given &Atbhimedean and extreme value copulas.

First, the fitting problem is resolved for Archinmesth copulas. According to Genest and

Rivest (1993), an Archimedean copula, with a gdoerfunctiony , is characterized by the

following function:

/)
K,(2)=z2-——— (6)
Y Y@
which can be estimated by:
~ 1d 1 & .
K(2) _N;]-[\MSZ] where vvi—m; Loveiy 4= LN (7)

for a given bivariate sampleg;, X3), (¢, X2),...,(X' , %X ). It is shown in Genest and Rivest (1993)

that K is a consistent estimator kfunder weak regularity conditions
It is shown in several studies (e.g. Yue, 2001b 8hdhu, 2003) that an interesting copula to

model flood characteristics is the Gumbel logistpula given by:
Calx V) = exp{-[ € logxy + € logyy'] "} e 1, & x,xe ®)

which is an Archimedean copula with generator fiomciy(x) = (=log x)™, and it is also an
1/

extreme value copula with dependence functft) = (tm +(1—t)m) m. The corresponding

functionK defined in (6) for the Gumbel logistic copula isem by K, (z) =1z _zIng(z).

Second, the parameter estimation problem for Areldiean copulas is also resolved. In

particular, the parameten of the copulaC, is related to the correlation coefficieptthrough

the equation (Gumbel and Mustafi, 1967):



m= , O<p<1 (9)
1-p

Hence, it can be estimated by a plug-in of the egliversion of the correlation coefficient in

equation (9). However, it can also be estimated by:

. r
m = 1+ —= (10)
1-7,
where7, ,is the empirical estimator of
1, =4E[ F (X, X®)]-1 (11)

which is a version of the Kandall's tau coefficidat the random vectofx o X<2>). A simple

estimator of the Kandall's tau coefficient is givey 7, , =4G -1 whereG is the mean of the
“pseudo-sampleG, =ni_1#{(xj<”,xj @)X W x W, X @< X (2)}, i=1,...,r(see Genest

and Rivest, 1993).

Regarding the last question, related to the geiveraif samples from the variables
(X‘l), X(z)) according to the extreme value copula, an algorith developed by Ghoudi et al.
(1998). The algorithm is summarized in the follogihetU,, U,be uniform random variables
and Z be a random variable with a cumulative distion functionG, and probability density

function g, given byG,(2) = z+ £1- 2 A ¥/ A)z0<z<1.This algorithm consists of the
following steps:
1. Simulatez;
2. Given Z, take W = U, with probability p(Z) and W =U,U, with probability
1-p(z), wherep(2) = 41- 3 A( Z/( Ax o 1

3. Set X = WA gnd X? = WE2/AD)



When using this algorithm in practice it is impaort#o take into consideration the numerical
nonparametric smoothing, since it depends on fanstirelated to the first and second
derivatives of the functiod. Despite the general validity of this proceduretraxnformation
about the model, e.g. parametric formAgfcan be useful to increase the speed and accafacy
the generation algorithm.

2.2.2 Marginal modeling

The 2-parameter Gumbel distribution can be usedddel the marginal flood variables (Yue,
2001b and Shiau, 2003). However, as it is indicatedosking and Wallis (1993) and Chebana
and Ouarda (2007), it is preferable to employ aaremeter Kappa distribution for the

homogeneity test. Its cumulative distribution fuoitis given by:

F(x) =|1- h(l—KﬂjK (12)

a

with parameters (position),a (scale),x andh (shape).

The parameters of the Kappa distribution can bénestd by theL-moment method
(Hosking and Wallis, 1997). Indeed, if we denotspestively byA, the L-moment and, the L-
moment coefficient of ordds, the first Kappd.-moments are given by:

A =u+a(l-g)/k
A =a(g, - 9,)/k

(13)
t3 = (_gl +3gz - 293)/(91_ gz)
t, = (_91+6gz_1og3+ 594)/ (91_ 92)1
where
rr@+x)r(r/h) h> ¢
h* T (1+x +r/h)’
g = (14)
rr(L+&) (-k-r/h) h<

(=h)"™* T (@-r/h)



Therefore its parameters can be estimated by sheofiequations (13) but there are no simple
and direct expressions. Hosking (1996) developeduéine to find numerically the Kappa
moment parameter estimators.

2.3 Multivariate L-moments

Instead of traditional moments, for statisticalem@ce of hydrological variables, the
moment approach offers strong advantages for muglbkeavy-tailed distributions. For a review
related td_-moments the reader can consult Hosking and W@97). Multivariatd_-moments
are principally developed by Serfling and Xiao (2RO

By analogy with the covariance representation efltmoment of ordek , multivariate

L-moments are matrice, with L-comoment elements defined by:
Ay, :Cov(x“),Pk*_l(Fj(x“) ))) ij= 12 andk= 2.3, (15)
whereP, is the so-called shifted Legendre polynomial. Asain be seen, the elemeris, and

Aqjiy are not necessarily equal. The fitstomoment elements are given by:

/‘2[12] = ZCOV(X(l) F, (X(z) ))

i =600 X (F, (x?)- 119 (16)

o= x0.2 0 1F - 45, 6 113+ )

TheL-comoment coefficients are given by:

A
—22 and Ty, =, fork=3,4,.. (17)

BT
AZ

where AY =y is the classical univariatth L-moment of the variablX!”. The matrix of

theL-comoment coefficients is written as:

. ([ TLqay T _
A, _(Tk[ij]) [ , fork=2, 3,.. (18)

WE2 A\ Loy T
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and for k = 1, the first order bivariatd.-moment corresponds to the mean vector
A = E(X®, Xy,
2.4 Discor dancy and homogeneity tests
2.4.1 Discordancy
A preliminary screening step, before proceedindnlie homogeneity analysis, consists in
identifying discordant sites among a set\o$ites. A multivariate extension of the Hosking and

Wallis (1993) discordancy test is proposed by Chalend Ouarda (2007). It is defined for each
sitei using the matrixJ{ =[ A’ A A | which is composed by the threemoment matrices
AP NY andN) defined by (18). Hence, a sités discordant, with respect to the considered

set of sites, if|D,| takes large values, where:

D :%(Ui -0)'s*(y-u), (19)
SZNL_L:(U, ~T)(u-1), (20)
U:%iui, (21)

|A| denotes the spectral norm of a matigiven by|A| = J/maximum eigenvalue o A and

A' is the transpose of a matrix or a vectoNote that Chebana and Ouarda (2007) considered
other matrix norms and indicated that no significdiiference was observed in the results

obtained with the other norms.
The constant = x,_,.(3)/3= 2.6 may be considered as a critical value [fBx| for
large regions, wherg,_,(d) denotes the quantile of a chi-square distribugborder a with d

degrees of freedom. Chebana and Ouarda (2007) sedpbe use of a bootstrap technique to

determine a critical value for short valueshbfHosking and Wallis (1997) advised to examine

the data for sites with the Iargeﬂijli || values, regardless of the magnitude of these salue
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2.4.2 Homogeneity test
The following multivariate homogeneity test is pospd by Chebana and Ouarda (2007). It
is an extension of the univariate test proposedHmgking and Wallis (1993). It can be
summarized in the followings. L&, be the statistic defined as:
2

N R
zni H/\*z(l) _/\*2
2= (22)

S N 1N _ _
where A, :(Znij nAL andAYY is thelL-covariation coefficient matrix for sitg with
i=1 i=1

record lengthn, i =1,...N . In order to get interpretable results of the cated value of the

statistich'H from the observations, it is convenient to staddarit by the use of a large number

of simulated homogeneous regions. The simulatesbmegare homogeneous with sites having
the same record lengths as their observed countergdéence, the statistic that measures the

heterogeneity of a set of sites is given by:

— WH ~ Hisim
I

Vsim

(23)

where 4, and g, are respectively the mean and standard deviatioth®N_ values of

sim
VH-H of simulated regions. The EV or Archimedean copwdhk the marginal 4-parameter Kappa
distributions are the bivariate distributions oniaththe simulations are carried out to compute

Iu\/sim and 2

Vsim *

A region of sites is declared to be homogenediuHH_ﬁ <1, acceptably
homogeneous it < HH-H < 2 and definitely heterogeneoug-im > 2. Note that in the univariate
framework, the statisticg; and H, are equivalent to the classical statistics defimgéHosking

and Wallis (1993). For more details concerning rthétivariate homogeneity test, the reader is

referred to Chebana and Ouarda (2007).
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The test statistiti, is standardized on the basis of the mean and atawatror ofN,

simulated homogeneous regions. The valu&lgf= 500 is shown to be appropriate to allow the
test to perform well. However, higher valuesf_ allow to improve the estimation @f,,

and ¢

Vsim

and hence to make the right decisions when theegabfH, are close to the

thresholds 1 and 2.
3. Casestudy

The application of the multivariate discordancy amomogeneity tests concerns a
regional data set of interest for the Hydro-Québampany. The phenomenon to be studied is
the flood, with bivariate characteristics, thatuslumeV and spring peak). The data is from
sites of the Cote Nord in the north part of thevproe of Quebec, Canada. The data set counts

N = 26 stations with record lengthsfrom 14 to 48. Some information about the datagaren

in Table 1. The geographical location of the unged sites is presented in Figure 2.
4. Study procedure

The procedure of the study is composed in thewviofig three main steps:
1. Correlation: Assessment of the correlation coefficient betw#en variablesv and Q for
each site.
2. Discordancy:
a. Evaluation of the discordancy of each site on thgidof each variab andQ and on
the joint variableV,Q).
b. Identification of the corresponding discordantsite
3. HomogeneityTo carry out the homogeneity test given in equefi8), the following steps
are required:
a. Removing the discordant sites identified in 2.bd aising the remaining sites in the

following steps.
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b. Modeling the joint variable\(,Q): Employing the Archimedean copula characterizatio).
The marginal of botv andQ is taken to be the Kappa distribution (12).

c. Estimating the model parameters: For the margiregg& distribution the estimation is

based on the-moment ratios,§,, §, , T, with § = Znitﬁ‘)/ng . Their parameters are

estimated using equations (13) and (14). The pasame of the copula (8) can be
estimated by:

N
2(i)
T z ni Tl,Z

m = 1+—2 whereT,, =41 — (24)

- Z-1,2 ' Z ni

i=1

where 7} is the empirical at-site estimator af , defined in (11).
d. Computation of the homogeneity tests :

i. Computation of observe‘q‘ H statistics (equation 22) both on the margins amd o

the joint variables.

ii. Computation of the statisticsgl, based orNsi, = 500 generated homogeneous
regions. The bivariate regions are generated acwprtb the model defined
through the Gumbel logistic copula (8) and Kappatriiution (12) for the
margins. For bothV and Q univariate regions are generated according to the
inversion formula of (12). The sampling proceduoe the bivariate samples is
based on the algorithm developed by Ghoudi et 298) and the inversion
formula of (12).

iii. Assessment of the mean,, and the standard deviatian,, on the basis of the
Nsim vValues oVsim.

iv. Evaluation of homogeneity statistid:ﬁ‘ E respectively for the variablés Q and

(V,Q), by combining\/H |+ Him and g, using the expression (23).
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5. Resultsand discussion

Results of the correlation between the variabMeandQ are reported in Table 1. Their
values are positive and generally exceed 0.5. Mieigns that the variabl®sandQ are generally
highly correlated. Hence the use of bivariate asialis of interest compared to the use of two
univariate homogeneity tests. Table 2 presentsdibeordancy results. The sites that may be
discordant are identified and their respectivenoment values that may cause the discordancy
are also identified. Namely, sites 2 and 16Mpsite 2 or sites 2 and 3 f@; and sites 2 and 21
for (V, Q). These sites are eliminated to allow applicatbrthe respective homogeneity tests.
Clearly, the discordant sites are not the sam¥ f@ or (V,Q).

The application of the Archimedean copula charaton (6) with the estimate (7)
leads to fit the Gumbel logistic copula to the biate data of each site. The illustration of this
fitting is presented in Figure 3 for each sitelsd tlata set. Regarding the marginal distributions,
the fitting is based on the empirical cumulativetdbution function. One of the most used
expressions is given by Cunnane (1978):

_k-04
K N +0.2

(25)

for a sorted sample,, <...< X, <...< X, - Figure 4 illustrates, as an arbitrary selected

example, the fitting of the marginal distributioasd the dependence structure for the data of
station 02RF001 (theth75tation). Hence, for both variablgsandQ the samples are fitted with

the Gumbel distribution, for which the cumulativietdbution function is given by:
F(X) :exp[— exd—%ﬁ)} X realg> Oand re (26)

The use of the Gumbel distribution in this conteas discussed in several previous studies (e.g.,

Yue et al., 1999; Yue, 2001b and Shiau, 2003). Nuwat the Gumbel distribution is covered by

the Kappa distribution, since the latter contaivesdgeneralized extreme value as a special case.
The detected discordant sites present some spdtahcteristics in terms of their

moments or their physiographical attributes. Siie 8iscordant for all variables. Site 2 has the
15



lowest mear,, the largest.-CV t, and the lowesk-skewnesd, for the volume. However, for
the peak, site 2 has the lowest mégnthe largest L-CV t, and the lowest L-kurtosist, .
Furthermore, site 2 represents the smallest basthd region. Also, 50% of its basin area is

controlled by a reservoir. All this could explats rejection. Site 3, which may be discordant for

Q, has a very small value of tlheskewnesg,. Site 16 is particular because of its short record
length @ = 16, Table 1) as well as the small values oftlinee characteristics, t, andt, for the

volume. Site 21 is detected to be discordant ferjdint variables \(,Q) because of the poor
fitting of the Gumbel logistic copula as can bersttem Figure 3.

After removing the discordant sites, the weighitecthoments and corresponding model
parameters are computed. These results are prdsaniable 3. The estimated parameters are
those of the distribution of the homogeneous geednaegions.

Homogeneity results are reported in Table 4. Thasd® about the homogeneity of the

remained sites is taken according to the valuesheftest statistici, . In the bivariate
framework, the region is possibly homogeneous stheevalue OfHH-H is in the rangﬂél,z[.
When considering only the volume, the value ofdtatistic HH-H is less than 1. Hence, the region

is homogeneous. As for the peak, the region isaded|to be heterogeneous since the statistic

HH-H has a value greater than 2. Note that the decsdoicerning the regional homogeneity in

relation to the peak variable remains the same hvenetite 3 is removed or not. Indeed, from
Table 3, we observe that removing site 3 has recetin the values of the weightednoments
and has no significant effect on the values of Kaparameter estimates.

The advantage of choosing a Kappa distributionhet it allows to include several
distributions used in hydrology. This in turn al®wo fit the same distribution to all sites
avoiding hence the subjective choice of a differdigtribution for each site. However, a

disadvantage of this choice is the high numberasbmeters to be estimated, especially in the
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multivariate context. Consequently, the estimatbthese parameters increases the uncertainty
of the model. In order to reduce this uncertaibfsed on the parsimony principle, one looks for

a model with the smallest number of parameters.
6. Conclusionsand recommendations

The multivariate discordancy and homogeneity teated or.-moments are applied to a
set of sites from the Cote-Nord region in the easpart of the province of Quebec, Canada.
These tests are proposed by Chebana and Ouardd) (@Bére a simulation study was carried
out to evaluate their performance. The main commfubighlights the importance of considering
jointly and simultaneously all variables charadieg the extreme event and hence identifying a
single homogeneous region. In the present papactipal aspects of these multivariate tests are
investigated jointly on flood peak and flood volung®mme of such aspects include the selection
of the bivariate distribution using goodness-oftéists for the each marginal distribution as well
as for the copula, the estimation of the correspangharameters and a description of the
discordant sites.

After removing the discordant sites, the remairongs represent a homogeneous region
for the volume, heterogeneous region for the peaak @ossibly homogeneous region if both
variables are simultaneously considered. The ®esuhcerning the volume present a certain

level of concordance with the bivariate resultshwigéspect to the values of the statisil‘r%.

Physically, this can be explained by the fact thatvolume contains more information than the
peak concerning the whole hydrograph. This showsriterest of the bivariate test to take into
account the dependence structure between the lemjabnd to take advantage of more
information from the hydrograph. The implementatard the use of the multivariate tests are
simple similarly to the univariate ones. The copmesling MatlalS programs are available from

the authors on request.
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Table 1. Information concerning the data set.

Station (V,Q) correlation

# Station number name Area (km® n; coefficient

1 02RHO049 Petit Saguenay 729 24 0.50
2 02RH048 Des Ha Ha 564 19 0.73
3 02RH034/35 Aux Ecorces 1120 34 0.50
4  02RHO027 Pikauba 489 34 0.34
5 02RG005 Métabetchouane 227030 0.54
6 02RCO11 Petite Péribonka 1090 31 0.62
7 02RF001 Chamouchouane 15300 43 0.70

(Ashuapmushuan)

8 02RDO002 Mistassibi 8690 39 0.52
9 02RDO003 Mistassini 9620 43 0.52
10 02RD004 Manouane 3720 23 0.39
11 02RHO045 Valin 740 31 0.42
12 02RHO46 Ste-Marguerite 1100 21 0.48
13 02SCO001 DesEscoumins 779 19 0.49
14 02SC002 Portneuf 2580 20 0.80
15 02UA003 Godbout 1570 30 0.75
16 02UCO003 Aux-Pékans 3390 16 0.54
17 02VA001/3 Tonerre 674 40 0.64
18 02VB004 Magpie 7200 27 0.66
19 02vVCO001 Romaine 13000 48 0.68
20 02WAO001 Nabisipi 2060 25 0.78
21  02WA002 Aguanus 5590 19 0.60
22 02wWB002 Natashquan 15600 39 0.75
23 02WCO001 Etamamiou 2950 19 0.82
24 02XB001 St Augustin 5750 14 0.73
25 02XC001 St Paul 6630 25 0.73
26 02UC002 Moisie 19000 39 0.65
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Table 2. Values of L-moments and discordancy statisticsfor each sitein the region.

Volume
Volume Peak and Peak
# site |1 t2 t3 t4 Dv |1 tz t3 t4 DQ DV,Q
1 234.97 0.16 0.17 0.11 0.80 132.05 0.15 0.02 0.08 0.40 1.09
2 89.65 0.27 -0.12 0.12 3.60 56.17 0.29 0.15 0.02 4.44 3.88
3 293.35 0.19 0.03 0.13 0.16 171.29 0.17 -0.02 0.18 242 0.69
4 133.63 0.20 -0.03 0.06 0.89 101.34 0.20 0.24 0.30 1.16 1.22
5 573.30 0.19 -0.02 0.18 1.22 305.96 0.25 0.28 0.19 1.23 1.59
6 235.76 0.19 0.08 0.14 0.26 118.42 0.16 0.09 0.07 0.45 0.98
7 3622.78 0.17 0.10 0.10 0.13 1405.96 0.15 0.06 0.15 0.14 0.26
8 2459.44 0.15 0.04 0.08 0.32 1084.08 0.11 0.03 0.16 0.78 0.88
9 2310.05 0.17 0.11 0.15 0.62 1230.75 0.14 0.06 0.12 0.19 0.53
10 1040.77 0.14 0.05 0.11 0.55 541.43 0.15 0.13 0.23 0.47 2.38
11 275.02 0.16 0.04 0.13 0.40 166.93 0.14 0.12 0.13 0.46 2.37
12 428.91 0.18 0.02 0.20 1.50 253.76 0.15 0.01 0.06 0.55 1.30
13 244.40 0.22 0.13 0.10 1.14 139.65 0.21 0.27 0.33 1.81 1.27
14 904.78 0.22 0.09 0.07 0.99 466.45 0.19 0.10 0.10 0.32 1.06
15 511.32 0.23 0.07 0.10 0.91 322.19 0.23 0.25 0.23 0.89 1.29
16 984.44 0.11 0.01 -0.01 3.19 454.63 0.13 0.07 0.17 0.38 2.25
17 273.02 0.17 0.13 0.13 0.51 147.53 0.17 0.26 0.18 1.65 2.25
18 2427.84 0.20 0.06 0.11 0.12 871.31 0.15 0.10 0.28 1.23 1.11
19 4195.56 0.16 -0.09 0.11 1.62 1555.02 0.16 0.02 0.10 0.48 57 0.
20 833.33 0.16 -0.04 0.05 1.12 368.48 0.15 -0.01 0.11 0.64 4 0.5
21 2237.82 0.13 0.19 0.10 1.53 929.32 0.11 0.02 0.08 0.84 3.07
22 5014.35 0.18 0.06 0.06 0.28 1943.34 0.18 0.20 0.16 0.39 210
23 1176.24 0.21 0.14 0.08 1.06 440.95 0.19 0.11 0.00 1.33 1.32
24 2398.37 0.17 -0.03 0.13 0.62 1219.86 0.18 0.22 0.25 0.67 92 0.
25 222221 0.17 0.08 0.14 0.31 1339.62 0.19 0.23 0.09 1.35 111

26 5534.18 0.16 0.10 0.02 1.16 2222.26 0.15 010 011 032 405

Numbers written in bold and italic character indécthe discordant sites; those written in bold abger represent
the particular values af-moments that possibly caused the discordancy.
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Table 3. Weighted L-moments and corresponding model parameters

The weighted L-moments after Kappa parameters Copula
removing the discordant sites parameter
Removed
discordant — — _ _
sites I1 L L t, h K a B m
Univariate Volume 2 and 16 1.00 0.18 0.06 0.11 0.105258 0.3196 0.8569 -
Peak 2 1.00 0.17 0.12 0.15 -0.2880024 0.2150 0.9090 -
Peak 2 and 3 1.00 0.17 0.12 0.15 -0.261M61 0.2197 0.9016 -
Bivariate Volume 2 and 21 1.00 0.18 0.05 0.10 0.1201411 0.3250 0.8552 ; goaq
Peak 2 and 21 1.00 0.17 0.12 0.15 -0.3@8O061 0.2138 0.9098
Table 4. Homogeneity results
Discordant sites VH HObS Hsim Osim HH | Decision
Bivariate (V, Q) 2 and 21 0.0296 0.0251 0.0029 @&X9 possibly homogeneous
Univariate V 2 and 16 0.0231 0.0218 0.0031 0.4279omdygeneous
Univariate O 2 0.0321 0.0232 0.0035 2.5664 heterogeneous
2 and 3 0.0329 0.0228 0.0035 2.8681 heterogsneou
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Figure 1. Typical flood hydrograph
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Figure 2. Geographical chart of thelocation of the sites
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Figure 3. Fitting Gumbel logistic copulato each site of the data
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Figure 4. Distribution of volume (a), peak (b) and joint volume and peak (c) for the data of
station 02RF001 (the 7" station)
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