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 1 

Abstract  2 

Several hydrological phenomena are described by two or more correlated characteristics. 3 

These dependent characteristics should be considered jointly to be more representative of the 4 

multivariate nature of the phenomenon. Consequently, probabilities of occurrence cannot be 5 

estimated on the basis of univariate frequency analysis (FA). The quantile, representing the value 6 

of the variable(s) corresponding to a given risk, is one of the most important notions in FA. The 7 

estimation of multivariate quantiles has not been specifically treated in the hydrological FA 8 

literature. In the present paper, we present a new and general framework for local FA based on a 9 

multivariate quantile version. The multivariate quantile offers several combinations of the 10 

variable values that lead to the same risk. A simulation study is carried out to evaluate the 11 

performance of the proposed estimation procedure and a case study is conducted. Results show 12 

that the bivariate estimation procedure has an analogous behaviour to the univariate one with 13 

respect to the risk and the sample size. However, the dependence structure between variables is 14 

ignored in the univariate case. The univariate estimates are obtained as special combinations by 15 

the multivariate procedure and with equivalent accuracy. 16 

 17 

18 



 3 

1. Introduction and literature review 1 

Serious economic and social consequences are generally associated to extreme 2 

hydrological events, such as floods, storms and droughts. It is hence of high importance to 3 

develop the appropriate models for the prediction of such events. Frequency analysis (FA) 4 

procedures are commonly used tools for the analysis of extreme hydrological events. Relating the 5 

magnitude of extreme events to their frequency of occurrence is the principal aim of FA. This 6 

relationship can be obtained through the use of probability distributions (Chow et al., 1988). 7 

 8 

Generally, hydrological events are characterized by several correlated variables, for 9 

instance, flood volume, peak and duration (e.g., Ashkar, 1980; Yue et al., 1999; Shiau, 2003; De 10 

Michele et al., 2005; Zhang and Singh 2006); storm duration and intensity (e.g., Salvadori and De 11 

Michele, 2004); and drought volume, duration and magnitude (e.g., Ashkar et al., 1998; Kim et 12 

al., 2003). Multivariate FA has recently attracted increasing attention and the importance of 13 

jointly considering all variables that characterize an event was clearly pointed out. However, the 14 

quantile notion was not studied appropriately in hydrological FA in a multivariate context. The 15 

univariate aspects of FA have been studied extensively, see e.g. Stedinger and Tasker (1986), 16 

Cunnane (1987) and Rao and Hamad (2000).  17 

 18 

Justifications for adopting the multivariate framework to treat extreme events were 19 

discussed in several studies. In bivariate FA, Yue et al. (1999) concluded that single-variable 20 

hydrological FA can only provide limited assessment of extreme events. Indeed, univariate FA 21 

cannot provide a complete assessment of the probability of occurrence if the underlying 22 

hydrological event is described by a set of correlated random variables. The joint study of the 23 



 4 

probabilistic characteristics of such events, through their joint distribution, leads to a better 1 

understanding of the phenomenon. It was also outlined in Shiau (2003) that multivariate FA 2 

requires considerably more data and more sophisticated mathematical analysis. Univariate FA 3 

can be useful when only one random variable is significant for design purposes or when the two 4 

random variables are less dependent. However, the analysis of each random variable separately 5 

cannot reveal the significant relationship between them. Therefore, it is of importance to jointly 6 

consider the underlying random variables. Salvadori et al. (2007) pointed out that if one variable 7 

is significant in the design process, then univariate FA may be applied. Otherwise, univariate FA 8 

cannot provide complete assessment of the probability of occurrence.  9 

 10 

The multivariate hydrological FA literature mainly treated one or more of the following 11 

three elements: (1) showing the importance and explaining the usefulness of the multivariate 12 

framework, (2) fitting the appropriate multivariate distribution (copula and marginal 13 

distributions) in order to model extreme events, and estimating the corresponding parameters, and 14 

(3) defining and studying bivariate return periods. The quantile is an important and extensively 15 

studied notion in univariate hydrological FA. However it was not properly addressed in the 16 

multivariate FA framework. For a random variable that represents the magnitude of an event that 17 

occurs at a given time and at a given site, the quantile function expresses the magnitude of the 18 

event in terms of its exceedence or non-exceedence probability. These probabilities are also 19 

associated to return periods. The goal of FA is to obtain reliable estimates of the quantiles 20 

corresponding to return periods of specific relevance (Rao and Hamed, 2000).  21 

 22 

The usual univariate quantile can be extended to the multivariate setting in several ways 23 

(see Serfling, 2002 and Belzunce et al., 2007). One of the main difficulties of multivariate 24 



 5 

quantile extensions is related to the interpretation of the obtained quantile values. The objectives 1 

of the present paper are to introduce multivariate quantiles in hydrological FA, to adapt them to 2 

the resolution of hydrological problems, to interpret their significance and to study their 3 

properties. We also propose an estimation procedure for multivariate quantiles and establish the 4 

link with the univariate framework. To reach the above objectives, the multivariate quantile 5 

version presented by Belzunce et al. (2007) is adopted in the present paper. It possesses several 6 

advantages: it is simple, intuitive, interpretable and probability-based (rather than analytic, 7 

algebraic or geometric).  8 

 9 

The paper is organized as follows. In Section 2, we present a short review of multivariate 10 

quantiles in the statistical literature. Section 3 presents multivariate quantiles in hydrology with 11 

an adaptation of the proposed procedure to floods in Section 4. Section 5 contains a simulation 12 

study. We present some properties of multivariate quantiles including a comparison between 13 

univariate and bivariate quantiles in Section 6. Section 7 contains an application of the procedure 14 

to a case study. Conclusions and directions for future work are reported in the last section. 15 

 16 

2. Multivariate quantiles in statistical literature 17 

In the statistical literature, several studies proposed to extend the well-known univariate 18 

quantile to higher dimensions. Serfling (2002) presented a review and a classification of some of 19 

these multivariate quantile versions. According to this classification, there are two major 20 

categories of multivariate quantiles: vector- and real-valued quantiles.  21 

The vector-valued category contains four classes: 22 

- Multivariate quantiles as inversions of mappings:  23 



 6 

In the univariate setting, a quantile is defined as an inversion of the corresponding 1 

cumulative distribution function. For a random vector X having an absolutely continuous 2 

distribution F on d
ℝ  d >1, a multivariate quantile is defined as the inverse of the mapping 3 

(see Koltchinskii and Dudley, 1996):  4 

{ }( ) ( )Ft G t E X t X t→ − = − −   from  d
ℝ  to d

ℝ     (1) 5 

- Multivariate quantiles based on norm minimization:  6 

This kind of multivariate quantiles is developed by Abdous and Theodorecu (1992) and 7 

Chaudhuri (1996). This extension corresponds to the following characteristic of the 8 

univariate pth-quantile (see Ferguson, 1967): 9 

The quantile corresponds to the value of θ that minimizes { }(2 1)( )E Z p Zθ θ− + − −  10 

for a random variable Z with  E Z < ∞ . Several forms of the function to be optimized lead 11 

to several multivariate quantile functions. 12 

- Multivariate quantiles based on depth functions:  13 

One of the quantile features is that it is defined through “order statistics” by ordering the 14 

sample. Depth functions are mainly introduced to define an outward ordering in a 15 

multivariate sample. Hence, multivariate quantile functions can be defined through the use 16 

of depth functions. The reader is referred to Zuo and Serfling (2000) for a review regarding 17 

depth-functions and to Chebana and Ouarda (2008) for an adaptation and application in 18 

hydrology. 19 

- Data-based multivariate quantiles based on gradients: 20 

This version extends the property of the median which minimizes over θ  the function 21 

( ) | |ii
D Xθ θ= −∑ , or equivalently, it is a zero of the gradient ( ) sng( )ii

S Xθ θ= − −∑ . 22 



 7 

Extension to the multivariate context considers various choices of D(.) and the 1 

corresponding gradients S(.), for example 1 1
( ) ii

D Xθ θ= −∑  (see Hettmansperger et al., 2 

1992). 3 

 4 

In the real-valued quantile category, we find only one class. It is related to the generalized 5 

quantile processes defined as follows. Let P be a probability distribution on d
ℝ , C a subclass of 6 

Borel sets and λ  a real-valued function, then this quantile function is given by: 7 

{ }( ) inf ( ); : ( )U p c c C P c pλ= ∈ ≥      (2) 8 

Generalized quantile processes were introduced by Einmahl and Mason (1992). Some examples 9 

and applications are given in Serfling (2002). This version is more complex than the above ones, 10 

since it is general and valid even for discrete random variables. 11 

 12 

 Recently, Belzunce et al. (2007) defined another bivariate vector-valued quantile version. 13 

This version is not included in the review by Serfling (2002) and is focused on the bivariate 14 

context. Let ( , )X Y be an absolutely continuous random vector and ]0,1[p∈ . The pth bivariate 15 

quantile set or bivariate quantile curve for the direction ε  is defined as:  16 

{ }2

, ( , ) ( , ) : ( , )X YQ p x y F x y pεε = ∈ =ℝ  (3) 17 

where ( , )F x yε  is one of the following probabilities : 18 

{ } { } { }( , ) Pr ,  , ( , ) Pr ,  , ( , ) Pr ,  F x y X x Y y F x y X x Y y F x y X x Y yε ε ε++ +− −−= ≥ ≥ = ≥ ≤ = ≤ ≤19 

and { }( , ) Pr ,  F x y X x Y yε −+ = ≤ ≥ .  20 

Note that equation (3) describes four quantile curves. Each one of these curves 21 

corresponds to one of the four quadrant events: Simultaneous exceedence { },  X x Y y≥ ≥ , 22 



 8 

exceedence-non-exceedence { },  X x Y y≥ ≤ , non-exceedence-exceedence { },  X x Y y≤ ≥  1 

and  simultaneous non-exceedence  { },  X x Y y≤ ≤ .  2 

 3 

3. Multivariate quantiles in hydrology 4 

In the present section we focus on the bivariate case for simplicity and clarity. However, 5 

all the elements of the developments can be defined and obtained in higher dimensions. In the 6 

bivariate case, we assume that X  and Y  are two random variables with joint distribution F , 7 

marginal distributions  and X YF F  respectively and copula C (copulas are presented in Appendix 8 

A1). The variables X  and Y represent the characteristics of a hydrological phenomenon.  9 

 10 

3.1.  Quantiles 11 

In multivariate FA the focus was made on the multivariate return period (e.g., Shiau, 2003 12 

and Salvadori et al., 2007). To our knowledge, the notion of multivariate quantiles is not 13 

employed in hydrology. The bivariate quantile version given in (3) is selected to be employed in 14 

the present paper. Aside from its simplicity and intuitivity, this quantile version does not require 15 

any symmetry assumption and the bivariate distribution (copula and margins) appears in its 16 

evaluation. Furthermore, this quantile version is probability-based (convenient for risk 17 

evaluation) rather than analytical or geometrical. In other words, the bivariate quantile (3) is a 18 

curve corresponding to any combination (x,y) that satisfies ( , )F x y pε =  (an infinity of 19 

combinations).  20 

 21 



 9 

Using Skalr’s result (equation A1), expression (3) can be simplified. It can be obtained for 1 

the uniform margins and then transformed using the univariate marginal quantile function and the 2 

copula. Indeed, for instance when considering the event{ },X x Y y≤ ≤ , the quantile curve can be 3 

expressed as follows:  4 

{ }2 1 1

, ( ) ( , )  such that ( ), ( ); , [0,1] : ( , )X Y X YQ p x y x F u y F v u v C u v p− −= ∈ = = ∈ =ℝ   (4) 5 

 6 

In the bivariate setting, among the four simultaneous events described above, the 7 

simultaneous exceedence { },  X x Y y≥ ≥  and simultaneous non-exceedence  { },  X x Y y≤ ≤  8 

would be of interest in hydrology. This is mainly so because of the positive correlation, generally 9 

observed between the variables X and Y. Salvadori et al. (2007, page 127) indicated that, when 10 

investigating droughts, the event { },  X x Y y≤ ≤  could be of interest, whereas the event 11 

{ },  X x Y y≥ ≥  is important if floods are considered. On the other hand, it is indicated in the 12 

literature (e.g., Shiau, 2003 and Salvadori et al., 2007), that the event { },  X x Y y≥ ≥  is of 13 

interest especially when the focus is on the evaluation of return periods. However, when the focus 14 

is on the evaluation of quantiles, the event { },  X x Y y≤ ≤  is of more interest, just as it is the 15 

case in the univariate setting (e.g., Hosking and Wallis, 1997). 16 

 17 

The quantile curve is composed of two parts: the naïve part (tail) and the proper part 18 

(central). The naïve part is composed of two segments starting at the end of each extremity of the 19 

proper part. In the remainder of the paper, the term “quantile curve” refers to the proper part of 20 

the curve, unless indicated otherwise. The usual univariate quantiles are special cases of the 21 

bivariate quantile curve given in (3). The univariate quantiles represent the extreme points of the 22 



 10 

proper part of the bivariate quantile curve as illustrated in Figure 1. More details and explanations 1 

regarding these elements are given in Section 6.  2 

 3 

For convenience, the following notations are employed throughout the paper: 4 

pQC  is the bivariate quantile curve associated to a risk p of the considered event on variables X 5 

and Y ; , ( )x yQ p  represents a point (a combination) of the curve pQC ; ( )xQC p  and ( )yQC p  are 6 

the coordinates of the point , ( )x yQ p , that is ( ), ( ) ( ), ( )x y x yQ p QC p QC p= . The univariate 7 

quantiles are denoted as ( )XQD p  and ( )YQD p  when directly evaluated and ( )XQL p  and 8 

( )YQL p  when deduced as extreme values from the bivariate quantile curve. These notations are 9 

illustrated in Figure 1 for the non-exceedence event. 10 

 11 

3.2.  Quantile estimation procedure 12 

In practice the true quantile is unknown and hence should be estimated. One can proceed 13 

by fitting a bivariate distribution, estimating its parameters and then obtaining the estimated 14 

quantile curve. More explicitly, given a bivariate sample the procedure is composed of the 15 

following steps: 16 

1. Fit a multivariate distribution to the data set:  17 

a. Fit a copula to the data set;  18 

b. Fit marginal distributions for each variable separately; 19 

2. Estimate the distribution parameters:  20 

a. Estimate the parameters of the copula of step 1.a; 21 

b. Estimate the parameters of each marginal distribution of step 1.b; 22 



 11 

3. Specify the event of interest according to the phenomenon being studied and the specific 1 

application (e.g., { },X x Y y≤ ≤ ); 2 

4. Estimate the different quantile combinations , ( )x yQ p  that constitute the quantile curve for a 3 

given risk p in (0,1); 4 

5. Select the appropriate combination(s) for the specific application. 5 

 6 

To deal with step 1 in the described procedure, goodness-of-fit tests are required for the 7 

copula as well as for the marginal distributions. More precisely, these statistical tests deal with 8 

composite null hypotheses and focus on a specific parametric class of distributions (copula and 9 

margins). In a composite null hypothesis, we assume, for instance, that the copula belongs to the 10 

logistic Gumbel class and the marginal distributions are in the Generalized Extreme Value class. 11 

Such tests are well-known in the literature for univariate distributions. For instance, the empirical 12 

cumulative distribution function given by Cunnane (1978) can be used. Some statistical tests 13 

(numerical or graphical) have also been developed to treat copula’s goodness-of-fit (see, e.g. 14 

Genest and Rivest, 1993; Fermanian, 2005 and Genest et al., 2009).  15 

 16 

Once the parametric class of distributions (copula and margins) is identified from step 1, 17 

the corresponding parameters should be estimated. To estimate the distribution parameters (step 18 

2), several methods exist in the literature especially in the univariate setting: For instance, the 19 

method of moments, the maximum likelihood method (e.g., Johnson, et al., 1995), the 20 

generalized method of moments (e.g., Ashkar and Ouarda, 1996), the L-moments method 21 

(Hosking and Wallis, 1997), the generalized maximum likelihood approach (Martins and 22 

Stedinger, 2000) and mixed methods (Chebana et al., 2008). Regarding the parameters of 23 



 12 

copulas, general estimation methods, such as the maximum likelihood method and the method of 1 

moments, can be applied. For instance, in the case of bivariate Archimedean copulas, Genest and 2 

Rivest (1993) employed a method of moments based on Kendall’s tau coefficient to estimate the 3 

dependence parameter. 4 

 5 

Note that the procedure presented above is parametric which is commonly used in 6 

hydrological FA. Nonparametric approaches have been employed in hydrological FA in the 7 

univariate context (see e.g., Adamowski and Feluch, 1990; Ouarda et al., 2001). However, Singh 8 

and Strupczewski (2002) reported that nonparametric methods are of limited use for the hydraulic 9 

design of major structures.  10 

 11 

Even though the above estimation procedure is presented in the bivariate setting, it can be 12 

defined when more than two variables are involved to characterize the phenomenon. In the 13 

following we state the required elements as well as some difficulties that may arise when the 14 

multivariate setting is considered. Let ( )1,..., dX X  be a random vector defined on d
ℝ , 1d ≥ , 15 

with joint distribution F and marginal distributions 1,..., dF F . In this setting, Sklar’s theorem 16 

expresses the existence of a copula C that meets the condition  17 

( )1 1 1( ,..., ) ( ),...,  ( )d d dF x x C F x F x=  1for real ,..., dx x . To define the analogous of the quadrant 18 

events, let I and J be two subsets, which may be empty, that constitute a partition of { }1,2,...,d . 19 

The events of interest are of the form { }, ,   for ,d

I J i i j jE X x X x i I j J= ≤ ≥ ∈ ∈ . The number of 20 

these events is 2d  (four in the bivariate setting). The quantile version (given in (3) or (4)) can be 21 

defined in a multivariate context instead of the bivariate one. For instance, assume the event of 22 



 13 

interest is { }, 1 1,...,
d

I d dE X x X x∅ = ≤ ≤ . Then the corresponding multivariate quantile can be 1 

given by: 2 

{ }
1

1

,..., 1 1( ) ( ,..., )  such that ( ); [0,1], 1,..., : ( ,..., )
d

d

X X d j j j j dQ p x x R x F u u j d C u u p−= ∈ = ∈ = =  (5) 3 

For d = 3, there are 8 possible joint events 3

,I JE , such as 4 

{ }{ } { }3

1 1 2 2 3 32 , 1,3
, ,E X x X x X x= ≥ ≤ ≥ . The corresponding multivariate quantiles represent, for 5 

each event, a surface in a three-dimensional space.  6 

 7 

Therefore, all theoretical elements required to define the procedure in a d-dimensional 8 

space are available. However, in practice, some difficulties may arise. The effective modeling of 9 

the multivariate copula is an important element of the analysis. Indeed, even though some well-10 

known classes of Archimedean copulas and extreme value copulas are available in the 11 

multivariate setting, they are not convenient to model complex dependence structures. Defining 12 

and fitting other kinds of copulas, for 3d ≥ ,  is a subject of interest and continuous development. 13 

The number of parameters, to be estimated for the copula and each marginal distribution grows 14 

quickly with the dimension d and hence increases the related uncertainty. The complexity of the 15 

considered copula and the numerical difficulties encountered in the bivariate setting, such as the 16 

resolution of equation (3), become even more important when the dimension of the problem 17 

increases. 18 

 19 

4. Adaptation to floods 20 

The multivariate quantile estimation procedure may be applied to several hydrological 21 

phenomena, such as droughts, storms and floods. In this section, the multivariate procedure is 22 



 14 

adapted to flood events. That consists in specifying the variables of interest, identifying the 1 

appropriate copula and the marginal distributions, estimating their parameters and stating the 2 

quantile curves more explicitly.  3 

 4 

4.1. Flood characteristics 5 

Floods are mainly described through three variables obtained from the corresponding 6 

hydrograph, that is their volume X, peak Y and duration Z. Figure 2 illustrates a typical flood 7 

hydrograph with these characteristics. It was shown in several studies that flood peak and volume 8 

are highly correlated as well as flood volume and duration, but flood peak and duration are not 9 

significantly correlated (see e.g., Yue el al., 1999). In the present section the bivariate volume and 10 

peak vector (X,Y) is considered.  11 

 12 

4.2. Bivariate distribution 13 

In the literature, flood peaks and flood volumes are often marginally represented by a 14 

Gumbel distribution (e.g. Yue et al., 1999 and Shiau, 2003). The cumulative distribution function 15 

for a random variable X following a Gumbel distribution is given by: 16 

( ){ }( ) exp exp ,   real,  0 and realX

X

x

X X XF x x
β

α α β−= − − >    (6) 17 

Archimedean copulas represent convenient multivariate models to describe the 18 

dependence structure for hydrological flood events (e.g. Salvadori and De Michele, 2004). More 19 

precisely, Zhang and Singh (2006) showed the superiority of the Gumbel logistic copula for 20 

modeling flood volume and peak dependence. The copula representing the Gumbel logistic 21 

model is expressed according to the following formula:  22 

{ }1/

( , ) exp ( log ) ( log ) ,  1 and 0 , 1C u v u v u v
γγ γ

γ γ = − − + − ≥ ≤ ≤   (7) 23 



 15 

where γ  is the dependence parameter. The Gumbel logistic copula C γ  is an Archimedean copula 1 

with generator function ( )( ) log ,0 1t t t
γψ = − < < . It is also an extreme value copula with 2 

dependence function ( )1/

( ) (1 )A t t t
γγ γ= − + (see Appendix A1). 3 

 4 

4.3. Estimation of the parameters 5 

Several methods are available in the literature to estimate the parameters  and X Xα β  of 6 

the marginal Gumbel distribution, for instance, the L-moment method (Hosking and Wallis, 7 

1997) and the maximum likelihood method (e.g., Johnson et al., 1995).   8 

 9 

The parameter γ  of the Archimedean copula C γ  can be expressed as a function of the 10 

correlation coefficient ρ  and the Kandall’s tau coefficient. Gumbel and Mustafi (1967) 11 

expressed γ  as a function of the correlation coefficient ρ  as: 12 

1
,    0 1

1
γ ρ

ρ
= ≤ <

−
   (8) 13 

Genest and Rivest (1993) provided the equation of γ  as a function of the Kandall’s tau 14 

coefficient [ ]4 ( , ) 1E F X Yτ = − : 15 

 1
1

τ
γ

τ
= +

−
     (9) 16 

 17 

4.4. Bivariate quantile curves 18 

For an Archimedean copula with a generator function ϕ  and a given value of ] [0,1p∈ , 19 

the quantile curve given by (3) corresponding to the event { },X x Y y≤ ≤  is given by: 20 



 16 

( ) ( ) ( ) ( ){ }, ( ) ( ), ( ) ; ( ( )) ( ( ))p x y x y Y y X xQC Q p QC p QC p F QC p p F QC pϕ ϕ ϕ= = = −  (10) 1 

according to the notation given in Section 3.1. More explicitly, for the Gumbel logistic copula, 2 

the generator ϕ  should be replaced by ( )( ) logt t
γψ = −  in expression (10) and both XF and YF  3 

by the expression of equation (6). 4 

 5 

In expression (10), the event being considered is the simultaneous non-exceedence for 6 

both variables X and Y. Other events can also be of interest in hydrology and are studied in the 7 

literature (e.g. Salvadori et al., 2007), such as { },  X x Y y≥ ≥ , { } or X x Y y≤ ≤  and 8 

{ } or X x Y y≥ ≥ . The corresponding quantile curves can be obtained using some probabilistic 9 

manipulations and depend only on the copula and the marginal distributions. We have, for 10 

instance, 11 

{ } ( )Pr ,  1 ( ) ( ) ( ), ( )X Y X YX x Y y F x F y C F x F y≥ ≥ = − − +   12 

{ } { }

( )

Pr  or 1 Pr ,  

         ( ) ( ) ( ), ( )X Y X Y

X x Y y X x Y y

F x F y C F x F y

< < = − ≥ ≥

= + −
 13 

Without loss of generality, in the present paper we consider the simultaneous exceedence and 14 

non-exceedence events { },  X x Y y≥ ≥ and { },  X x Y y≤ ≤  respectively.  15 

 16 

5. Simulation study 17 

In order to evaluate the performance of the proposed procedure, a simulation study is 18 

carried out. In this section we present the generation procedure, the performance evaluation 19 

criteria and the obtained results. 20 



 17 

 1 

5.1.  Generated samples  2 

The simulations deal with floods. We generate M= 10 000 samples representing the 3 

volume (X) and peak (Y) variables with sample sizes n = 30 and 60. According to Section 4, the 4 

generated samples are from a bivariate distribution composed by Gumbel margins and a Gumbel 5 

logistic copula given in (6) and (7) respectively. The considered parameters of the marginal 6 

distributions are 300.22,  1239.80X Xα β= =  and = 15.85, 51.85Y Yα β = . For comparison 7 

purposes, the parameter of the Gumbel logistic copula is taken to be 8 

 =1,1.414,3.162γ (equivalent to 0,0.5,0.9ρ =  according to (8)). The sample generation is based 9 

on the algorithm developed by Ghoudi et al. (1998) and presented in Appendix A1. 10 

 11 

The parameters are estimated using the L-moment method (Hosking and Wallis, 1997) 12 

and equation (8). The quantiles (bivariate and univariate) are obtained for the values of the risk p 13 

= 0.9, 0.99 and 0.995. The considered events are the simultaneous non-exceedence and 14 

exceedence events as indicated at the end of Section 4.4. 15 

 16 

5.2. Performance evaluation criteria 17 

Given the nature of bivariate quantiles (curves), the usual performance evaluation criteria 18 

do not apply and should be adapted. Basically, the evaluation consists in the assessment of the 19 

distance between the true and estimated quantile curves. In the present case, the quantile curve is 20 

a function. Consequently, the notation ( , ( ))px G x  for the quantile curve is convenient for the 21 

definition of the evaluation criteria and will be adopted. Let M be the number of simulation 22 



 18 

repetitions, and let [ ]ˆ ( )m

pG x  be a coordinate of the mth repetition of the estimated quantile for p 1 

( 0 1p< < ). Then, the corresponding point-wise relative error is given by: 2 

[ ]

[ ]
ˆ ( ) ( )

( )
( )

m

p pm

p

p

G x G x
R x

G x

−
=       (11) 3 

Note that these relative differences represent vertical point-wise distances between the underlying 4 

curves. To be more interpretable, the point-wise relative errors (11) should be summarized with 5 

respect to x and m. For x, we consider distances or norms in functional spaces such as the L
r 

6 

distances with 1r ≥ . The L
r 
distances are defined as 

1 r

r

r

S

f g f g dλ
 

− = − 
 
∫ . They represent 7 

distances between two functions f and g on a given space S with a positive measure λ  (see, e.g., 8 

Jones, 1993, Chapter 10). The L
1
, L

2
 and L∞  are the most commonly used particular cases. It is 9 

shown (see, e.g., Jones, 1993) that 
r r ′
≤  for 1 r r ′≤ ≤ . Note that the L

1 
distance is more 10 

intuitive and more representative than L
2
 and L∞ . However, it is theoretically more complex to 11 

handle. Generally, estimations in FA are evaluated using relative bias (RB) and relative root-12 

mean-square-errors (RRMSE). The use of L
1
, L

2
 and L∞ distances does not allow to evaluate the 13 

RB. To evaluate the RB, we propose criteria based on the following relative integrated error: 14 

*[ ] [ ]1
( ) ( ) ,        0 1,   1,...,

p

m m

p

p QC

RIE p R x dx p m M
L

= < < =∫  (12) 15 

where pL is the length of the proper part of the true quantile curve pQC . 16 

The integral *[ ]( )mRIE p  cannot define a norm since it may have negative values. The “pseudo-17 

norm” associated to *[ ]( )mRIE p is denoted by L
1*

 since it is similar to L
1
.  18 

 19 



 19 

Regarding the RRMSE, the pseudo-norm L
1*

 is not appropriate since its values may be 1 

very small whereas the estimated and true curves are very different. Hence, it is convenient to 2 

evaluate the RRMSE on the basis of the following L
1
 distance given by: 3 

[ ] [ ]1
( ) ( ) ,        0 1,   1,...,

p

m m

p

p QC

RIE p R x dx p m M
L

= < < =∫    (13) 4 

 5 

In (12) and (13), the length pL  is assumed to be non null. A discussion related to this point is 6 

presented in Section 6.  7 

 8 

Then, in order to evaluate the estimation error on the M generated samples, the RB and the 9 

RRMSE are respectively based on *[ ]( )mRIE p  and [ ]( )mRIE p  and are given by: 10 

*[ ]

1

1
( ) 100 ( )

M
m

m

RB p RIE p
M =

= ∑     and  ( )2[ ]

1

1
( ) 100 ( )

M
m

m

RRMSE p RIE p
M =

= ∑   (14) 11 

The RB based on *[ ]( )mRIE p  is useful to indicate whether there is an over- or under-estimation. 12 

 13 

5.3. Simulation results 14 

Before presenting the simulation results, we illustrate true and estimated quantile curves 15 

as well as the value of the relative errors given in (11) for p = 0.9 and γ =1.414 . The relative 16 

errors are presented in Table 1 whereas Figure 3 illustrates the corresponding true and estimated 17 

quantile curves for two generated samples of size n = 30. For both samples, the relative errors 18 

associated to the univariate quantiles, directly evaluated or as extreme points, are similar for each 19 

variable. The bivariate quantile curve is over-estimated for the first sample and under-estimated 20 

for the second. We observe that the values of Table 1 are in agreement with the curves in Figure 21 

3. We conclude that the relative errors reflect the obtained results. Therefore, the RB based on L
1*

 22 



 20 

can be employed, jointly with the RRMSE based on L
1
, as convenient criteria in the multivariate 1 

FA setting. Note that all possible combined criteria (RB and RRMSE) and “norms” (L
1*

, L
1
 and 2 

L
2
) were considered. They are not presented since they were not judged to provide additional 3 

information. 4 

 5 

The univariate quantiles can be evaluated directly or as extreme points of the bivariate 6 

quantile curve. Note that similar errors do not imply similar estimated values obtained by both 7 

approaches. That is ˆ ˆ( ) ( )x x y y− ≈ −  does not lead to  ˆ ˆx y≈ unless we have x y≈ . Hence, it 8 

is useful to compare the true values of the univariate quantiles using both approaches. This is the 9 

object of Table 2 for the non-exceedence event using the parameters ,X Xα β , , Y Yα β  and 10 

 =1, 1.414, 3.162γ . The corresponding relative differences are very low especially in the 11 

dependent cases. Therefore, in the remainder of the paper, the evaluations using both methods are 12 

considered to be almost equivalent. 13 

 14 

Tables 3 and 4 illustrate the simulation results and correspond respectively to  n = 30 and 15 

n = 60 results for both simultaneous exceedence and non-exceedence events. Several conclusions 16 

related to the variation of the relative errors can be deduced from these results with respect to 17 

different factors including sample size, dependence parameter, risk p and the type of events. 18 

 19 

From the results, it can be seen that L
1*

 can be considered as a convenient indicator to 20 

evaluate the simulation performance. We observe that the RB is very small as it does not exceed 21 

0.6% for the exceedence event and it is less than 1% for the non-exceedence event. It is generally 22 

observed in hydrological FA that the errors expressed in terms of the criteria RB and RRMSE for 23 



 21 

the quantiles are lower than those of the parameters. The low values of the quantile estimation 1 

RB can be explained by the effect of the compensation of parameter errors.  2 

 3 

In general, we observe that the values of the performance criteria increase with respect to 4 

the risk p in both univariate and bivariate settings with some exceptions. In the univariate setting, 5 

the observed exception is related to the RRMSE of X when p increases from 0.99 to 0.995 in the 6 

simultaneous exceedence event when n = 30 (Table 3). However, when n takes the values 60, the 7 

RRMSE of X has an increasing behaviour (Table 4). Hence, this exception is due to the short 8 

sample size. In the univariate framework, the increase of the error with respect to the risk p is 9 

well known. This behaviour can be explained by the fact that a quantile corresponding to a small 10 

risk is close to the central body of the distribution. Therefore, an important part of the data 11 

contributes to its estimation. In the bivariate setting, exceptions are observed in the simultaneous 12 

non-exceedence event for both values of n (Tables 3 and 4). These exceptions are not due to the 13 

sample size as in the univariate case. They can be explained on the basis of the “curse of 14 

dimensionality”. The curse of dimensionality means, in the present context, that the central part 15 

of a multivariate distribution contains little probability mass and samples tend to fall in the tails 16 

of the distribution. To explain this aspect, we consider a uniform distribution on the unit 17 

hypercube in d
ℝ and we denote df as the fraction of the volume of the hypercube contained in 18 

the unit hypersphere. When the dimension d varies from 1 to 7, the fraction df  takes respectively 19 

the values 1, 0.79, 0.52, 0.31, 0.16, 0.08 and 0.04 (Scott, 1992, Chapter 1). We observe that df  20 

decreases rapidly with respect to the dimension d. For more details and examples, the reader is 21 

referred to Scott (1992). In the present case where d = 2, the variation in the part of the data that 22 

contributes to the estimation is very small. Hence the RRMSE, which is expected to increase with 23 
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respect to p, is seen to decrease slightly (less than 0.5%). This situation arises in the non-1 

exceedence event for 1.414γ = and  1γ =  if p increases from 0.99 to 0.995 (Tables 3 and 4).  2 

 3 

The relative error variations are negligible for the univariate estimation with respect to the 4 

values of the dependence parameter γ . The reason is that the marginal distributions are not 5 

affected by the copula and the copula has always the same values in its extreme points, that is 6 

C(u, 1) = u and C(1,v) = v for all u, v I∈ (see Appendix A1). However, for the bivariate setting 7 

we have two different situations. For the non-exceedence event, the RRMSE increases with 8 

respect to the dependence parameter γ . Whereas for the exceedence event, and for both values of 9 

n, the RRMSE can be considered constant with a slight increase of the RB with respect to γ . 10 

Figure 4 helps to explain the difference of behaviour of the RRMSE for the exceedence and non-11 

exceedence events. It illustrates the three true quantile curves corresponding to the three values of 12 

γ  for both exceedence and non-exceedence events. When comparing Figures 4b and 4c, we 13 

observe that the three curves are closer to each other in the exceedence event than in the non-14 

exceedence event. Furthermore, we observe that the exceedence event curves are bounded by the 15 

zero axes and are shorter than those of the non-exceedence event.  16 

 17 

When comparing the results of bivariate and univariate quantile estimation, we observe 18 

that:  19 

- In the exceedence event: the RBs of X and Y are similar whereas the RRMSE related to Y 20 

quantiles is significantly larger than the RRMSE of X especially for small n and large p. The 21 

RB of the bivariate estimation is larger than the RB of Y. The RRMSEs of Y and the 22 

bivariate estimation are very close with slight differences of around 1%.  23 



 23 

- In the non-exceedence event: the values of the RB and RRMSE related to X and Y are 1 

similar. The values of these criteria for the bivariate estimation are larger than those of each 2 

one of the univariate cases. The differences between them decrease when n increases.  3 

In both cases of events, the RB and RRMSE of bivariate estimation are relatively larger than 4 

those of univariate estimation. This can be explained by the fact that the bivariate estimation 5 

includes the errors from the parameters of the marginal distributions as well as the errors from the 6 

dependence parameter of the copula. It is important to note that the RB and RRMSE are evaluated 7 

differently for the univariate and the bivariate settings. 8 

 9 

We observe from Tables 3 and 4 that the sample size n has an effect on the results in 10 

several ways. First, the estimation becomes more accurate when n increases from 30 to 60 for all 11 

situations. Second, in the univariate setting, the increasing behaviour of the RB and RRMSE with 12 

respect to p is better respected when n increases. Third, in the non-exceedence event, the 13 

differences of RB and RRMSE between the bivariate and univariate estimations are reduced. 14 

 15 

Finally, we conclude that the bivariate estimation procedure performs comparably to the 16 

univariate procedure in terms of RB and RRMSE behaviour with respect to the risk p and the 17 

sample size n. However, the univariate estimation does not consider the variation in the 18 

dependence structure of the phenomenon. In terms of the relative error values, it is important to 19 

notice that the univariate and bivariate procedures employ different performance criteria. 20 

 21 

6. Multivariate quantile properties 22 



 24 

In this section we present a set of general statements that are useful to explain bivariate 1 

quantiles as well as their relation with univariate quantiles. In order to reduce space, we only treat 2 

the simultaneous non-exceedence event. Other events can be treated similarly.  3 

 4 

For p in ]0, 1[, recall that 1( ) ( )X XQD p F p−=  and 1( ) ( )Y YQD p F p−=  are the marginal 5 

quantiles and ( )( ), ( )x yQC p QC p  is one of the bivariate quantile combinations such that 6 

{ }Pr ( ), ( )x yX QC p Y QC p p≤ ≤ = . The bivariate quantile gives several possible scenarios 7 

( )( ), ( )x yQC p QC p  which all lead to the same risk p. Note that the values of the coordinates 8 

( )xQD p  and ( )yQD p  vary in opposite directions, to preserve the same risk p. We have 9 

necessarily ( ) ( )X xQD p QC p≤ and ( ) ( )Y yQD p QC p≤ , since all quantities { }Pr ( )XX QD p≤ , 10 

{ }Pr ( )YY QD p≤  and  { }Pr ( ), ( )x yX QC p Y QC p≤ ≤  are equal to p . In other words, the 11 

marginal quantiles correspond to the extreme scenarios related to the event: the smallest 12 

( )xQD p and the largest ( )yQD p  and vice versa. More explicitly, the univariate quantiles 13 

correspond to the particular combinations ( )( ),XQD p ∞  and ( ), ( )YQD p∞  in (3). Indeed, 14 

( )XQD p  is defined such that { } { }Pr ( ) Pr ( ),X XX QD p X QD p Y p≤ = ≤ < ∞ =  where the 15 

maximum value of Y can be infinitely large, see illustration in Figure 1. On the basis of the 16 

bivariate distribution used in the simulation section with 1.414γ = , Figure 5 illustrates the 17 

corresponding quantile curves for three values of p. We observe from Figure 5 that the quantile 18 

curves are composed by two parts: a central part which corresponds to the “proper” combinations 19 

and a tail part which corresponds to the “naïve” combinations where the curve is constant. It is 20 
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important to identify the first combination where the curve is constant on each axis as illustrated 1 

in Figure 5.  2 

 3 

When p is very close to 0 and 1 in the exceedence and non-exceedence events the 4 

corresponding proper part of the quantile curve becomes respectively the combinations 5 

( )1 1(0), (0)X YF F− −  and ( )1 1(1), (1)X YF F− − . It can be obtained since (0,0) 0C =  and (1,1) 1C = . The 6 

criteria given in (12) and (13) cannot be defined since the length Lp is null. If necessary, these 7 

criteria should be evaluated as “distances” between points instead of curves. The values 1(0)XF
−  8 

and 1(1)XF
−  represent the support extremities of the marginal distribution of X. Note that 1(0)XF

−  9 

and 1(1)XF
−  may be infinite. For a given sample, the combinations ( )1 1(0), (0)X YF F− −  and 10 

( )1 1(1), (1)X YF F− −  represent respectively ( )min( ),min( )i i
i i

X Y  and ( )max( ),max( )i i
i i

X Y . 11 

 12 

In the non-exceedence event { },X x Y y≤ ≤ , small values of the risk p correspond to a 13 

large number of possible scenarios in the practical sense but not in the mathematical sense. When 14 

the risk p increases, the number of such scenarios decreases, and hence the quantile curve 15 

becomes shorter. Therefore, the univariate and the bivariate quantile combinations become closer 16 

as points in the bidimensional space as illustrated in Figure 5. 17 

 18 

In the multivariate context, for a given problem, we have “one” joint event, e.g. 19 

{ },X x Y y≤ ≤ , to which we associate “one” risk level to be evaluated. However, in the 20 

univariate setting, for the same problem, each variable needs to be treated separately. That 21 
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induces several events, e.g. { }X x≤  and { }Y y≤ , and hence possibly several risk levels to 1 

evaluate. Furthermore, some events cannot be expressed in the univariate context. That situation 2 

occurs generally when the events are not of “rectangular” form. The univariate context can only 3 

provide the bounds of each variable without any information about the shape of the relation 4 

between the variables. Figure 6 illustrates a specific situation of an ellipse and a rectangle where 5 

the bounds of X and Y are the same for both shapes. The ranges corresponding to these two 6 

situations can be described precisely in the multivariate context. 7 

 8 

It is clear that flood peak and volume values obtained by single-variable FA are 9 

significantly different from those obtained using the bivariate distribution. As it was indicated 10 

previously, floods are naturally multivariate phenomena. As a consequence, bivariate modeling is 11 

more realistic than the univariate one. This means that the realistic quantile values are those 12 

obtained from the bivariate distribution. Figure 7 illustrates this fact on a specific case. It presents 13 

the true 0.99-quantile curve of the bivariate distribution used in the simulation section with 14 

1.414γ =  and the non-exceedence event. The realistic extreme combinations (volume, peak) 15 

corresponding to p = 0.99 are 1 2( , )x y  = (2621, 176) and 2 1( , )x y = (3589, 125). However, the 16 

univariate quantile values are (volume, x1= 2621) and (peak, y1= 125). Therefore, the 17 

combination of the univariate values 1 1( , )x y  = (2621, 125) corresponds to another risk 'p  18 

smaller than p = 0.99 and hence may lead to the wrong conclusions. Note that the values x2= 19 

3589 and y2=176 do not appear explicitly in the univariate context. The values x2 and y2, as 20 

univariate quantiles, correspond to a risk p ′′=1 since they represent the largest values of each 21 

variable. Hence, the combination 2 2( , )x y  corresponds also to the risk p ′′=1. Table 5 quantifies 22 
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the differences between univariate and bivariate quantile evaluations. This example shows that 1 

univariate estimation results should be used cautiously.  2 

 3 

Numerical difficulties can be encountered to obtain combinations of the bivariate quantile 4 

from the equation ( , )F x y p= . First, the resolution of this equation requires more running time 5 

when considering high values of p and especially when doing simulations. The reason is related 6 

to the thinness of the grid of the unit square that represents the range of copulas. The grid step is 7 

selected according to the value of p. For instance, in the present study, when p = 0.9, the grid step 8 

is 0.01 however this step becomes 0.003 for p = 0.99 and 0.0015 for p = 0.995. Second, when the 9 

copula representing the extreme event is not Archimedean, the bivariate quantile scenarios can be 10 

more complex to obtain. This difficulty occurs also in the univariate setting for some 11 

distributions.  12 

 13 

7. Case study 14 

 The data set used in this case study is taken from Yue et al. (1999) and concerns the 15 

Ashuapmushuan basin located in the Saguenay region in the province of Québec, Canada. The 16 

flood volume (X) and peak (Y) were extracted from a daily streamflow data set from 1963 to 17 

1995. The gauging station 061901 is near the outlet of the basin, at latitude 48.69°N and 18 

longitude 72.49°W. This region is characterized by a high spring-snowmelt flood season. 19 

 20 

The Gumbel marginal distribution (6) often represents well extreme events such as flood 21 

peak and volume (e.g. Yue et al., 1999 ; Shiau, 2003). It is also shown in the present study that 22 

the Gumbel distribution can be selected as a marginal distribution for both peak and volume (see 23 
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Figure 8a,b). The corresponding parameter estimates are obtained using the probability weighted 1 

moment method, or equivalently the L-moment method, and are given by 2 

ˆˆ 46262.0, 10295.6X Xα β= =  and ˆˆ = 1258.3, 291.4Y Yα β = . These estimates are very close to the 3 

ones obtained by Yue et al. (1999) using the method of moments. 4 

 5 

Furthermore, according to Figure 8c, the Gumbel logistic copula (7) can be selected to fit 6 

the dependence structure of the data set on the basis of the function K and its estimation given in 7 

Appendix A1. The correlation coefficient between X and Y is 0.60ρ =  which leads to the 8 

estimation of the corresponding parameter ˆ =γ 1.57 using (8). 9 

 10 

The bivariate quantile curves are obtained using the procedure proposed in Section 3. 11 

Figure 9 presents the quantile curves corresponding to the simultaneous non-exceedence event 12 

with different risk values (p = 0.9, 0.99 and 0.995). In the simultaneous exceedence event the 13 

quantile values corresponding to large values of p are negative for the volume and the peak. This 14 

is statistically possible since the Gumbel distribution is defined for real values of the variable 15 

(equation (6)). However, physically this is not possible since the volume and peak are positive 16 

characteristics. In the univariate setting the exceedence event quantile associated to large values 17 

of p corresponds to the left tail of the Gumbel distribution. The left tail of the Gumbel 18 

distribution is generally of less interest in hydrology. Note that Yue et al. (1999), who used the 19 

data set of the present case study, treated only the non-exceedence event. In Figure 9, we present 20 

also some possible combinations including the univariate ones for the non-exceedence event for p 21 

= 0.9, 0.99 and 0.995. As indicated in Section 6, we can identify from Figure 9 the two parts that 22 
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compose each quantile curve and also values of some particular combinations including the 1 

extreme ones. 2 

8. Conclusions and future work 3 

In the present paper we introduced the notion of multivariate quantile in hydrological FA. 4 

The extension of the quantile notion to high dimensions leads to several multivariate quantile 5 

versions. The selected version is simple, intuitive, probability-based and interpretable. Even 6 

though, the focus was on the bivariate context, the study can be conducted in higher dimensions 7 

with the appropriate adaptations. The bivariate quantile version developed in this study is a curve 8 

composed by several combinations with the same risk. The univariate estimated quantiles, 9 

correctly combined, are particular cases corresponding to the extreme scenarios of the bivariate 10 

quantile curve. Depending on the available resources and the nature of the project, one or more 11 

convenient scenarios may be selected. Hence, aside from being more accurate and realistic, the 12 

bivariate setting offers more flexibility to designers than the univariate framework. A parametric 13 

quantile estimation procedure is proposed. It was evaluated on the basis of a simulation study. 14 

The proposed procedure was also applied to a real world case study.  15 

 16 

Results show that the estimation procedure performs better for large sample sizes in all 17 

considered situations. The univariate estimation does not take into account the dependence 18 

structure between variables and should be used cautiously. The relative errors of both bivariate 19 

and univariate estimations are of the same order of magnitude with similar behaviours with 20 

respect to sample size and risk. The multivariate procedure provides univariate quantile estimates 21 

that are very close to those obtained directly using the univariate procedure and also with 22 

equivalent precisions. Note that the performances of univariate and bivariate procedures are 23 
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evaluated on the basis of different criteria. The main differences between univariate and bivariate 1 

estimations are conceptual.  2 

Even though several insights are brought to the multivariate FA through the present study, 3 

other remaining issues deserve to be developed in future work such as: 4 

- Study the impact of different factors that may have significant effects on estimation 5 

performances. This includes, for instance, the estimation method of the distribution 6 

parameters and the selection of the multivariate distribution. 7 

- Develop a nonparametric estimation procedure and compare its results with the parametric 8 

one. 9 

- Associate, to the estimated quantile curve, the corresponding confidence interval. 10 

- Consider other classes of copulas since not all hydrological phenomena are necessarily 11 

modeled with Archimedean copulas. 12 

- Develop regional multivariate FA models, such as the index-flood model, in order to treat the 13 

estimation in sites with short records or ungauged sites. Note that Chebana and Ouarda (2007) 14 

proposed discordancy and homogeneity statistical tests in the multivariate framework. These 15 

tests can be considered as a first step towards a regional estimation procedure.   16 
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Appendix:  1 

In this appendix, we present two useful notions for multivariate FA: copulas and bivariate 2 

return periods. 3 

 4 

A1. Copulas 5 

 To describe the dependence structure between two or more random variables, the notion 6 

of copula is employed. It is independent of the marginal distributions and hence the marginal 7 

distributions may belong to different classes of distributions. Copulas have recently received 8 

increasing attention in various science fields (see for instance Nelsen, 2006). A function  C: 9 

I I I× →  (I = [0, 1]) is said to be a copula if the following conditions are fulfilled : 10 

- for all u, v I∈ : C(u, 0) = 0, C(u, 1) = u, C(0, v) = 0, and C(1,v) = v;  11 

- for  all 1 2 1 2, , v , v  u u I∈ 1 2 1 2 and v vu u≤ ≤ :
2 2 2 1 1 2 1 1

( ,v ) ( ,v ) ( ,v ) ( ,v ) 0C u C u C u C u− − + ≥  12 

 13 

Sklar’s theorem (Sklar, 1959) provides the relationship between a bivariate distribution on 14 

one hand and the corresponding copula and marginal distributions on the other hand. Sklar’s 15 

result states that there exists a copula C such that: 16 

 ( )( , ) ( ),  ( )   for all real  and  yX YF x y C F x F y x=  (A1) 17 

where F  is the joint distribution of X and Y and  and X YF F are their marginal distributions 18 

respectively. In addition, if  and X YF F  are continuous, the copula C is unique.  19 

 20 
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 Two classes of copulas are of particular interest in statistical and hydrological literature: 1 

Archimedean and Extreme Value (EV) copulas. A bivariate Archimedean copula is characterized 2 

by the expression: 3 

( )1( , ) ( ) ( ) ,    0 , 1C u v u v u vψ ψ ψ−= + < <     (A2) 4 

where the generator (.)ψ  is a convex decreasing function satisfying (1) 0ψ = .  5 

The class of EV copulas is defined on the basis of a dependence function A through the formula 6 

given by Pickands (1981) as:  7 

( ) log
( , ) exp log log ,    0 , 1

log log

u
C u v u v A u v

u v

  
= + < <  +  

   (A3) 8 

where the dependence function A is convex and defined on [0, 1] with { }max ,1 ( ) 1.t t A t− ≤ ≤   9 

 10 

According to Genest and Rivest (1993), an Archimedean copula, with a generator 11 

function ψ , is characterized by the following function: 12 

( )
( )

'( )

z
K z z

z
ψ

ψ
ψ

= −  (A4) 13 

which can be estimated by: 14 

�

1 1 2 2
[ ] [ , ]

1 1

1 1
( ) 1    where   1 ,  1,..,

1
t i t i

i

N N

w z i x x x x
i t

K z w i N
N N

≤ < <
= =

= = =
−∑ ∑  (A5) 15 

for a given bivariate sample 1 1 2 2

1 2 1 2 1 2( , ), ( , ),..., ( , )N Nx x x x x x . 16 

 17 

The functions Kψ  and �K  can be used for the fitting of an Archimedean copula to a 18 

bivariate sample. 19 

 20 
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To generate bivariate samples from the Gumbel logistic copula (7), we consider the 1 

algorithm developed by Ghoudi et al. (1998). For a bivariate vector ( ),  X Y  following an 2 

extreme value copula (A3) with dependence function A and margins XF and YF , the algorithm is 3 

summarized as follows. Let 1V  and 2V  be uniform random variables and Z be a random variable 4 

with a cumulative distribution function ZG  and probability density function Zg  given by 5 

( ) (1 ) '( ) / ( ),ZG z z z z A z A z= + − 0 1.z≤ ≤  This algorithm consists of the following steps: 6 

1. Simulate Z;  7 

2. Given Z, take 1W V= with probability ( )p Z  and 1 2W VV= with probability 8 

1 ( )p Z− , where ( )( ) (1 ) ''( ) ( ) ( ) ;Zp z z z A z A z g z= −  9 

3. Put 
/ ( ) (1 ) / ( )

1 2 and Z A Z Z A ZU W U W −= = ; 10 

4. Set 1

1( )XX F U−=  and 1

2( )YY F U−=  11 

 12 

A2. Bivariate return period 13 

The notion of return period for hydrological extreme events is commonly used in 14 

hydrological FA. The return period of a given event is defined as the mean of the probability of 15 

its occurrence as indicated e.g. in Rao and Hamed (2000). Note that the return period concept is 16 

an estimation of the probability or the risk whereas the quantile is the value of the variable 17 

leading to this risk. 18 

 19 

The bivariate extreme hydrological event distributions and corresponding return periods 20 

have been extensively studied e.g. in Shiau (2003) and Salvadori et al. (2007). For instance, for 21 
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the event { },X x Y y> > , Salvadori et al. (2007) defined the bivariate return period as the 1 

positive number  ^

,x yT  given by 2 

{ }
^

,

1

Pr ,
x yT

X x Y y
=

> >
    (A6)  3 

Adapted definitions are also given for other events. The above definition concerns the annual 4 

maximum series. For partial duration series, definitions are also available in the literature, e.g. in 5 

Shiau (2003) or Salvadori et al. (2007). Finally, relationships between univariate return periods 6 

and the joint return period are also derived in Salvadori et al. (2007). 7 
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Table 1: Relative errors (%) of the 0.9-quantile estimations corresponding to two generated 1 

samples. The univariate quantiles are evaluated directly and as extreme points of the bivariate 2 

quantile curves. The relative errors RIE*(p) of the bivariate quantiles are evaluated using 3 

equation (11)  4 

 5 

 6 

 1
st
 sample 2

nd
 sample 

   

 RIE*(p) for QCp 2.44 -3.21 

Relative error for QLX 3.41 -3.78 

Relative error for QDX 2.81 -3.77 

Relative error for QLY -1.69 0.20 

Relative error for QDY -2.19 0.15 

 7 
 8 

Table 2: Comparison of the true values of the univariate quantiles evaluated directly and as 9 

extreme points of the  bivariate quantile curve using the parameters ,X Xα β , , Y Yα β  and 10 

 =1, 1.414, 3.162γ  for the non-exceedence event. 11 

 12 

   Direct As extreme 

point 

Relative 

difference* (%) 

 γ  = 1 p = 0.9 X 1915.40 1945.50 1.5712 

  Y 87.52 89.1071 1.8154 

 p =0.99 X 2620.90 2652.30 1.1999 

  Y 124.76 126.42 1.3307 

 p =0.995 X 2829.70 2896.50 2.3595 

  Y 135.79 139.31 2.5959 

 γ  = 1.414 p = 0.9 X 1915.40 1923.20 0.4073 

  Y   87.52 87.93 0.4706 

 p =0.99 X 2620.90 2629.20 0.3168 

  Y 124.76 125.20 0.3514 

 p =0.995 X 2829.70 2852.80 0.8153 

  Y 135.79 137.01 0.8970 

 γ  = 3.162 p = 0.9 X 1915.40 1915.50 0.0029 

  Y 87.52 87.52 0.0034 

 p =0.99 X 2620.90 2620.90 0.0025 

  Y 124.76 124.77 0.0027 

 p =0.995 X 2829.70 2830.30 0.0223 

  Y 135.79 135.82 0.0245 

* Relative difference = 100 (As extreme point-Direct)/Direct 13 

14 
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Table 3: Relative errors (%) of univariate quantiles evaluated directly and relative errors (%) of 1 

 the bivariate quantile curve for the simultaneous non-exceedence and exceedence events 2 

 when n=30 3 

 4 

*The RB and RRMSE are evaluated using respectively *[ ]( )mRIE p  and [ ]( )mRIE p   5 

 6 

 7 

8 

 p=0.9  p=0.99  p=0.995 
   RB RRMSE  RB RRMSE  RB RRMSE 

Exceedence 3.162γ =  
XQD  0.09 6.35  -0.39 9.75  -0.34 9.62 

  
YQD  0.10 8.63  -0.44 15.13  -0.06 16.38 

  Biv
*
 0.92 9.32  2.24 14.90  2.94 16.17 

 1.414γ =  
XQD  -0.15 6.35  -0.43 9.77  -0.58 9.65 

  
YQD  -0.21 8.71  -0.40 15.96  -0.32 18.19 

  Biv
*
 0.53 10.16  1.19 15.78  1.40 17.53 

 1γ =  
XQD  0.02 6.41  -0.40 9.76  -0.46 9.68 

  
YQD  0.04 8.60  0.04 16.13  -0.26 18.77 

  Biv
*
 0.67 9.98  0.89 15.59  0.79 17.58 

Non-exceedence 3.162γ =  
XQD  -0.02 7.09  0.04 9.52  -0.04 9.96 

  
YQD  -0.02 8.17  0.03 10.55  -0.01 10.91 

  Biv
*
 0.59 13.04  0.65 16.66  0.46 16.76 

 1.414γ =  
XQD  0.03 7.09  -0.04 9.36  0.11 9.93 

  
YQD  0.16 8.27  -0.02 10.43  0.20 10.88 

   Biv
*
 0.40 12.32  0.27 15.63  0.36 15.07 

 1γ =  
XQD  -0.04 7.16  -0.12 9.44  0.03 9.99 

  
YQD  0.06 8.26  0.15 10.63  0.02 11.04 

  Biv
*
 -0.09 11.09  -0.09 13.47  -0.16 12.88 
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Table 4: Relative errors (%) of univariate quantiles evaluated directly and relative errors (%) of 1 

 the bivariate quantile curve for the simultaneous non-exceedence and exceedence events 2 

 when n=60 3 

 4 
*The RB and RRMSE are evaluated using respectively *[ ]( )mRIE p  and [ ]( )mRIE p   5 

Table 5: Comparison of univariate and bivariate flood 0.99-quantiles on the basis of the bivariate 6 

 distribution used in the simulation with 1.414γ =  7 

 8 

Obtained values Q =125 (m
3
/s) V =2621 (day.m

3
/s) 

 V  single V  joint Q  single Q   joint 

Associated values 2621 3589 125 176 

Relative differences -26.97%=(2621-3589)/3589 -28.98%=(125-176)/176 

 9 

10 

 p=0.9  p=0.99  p=0.995 
   RB RRMSE  RB RRMSE  RB RRMSE 

Exceedence 3.162γ =  
XQD  0.06 4.48  -0.00 7.50  -0.11 8.01 

  
YQD  0.06 6.08  0.12 11.25  -0.11 12.62 

  Biv
*
 0.57 6.88  1.93 11.79  2.11 12.86 

 1.414γ =  
XQD  -0.01 4.50  0.02 7.54  -0.11 7.99 

  
YQD  -0.05 6.06  0.25 11.28  0.19 13.12 

  Biv
*
 0.44 7.49  1.38 11.90  1.57 13.35 

 1γ =  
XQD  0.05 4.50  -0.07 7.47  -0.18 7.94 

  
YQD  -0.07 6.06  0.00 11.36  0.11 13.13 

  Biv
*
 0.39 7.31  0.67 11.46  0.85 12.81 

Non-exceedence 3.162γ =  
XQD  -0.01 5.08  0.04 6.65  0.04 7.05 

  
YQD  -0.01 5.87  0.00 7.38  0.03 7.78 

  Biv
*
 0.41 9.59  0.46 11.95  0.37 12.40 

 1.414γ =  
XQD  0.03 5.08  -0.05 6.62  0.04 6.94 

  
YQD  -0.04 5.90  0.02 7.30  -0.03 7.66 

  Biv
*
 0.14 8.99  0.26 11.30  0.09 10.94 

 1γ =  
XQD  0.07 5.00  0.03 6.61  -0.00 7.06 

  
YQD  0.04 5.78  0.05 7.38  0.02 7.76 

  Biv
*
 0.07 7.90  0.03 9.68  -0.12 9.41 
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 1 
Figure 1: Illustration of the bivariate and univariate quantiles corresponding to the non-2 

exceedence event  3 

 4 
Figure 2: Typical flood hydrograph 5 

6 
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 2 
Figure 3: Illustration of estimated and true 0.9-quantile curves for two generated samples from the 3 

bivariate distribution used in the simulation with 1.414γ = and n = 30 for the non-4 

exceedence event 5 

6 
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Figure 4: Illustration of the evolution of the quantile curves of the bivariate distribution used in 3 

the simulations with respect to γ  for a) both exceedence and non-exceedence events b) 4 

exceedence event and c) non-exceedence event. The evaluated quantiles correspond to p 5 

=0.9. Figures b) and c) are zoomed in from Figure a). The axes x and y represent the 6 

flood volume and flood peak respectively. 7 

8 
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 1 

 2 

 3 
Figure 5: Illustration of quantile curves corresponding to three values of p from the bivariate 4 

 distribution used in the simulation with 1.414γ =  and the non-exceedence event  5 

 6 

 7 
Figure 6: Illustration of the fact that the univariate modeling is limited and cannot provide a 8 

complete assessment of complex events 9 

10 
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Figure 7: Illustration of univariate and bivariate 0.99-quantile combination values on the basis of 3 

 the bivariate distribution used in the simulation with 1.414γ = for the non-4 

 exceedence event 5 

 6 
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Figure 8: Bivariate distribution fitting to the case study data set a) Peak b) Volume and c) Copula 4 
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 1 
Figure 9: Quantile curves corresponding to the case study 2 


