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Abstract 

The Halphen family of distributions is a flexible and complete system to fit sets of observations 

independent and identically distributed. Recently, it is shown that this family of distributions 

represents a potential alternative to the generalized extreme value (GEV) distributions to model 

extreme hydrological events. The existence of jointly sufficient statistics for parameter estimation 

leads to optimality of the method of maximum likelihood (ML). Nevertheless, the ML method 

requires numerical approximations leading to less accurate values. However, estimators by the 

method of moments (MM) are explicit and their computation is fast. Even though MM method 

leads to good results, it is not optimal. In order to combine the advantages of the ML (optimality) 

and MM (efficiency and fast computations), two new mixed methods were proposed in this paper. 

One of the two methods is direct and the other is iterative, denoted respectively MMD and MMI. 

An overall comparison of the four estimation methods (MM, ML, MMD and MMI) was 

performed using Monte Carlo simulations regarding the three Halphen distributions. Generally, 

the MMI method can be considered for the three Halphen distributions since it is recommended 

for a majority of cases encountered in hydrology. The principal idea of the mixed methods MMD 

and MMI could be generalized for other distributions with complicated density functions. 
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1. Introduction  

The main objective of frequency analysis of extreme events, and especially floods, is the 

assessment of the probability (Pr T )X x≥  of an event Tx  to be exceeded. To this end, the first 

step is to fit a probability distribution F to a series of observed maximum annual flow, 

independent and identically distributed, and coming from a random variable X. Then, the event 

Tx  corresponds to the quantile associated to a return period T. 

Several distributions have been proposed to fit hydro-meteorological variables. Specific 

distributions are recommended in some countries, such as the Lognormal distribution (LN) in 

China (Bobée, 1999); the Generalized Extreme Value distribution (GEV) in the United Kingdom 

for local flood frequency analysis (NERC, 1975) and in the United States for precipitation 

(Willeke et al., 1995); and the Log-Pearson type 3 distribution (LP3) in the United States (US 

Water Resources Council, 1981). Halphen (1941) introduced the Halphen type A distribution 

(HA) to fit a large variety of data and to obtain additional flexibility compared to other 

distributions used at that time. Indeed, the HA distribution has a tail lighter than the Lognormal 

which fit a wide range of hydrological series (Morlat, 1951). According to Morlat (1956): "it is 

quickly observed that: the distributions of Type A showed to be adequate in many cases, but a 

significant number of sets of observations required new shapes, extending distributions of type A 

to represent, especially in the origin neighbourhood, different asymptotic behaviours." Thus 

Halphen has introduced the type B distribution (HB). To complete the Halphen system, the 

distribution of Halphen type inverse B (HIB) was proposed by Larcher as reported by Morlat 

(1956). The latter author also presented some statistical and mathematical properties of these 

distributions, which have been completed and detailed by Perreault et al. (1999a).  
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In order to estimate each Halphen distribution parameters, the ML method was proposed 

by Perreault el al. (1999b). The ML estimation is optimal for Halphen distributions since it is 

based on three statistics jointly sufficient. However, the resolution of the ML system is complex 

because it requires some manipulations of the derivatives of the normalization functions (Bessel 

and exponential factorial). To solve efficiently the ML system, a numerical method was presented 

by Perreault et al. (1999b). Note that the estimation by the ML method is based on numerical 

approximations which do not lead to exact values. Furthermore, the bias of the ML is 

asymptotically null but it may be large for small sample sizes which may lead to a large root-

mean square-error. Consequently, despite the sufficiency of ML estimators, it is relevant to 

consider other estimation methods for small sample sizes encountered in hydrology. Fitzgerald 

(2000) proposed a method of moments (MM) to estimate the parameters of the HA distribution. 

An advantage of the method of moments is the explicit expressions of estimators with respect to 

the moments, thus facilitating its implementation and making computations faster. As a natural 

extension of the work of Fitzgerald (2000), Chebana et al. (2008a) developed a method of 

moments to estimate the parameters of HB and HIB distributions.  

To obtain the ML estimators for each one of the three Halphen distributions ( ); , ,f x m α ν , 

Perreault et al. (1999b) carried out a partial maximization of the conditional log-likelihood 

function ( )log | ( ), ( )L mν α ν ν . We propose two new mixed methods that combine the 

advantages of ML (optimality) and of MM (fast computations): 

− The first method MMD is direct where the parameter ν  is estimated using MM equation 

which leads to a value of ν  close to the optimum value and then estimators of α and m are 

obtained from the two corresponding equations of the ML system. 

− The second method MMI is iterative. It consists in varying ν from its estimator obtained by 

MM, and stop at the value of ν  which corresponds to maximizing the conditional log-
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likelihood function ( )log | ( ), ( )L mν α ν ν , and then α and m are estimated from the two 

corresponding equations of ML. 

On the other hand, note that the performances of the MM method for HA distribution 

have not been evaluated and have not been compared with ML. Chebana et al. (2008a) have 

made a comparison between the estimates by MM and ML for HB and HIB distributions. Thus in 

this work, we conduct a comprehensive comparison of the four proposed methods (MM, ML, 

MMD and MMI) for the three Halphen distributions (HA, HB and HIB).  

Aside from the introduction, the paper is organized as follows. The main properties of Halphen 

distributions are presented in Section 2 as well as their place in the context of extreme hdrologic 

events. Section 3 concerns with the four estimation methods. A comparison, based on Monte 

Carlo simulations for the various estimation methods, is presented in Section 4. Results and a 

general discussion are developed in Sections 5 and 6, respectively. The last Section is dedicated 

to the study conclusions. 

 

2. Halphen distributions: presentation and extreme hydrologic events 

background 

In the present section, we present briefly Halphen distributions and then we put them in the 

context of the extreme hydrologic events. 

 

2.1. Presentation 

Perreault et al. (1999a) presented a detailed review of mathematical and statistical properties 

of Halphen distributions: HA, HB and HIB which are summarized here.  
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Halphen type A distribution (HA) 

The probability density function of the HA distribution is given by: 

   ( ) ( )
11; , , exp ,  0

2 2HA
x mf x m x x

m K m x
ν

ν
ν

α ν α
α

− ⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
>   (1)  

where  is a scale parameter, 0m > 0α >  and ν ∈  are shape parameters. The function ( ).Kν  

corresponds to the modified Bessel function of the second kind (Watson, 1996). 

The non-centered moments of a random variable X following HA distribution can be 

determined by using the characteristic function. They exist for any real value of ν , 0α >  and any 

integer r, and are given by: 

( )
( )

2
2

r r r
r

HA

K
E X m

K
ν

ν

α
μ

α
+⎡ ⎤′ ⎡ ⎤= =⎣ ⎦⎣ ⎦

 (2) 

Halphen type B distribution (HB) 

The probability density function of the HB distribution is given by:  

( ) ( )

2
2 1

2
2; , , exp , 0HB

x xf x m x x
m ef m m

ν
ν

ν

α ν α
α

−
⎡ ⎤⎛ ⎞ ⎛ ⎞= − +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

>  (3) 

where  is a scale parameter,  0m > α ∈  and 0ν >  are shape parameters. The normalization 

function , known as exponential factorial function, was defined by Halphen (1955) and is 

given by: 

( ).efν

( ) ( )2 1 2

0
2 exp , 0  and  ef x x x dxν

ν α α ν
∞ −= − + >∫ α ∈  (4) 

The r-order non-centered moments of HB distribution are given by: 

 
( )

( )
/ 2rr r

r
HB

ef
E X m

ef
ν

ν

α
μ

α
+⎡ ⎤′ ⎡ ⎤= =⎣ ⎦⎣ ⎦

 (5) 
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Since the index ν  of the function ( ).efν  must be positive, those moments exist for any real value 

of α if ( )2rν + > 0 . Hence, the non-centered moments of order  are defined for  greater 

than 

r r

0 2r ν= −⎡⎢ ⎤⎥  (where   is the integer part). .⎡ ⎤⎢ ⎥

Halphen type Inverse B distribution (HIB) 

The probability density function of the HIB distribution is given by:  

( ) ( )

2
2 1

2
2; , , exp , 0HIB

m mf x m x x
m ef x x

ν
ν

ν

α ν α
α

− −
−

⎡ ⎤⎛ ⎞ ⎛ ⎞= − +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

>  (6) 

where  is a scale parameter, 0m > α ∈  and 0ν > are shape parameters.  

The probability density of the HIB distribution (Equation 6) can be deduced from that of HB 

(Equation 3) by considering the following symmetry relationship: 

If a random variable X follows a ( ); , ,HBf x m α ν  distribution, then 1Y = X

)

follows 

( 1; , ,HIBf y m α ν−  distribution.  

Therefore, the non-centered moments of HIB can be deducted from equation (5) by replacing m 

by and r by -r, and are therefore given by: 1m−

( )
( )

/ 2rr r
r

HIB

ef
E X m

ef
ν

ν

α
μ

α
−⎡ ⎤′ ⎡ ⎤= =⎣ ⎦⎣ ⎦

      (7) 

These moments exist for 2 0rν − > , i.e., they are defined until the order 0 2r ν= ⎡ ⎤⎢ ⎥ .  

 

Perreault et al. (1997) presented a detailed review of Halphen distributions and their 

limiting cases (Gamma and Inverse Gamma distributions), and studied, in detail, their 

mathematical and statistical properties. We can show (Perreault et al., 1997) that Halphen 

distributions belong to the exponential family of probability density functions with three 
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parameters and they admit a triplet of jointly sufficient statistics. A sufficient statistic is a 

function of observations which summarizes all the information related to the parameter to be 

estimated. Estimators based on sufficient statistics are efficient, i.e., they have a minimum 

variance regardless of sample size and are asymptotically unbiased. This is a very important 

property, especially in the cases of small samples encountered in hydrology. The Halphen 

distributions are the only ones with three parameters used in hydrology that have this enviable 

property. Distributions with three parameters are important, first because they are flexible and 

present several shapes of distributions and include several two and one parameter distributions, 

and on the other hand they obey to the parsimonious principle compared to the four and five 

parameters distributions (e.g. Kappa and Wakeby), see for instance Morlat (1956), page 26. In 

addition, three parameter distributions are important in tail distributions modeling as indicated in 

El Adlouni et al. (2008). Hence three parameters distributions represent good balance between 

flexibility and parsimony. 

Adequate estimation of the parameters θ  of a distribution (.; )F θ  is one of the most 

important problems of statistical inference, particularly in frequency analysis. Several three 

parameter distributions, used in hydrology, such as Log-Normal (LN), Log-Pearson type 3 (LP3), 

Pearson type 3 (P3), and Generalized Extreme Value (GEV) have a location parameter and the 

distribution support depends on this parameter. Hence, in this case, the estimation can not be 

optimal for a given finite sample size; and the maximum likelihood (ML) estimator properties are 

only asymptotic as has been shown by Bobée (1979) in the case of Pearson and Log-Pearson 

distributions. Indeed, the probability density function of such distributions can not be factorized 

in the form of a distribution belonging to the exponential class and it is not possible to find 

sufficient statistics. A distribution ( )1 2 3; , ,F x θ θ θ  belongs to the exponential family if its 

probability density function can be expressed as: 
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( )
3

1 2 3 1 2 3 1 2 3
1

; , , exp ( , , ) ( ) ( , , ) ( )i i
i

f x c T x dθ θ θ θ θ θ θ θ θ
=

⎧ ⎫
= +⎨ ⎬

⎩ ⎭
∑ S x+

)

   (8) 

where represent the three jointly sufficient statistics. The Halphen distributions 

are of the form 

( ), 1,...,3iT X i =

( ; , ,f x m α ν  and have three parameters: two shape parameters α  and ν  and a 

scale parameter m but no location parameter. We can then show (Perreault et al., 1997) that each 

Halphen distribution has three statistics jointly sufficient. Consequently, one can obtain optimal 

parameter estimation (i.e. minimum variance) for these distributions by the ML method 

regardless of the sample size. 

The sufficient statistics for each one of the three Halphen distributions are related to the 

sample averages of different orders. Indeed, the associated sufficient statistics are 1H − ,  

and 

logG

A  for HA; , logG A  and Q  for HB and 1IQ− , 1H − , and lo for HIB. The averages gG 1IQ− , 

, l , 1H − ogG A  and  correspond respectively to non-centered sample moments of order -2, -1, Q

0, 1 and 2. The quasi-zero moment (0) of a positive random variable X is given by 

[ ]{ }0 exp logE Xμ′ = ; it represents the geometric mean (see Bobée and Ashkar, 1991, pp. 102 or 

Bobée et al., 1993, pp. 51). In the moment ratio diagram ( )1 log A
Gδ =  and ( )2 log G

Hδ = , 

Morlat (1956) presented Halphen distributions as well as their limiting distributions (Harmonic, 

Gamma and Gamma Inverse) (Figure 1). This representation in the plan 1 2( , )δ δ shows that the 

Halphen family of distributions forms a complete system. Indeed, each point of the plan 

corresponds to one and only one theoretical Halphen distribution or one of their limiting cases. 

Other distributions, such as LP3, LN and generalized Gamma, can also be represented in the 

plane 1 2( , )δ δ , (Bobée et al., 1993). This diagram is similar to that of Pearson 

 based on skewness and kurtosis coefficients Cs and Ck respectively. It is ( )2
1 2, 3Cs Ckβ β= = −
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shown that the Pearson family of distributions represents a complete system in the plane ( )1 2,β β  

(see Figure 1 in Bobée et al., 1993). 

 

2.2. Halphen distributions in the context of extreme hydrologic events  

Generally extreme hydrological events, such as floods, storms and droughts are associated 

with serious economic and social consequences. The prediction of such events is hence of high 

importance and requires the development of the appropriate models. Relating the magnitude of 

extreme events to their frequency of occurrence is the principal aim of frequency analysis. This 

relationship can be obtained through the use of probability distributions (see e.g., Chow et al., 

1988). For a random variable X that represents the magnitude of an event that occurs at a given 

time and at a given site, the quantile function expresses the magnitude of the event in terms of its 

exceedence or non-exceedence probability. These probabilities are also associated to return 

periods. Hence, more precisely, the goal of frequency analysis is to obtain reliable estimates of 

the quantiles corresponding to return periods of specific relevance (Rao and Hamed, 2000). 

Explicitly, for floods, we are interested in the assessment of the probability (Pr T )X x≥  of an 

event Tx  to be exceeded. Then, the event Tx  corresponds to the quantile associated to a return 

period T, i.e., 1(1 1 ; )Tx F T θ−= −  where θ  is the vector of parameters. Since the interest is for 

large return periods (generally larger than 100 years), Tx  is located in the tail of the distribution 

F. In flood frequency analysis, the notion of return period for hydrological extreme events is a 

common criterion. Physically, a return period is defined as the mean passed time between the 

occurrences of two events ( T )X x≥ , see e.g. Rao and Hamed (2000).  

Several distributions have been proposed to fit hydrological variables as indicated in the 

introduction. Even though Halphen distributions are introduced in the 1940’s, the literature 
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regarding Halphen distributions is very limited. Indeed, the use of Halphen distributions has been 

limited in practice because of numerical computational difficulties related to the normalization 

functions: modified Bessel function of the second kind (Abramowitz and Stegun, 1972) for HA 

and the exponential factorial function (Halphen, 1955) for HB and HIB. The papers Halpen 

(1941, 1955), Morlat (1956) and Perreault et al. (1999a,b) can be considered as the reference 

about the subject. Le Cam and Morlat (1949) applied HA and HB distributions on French rivers; 

Morlat (1951) discussed the asymptotic behaviour of HA and HB. Larivaille (1960) treated the 

estimation of HA and HB scale parameter with fixed shape parameters. Seshadri (1997) 

summarized Halphen distributions properties. It is important to mention that HA distribution 

corresponds to a reparameterization of the so-called Generalized Inverse Gaussian (GIG) 

distribution. The GIG distribution is studied by Sichel (1975), Barndorff-Neilsen and Halgreen 

(1977), Barndorff-Neilsen (1978), Blasield (1978) and Jorgensen (1982). In the context of GIG, 

Seshadri (1993) and Puig (2008) discussed briefly the HA distribution. In addition, Guillot (1964) 

proposed an extension of HA that includes the Galton-Gibrat distribution as a limiting case. On 

the other hand, the HB and HIB are not related to other known distributions as it is the case for 

HA. Morlat (1956) indicated that Halphen system is important similarly to Pearson system and 

are used especially to represent natural phenomena such as flows and precipitations. 

The difficulties that prevented Halphen distributions to be used in practice are 

investigated by Perreault et al. (1999a,b) and the HYFRAN software (CHS, 2002) performs a 

complete frequency analysis for about twenty distributions often used in hydrology including the 

three Halphen distributions and their limiting cases.  

The extreme value modeling is associated to the study of distributions generally with 

heavy tails. El Adlouni et al. (2008) presented a classification of the distributions commonly used 

in flood frequency analysis with respect to their tail behaviour. Note that quantile estimations 

associated to large return periods are significantly different for the considered distributions. 
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Several classes of tail distributions are identified and each distribution is assigned to a given 

class. It is shown that almost all distributions given in this classification to fit the annual 

maximum series belong to the class D of sub-exponential distributions or to the class C with 

regularly varying tail (Figure 2). In particular, the HA, HB distributions belong to the class D and 

the distribution HIB belong to the class C. 

 Recently, El Adlouni et al. (2009) presented a comparison between Halphen system and 

the widely used GEV system. This comparison involves historical, theoretical and practical 

aspects. El Adlouni et al. (2009) showed that Halphen system represents a potential alternative to 

the GEV system to model hydrological extreme series.  

 

3. Detailed presentation of the estimation methods 

In this section the four methods of parameter estimation of the three Halphen distributions are 

presented. In the remainder, we denote by XXθ the estimator of a parameter θ  by a method XX. 

3.1.Method of moments (MM) 

The method of moments allows to obtain explicit expressions of the parameter estimators. 

We present in this section the expressions of the estimators for the three Halphen distributions. 

This approach corresponds to the framework of the generalized method of moments (Bobée and 

Ashkar, 1988). 

3.1.1 MM method for HA distribution 

For HA distribution, the MM estimators are proposed by Fitzgerald (2000). The obtained 

equations are based, on the one hand, on the differential equation satisfied by Bessel function and 

its recurring formula: 
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2
2

2

( ) ( ) ( )K Kν να αα α α ν
α α

∂ ∂ 2 2 0+ − + =
∂ ∂

   (9) 

( ) 1
1

1 ( ) ( )K Kν ν
ν να α α

α α
−

−
∂

= −
∂

α     (10) 

and on the other hand, on the expression of the moments for any order r given by equation (2). 

For the three parameters, we obtain the following estimators: 

( ) ( )( )
( ) ( ) ( ) ( )( )

1 1
2

1 1 1

Var( ) ( ) ( ) 1

Var ( ) 1

E X X E X E X E X
m

E X X E X E X E X

− −

− − −

− −
=

− −
 (11) 

           
( ) ( )

( )
1 1

2 2Var( ) Var

m E X mE X

m X m X
α

− −

−

−
=

− 1−

)

 (12) 

           
( ) ( )( )

(

21 1

2 2Var( ) Var

m E X mE X

m X m X
ν

− −

−

−
=

− 1−  (13) 

In (11), (12) and (13), the theoretical moments are generally unknown. In order to obtain the 

estimators, those moments should be replaced by their estimates from the sample 1,..., nx x  of size 

n, ie., is replaced by . ( rE X ) 1
1

n r
ii

n x−
=∑

3.1.2 MM method for HB distribution 

The MM method for HB and HIB distributions is proposed by Chebana et al. (2008a). 

The normalization function satisfies the following recurrence relationship: ( ).efν

( ) ( ) ( )1 1/ 22
ef ef efν ν ν

αα α ν α+ += + 0, >  (14) ν

A more general form of equation (14) is given by:  

( ) ( ) ( )1/ 2 1( 1) ,        ( ) 1
2r r ref ef r ef rν ν ν
αα α ν α ν+ + − + −= + + − + >   (15)  

This equation combined with expression (5) giving the non-centered moments of HB provides: 
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2 2 1 2 2

2 2 1 2 2( 1) ,       ( ) 1
2

r r r

r r r

X X XE E r E
m m m

α ν
− −

− −
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= + + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
rν >  (16) 

Using this equation with 1 2;1;3 2r =  leads to the following estimators: 

( ) ( )

( ) ( )

2 21 3 2

2 21 2 3

( ) ( ) ( ) ( ) ( ) Var( ) ( )1
2 1 ( ) ( ) ( ) ( ) ( ) Var( )

E X E X E X E X E X X E X

E X E X E X E X E X X
ν

−

−

⎡ ⎤− −⎢ ⎥⎣ ⎦=
⎡ ⎤⎡ ⎤− − −⎣ ⎦ ⎢ ⎥⎣ ⎦

 (17) 

2
1

2Var( )
2 1 ( ) ( ) ( ) ( )

Xm
E X E X E X E Xν −

=
⎡ ⎤− +⎣ ⎦

1−
 (18) 

( )2 1 2 12 ( ) ( ) ( ) ( ) ( )

Var( )

m E X E X E X E X E X

X

ν
α

− −⎡ ⎤− +⎣ ⎦=  (19) 

As for HA distribution (see 3.1.1), in order to obtain the estimators ˆˆ ,m α  and ν̂ , the theoretical 

moments should be replaced by their estimators in (17), (18) and (19). 

3.1.3 MM method for HIB distribution 

In order to obtain the MM estimators of the HIB distribution parameters, one can follow 

the same steps as those used for HB and consider equation (15) combined with (7) which gives 

the non-centered moments of HIB. We can also, and more simply, use the symmetry relationship 

between HB and HIB distributions (see Section 2.3) to obtain HIB estimators directly from those 

of HB. Thus, estimators of ,  and m α ν can be obtained by substituting rX  by and m by 

in (17), (18) and (19) which yield, respectively to: 

rY −

1m−

( ) ( )
( ) ( )

2 21 3 1 2 1 1

2 21 2 3 1 1

( ) ( ) ( ) ( ) ( ) Var( ) ( )1
2 1 ( ) ( ) ( ) ( ) ( ) Var( )

E Y E Y E Y E Y E Y Y E Y

E Y E Y E Y E Y E Y Y
ν

− − − − − −

− − − − −

⎡ ⎤− −⎢ ⎥⎣ ⎦=
⎡ ⎤⎡ ⎤− − −⎣ ⎦ ⎢ ⎥⎣ ⎦

 (20) 

1 1
2

1

2 1 ( ) ( ) ( ) ( )
2Var( )

E Y E Y E Y E Y
m

Y
ν − −

−

⎡ ⎤− +⎣ ⎦=  (21) 
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1 2 2

1

2 ( ) ( ) ( ) ( ) ( )
Var( )

E Y E Y E Y E Y E Y
m Y

ν
α

− − −

−

⎡ ⎤− +⎣ ⎦=  (22) 

As for HA and HB distributions, theoretical moments should be replaced by their estimators in 

(20), (21) and (22) to obtain the estimators ˆˆ ,m α and ν̂ . 

 

3.2. Maximum likelihood method (ML) 

In the following, we present the essential elements of the ML method for each one of the 

three Halphen distributions. The complete presentation of the procedure is deferred in Appendix 

A. For more details, one can refer to Perreault et al. (1997). In short, the method consists, firstly, 

in estimating the parameters α and m for fixed values of ν in a given interval. Then, the partial 

log-likelihood function ( )log | ( ), ( )L mν α ν ν  is maximized to obtain the optimal estimator ν̂  of 

ν . Finally, the later estimator is substituted in the corresponding equations of the ML system to 

get the estimators α̂  and . Note that this method has been implemented in the software 

HYFRAN (CHS, 2002). The properties of the ML estimators were studied by Chebana el al. 

(2006) using simulations to evaluate their performance on samples of finite sizes. 

m̂

To solve the nonlinear system of equations (given below) and to determine the ML 

estimators, we proceeded in three stages (Perreault et al., 1997): 

a) The parameters α and m are determined for fixed ν , and are denoted by ( )α ν  et ( )m ν .  

b) The partial log-likelihood function log ( | ( ), ( ))L mν α ν ν  is maximized to determine the 

estimator ν̂  of ν . 

c) By substituting  ν̂  in ( )α ν  and ( )m ν , we obtain the estimators ( )ˆ ˆα α ν=  and ( )ˆm̂ m ν=  of 

α and m, respectively. 

The steps (a) and (b) are developed in Appendix A for each Halphen distribution. 
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For the estimation of HA distribution parameters, the ML system is composed of the 

equations given by: 

1

1

(2 ) 1
(2 )

n

i
i

Km
K n
ν

ν

α
α

+

=

= =∑ x A  (23) 

1

1

(2 )1 1 1
(2 )
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i i

K
m K n x H

ν
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α
α

−

=

= =∑ 1  (24) 

1

(2 ) 1log log log
(2 )

n

i
i

Km
K n
ν

ν

α ν
α =

∂ ∂
+ = =∑ x G  (25) 

where A, G and H are, respectively, the arithmetic mean, the geometric mean and the harmonic 

mean. This system reveals the three sufficient statistics related to the HA distribution. 

The system of the ML estimator equations for the HB distribution is given by: 
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where A, Q and G are, respectively, the arithmetic mean, the quadratic mean and the geometric 

mean. These moments represent the sufficient statistics related to the HB distribution . 

As it was reported in Section 2.1, HIB distribution can be deduced directly from the HB 

one using the symmetry relationship. Thus, the system of equations for HIB may be obtained 

from the system of equations (26), (27) and (27) related to HB by substituting m by  and x by 1m−

1x− . More precisely, the ML estimators are solutions of the following system: 
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where H, IQ and G are, respectively, the harmonic mean, the inverse quadratic mean and the 

geometric mean. As for HA and HB distributions, this system reveals the sufficient statistics for 

HIB. 

 

3.3. Direct mixed method (MMD) 

This method is a combination of the two previous methods MM and ML. It consists in 

estimating ν  by MM method and then estimating α and m using the corresponding equations of 

the ML system. Some required expressions related to the ML method are presented in Appendix 

A. For the case of HB and HIB distributions, in the MM method, the shape parameter ν is 

estimated first before m and  α . Consequently, it can be directly substituted in the estimators of 

α and m from ML. That is, for HB, to replace estimator (17) in equations (A.7) and (A.8), and 

for HIB, to replace estimator (20) in equations (A.13) and (A.14). However, for HA distribution, 

we obtain the explicit expression of the estimator of ν  by replacing that of m, expressed by (11) 

in equation (13). Indeed, the expression (13) can be re-written as: 

( ) ( )( )
( )

22 1

4Var( ) Var

E X m E X

X m X
ν

−

−

−
=

− 1  (32) 

By substituting the value of  given by formula (11) in both numerator and denominator of 2m ν  

(equation (32)), we obtain respectively:  

( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( ) ( )

222 1 1
22 1

1 1 1

Var( ) Var( )

Var ( ) 1

E X X E X X
E X m E X

E X X E X E X E X

− −

−

− − −

⎛ ⎞−⎜ ⎟− =
⎜ ⎟⎡ ⎤− −⎜ ⎟⎣ ⎦⎝ ⎠
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4 1
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Finally, the explicit expression of ν  by MM method for HA is then given by: 

( )( ) ( )( )
( ) ( )

22 1 1

21 1

Var( ) Var( )

Var( )Var ( ) 1

E X X E X

X X E X E X
ν

− −

− −

−
=

X

⎡ ⎤− −⎣ ⎦

 (33) 

As mentioned in Section 3.1, the theoretical moments are to be replaced by their 

estimators in (33) in order to obtain the estimator ν̂ . Thus, the estimators by the MMD method 

for the distribution HA can be obtained from (33) for ν , and by replacing this in estimating 

equations (A.1) and (A.2), respectively, α and m can be estimated. 

This combined approach improves the resolution of the ML system, particularly in terms 

of computing time. Indeed, estimating ν directly from the MM method avoids the partial 

maximization of the log-likelihood function with respect to ν  which may require a large number 

of iterations. The value of the estimator MMν  is close to the optimum and its value is explicitly 

given. Therefore, the MMD method allows to take into account the advantages of both methods, 

namely the speed of computations, the explicit formulation of MM estimators, and the sufficiency 

of the ML statistics to estimate α and m. However, note that in MMD method, partial log-

likelihood functions (equations (A.6), (A.12) and (A.16) for HA, HB and HIB respectively) are 

not explicitly used. In addition, the MMν value does not exactly correspond to the optimum of ν . 

The comparison in Section 4 is intended to determine whether this method leads to satisfactory 

results. 

3.4. Iterative mixed method (MMI) 

In order to accelerate numerical resolution of the maximum likelihood system, the 

proposed method reduces the variation interval that contains the optimal value of ν  that 
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maximizes log ( | , )L mν α . Therefore, in a theoretical point of view, this method is as optimal as 

the ML method but less expensive in terms of computational time. It is another numerical way to 

resolve the same ML system. 

 In the ML method, the parameter ν  is varied within a predefined interval, namely 

] [;U U− for HA with 1 1/U AH A 1− −H⎡ ⎤= −⎣ ⎦ [ (Appendix A.1);  for HB with ]0;V

( )21/ 2 / 1V Q A⎡= ⎣ ⎤− ⎦ (Appendix A.2) and ] [0;W  for HIB with ( )2 11/ 2 1W H IQ−⎡ ⎤= −⎣ ⎦  

(Appendix A.3). In the MMD method, the MMν value obtained by MM is taken directly as the 

estimator of ν , whereas in this proposed iterative method (MMI), the estimator MMν is used as an 

initial value to the iterative process. Then, the variability direction of ν  is determined according 

to the sign of the variability of the partial log-likelihood function. Indeed, from the initial point, 

the values of ν  are increased by a fixed step (positive or negative) and we evaluate the partial 

log-likelihood function after having estimated α and m. The change of sign of the derivative of 

the log-likelihood function, or the sign of the difference 1k k−Δ − Δ  (see algorithm below), 

indicates stopping of iterations and hence obtaining the maximum of the log-likelihood function. 

For example, Figure 3 illustrates for HA the variation range of ν corresponding to this method 

and that of ML method.  

More explicitly, the following algorithm shows how this method works: 

1. Select a step s: for example take the same value used in ML, that is s = 0.1. This value 

is generally convenient for situations encountered in hydrology. 

2. Initial stage:  

a. Obtain 0ˆ MMν ν= : obtained by equations (33), (17) and (20) for HA, HB and 

HIB, respectively. 

b. Compute 0α̂ and  : by substituting the corresponding  0m̂ 0ν̂  in equations (A.1)-
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(A.2) for HA, (A.7)–(A.8) for HB and (A.13)-(A.14) for HIB. 

c. Compute the partial log-likelihood function 0 0 0 0ˆ ˆ ˆlog ( | , )L L mν α=  using 

equations (A.6), (A.12) or (A.16) according to the target distribution. 

3. Take 1 0ˆ ˆ sν ν= +  : 

a. Compute 1α̂ et  that correspond to 1m̂ 1̂ν  using the same equations as in stage 

(2.b).  

b. Compute the partial log-likelihood function 1 1 1ˆ ˆ ˆlog ( | , )L L m1ν α=  as in (2.c). 

c. Compute the difference between  and , denoted by . 1L 0L 1 1L LΔ = − 0

4. Stage k  (k = 1,2,…) : 

a. If is positive :  1Δ

While 1k k kL L −Δ = −  is positive, take 1ˆ ˆk k sν ν −= + and the corresponding 

ˆkα and  to evaluate ˆkm ˆ ˆ ˆlog ( | , )k k k kL L mν α= .  

b. If  is negative : 1Δ

While 1k k kL L −Δ = −  is negative, then take 1ˆ ˆk k sν ν −= −  and the 

corresponding ˆkα and  to assess ˆkm ˆ ˆ ˆlog ( | , )k k k kL L mν α= . 

5. Stop iterations when the sign of kΔ changes. That means the maximum is reached. 

6.  Finally, the obtained estimators are * 1ˆ ˆMMI kν ν −= , * 1ˆ ˆMMI kα α −= and * 1ˆ ˆMMI km m −=  where 

k* is associated to the final step, i.e. it corresponds to the sign change of the derivative 

of the partial log-likelihood function. 
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Since the variation range of ν  is reduced in this method, it is possible to come as close as 

we want to the optimum by taking smaller value of the step s. Note that for comparison purposes, 

the value of s is taken to be the same for both ML and MMI. 

When implementing the algorithm of the MMI method for each Halphen distributions, there 

are three elements that need to be clarified before proceeding to the comparison of the above 

methods:  

 Although the estimator MMν belongs to the variation interval of ν , it is not necessarily a part 

of points of the grid of values employed in ML. It is likely that MMν  can be found between 

two points of this grid.  

 In the MMI algorithm, the value of  ν of the last iteration is not at the maximum of the partial 

log-likelihood function. It corresponds to the change of sign variations of that function. Hence, 

the value maximizing the partial log-likelihood function is that associated with the iteration 

before the last one.  

 One should ensure, at a given iteration k, that the value of m corresponding to the value of α  

is obtained at the same iteration k which in turn corresponds to the value of ν  obtained at the 

iteration k.  

 The iteration number is finite (and small), since the partial log-likelihood of Halphen 

distributions are strictly concave (Perreault et al., 1999b). 

 

These points are illustrated with examples in Appendix C of Chebana et al. (2008b). In 

addition, some short simulations in Chebana et al. (2008b) illustrate the variation interval of the 

estimators of ν  using ML and MMI on the basis of one case of each distribution. It is clearly 

shown that the iteration number required for MMI is significantly smaller than the one required 

for ML. Indeed, on the basis of the simulations in Chebana et al. (2008b), the ML and MMI 
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methods require, respectively, 4 and 172 iterations for HA, 2 and 29 iterations for HB and 10 and 

98 iterations for HIB. 

4. Comparison of the estimation methods using simulations 

A comparison of the estimation methods is useful to evaluate the errors of estimation with 

respect to sample size and return period. The comparison is carried out using Monte Carlo 

simulations for the three Halphen distributions. For each one of the three distributions, we 

compare the four estimation methods MM, ML, MMD and MMI. 

The selection of the studied cases is based on the values of the coefficients Cv and Cs. 

These coefficients can be obtained from the moment formulae (Perreault et al. 1999a). To 

determine the study area on the diagram (Cv, Cs), we considered series of annual maximum flow 

of 30 stations on rivers throughout the world. These series were drawn from the UNESCO 

website (http://www.unesco.org/water/ihp/db/index_fr.shtm) and are relatively long with 

observation periods greater than 70 years. Statistical tests to check the iid property (independent 

and identically distributed) of this series were made in El Adlouni et al. (2007, 2008). In addition, 

for a sample size n, the coefficient Cs can be estimated by: 

3

1
3

2
2

1

1 ( )
ˆ

1 ( )

n

i
i

n

i
i

x x
nCs

x x
n

=

=

−
=
⎛ ⎞−⎜ ⎟
⎝ ⎠

∑

∑
 (34) 

It is well-known that  is a biased estimator (Kirby, 1974). A classical correction is given by 

(Bobée and Ashkar, 1991, page 68):  

Ĉs

( 1) 8.5ˆ 1
2

n n
Cs Cs

n n
− ⎛= ⎜− ⎝ ⎠

⎞+ ⎟  (35) 

Figure 4 illustrates on the diagram (Cv, Cs) the location of the studied cases, the observed series 

with and without correction for Cs. One can see that the bias of Cs has no impact on the selection 
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of the studied cases, because the sample size of the observed series is large. Indeed, for , 

the correction coefficient in equation (35) is smaller than 1.15. In Figure 4, the obtained points 

for each observed series with and without bias correction are on a straight vertical line (same 

value of Cv). In addition, Figure 5 presents on the 

70n ≥

1 2( , )δ δ diagram the observed series as well as 

the studied cases. The selected cases corresponding to HIB are closer to the observed series in 

Figure 5 than in Figure 4, however, HB cases can be better justified using Figure 4. Figures 4 and 

5 show that it is useful to select cases on the basis of both (Cv, Cs) and  1 2( , )δ δ  diagrams. 

However, this issue is not common and deserves to be examined in further details in a future 

investigation. 

The (Cv, Cs) values of the considered cases along with the corresponding parameter 

values for each distribution are indicated in Tables 1, 2 and 3 where four cases for each 

distribution are considered. Note that the scale parameter m is arbitrarily fixed at m = 100, since 

the coefficients Cv and Cs do not depend on m. 

The simulation procedure that follows is similar to that described by Chebana et al. 

(2008a,b). Indeed, it is based on the generation of N = 1000 samples of size n = 50 and 100 using 

the algorithms proposed by El Adlouni and Bobée (2007). These algorithms are based on the 

acceptance-rejection method. 

The performances of the estimators are evaluated using the relative bias (RB) and the 

relative root mean square errors (RRMSE). For a parameter θ estimated by estimators 1̂
ˆ,..., Nθ θ , 

the criteria RB and RRMSE are given respectively by: 

0

1 0

ˆ1 N
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5. Results 

Since the main purpose of flood frequency analysis is the estimation of quantiles, we present 

results related to quantiles. However, results related to parameter estimation are presented and 

discussed in Chebana el al. (2008b). In this study, for each one of the three distributions HA, HB 

and HIB, we focus on the QT quantiles for return periods T = 10, 100 and 200 years. The 

simulation results are presented in Tables 1, 2 and 3, respectively, for HA, HB and HIB 

distributions. It is important to notice that magnitudes of Cv and Cs are associated with the 

corresponding Halphen distribution. That is, from Figure 4, a low Cs value for HIB is large for 

HB (e.g., compare HIB1 and HB4). 

In the following, we present results for each Halphen distribution (5.1, 5.2 and 5.3). In 

addition, general considerations are deferred in section 6. 

5.1 HA distribution quantiles 

The results for HA estimation quantiles are presented in Table 1. For the return period T = 

10 years, all methods lead to very similar results in all studied cases, especially for the RRMSE. 

Note that, as expected, the values of RB and RRMSE decrease with respect to n. In addition, the 

RB of Q10 varies between -2.93% and 3.25%, while its RRMSE ranges from 3.71% to 12.11% 

and increases with respect to Cs for fixed n. One can see that, except in case 4 which corresponds 

to the highest values of the coefficients Cv and Cs, the quantile Q10 is overestimated by all 

methods. 

When T = 100 years, the results of the four methods are also very similar. It can be seen that 

the values of RB and RRMSE decrease with respect to n. The RB varies between -5.30% and 

6.57% with no monotonous behaviour with respect to Cv or Cs. However, the RRMSE varies 
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between 7.44% and 19.78% and it is increasing with respect to Cs. Moreover, the four methods 

overestimate Q100 except in the last case corresponding to the largest value of Cs (case 4). 

For T = 200 years, there is still similarity between the results of the four methods especially 

between ML and MMI. The RB and the RRMSE vary respectively between -5.34% and 7.88%, 

and between 12.07% and 22.50%. Unlike the RB behaviour, the RRMSE increases with respect 

to Cs. When n increases from 50 to 100, a decreasing of the RRMSE and a slight decreasing of 

RB can be observed. Moreover, as for T = 100 years, the quantile Q200 is overestimated by all 

methods except in case 4. 

In light of these results, one can conclude that, the four methods are very similar in 

estimating HA distribution quantiles. Consequently, the MMI method can be recommended 

because it combines theoretical optimality, accurate numerical results and computation speed. 

However, the MM method can also be recommended since it is the faster, the simplest and it 

leads to very close results to those of MMI. 

5.2 HB distribution quantiles 

The estimation results of HB distribution quantiles are presented in Table 2. One can 

observe, in each case, that the sign of the RB is the same by all methods. Indeed, the RB is 

negative (underestimation) in the last three cases and it is positive (overestimation) only in case 1. 

Then, the four estimation methods underestimate HB quantiles except in case 1. For the 

considered three return periods, the results of the four methods are very similar and identical in 

some cases particularly if n = 100 and T = 10 or 100. Moreover, the values of the criteria 

resulting from ML and MMI are very similar; however, some differences are significant for large 

values of T and Cs (cases 3 and 4). Generally, one can observe that the BR (in absolute value) 

and the RRMSE increase with respect to Cs and they slightly decrease with respect to n.  
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For T = 10 years, RB and RRMSE vary respectively between -3.09% and 0.57% and 

between 2.93% and 8.97%. For T = 100 years, similarity between the methods decreases 

compared to those obtained for T = 10 years. However, the results are comparable especially for 

the RRMSE. The RB varies between -8.85% and 1.12% and the RRMSE between 3.62% and 

12.25%. When T = 200 years, the RB and RRMSE of all methods have the same order of 

magnitude. In addition, in the last two cases, differences between results become more important, 

especially for the RRMSE. In these two cases, both MM and MMD methods lead to the lowest 

RB but accompanied with the biggest RRMSE. This means that the bias is not the principal 

source of variation. The variation in RB is between the limits -9.87% and 1.33% while for the 

RRMSE, the corresponding limits are 3.80% and 29.45%. 

From these results, the MMD method can be recommended, except for high skewness cases 

to estimate quantiles of large return periods where MMI can be recommended instead. 

5.3 HIB distribution quantiles 

Results related to HIB quantile estimation are presented in Table 3. For T = 10 years, the 

results of the four methods are very similar especially for the RRMSE except for MMI in case 1. 

This exception is due to the parameter estimation for this case where it is shown in Chebana et al. 

(2008b) that the MMI estimation errors are the highest for the three parameters compared to the 

three other methods. The RB of Q10 estimation is very low and ranges between 0.08% and 1.42% 

and there is no monotonous trend with respect to Cs or Cv. The RRMSE varies between 2.64% 

and 6.79% with a slight increase with respect to Cs. 

When T = 100, the results of the ML method are close to those of MMI, except in case 1. 

Compared to Q10, the differences become larger between the results of the group MM and MMD 

and the group ML and MMI. An increasing trend of the bias is observed only for MM and MMD. 

The RB varies between the limits -0.01% and 6%. Apart some exceptions, for each method, the 
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RRMSE is increasing with respect to Cs, and its global variation is in the range from 4.58% to 

17.60%. 

The Q200 estimation results are very similar to those of Q100 in terms of behaviour. In the last 

three cases, ML and MMI results are similar and are better than those of MM and MMD. In the 

first case, the ML method leads to the lowest values of RB and RRMSE. The RB varies between 

-0.17% and 9.57% and the RRMSE varies between 5.23% and 25.84%. 

For all considered return periods, the corresponding quantiles are generally overestimated by 

the four methods. According to the above results, one can conclude that for small return periods, 

the four estimation methods have similar performances except MMI for low skewness where it 

has less performance. For medium and large return periods, in cases of low skewness (in the HIB 

considered range), except MMI, the three other methods have approximately similar 

performances with slight superiority of ML. Hence, by taking into account other considerations 

(simplicity, optimality, rapidity), the MMD method is recommended for medium and large return 

periods, in cases of low skewness (in the HIB range) while in the other cases the MMI method 

can be recommended by taking into account results and calculation time. 

In Tables 1, 2 and 3, maximum and minimum values of the RB and RRMSE are indicated 

for each Halphen distribution and each return period corresponding to quantile estimation by the 

four methods. From these values, no general conclusion can be drawn since all the methods have 

approximately similar performances.  

6. General discussion 

In this section we present some common elements to all distributions as well as a 

summary of the obtained results. Generally, errors decrease when the sample size n increases for 

parameter estimation as well as for quantile estimation for a fixed return period. In addition, 

regarding quantile estimation, for fixed sample size, the criteria values increase with respect to 
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the return period T. For fixed return period and sample size, absolute values of the RB and the 

RRMSE are generally increasing with respect to Cs values (from case 1 to case 4), with some 

exceptions such as the RB in estimations related to HA. For each case of a given Halphen 

distribution, the gap between the results of the estimated quantiles using the four methods 

increases with respect to the return period but generally it remains low. Moreover, for each 

distribution, the results obtained from the four estimation methods are homogeneous in terms of 

behaviour. 

In order to have a more clear understanding of the MMI estimation method, Figure 6 is 

produced by a simulation of 100 samples from case 3 of HA with sample size n = 100. The 

number of simulated samples here is for illustrative purpose and it is different from the one used 

in the described simulation study. The variation interval of the estimators of ν  using the different 

methods is shown in Figure 6. One can observe that the interval ]-U;U[ corresponding to ML 

method is very large for each sample and all estimators of ν  are almost merged. As a 

consequence, the interval where ν  varies is very tight for the MMI method since the estimator 

MMν  is very close to the optimum. This may explain the significant difference between the ML 

and MMI methods in terms of the average number of iterations necessary to achieve the optimum 

value. In this example, these averages are 4 and 172, respectively, for MMI and ML. Similar 

illustrations are presented in Chebana et al. (2008b) for both HB and HIB and conducting to the 

same conclusion. 

In all cases, the errors expressed in terms of the criteria RB and RRMSE of quantiles are low 

in comparison with those parameters (see also Chebana et al., 2008b). This remark is not 

exclusive to Halphen family of distributions; it is generally observed in frequency analysis with 

distributions with three or more parameters. This effect can be explained by the compensation of 

parameter errors. Indeed, Based on the results of parameter estimation presented in Chebana et al. 
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(2008b), for a given case and a given sample size n, two important elements appear: (i) there is at 

least one parameter whose RB has different sign from the two others, and (ii) the RRMSE of the 

three parameters do not have the same order of magnitude. These two factors explain the 

compensation effect of parameter estimation errors affecting quantile estimation. 

When considering computation simplicity and run speed of programs, the four methods are 

decreasingly rated as follows: MM, MMD, MMI and ML. In terms of theoretical optimality, 

based on the number of used sufficient statistics, they can be ordered as follows: ML and MMI, 

MMD and MM. With similar performances, this hierarchy is useful to select an estimation 

method. 

 

The results of the comparative study can be summarized as follows: 

− For HA distribution quantiles: despite the similarities between the four methods, the MMI 

method can be recommended because it combines theoretical optimality, numerical accuracy 

and fast computation. Nevertheless, in practical terms and with the same performance, MM 

method can also be recommended, thanks to its simplicity. 

− For HB distribution quantiles: the MMD method can be recommended except in cases of large 

skewness (in the HB range) to estimate quantiles associated to large return periods. In such 

cases, MMI method may be recommended. 

− For HIB distribution quantiles: for small return periods, the four methods have similar 

performances except MMI for very low skewness (in the HIB range). For medium and large 

return periods, in the case of very low skewness (in the HIB range), the MMD method is 

recommended while in other cases the MMI method can be recommended, taking into 

account results, its relative simplicity and required computation time. 
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  Figure 7 summarizes and illustrates the recommended methods to estimate quantiles for 

each one of Halphen distributions. It concerns particularly estimations corresponding to T = 100 

and 200 years since these return periods are mostly used in practice. Estimations related to T = 10 

years are very similar by all compared methods. It is important to notice that that the indicated 

boundaries in Figure 7 are based on the considered cases in the present study. However, it would 

be of interest to conduct a thorough study to define these boundaries in more efficient and general 

manner. 

7. Conclusions  

The present paper covers quantile estimation of the three Halphen distributions for which 

two new mixed estimation methods are proposed. From a theoretical point of view, the ML 

method is optimal. Nevertheless, resolving the corresponding non-linear system requires 

numerical approximations. Moreover, the maximization of the partial log-likelihood function 

requires a significant number of iterations. Furthermore, the bias of the ML is asymptotically null 

but it may be large for small sample sizes. Hence, it is relevant to consider other estimation 

methods for small sample sizes frequently encountered in several fields such as hydrology. In 

addition, the method of moments (MM) gives estimators with explicit expressions. Despite that it 

leads to good results, it is not optimal from a theoretical point of view since it is not based on the 

sufficient statistics of Halphen distributions. These reasons motivated the development of two 

new mixed methods, direct MMD and iterative MMI. The mixed methods combine the 

advantages of the methods MM (explicit expressions and rapidity) and ML (sufficiency). 

A performance comparison of the four estimation methods (MM, ML, MMD and MMI) 

for each one of the three Halphen distributions was conducted using Monte Carlo simulations. 

The comparison showed homogeneity of the behaviour of all compared methods. The results of 

this comparison in terms of quantile estimation show for the HA distribution, great similarity of 
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the four methods; however, the MMI method is the most adequate in both theoretical point of 

view and result accuracy. Nevertheless, in practice and with the same performance, MM method 

may be recommended as well and MMD and ML should be avoided. For HB distribution, the 

MMD method can be recommended except in cases of large skewness (in the range of HB) to 

estimate quantiles of large return periods in which cases the MMI method may be recommended. 

For HIB distribution, the MMI method can be recommended considering results accuracy and 

computation time, except in the case of a very low skewness (in the range of HIB) where the 

MMD method can be recommended.  

Finally, as a short conclusion, the MMI method can be considered for a majority of cases 

encountered in hydrology. In addition, it is worth to mention that the main idea of the mixed 

methods MMD and MMI can be conceptually applied to other distributions with several 

parameters and complicated forms such as distributions from the exponential family. 

 

 

NOTE: Codes related to the presented estimation methods are available upon request from the 

authors. 
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Appendix A: ML estimation 

The object of this appendix is to provide some elements related to the ML estimation. 

These elements are required to the development of the MMD and MMI methods. Hereafter, we 

present in more details the three steps (a) and (b) given in Section 3.2. The main steps of the ML 

method, based on the previous numerical resolution approach for the three Halphen distributions, 

are illustrated in Figure A.1. 

A.1 ML for HA 

a) For a fixed ν , ( )α ν  and ( )m ν  are solutions of the system of equations (23) and (24) 

which can be rewritten as: 

( ( ), )A
AD
H

α ν ν =  (A.1) 

( ) 
( ( ),  )A

Am
R

ν
α ν ν

=  (A.2) 

where 
[ ]
1 1

2

(2 ) (2 )( , )
(2 )A

K KD
K

ν ν

ν

α αα ν
α

+ −=  (A.3) 

and 1(2 )( , )
(2 )A

KR
K
ν

ν

αα ν
α

+=  (A.4) 

 b) In order to determine the variation interval of ν , we find signs of  and ( )HAl U′ ( )HAl U′ −  

where ( )HAl ν′  is the derivative of the partial log-likelihood function log HAL , we have : 

1( ) log ( )HA
Gl U n U
H U

⎡ ⎤⎛ ⎞′ − = + Ψ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
  and   ( ) log ( )HA

Gl U n U U
A

⎡ ⎤⎛ ⎞′ = −⎜ ⎟ Ψ⎢ ⎥⎝ ⎠⎣ ⎦
 (A.5) 

where [ ]( ) log ( ) /z zΨ = ∂ Γ ∂z 1 is the digamma function and 1 1/U AH AH− −⎡ ⎤= −⎣ ⎦ .  Note that 

, since 1U > H A≤ . Hence: 

− If  and , then the value of ( ) 0HAl U′ > ( ) 0HAl U′ − > ν  that maximizes log ( | , )HAL mν α  is 

greater than U, and in that case, the sample would better presented by a Gamma 
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distribution; 

− If and , then the value of ( ) 0HAl U′ < ( ) 0HAl U′ − < ν  that maximizes log HAL  is less than -U, 

and in that case, the sample would be better presented by an Inverse Gamma distribution.  

− If  and , then the value of ( ) 0HAl U′ < ( )HAl U′ − > 0 ν  that maximizes log HAL  is in the 

interval ] [;U U− ; and the ML estimators are solutions of the system composed by 

equations (A.1) and (A.2). In that case, the partial log-likelihood function is given by : 

[ ]1
1 1(2 ) (2 )

log ( | , ) log
2 (2 ) (2 )HA

K KGL m n
m K K

ν
ν ν

ν
ν ν

α α α
ν α

α α

−
+ −⎧ ⎫+⎡ ⎤⎪ ⎪= −⎨ ⎬⎢ ⎥

⎪ ⎪⎣ ⎦⎩ ⎭
  (A.6) 

 

A.2 ML for HB 

a) For a fixedν , ( )α ν and ( )m ν  are solutions of the following system obtained from 

equations (26) and (27): 

2( ( ), )B
QD
A

α ν ν =  (A.7) 

( )   
( ( ),  )B

Am
R

ν
α ν ν

=  (A.8) 

where   1
2

1 2

( ) ( )( , )
( )

B
ef efD

ef
ν ν

ν

α αα ν
α

+

+

=
⎡ ⎤⎣ ⎦

 (A.9) 

and   1 2 ( )
( , )

( )B

ef
R

ef
ν

ν

α
α ν

α
+=  (A.10) 

 b) In order to establish the variation interval of ν , we determine the sign of ( )HBl ν′ , the 

derivative of the partial log-likelihood function log HBL , evaluated at ( )21/ 2 / 1V Q A⎡ ⎤= −⎣ ⎦ , we 

obtain then: 

 ( ) 2 log 2 (2 )HB
Gl V n V V
A

⎡ ⎛ ⎞′ = −⎜ ⎟⎢ ⎝ ⎠⎣ ⎦

⎤Ψ ⎥  (A.11) 
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Hence:  

− If , then the argument of the maximum of the partial log-likelihood function ( ) 0HBl V′ ≥

log HBL  with respect to ν  is greater than V. In that case, the Gamma distribution is more 

appropriate to represent the sample; 

− If ( ) 0HBl V′ < , then the maximum of the partial log-likelihood function log HBL  with 

respect to ν  is reached in the interval ] [0;V . In that case, the partial log-likelihood 

function is given by: 

2 1
1 21

2

( )2 ( ) ˆlog ( | , ) log
( ) ( ) ( )HB

efG efL m n
m ef ef ef

ν
νν

ν
ν ν ν

ααν α α
α α α

−
++

⎧ ⎫⎡ ⎤⎪ ⎪= − +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

   (A.12) 

 

A.3 ML for HIB 

 a) For a fixed ν , ( )α ν  and ( )m ν  are solutions of the following system obtained from 

equations (29) and (30): 

 
2

( ( ), )B
HD
IQ

α ν ν =  (A.13) 

 ( )   ( ( ), )Bm HRν α ν ν=  (A.14) 

where the functions BD  and  are given respectively by expressions (A.9) and (A.10). BR

b) To establish the interval in which belongs ν , we determine the sign of which 

is the derivative of the partial log-likelihood function 

( )HIBl W′

log HIBL evaluated at 

( )2 11/ 2 1W H IQ−⎡ ⎤= ⎣ ⎦− , given by: 

( ) 2 log 2 (2 )HIB
Hl W n W W
G

⎡ ⎛ ⎞′ = −⎜ ⎟⎢ ⎝ ⎠⎣ ⎦

⎤Ψ ⎥  (A.15) 

Therefore:  
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− If , then the value of ( ) 0HIBl W′ ≥ ν  that maximizes the log-likelihood function log HIBL is 

greater than W. In this case, the Inverse Gamma distribution is more appropriate to represent 

the sample;  

− If , then the maximum of function lo( ) 0HIBl W′ < g HIBL  with respect to ν  is reached in the 

interval ] [0;W . In this case, the log-likelihood function is given by: 

2
1 21

2 1

( )2 ( ) ˆlog ( | , ) log
( ) ( ) ( )HIB

efm efL m n
G ef ef ef

ν
νν

ν
ν ν ν

ααν α α
α α α

++
+

⎧ ⎫⎡ ⎤⎪ ⎪= − +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

  (A.16) 
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Tab. 1: RB and RRMSE of quantile estimation of HA distribution using the four methods (%) 
 

n = 50 n  = 100 
RB RRMSE  RB RRMSE  

MM ML MMD MMI MM ML MMD MMI MM ML MMD MMI MM ML MMD MMI 

case 1 
T = 

Cs = 0.88; Cv =0.26  
100;  7.00; 6.00m α ν= = = −  

10 2.20 2.22 2.20 2.21 5.44 5.45 5.44 5.45 0.63 0.64 0.64 0.64 3.71 3.71 3.71 3.71 
100 4.61 4.54 4.62 4.56 10.45 10.32 10.46 10.36 2.07 1.99 2.08 2.02 7.55 7.44 7.56 7.48 
200 5.46 5.33 5.47 5.37 12.28 12.07 12.29 12.13 2.69 2.57 2.70 2.61 8.99 8.82 8.99 8.87 
case 2 
T = 

Cs = 1.14;  Cv = 0.51 
100;  1.22; 2.82m α ν= = =  

10 1.07 1.26 1.21 1.26 8.14 8.16 8.15 8.16 1.06 1.15 1.13 1.15 6.00 6.01 6.01 6.01 
100 6.12 6.34 6.38 6.33 14.35 14.28 14.57 14.29 3.84 4.01 3.95 4.02 9.91 9.95 9.99 9.94 
200 7.58 7.78 7.88 7.78 16.70 16.51 17.00 16.51 4.59 4.79 4.72 4.79 11.19 11.23 11.30 11.22
case 3 
T = 

Cs = 1.59; Cv =0.43  
100;  2.40; 3.90m α ν= = = −  

10 3.10 3.25 3.20 3.25 9.23 9.33 9.31 9.33 1.25 1.37 1.33 1.37 6.02 6.07 6.06 6.07 
100 6.35 6.24 6.57 6.24 16.24 16.13 16.44 16.12 5.45 5.15 5.63 5.15 11.52 11.36 11.65 11.36
200 7.57 7.33 7.83 7.32 18.66 18.43 18.89 18.42 7.09 6.59 7.31 6.59 13.61 13.30 13.78 13.30
case 4 
T = 

Cs = 2.31;  Cv = 0.71 
100;  1.00; 1.00m α ν= = = −  

10 -2.93 -2.26 -2.37 -2.26 12.11 12.10 12.10 12.10 -2.72 -2.15 -2.22 -2.15 8.58 8.57 8.57 8.57 
100 -5.30 -4.61 -4.19 -4.62 19.43 19.48 19.78 19.48 -4.37 -3.79 -3.39 -3.80 14.21 14.11 14.54 14.12
200 -5.34 -4.75 -4.07 -4.76 21.91 21.90 22.50 21.91 -4.37 -3.88 -3.27 -3.88 16.22 16.01 16.72 16.01

Numbers underlined and in bold characters represent the minimum value of the criterion (RB or RRMSE) for given 
T. Numbers in bold and italic characters represent the maximum value of the criterion (RB or RRMSE) for given T. 
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Tab. 2: RB and RRMSE of quantile estimation of HB distribution using the four methods (%) 
 

n = 50 n  = 100 
RB RRMSE  RB RRMSE  

MM ML MMD MMI MM ML MMD MMI MM ML MMD MMI MM ML MMD MMI 

case 1   
T = 

Cs = 0.10;  Cv = 0.28 
100;  4.00; 1.20m α ν= = =  

10 0.57 0.25 0.09 0.22 4.19 4.14 4.12 4.16   0.20   0.07  -0.03    0.05    2.96    2.94   2.93   2.96  
100 1.02 1.09 0.48 1.12 5.07 5.07 4.95 5.13   0.46   0.57   0.20    0.56    3.67    3.66   3.62   3.71  
200 1.14 1.29 0.58 1.33 5.31 5.32 5.16 5.43   0.55   0.69   0.26    0.70    3.90    3.85   3.80   3.96  
case 2   
T = 

Cs = 0.32;  Cv = 0.43 
100;  2.00; 0.90m α ν= = =  

10 -0.56 -0.71 -0.77 -0.70 5.97 5.91 5.94 5.92 -0.52 -0.60 -0.60 -0.61 4.25 4.21 4.23 4.21 
100 -1.80 -1.47 -1.64 -1.43 7.20 6.89 7.10 6.93 -1.30 -1.18 -1.13 -1.16 5.31 5.07 5.18 5.09 
200 -2.00 -1.62 -1.79 -1.57 7.50 7.14 7.38 7.18 -1.44 -1.29 -1.22 -1.21 5.57 5.29 5.41 6.32 
case 3   
T = 

Cs = 0.58;  Cv = 0.56 
100;  1.00; 0.70m α ν= = =  

10 -1.72 -2.01 -1.78 -2.02 7.67 7.66 7.63 7.67 -1.11 -1.29 -1.10 -1.30 5.42 5.43 5.39 5.44 
100 -4.90 -5.18 -4.03 -5.17 9.60 9.42 9.08 9.45 -3.13 -3.55 -2.51 -3.50 6.79 6.80 6.42 6.83 
200 -5.38 -5.63 -3.80 -5.63 11.65 11.90 19.81 12.43 -3.23 -3.98 -2.59 -3.81 12.91 7.15 11.25 10.23
case 4   
T = 

Cs = 0.76;  Cv = 0.65 
100;  0.50; 0.60m α ν= = =  

10 -2.68 -3.08 -2.72 -3.09 8.91 8.96 8.88 8.97 -1.73 -1.96 -1.71 -2.01 6.63 6.65 6.59 6.70 
100 -8.00 -8.84 -6.85 -8.85 11.94 12.22 11.11 12.25 -5.60 -6.52 -4.84 -6.45 8.85 9.26 8.23 9.32 
200 -6.86 -9.86 -7.11 -9.87 29.45 12.99 18.05 13.03 -5.92 -6.63 -3.62 -6.69 14.84 18.75 23.97 15.71

Numbers underlined and in bold characters represent the minimum value of the criterion (RB or RRMSE) for given 
T. Numbers in bold and italic characters represent the maximum value of the criterion (RB or RRMSE) for given T. 
 

 

 42



Tab. 3: RB and RRMSE of quantile estimation of HIB distribution using the four methods (%) 
 

n = 50 n  = 100 
RB RRMSE  RB RRMSE  

MM ML MMD MMI MM ML MMD MMI MM ML MMD MMI MM ML MMD MMI 

case 1   
T = 

Cs = 1.09;  Cv = 0.17 
100;  6.00; 4.00m α ν= = =  

10 0.47 0.76 0.86 1.05 4.08 4.04 4.07 7.30 0.20 0.31 0.38 0.66 2.66 2.64 2.66 5.39 
100 1.42 0.64 1.68 1.32 7.60 7.02 7.46 17.60 0.61 -0.01 0.73 0.78 4.86 4.58 4.80 12.51
200 1.75 0.52 1.97 1.33 8.83 7.98 8.64 21.01 0.76 -0.17 0.85 0.83 5.64 5.23 5.55 16.14
case 2   
T = 

Cs = 1.42;  Cv = 0.22 
100;  4.0; 3.60m α ν= = =  

10   1.12   1.27    1.42    1.20    5.00    4.96   5.04   5.00   0.14   0.19   0.28    0.18    3.32    3.30   3.32   3.31  
100   3.75   2.04    3.83    1.84   10.49    8.91  10.29   9.01   1.40   0.36   1.44    0.36    6.75    6.11   6.64   6.21  
200   4.90   2.27    4.88    2.05   12.84   10.29  12.49  10.44   2.03   0.45   2.03    0.48    8.23    7.13   8.05   7.31  
case 3    
T = 

Cs = 1.80;  Cv = 0.26 
100;  3.20; 3.00m α ν= = =  

10   0.87   0.96    1.12    0.84    5.98    5.91   5.96   5.95    0.08   0.12   0.22    0.10    4.07    4.06   4.08   4.07  
100   4.76   2.00    4.62    1.68   14.47   11.65  13.71  12.01   2.21   0.70   2.22    0.71    8.93    7.97   8.79   8.15  
200   7.15   2.46    6.60    2.14   21.27   13.85  18.20  14.47   3.40   1.03   3.35    1.10   11.33    9.51  11.08   9.85  
case 4    
T = 

Cs = 2.38.  Cv = 0.31 
100;  3.00; 2.40m α ν= = =  

10   0.92   0.98    1.18    0.84    6.73    6.72   6.79   6.73   0.43   0.46   0.56    0.41    4.56    4.54   4.58   4.53  
100   6.00   2.08    5.75    1.83   17.11   13.16  16.31  13.52   3.76   1.42   3.69    1.48   11.61    9.31  11.23   9.65  
200   9.57   2.57    8.69    2.40   25.84   15.67  22.54  16.40   6.01   1.97   5.76    2.19   16.36   11.33  15.41  12.01 

Numbers underlined and in bold characters represent the minimum value of the criterion (RB or RRMSE) for given 
T. Numbers in bold and italic characters represent the maximum value of the criterion (RB or RRMSE) for given T. 
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Fig. 1: Halphen distributions in the ( )1 2,δ δ diagram with ( )1 ln A
Gδ =  and ( )2 ln G

Hδ =  

 (From Morlat, 1956) 
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Fig. 2: Tail behaviour classification of distributions commonly used in hydrology (From El Adlouni 

et al., 2008). 
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Fig. 3: Illustration of interval variations of ν  using ML and MMI for HA distribution 
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Fig. 4: Halphen distributions in the Cv-Cs diagram with the studied cases and the UNESCO series 
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Fig.5: The studied cases and the UNESCO series in the ( )1 2,δ δ diagram with (1 ln A
Gδ = )  and 

( )2 ln G
Hδ =  
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Fig. 6: Estimation of ν  and the corresponding empirical variation interval for HA (case 3 and n=100) 
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Fig. 7: Summary of conclusions related to quantile estimation results 
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Compute A, H, G   for HA 
    A, G, Q    for HB 
               H, G, IQ  for HIB

 
HA : l’(U)<0 and l’(-U)>0 
HB :  l’(V) < 0 
HIB : l’(W) < 0 

Consider  Uν < pour HA 
  0< ν < V  pour HB 
                   0< ν < W  pour HIB 

Limiting cases 

HA      ( ) :  ( ( ), ) /AD A Hα ν α ν ν =  
 ( )  A / ( ( ), )Am Rν α ν ν=  
 
HB     ( ) :  ( ( ), ) / ²BD Q Aα ν α ν ν =  
 ( ) = A/R ( ( ), )Bm ν α ν ν  
 
HIB    ( ) :  ( ( ), ) ² /BD H IQα ν α ν ν =  
 ( )  ( ( ), )Bm HRν α ν ν=  

 ν n = argmax vraisemblance (ν ,m(ν ),α (ν )) 
 HA:  on Uν <  

HB:  on 0< ν < V 
  HIB: on 0< ν < W 

No

Yes 

Sample

If

( )n nα α ν=   

= ( )n nm m ν   
 

 
Fig. A.1: ML estimation algorithm for parameters of Halphen distributions 
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