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Abstract:  1 

Regional frequency analysis (RFA) consists generally in two steps: 1) delineation of 2 

hydrological homogeneous regions, and 2) regional estimation. Existing regionalization methods 3 

which adopt this two-step approach suffer from two principal drawbacks. First, the restriction of 4 

the regional estimation to a particular region by excluding some sites can correspond to a loss of 5 

some information. Second, the definition of a region generates a border effect problem. In order 6 

to overcome these problems, a new method is proposed in the present paper. The proposed 7 

method is based on three elements: (i) a weight function to treat the border effect problem, (ii) a 8 

function to evaluate how “similar” each site is to the target one, and (iii) an iterative procedure to 9 

improve estimation results. Element (ii) is treated using the statistical notion of depth functions 10 

which is introduced to provide a ranking of stations in a multivariate context. Furthermore, the 11 

properties of depth functions meet the characteristics sought in RFA. It is shown that the 12 

proposed method is flexible and general and that traditional RFA methods represent special cases 13 

of the depth-based approach corresponding to particular weight functions. A comparison is 14 

carried out with the canonical correlation analysis (CCA) approach. Results indicate that the 15 

depth-based approach performs better than CCA both in terms of relative bias and relative root 16 

mean squares error.  17 

18 
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1. Introduction  1 

One of the problems encountered in hydrology is the lack of data, since the extreme 2 

events we want to estimate are rare and record lengths are short. Consequently, statistical 3 

inference is difficult in such sites. To overcome this problem, hydrologists have recourse to data 4 

from other sites that are hydrologically similar to the target one. The estimation of extreme 5 

hydrological events, such as floods, at sites where little or no data is available is the main aim of 6 

regional frequency analysis. Delineation of homogeneous hydrological regions and regional 7 

estimation are the two main steps in a regional flood frequency procedure. Several studies have 8 

focused on the delineation of homogeneous regions (e.g., Burn, 1990; Hosking and Wallis, 1993; 9 

Ouarda et al., 2006; and Chebana and Ouarda, 2007) and on regional estimation (e.g., Dalrymple, 10 

1960; Stedinger and Tasker, 1986; Ouarda and Ashkar, 1994; Durrans and Tomic, 1996; Nguyen 11 

and Pandey, 1996; Madsen and Rosbjerg, 1997; Alila, 1999, 2000 and Chokmani and Ouarda, 12 

2004). An intercomparison of various regional flood estimation procedures was presented by 13 

GREHYS (1996a,b) by coupling four methods for delineating homogenous regions and seven 14 

regional estimation methods. 15 

 16 

In a regional estimation procedure, one is interested in maximizing the amount of 17 

transferred information. The delineation step corresponds usually to the exclusion of a number of 18 

sites which may lead to a loss of some relevant information. Furthermore, the definition of a 19 

region leads to the problem of the so-called “border effect”. This means that for two sites that are 20 

very close but which are located on each side of the region limits, one is excluded while the other 21 

one is included even though both sites offer similar information. This problem is not present 22 

when the limits correspond to natural borders. 23 
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These elements motivate the development of a new method that overcomes some of these 1 

drawbacks. The method developed in the present paper is based on the notion of depth function. 2 

The depth function is a statistical notion developed in the seventies and which receives increasing 3 

interest (e.g. Tukey, 1975; Liu, 1990; Liu and Singh, 1993; Rousseeuw and Hubert, 1999; Zuo 4 

and Serfling, 2000; Mizera, 2002; Mizera and Müller. 2004; Zuo and Cui, 2005 and Lin and 5 

Chen, 2006). The purpose for introducing the depth function is to provide an outward ordering of 6 

points in a multivariate context. The most important properties of a depth function are (i) affine 7 

invariance, (ii) maximality at center, (iii) monotonicity related to the deepest point, and (iv) 8 

vanishing at infinity. These properties fit the constraints of regional flood frequency analysis. 9 

Indeed, the affine invariance is useful to remove the scale effect when treating several variables. 10 

The center, where the depth function is maximal, represents the target site. The monotonicity 11 

related to the center point means that sites far from the target site are less important. Finally, the 12 

very far sites have no importance or no contribution; this is the vanishing at infinity property. 13 

Hence, the contribution of each site is related to its similarity to the target site. 14 

 15 

The proposed procedure focuses on the estimation as a goal and avoids the delineation 16 

step. Note that the delineation step is only an intermediate technical tool to estimate quantiles. 17 

Different quantile estimation methods are proposed in the literature, such as the index flood 18 

method and regressive models (see GREHYS, 1996a,b). In the present paper, the estimation is 19 

based on the regressive model. The estimation of the regression parameters is obtained using a 20 

weighted least squares method. A key element is related to the choice of the weights. These 21 

weights are selected as functions of the site depth. Hence, the proposed method overcomes the 22 

problems related to the border effect by using smooth weight functions. It also reduces the 23 

problems related to the lack of data by using all available data in a more efficient manner. 24 
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Furthermore, traditional approaches represent special cases of depth-based approaches 1 

corresponding to particular weight functions. Finally, the non requirement of data normality, the 2 

availability of several kinds of depth functions and the smoothness of the weight functions 3 

provide this method with a high level of flexibility.   4 

 5 

Based on hydrological variables, on one hand, and on physio-meteorological 6 

characteristics, on the other hand, regional regression is frequently integrated with the CCA 7 

approach (Ouarda et al., 2000, 2001). The CCA-regression provides flood quantile estimates at 8 

ungauged sites by using site physiographic characteristics. In order to study the performance of 9 

the proposed depth-based approach, it is compared to the CCA-regression approach with optimal 10 

neighborhoods (Ouarda et al., 2001). This comparison is based on a data set from 151 gauging 11 

sites in the southern part of the province of Quebec, Canada. The specific quantiles 12 

corresponding to 10- and 100-year return periods are estimated and a jackknife resampling 13 

procedure is used to evaluate the estimation errors.      14 

 15 

The paper is organized as follows. Brief presentations of the depth functions, the CCA 16 

approach and the weighted least squares method are given in Section 2. Section 3 deals with the 17 

proposed methodology in its general form. A case study is presented in Section 4 and the 18 

developed approach is applied and compared to the CCA method in Section 5. Results and 19 

discussions are reported in Section 6. Conclusions and future promising work are presented in the 20 

last section.  21 

 22 

 23 
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2. Background  1 

In this section, a brief description of the background material related to depth functions, 2 

the CCA method and weighted regression analysis is presented. 3 

 4 

2.1 Depth function: 5 

Tukey (1975) presented the pioneering work in which the depth notion was introduced. 6 

The author proposed a halfspace depth in order to define a multivariate analogous to the 7 

univariate rank and order statistics. Later, several depth functions were formulated in an ad-hoc 8 

manner.  Zuo and Serfling (2000) standardized these definitions and classified existing examples 9 

in the literature.  10 

 11 

For a given cumulative distribution function F on  ( 1)dR d ≥  a corresponding depth 12 

function is any bounded, nonnegative function D(x;F) which provides a F-based center-outward 13 

ordering of points x in d
ℝ  that satisfies the following properties: 14 

i. Affine invariance: the depth of a point dx R∈ should not depend on the underlying 15 

coordinate system or, in particular, on the scales of the underlying measurements. 16 

ii. Maximality at center: for a distribution having a uniquely defined center (e.g., the point of 17 

symmetry with respect to some notion of symmetry), the depth function should attain its 18 

maximum value at this center. 19 

iii. Monotonicity relative to deepest point: as a point dx R∈ moves away from the deepest 20 

point (the point at which the depth function attains its maximum value; in particular, for a 21 

symmetric distribution, the center) along any fixed ray through the center, the depth at x 22 

should decrease monotonically.  23 
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iv. Vanishing at infinity: the depth of a point x should approach zero as its norm x  1 

approaches infinity. 2 

 3 

A formal definition of depth functions, based on these properties, is given in Zuo and 4 

Serfling (2000). In the following, we denote by ∆ the class of cumulative distribution functions 5 

on dR and by ZF the cumulative distribution function of a given random vector Z.  Let the 6 

mapping (.;.) : dD R R× ∆ → be bounded, non-negative, and satisfy the following conditions: 7 

i. ( ; ) ( ; )AX b XD Ax b F D x F++ =  holds for any random vector X  in  dR , any 8 

d d× nonsingular matrix A, and any d-vector b; 9 

ii. ( ; ) sup ( ; )dx R
D F D x Fθ

∈
=  holds for any F ∈ ∆ having center θ ; 10 

iii. For any F ∈ ∆  having deepest point θ , ( )( ; ) ( ) ;D x F D x x Fθ α θ≤ + − holds for 11 

[ ]0,  1α ∈ ; and 12 

iv. ( ; )D x F  converges to 0 as the norm x  goes to infinity, for each F ∈ ∆ . 13 

Then (.; )D F  is called a statistical depth function. 14 

 15 

Several kinds of depth functions are introduced in the literature. Here we present some of 16 

the key ones:  17 

1. Mahalanobis depth: It is defined on the basis of the Mahalanobis distance 18 

( ) ( ) ( )2 1,Ad x y x y A x y−′= − −  between two points , dx y R∈ with respect to a positive 19 

definite matrix A (Mahalanobis, 1936). The Mahalanobis depth is then given by: 20 

( )2

1
( ; )

1 ,A

MHD x F
d x µ

=
+

      (1) 21 
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where F is a given distribution and  and Aµ  are any corresponding location and 1 

covariance measures, respectively.  Note that the Mahalanobis distance is used in the 2 

development of the CCA approach for regional flood frequency analysis (Ouarda et al., 3 

2001). It is also important to note that the Mahalanobis depth function has values in the 4 

interval [ ]0,1 . Hence, its values are more interpretable than those of the corresponding 5 

Mahalanobis distance. 6 

2. L
2
 depth: It is defined for a distribution F and dx R∈  as: 7 

1

2 1
( ; )

1
L D x F

E x X −Σ

=
+ −

      (2) 8 

where Σ  is the covariance matrix of F and 
M

x x Mx′= . 9 

3. Simplicial volume depth (Oja, 1983): It is given through the expression : 10 

[ ]( )
( )

1

1, ,...,
( , ) 1   for     

det

d d
S x X X

SVD x F E x R

α

α

−
   ∆   = + ∈   Σ    

  (3) 11 

where [ ]( )1, ,..., dS x X X∆  denotes the volume of the d-dimensional simplex 12 

[ ]1, ,..., dS x X X , Σ  is the covariance matrix of F and 0.α > The quantity 13 

[ ]( )1, ,..., dS x X X∆  is a measure of the dispersion of the point cloud.  14 

4. Projection depth (Liu, 1992): It is defined  for dx R∈ as : 15 

( )
( )

( )

1

1

Med
; 1 sup

MADu

u x u X
PD x F

u X

−

=

 ′ ′−
= +  ′ 

     (4) 16 
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where X has distribution F, Med denotes the univariate median, 1 

( )MAD( ) Med Med( )Y Y Y= −  represents the median absolute deviation for a random 2 

variable Y, and ⋅  is the Euclidian norm. 3 

5. Halfspace depth (Tukey, 1975): It is defined  for dx R∈ with respect to a probability P on 4 

dR as: 5 

( ) { }; inf ( ) :  a closed halfspace that contains HD x P P H H x=   (5) 6 

 7 

Note that, occasionally, some examples of depth functions do not meet some of the 8 

previous four properties in some special cases. For instance, the 2 ( ; )L D x F  function only meets 9 

the above conditions under symmetric assumptions on the distribution F (see Zuo and Serfling, 10 

2000).  11 

 12 

A sample version of D(x;F), denoted by ˆ( ) ( ; )n nD x D x F= , may be defined by replacing F 13 

with a suitable empirical function ˆ
nF . The asymptotic properties of ( )nD x  are studied in several 14 

papers including Liu (1990), Arcones et al. (1994), Massé (2004) and Lin and Chen (2006). Liu 15 

and Singh (1993) established for the sample Mahalanobis depth function that 16 

sup ( ) ( ; )n
x

D x D x F−  converges to zero almost surely as n goes to infinity, under suitable 17 

conditions on F. For convenience, the following notation is used for the Mahalanobis depth 18 

function in the next sections:           19 

( )2

1
( ; )

1 ,
A

A

MHD x
d x

µ
µ

=
+

      (6) 20 
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Depth functions are applied in several fields. For instance, Caplin and Nalebuff (1988, 1 

1991a,b) employed depth notions in econometric and social studies. They were also applied in 2 

industrial quality control by Liu and Singh (1993) and Liu (1995). Ghosh and Chaudhuri (2005) 3 

investigated the use of depth functions in nonparametric discrimination analysis. Mizera and 4 

Müller (2004) defined and studied the location-scale depth and gave some statistical applications. 5 

 6 

The computation of some depth functions is complex and requires specific algorithms. 7 

For instance, Miller et al. (2003) developed an algorithm for the computation of the halfspace 8 

depth. However, to our knowledge, similar algorithms are not available for the projection depth. 9 

The Mahalanobis depth is among the simplest ones to evaluate if the parameter µ and the 10 

parameter matrix A are identified.  11 

 12 

Liu et al. (1999) presented descriptive statistics, graphics and inference related to several 13 

depth functions. A detailed description of the theoretical background of depth functions is 14 

available in Zuo and Serfling (2000). 15 

 16 

2.2 Canonical Correlation Analysis (CCA) 17 

Canonical correlation analysis is concerned with the amount of linear relationship 18 

between two sets of variables. Consider two normal random vectors X (physiographical and 19 

meteorological variables) and Y (hydrological variables), CCA provides two sets of basis vectors 20 

(called canonical variables), one for X and the other for Y. The main property of such vectors is 21 

that the correlations between the projections of the variables onto these basis vectors are mutually 22 
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maximized (Muirhead, 1982). More precisely, let W and V be linear combinations of X and Y 1 

respectively, i.e.,  2 

V a X

W b Y

′=

′=
       (7) 3 

Let Σ be the covariance matrix of the variables X and Y, defined as: 4 

cov
X XY

YX Y

X

Y

Σ Σ  
Σ = =   Σ Σ   

      (8) 5 

The correlation between W and V can then be calculated as: 6 

 

  

XY

X Y

a b

a ab b
ρ

′ Σ
=

′ ′Σ Σ
      (9) 7 

The goal of the CCA is to find the vectors a and b maximizing ρ subject to the constraint 8 

that W and V must have unit variances. Once the first pair of canonical variables is obtained, 9 

other pairs of canonical variables can be obtained in the uncorrelated directions to the previous 10 

ones by maximizing equation (9) subject to the constraint of unit variance. For more details 11 

concerning CCA application in regional flood frequency analysis, the reader is referred to Ouarda 12 

et al. (2001). 13 

 14 

Based on the canonical hydrological variables W and physio-meteorological variables V, 15 

the Mahalanobis distance for an ungauged target-site with given physiographical characteristics 16 

V=v0 is given by: 17 

( ) ( ) ( ) ( )
12 2

0 0 0,
pI pD d W v W v I W v

−

′−Λ Λ
′ ′= Λ = − Λ − Λ Λ − Λ   (10) 18 

where pI is the p p× identity matrix, 1diag( ,..., )pλ λΛ = with corr( , ), 1,...,i i iV W i pλ = =  and p is 19 

the rank of the covariance matrix .XYΣ  20 
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To belong to the neighborhood of the target-site, at a 100(1 )%α− confidence level, a site 1 

should have a distance 2D  less than 2

, pαχ  where ( )2 2

, 1p pP αχ χ α≤ = −  and 2

pχ has a chi-squared 2 

distribution with p degrees of freedom. The Mahalanobis distance can also serve to indicate 3 

where, in the canonical space W that encompasses all possible realizations of the random variable 4 

W, would be found the realizations w of W for which V has realized v0.   5 

 6 

2.3 Weighted least squares estimation 7 

Most commonly, the power product model given by equation (10) is integrated with the 8 

CCA approach and is used to describe the relationship between flood quantiles QT  of a return 9 

period T, and the physio-meteorological and basin characteristics 1,..., rA A for a given region:  10 

1 2

0 1 2 ... r

rQT A A A eα α αα=       (11) 11 

Taking s quantiles QT  corresponding to s return periods, we construct a vector Y of the 12 

hydrological variables, that is ( )1 2, ,..., sY QT QT QT= . Then, using the log-transformation and the 13 

matrix form, we obtain the multivariate log-linear model: 14 

( )log logY X β ε= +       (12) 15 

where 1 2log (1, log , log ,..., log )rX A A A=  is the ( 1)r + vector of the physio-meteorological 16 

variables, β is the ( 1)r s+ × matrix of parameters and ε represents the error vector with:  17 

( ) 0 and Var( )E ε ε= = Γ      (13) 18 

If the number of sites in the region is denoted by N, the parameter β can be estimated, using the 19 

weighted least squares estimation method, by: 20 
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( ) ( )

( )

1

-1

ˆ arg min log log log log

     = (log ) ' log (log ) ' log

N

w i i i i i

i

w Y X Y X

X X X Y

β
β β β

=

′= − −

Ω Ω

∑
   (14) 1 

and the matrix Γ is estimated by: 2 

         
( ) ( )ˆ ˆlog log log log

ˆ =
1

w wY X Y X

N r

β β ′− −
Γ

− −
          (15) 3 

where 1diag( ,..., )Nw wΩ =  is the diagonal matrix composed by the weight elements 1,..., Nw w . A 4 

detailed description of multivariate regression analysis can be found in Rencher (2002). 5 

 6 

3. Approach development 7 

3.1 Description 8 

Limited use of weighted least squares methods was made in the filed of regional flood 9 

frequency analysis. Madsen and Rosbjerg (1997) used weighted least squares (WLS) and 10 

generalized least squares (GLS) methods in a regional flood estimation procedure that combines 11 

the index-flood concept with an empirical Bayes method. In the WLS and GLS methods, the 12 

weights are related to the variance and covariance of the errors in the regression model.  13 

 14 

The approach proposed in the present work is focused directly on quantile estimation 15 

using the weighted least squares method to estimate regression parameters and does not use any 16 

delineation technique. The choice of the weights in equation (14) is very important for parameter 17 

estimation and hence for the predicted value Ŷ . In the un-weighted estimation, all weights are 18 

equal to one. However, if a region or a neighborhood has been defined, weights correspond to 19 

zero if the site is excluded from the region and one if it is included in the region. In the proposed 20 
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approach the weights are chosen differently. They are related to a weight function and a depth 1 

function which will be developed in Section 3.2. This makes the methodology very flexible and 2 

more general.  3 

 4 

A special attention is given to the choice and the evaluation of the depth function. A 5 

convenient depth function, which is related to the neighborhood approach, is the Mahalanobis 6 

depth function (6). The value of µ  is generally unknown for the ungauged site, and must be 7 

estimated. The values of the depth function for the gauged sites are highly related to the quality 8 

of µ estimates. In other words, the problem here is how to get the hydrological «reference value» 9 

with respect to which the depths are computed. This reference value represents the deepest point. 10 

Therefore, in order to get an accurate estimate of this «reference value», the proposed approach 11 

utilizes an iterative estimation procedure based on the log-linear model. The iterative procedure 12 

requires a start point, a criterion and a stopping condition. The approach is described below in its 13 

general aspect and also with options for the iteration elements.  14 

 15 

The iterative estimation procedure serves to improve the depth values and to make them 16 

more accurate. This iterative technique has some similarities with the so-called One-step 17 

estimator (see e.g., van der Vaart, 1998, pp. 71). Note that the iterative estimation procedure and 18 

the way the weights are selected represent two elements that differentiate the proposed approach 19 

from the WLS and GLS methods as applied in Madsen and Rosbjerg (1997). In the described 20 

methodology, all available sites in the data set are used, without any restriction to a region or a 21 

neighborhood.  However, each site is associated to a weight related to its hydrological depth with 22 
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respect to the target-site. In that case the problem of the delineation of a region becomes rather a 1 

problem of a choice of weight and depth functions. 2 

 3 

3.2 Computation algorithm 4 

 The computation algorithm is based on the following estimate of the parameter β . It is the 5 

estimator given in equation (14) with particular weights iw . To this end, let (.)ϕ  be a positive 6 

increasing weight function, and DN be a sample depth function. Then, the estimators (14) and (15) 7 

are given respectively by: 8 

  

( ) ( ) ( )

( )

,

1

-1

, ,

ˆ arg min ( ) log log log log

         = (log ) ' log (log ) ' log

N

N N

N

D N i i i i i

i

D D

D Y Y X Y X

X X X Y

ϕ β

ϕ ϕ

β ϕ β β
=

′= − −

Ω Ω

∑
   (16) 9 

and 10 

                
( ) ( ), ,

,

ˆ ˆlog log log log
ˆ =

1

N N

N

D D

D

Y X Y X

N r

ϕ ϕ

ϕ

β β ′− −
Γ

− −
           (17) 11 

where ( ) ( )( ), 1diag ( ) ,..., ( )D ND Y D Yϕ ϕ ϕΩ = . 12 

  13 

The weight function is assumed to be increasing, to ensure that the deeper is the site, the more 14 

important it is and hence it receives a higher weight. It is important to indicate that the matrix in 15 

(17) contains the inter-quantile correlation rather than the inter-site correlation. The latter is taken 16 

into account in the GLS approach (see e.g. Madsen and Rosbjerg, 1997). It would be useful, in 17 

future efforts, to focus on the integration of spatial correlation in the depth-based approach. 18 

 19 
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  Suppose 0i  is the index of the target-site. The algorithm is composed of the following 1 

steps: 2 

1. Model: Consider the model (12) relating log X and logY .  3 

2. Initial step:  In order to get a starting estimator
01,

ˆ
iY .  4 

- Use a preliminary approach to estimate the model parameters. One possible option is the 5 

uniform approach which allocates equal weights to all sites.  6 

 - Give the predicted initial value
01,

ˆ
iY . 7 

3. k
th

 step (k = 2,3,…): For each site i different from the target one 0i ,  8 

a. Consider the predicted value from the previous step (k-1), i.e. 
01,

ˆ
k iY −  using the 9 

corresponding parameter estimators 
01,

ˆ
k iβ − and 

01,
ˆ

k i−Γ given in (16) and (17) respectively, 10 

where the notation is adapted to the iteration context.  11 

b. Compute the depth of log iY with respect to 
01,

ˆlog k iY − between sites i and 0i .  12 

 It is convenient to use the Mahalanobis depth ( )
01, 0

ˆ 1,
ˆlog ;log

k i
i k iMHD Y Y

−
−Γ

 given by (6).  13 

c. Compute the weight iw corresponding to site i. It is given for a weight function ϕ  and 14 

the Mahalanobis depth by ( )( )01, 0
ˆ 1,

ˆ= log ;log
k i

i i k iw MHD Y Yϕ
−

−Γ
. Some examples of 15 

weight functions are presented in the next section. 16 

d. Estimate the model parameters using the weighted method. 17 

In the log-linear model, the estimators 
0,

ˆ
k iβ and 

0,
ˆ

k iΓ are expressed through (16) and (17) 18 

respectively. 19 

e. Give the predicted value 
0,

ˆ
k iY  using 

0i
X and 

0,
ˆ

k iβ  in model (12). 20 
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f. Assess the criterion to evaluate the model estimation quality. Several known criteria in 1 

regression analysis can be used, for instance, the relative bias (RB) and the relative root 2 

mean square error (RRMSE). 3 

4. Iteration: Redo step 3 while the criterion is improving.  4 

5. End condition: Stop the iteration whenever the criterion deteriorates or converges. 5 

6. Final result: Get the estimators of the regression model parameters and hence the final 6 

predicted value. 7 

 8 

3.3 Particular cases of the proposed approach  9 

The proposed method is general and includes some known methods as special cases 10 

representing particular weight functions. Indeed:  11 

1. The uniform approach which uses all sites corresponds to the weight function 1Uϕ ≡ . In 12 

this case the estimator β̂  is given by: 13 

( ) ( )2 2

1 1

ˆ arg min log log arg min log log
N N

i i i i i

i i

w Y X Y X
β β

β β β
= =

= − = −∑ ∑  (18) 14 

2. The traditional CCA approach with a given value of α  corresponds to: 15 

,

,

[ ,1]

1 if  [ ,1]
( ) 1 ( )

0 elsep

p

CCA C

x C
x x

α

αϕ
∈

= = 


     (19) 16 

where , 2

,

1

1
p

p

Cα
αχ

=
+

 and 2

, pαχ is the 2

pχ quantile of order α . The function (19) can be 17 

written in an informal way as:  18 

2
, ,

[ ,1] [0, ]
(site depth) 1 (site depth) 1 (site distance)

1 if the site is inside the neighborhood
          =

0 if the site is outside the neighborhood

p p
CCA Cα αχ

ϕ = =





  19 



 18

Therefore, the estimator β̂  is the following: 1 

( )

( )

( )

2

1

2

neighborhood sites 

2

non neighborhood sites 

ˆ argmin log log

    =arg min 1 log log

  arg min 0 log log

N

i i i

i

i i

i

i i

i

w Y X

Y X

Y X

β

β

β

β β

β

β

=

= −

−

+ −

∑

∑

∑

    (20) 2 

3. The following weight function is used by Zuo et al. (2004): 3 

( )( )( )2

exp 1 / exp( )
   if  ( ) 1 - exp(- )

1            elsewhere

Z

K x C K
x Cx Kϕ

 − − − −
 <= 



   (21) 4 

       where C and K  are positive constant coefficients. 5 

4. With an extra coefficient 1s ≥  in equation (21), Lin and Chen (2006) used the following 6 

weight function:  7 

( )( )2

exp 1 / exp( )

   if  ( )
1 - exp(- )

1               elsewhere

s

LC

K x C K

x Cx
K

ϕ

  − − − −    <= 



   (22) 8 

 9 

In functions (21) and (22) the constant C defines the support of the weight function and K 10 

represents the slope of the decay to zero. The CCA neighborhood approach may serve to 11 

guide the choice of the constant C. Indeed, the choice of a constant C may depend on the 12 

2

pχ  quantile associated to the optimal α  as , 2

,

1

1
p

p

Cα
αχ

=
+

. 13 

5. A simple linear function can also be used as a weight function: 14 
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1

1
1 2

2 1

2

0 if 

-
( ) if 

-

1 if 

Linear

x d

x d
x d x d

d d

x d
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 3 

Special cases 1 and 2 along with the general depth-based approach are illustrated in Figure 1. 4 

 5 

 6 

4. Case study  7 

In this section, the approach proposed in Section 3 is applied on a real world data set and 8 

its performance is compared to that of the CCA approach. The case study on which the 9 

comparison is carried out concerns the hydrometric station network of the southern part of the 10 

province of Quebec, Canada. To be selected, each station in the data set must have a flood record 11 

of at least 15 years of data and its historical data must be homogenous, stationary and 12 

independent. The area of these catchments is larger than 200 km
2
 and less than 100 000 km

2
. 13 

Finally, a total of 151 stations located between the 45
o
 N and the 55

o
 N are selected. The 14 

geographical location of these stations is shown in Figure 2.  15 

 16 

The variable selection is based on a previous study by Chokmani and Ouarda (2004). The 17 

selected variables are of three types: physiographical, meteorological, and hydrological. The 18 

physiographical variables are: basin area (AREA), mean basin slope (MBS) and the fraction of 19 

the basin area covered with lakes (FAL). The meteorological variables are annual mean total 20 
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precipitation (AMP) and annual mean degree days over 0
o 

C (AMD). The hydrological variables 1 

are represented by at-site flood quantiles QT  corresponding to a return period T.  2 

 3 

The data bases used in the present study and the at-site frequency analysis are presented in 4 

Kouider et al. (2002). The at-site flood frequency procedure includes the use of statistical tests of 5 

hypothesis to test for homogeneity, independence and stationarity, the fitting of several statistical 6 

distributions to the station data, and the use of goodness-of-fit tests to identify the most 7 

appropriate distribution for each station. It is important to mention that the approach proposed in 8 

the present paper does not require the use of a unique regional distribution. It is hence possible to 9 

use a different (most appropriate) distribution in each station. For more details concerning the at-10 

site frequency analysis, the reader is referred to Kouider et al. (2002). 11 

 12 

Eaton et al. (2002) reported that, when modeling the physical mechanism of drainage 13 

systems, scale effect should be eliminated from experiment data since it may have a negative 14 

impact on the results. To reduce the scale effect, flood quantiles QT are standardized by the basin 15 

area to obtain specific quantiles QST QT AREA= . In this study, the 10-year (QS10) and the 16 

100-year (QS100) specific flood quantiles are selected. The basic statistics of these variables are 17 

summarized in Table 1. 18 

 19 

CCA application requires all variables to be transformed in order to be normalized and 20 

standardized. The appropriate normalizing transformations for the present data set were obtained 21 

by Chokmani and Ouarda (2004). A logarithmic transformation was used for the variables QS10, 22 

QS100, AREA, MBS, AMP and AMD, and a square-root transformation for FAL. The traditional 23 
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CCA procedure is applied with values of the coefficient α  ranging in the interval [0, 1]. An 1 

optimal value of the coefficient α  is selected according to minimum values of the relative bias 2 

(RB) and the relative root mean square error (RRMSE) of the jackknife resampling procedure as 3 

explained in Ouarda et al. (2001). The optimal value is found to be 0.25α =  for the present case 4 

study. The scatter plots of sites in the hydrological canonical space (W1,W2) and the physio-5 

meteorological canonical space (V1,V2) are illustrated in Figure 3.  6 

 7 

 8 

 9 

5. Study methodology 10 

The proposed depth-based approach described in Section 3 is applied to the above case 11 

study, and is compared to the CCA approach. Other methods are also considered in the 12 

comparison.  13 

 14 

From equation (16), it can be seen that the depth computation method and the weight 15 

function are the two main elements of the estimation in the proposed approach. The depth can be 16 

computed in two ways: by the CCA Mahalanobis distance using directly equation (10) in 17 

equation (6); or by the iterative algorithm described in Section 3. Equation (6) indicates that the 18 

Mahalanobis depth and Mahalanobis distance are equivalent, that is, their values can be deduced 19 

from each other. Various combinations of depth computation and weight selection methods are 20 

considered in this study. The following methods are compared: 21 

I. The uniform approach which uses all sites with the same importance. 22 

II. The traditional CCA approach considered with the optimal value of α . 23 
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III. The depth-based approach considered with the following weight functions: 1 

a. Zϕ  with K = 200 and C = 0.51. 2 

b. LCϕ  with s = 5, K = 200 and C = 0.51. 3 

c. LCϕ  with s = 2, K = 100 and C = 0.52. 4 

d. Linearϕ  with d1 = 0.30 and d2 = 0.80. 5 

IV. The CCA approach with iteration: It consists in the combination of the weight function 6 

CCAϕ  with the optimal value of 0.25α =  along with the Mahalanobis depth 7 

evaluated by the iterative algorithm. This combination can be seen as a special 8 

case of (III) with the specific weight function CCAϕ . 9 

V.   The depth-based approach without iteration: The depth is evaluated from the CCA 10 

Mahalanobis distance using equation (10). The weight function is LCϕ  with the 11 

following coefficients: 12 

a. s = 2, K = 100 and C = 0.30, which is similar in shape to CCAϕ with 0.25α = .   13 

b. s = 2, K = 100 and C = 0.52, which is one of the weight functions 14 

considered in (III). 15 

 16 

The combinations (IV) and (V) are introduced to study the effect of the depth evaluation method 17 

and the weight function selection. The considered combinations are summarized in the left-hand 18 

part of Table 2 and the corresponding weight functions are illustrated in Figure 4. 19 

  20 

In order to evaluate the performance of the various methods, a jackknife resampling 21 

procedure is used. It consists in considering each site as an ungauged one by removing it 22 
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temporarily from the region. The criteria employed to evaluate the performances of the 1 

approaches are the relative bias (RB) and the relative root mean square error (RRMSE) given 2 

respectively by: 3 

1

ˆ1 N
i i

i i

y y
RB

N y=

 −
=  

 
∑       (24) 4 

2

1

ˆ1

1

N
i i

i i

y y
RRMSE

N y=

 −
=  −  

∑     (25) 5 

where iy  are the local realizations of the hydrological variable, ˆ
iy are the regional estimates and 6 

N is the number of sites in the data set.  7 

 8 

6. Results and discussion  9 

Results related to the various methods are summarized in Table 2. For all methods, results 10 

indicate that the RB and RRMSE are smaller for QS10 than QS100. Generally in frequency 11 

analysis, QST is more accurately estimated than QST’ if T < T’ since for small return periods, the 12 

corresponding quantile is close to the central body of the distribution. Hence, an important part of 13 

the data contributes to its estimation. Table 2 shows also that the results of the uniform method (I) 14 

are the worst. This confirms the need to use regional delineation techniques. The remaining 15 

methods are classified according to the depth evaluation procedure (iteration or direct CCA). The 16 

iterative depth evaluation leads to better results than the direct evaluation using CCA. Indeed, the 17 

results of the depth-based approach (III) are the best, and are followed by those of method (IV). 18 

In these two methods the depths are iteratively evaluated. Moreover, the differences in terms of 19 

RB and RRMSE are not significant between the various combinations in (III).  20 

 21 
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In methods (II) and (V), depths are evaluated directly using the CCA Mahalanobis 1 

distance. These methods lead to RB and RRMSE values that are larger than those obtained by 2 

methods (III) and (IV). In particular, the RB and RRMSE of methods (II) and (V) are 3 

significantly larger than those of methods (III). The RB and RRMSE of (IV) are slightly smaller 4 

than those of (II). In these last two methods, the same weight function CCAϕ  is used. Hence, the 5 

CCA approach results can be slightly improved when depths are iteratively evaluated. However, 6 

the results from (V.b) are not satisfactory compared to the other methods except the uniform one 7 

(I). Note that combination (V.b) uses the same weight function than (III.c). Note also that the 8 

results of combinations (V.a) and (II) are very similar. In both these methods the depth is 9 

evaluated using the CCA Mahalanobis distance and the corresponding weight functions have 10 

similar shapes (see Figure 4). The results of combination (III.d) and the shape of the 11 

corresponding weight function Linearϕ suggest classifying the gauged sites into three classes: a 12 

class of sites to be excluded from the regional estimation procedure; another class of 13 

“intermediate” sites for which the contribution is gradually employed; and a last class of sites to 14 

be fully included in the estimation.  15 

 16 

In the following, selected detailed results are presented. Figure 5 presents the evolution of 17 

the performance criteria as a function of the iteration number for methods (I), (II) and (III.c). For 18 

the uniform (I) and the traditional CCA (II) approaches, the criteria are represented by straight 19 

lines, since they are independent of the iteration number. For both QS10 and QS100, the criteria 20 

values of method (III.c) improve with the iteration number. Moreover, they seem to converge, 21 

after approximately 15 to 20 iterations, to the corresponding results given in Table 2. This 22 

illustrates the superiority of the depth-based approach over the traditional CCA approach. Note 23 
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that the computer running time of all the 40 iterations of (III.c) is comparable to that of the 1 

traditional CCA approach.  2 

 3 

 Figure 6 presents, for each site i, the relative error ( )ˆ
i i iy y y− related to the estimation 4 

of the specific quantiles QS10 and QS100 with respect to the basin area. It concerns the results of 5 

the CCA approach (II) and those of the 20
th

 iteration of the depth-based approach (III.c). The 20
th

 6 

iteration is selected, as an example, since the criteria converge after 15 to 20 iterations. Using 7 

both estimation methods, large negative errors are observed for some sites such as number 46, 64, 8 

66 and 148. In particular, sites 64 and 66 have small basin areas. It is generally observed that the 9 

relative errors obtained from the depth-based approach (III.c) are smaller than those obtained 10 

from the traditional CCA approach (II).  11 

 12 

The following two elements can be used to explain some aspects related to the CCA 13 

approach: 14 

1. Under the normality condition imposed on X and Y, it is implicitly assumed that the 15 

conditional canonical variable ( )0|W V v=  is ( )2

0 , pN v IΛ − Λ , see Ouarda et al. (2001). 16 

Consequently: 17 

( )0 0E |W V v v= = Λ  and ( ) 2

0Var | pW V v I= = − Λ   (26) 18 

which suggests modeling the relationship between W and V by a linear regression model 19 

as follows:   20 

,W V ε= Λ +  with ( )2~ 0, pN Iε − Λ     (27) 21 

Usually, in the CCA approach, sites are presented in the hydrological canonical space 22 

(W1,W2) (see Figure 3). Following relation (27), it is of interest to present sites in the 23 
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canonical spaces (V1,W1) and (V2,W2). This is illustrated in Figure 7 for the considered 1 

data set. It shows that the relationship between V1 and W1 can be acceptably considered 2 

to be linear, and hence meets the model (27), whereas it is not the case for V2 and W2. 3 

The illustration in the space (V1,W1) is useful to get prior information about the 4 

estimation error for a given site. 5 

2. The canonical hydrological value 0W  of the target-site is unknown. Hence, in the CCA 6 

approach, the Mahalanobis distance (10) is computed with respect to its expectation 0vΛ  7 

(it represents also its estimator using (27)). This influences the computation of the 8 

Mahalanobis distance, especially when the Mahalanobis distance 9 

( ) ( )2 1

0 0 0 0( )pW v I W v−′− Λ − Λ − Λ  between 0W  and 0vΛ  is large. This is the case, for 10 

instance, for site number 66. 11 

 12 

 Figure 8 illustrates the Mahalanobis depths evaluated from (II) and from the 20
th

 13 

iteration of (III.c) for a selection of sites. The sites considered in Figure 8 are selected from 14 

Figures 6 and 7 to represent a wide variety of conditions. Indeed, from Figure 6, sites number 66, 15 

122 and 148 are estimated with very high relative errors. These sites are located far from the 16 

straight line relating V1 and W1 as shown in Figure 7.a. However, sites number 4, 92 and 141 are 17 

accurately estimated as shown in Figure 6 and they are located near the regressive line in Figure 18 

7.a. Figure 8 shows that the global shapes of the depth values by both methods are similar. 19 

However, differences in depth magnitude are observed, especially for site 122. This site has a 20 

very high value of basin area covered with lakes (FAL = 43%). 21 

 22 
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 From the above results and analysis it appears that the first important element, for 1 

quantile regression estimation, is the accurate computation of depth values. The second important 2 

element is related to the selection of the weight function. Hence, the results of the classical 3 

delineation can be improved with accurate depth values (combination IV). However, generally 4 

less accurate depth values with an arbitrary weight function can not improve the classical results 5 

(combinations V). Consequently, the best combination of these two elements is a smooth weight 6 

function along with an iteratively evaluated Mahalanobis depth (combinations III).  7 

 8 

7. Conclusions and future research directions 9 

The present paper provides an adaptation of the statistical notion of “depth function” in 10 

regional flood frequency analysis. The depth-based approach is introduced in order to overcome 11 

some drawbacks of the classical methods and to improve their performances. Along with the 12 

flexibility and generality of the proposed method, it is shown that its use leads to improvements 13 

in traditional methods. Furthermore, the proposed methodology can be useful in other areas and 14 

disciplines of water resources where the regression model is applicable. 15 

 16 

Introducing the statistical notion of depth function in regional flood frequency analysis 17 

leads to several directions for future work including the following:  18 

− The determination of an optimal weight function remains an element to be developed. One 19 

option is to restrict the optimization problem to a specific parametric class of weight 20 

functions, such as LCϕ  or Linearϕ . Then, according to the optimal value of the considered 21 

criterion, the coefficients of the weight function can be obtained. More flexible S-shaped 22 
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weight functions (such as the Gompertz function) represent a promising class to be 1 

considered for optimization.  2 

− The estimation in the index flood model (Dalrymple, 1960) should be developed following a 3 

similar approach to the regression model. A comparison to the region of influence approach 4 

(Burn, 1990) is to be considered. Note that the region of influence approach uses special 5 

weight functions.  6 

− In the present paper, the Mahalanobis depth function is considered for its simplicity and its 7 

link to the CCA approach. It is of interest to consider other depth functions and to compare 8 

the corresponding results. Note that Lin and Chen (2006) presented an estimator that is 9 

similar to the one given by equation (16) using the projection depth function (equation 4). 10 

They studied its asymptotic properties, including consistency, normality and robustness. 11 

− The estimation of the uncertainty associated to regional quantiles represents an important 12 

topic that is not often treated in the literature. It would be of value, in future efforts, to study 13 

the uncertainty associated to the approach proposed in the present paper. It is important to 14 

mention that some of the methods in the literature (such as Generalized and Weighted least 15 

squares approaches) allow to carry out an analysis of the uncertainty (see e.g. Madsen and 16 

Rosbjerg, 1997). However, with these approaches, the estimation of the uncertainty of the T-17 

year event represents only the uncertainty on the regressive part without integrating the 18 

uncertainty associated to the definition of the homogeneous regions. The depth-based method 19 

does not suffer from this problem and hence it requires only one global uncertainty evaluation. 20 

− Information concerning the spatial correlation between the various sites should be integrated 21 

in the depth-based flood frequency procedure. 22 

 23 
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Table 1. Descriptive statistics of hydrological, physiographical and meteorological variables 1 

Variable  Unit Min 

 

Mean Max Standard 

deviation 

MBS  

 

% 0.96 2.43 6.81 0.99 

FAL 

 

% 0.00 7.72 47.00 7.99 

AMP 

 

mm 646 988 1534 154 

AMD 

 

degree-day 8589 16346 29631 5382 

AREA  

 

km
2
 208 6255 96600 11716 

QS10  

 

m
3
/s.km

2
 0.03 0.22 0.53 0.13 

QS100  m
3
/s.km

2
 0.03 0.31 0.94 0.20 

2 
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Table 2.  Quantile estimation results with the various methods 1 

 2 

    QS10 QS100 

 Combination 

approach 

Depth 

computation 

Weight function RB  

(%) 

RRMSE 

(%) 

RB  

(%) 

RRMSE 

(%) 

(I) Uniform - 
Uϕ   

 -8.60 54.94 -10.93 64.05 

(II) Traditional 

CCA  

CCA  
CCAϕ   

optimal α  

 

-7.54 

 

44.62 

 

-8.14 

 

51.84 

(III) Depth-based          

 

Iteration 

     
a) 

 

 
Zϕ   

K = 200, C =0.51 -4.37 39.17 -3.51 44.92 

b)   
LCϕ   

s=5, K = 200, C =0.51 -4.47 38.78 -3.75 44.53 

c)   
LCϕ   

s=2, K = 100, C =0.52 -5.22 38.94 -4.68 44.72 

d)   
Linearϕ   

d1= 0.30, d2 =0.80 -3.83 38.78 -2.52 44.57 

(IV) CCA with 

iteration 

Iteration 
CCAϕ   

optimal α  -5.52 42.27 -4.98 49.02 

(V) Depth-based 

without iteration 

CCA 

     
a)   

LCϕ   

s =2, K= 100, C =0.30 -7.75 44.81 -8.38 51.82 

b)   
LCϕ   

s =2, K= 100, C =0.52 -8.26 47.63 -9.88 57.02 

3 
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 1 

Figure 1. Illustration of different regionalization approaches with the corresponding weight 2 

functions 3 
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 1 

Figure 2.  Geographical location of the studied sites in the province of Quebec, Canada 2 

3 
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 1 

Figure 3. Data set in the canonical spaces (a) physio-meteorological (b) hydrological 2 

3 



 40

 1 

Figure 4. Weight functions used in the comparative study 2 

3 
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 1 

Figure 5. RB and RRMSE using the uniform (I), the CCA (II) and the depth-based (III.c) 2 

methods for the estimation of (a) QS10 and (b) QS1003 
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 1 

Figure 6. Quantile estimation relative errors of: a) QS10 from the 20
th
 iteration of the 2 

method (III.c), b) QS100 from the 20
th
 iteration of the method (III.c), c) QS10 from 3 

the CCA method (II), d) QS100 from the CCA method (II). Selected sites are 4 

indicated by their respective numbers 5 

6 
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 1 

Figure 7. Scatter plot of the data set in the canonical spaces (V1,W1) and (V2,W2) 2 

3 
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 1 

Figure 8. Depth values from the traditional CCA (II) and from the 20
th
 iteration of the 2 

method (III.c) for a selection of sites. Values between parentheses represent the area of 3 

the corresponding site   4 


