Induction d’apoptose et rôle potentiel dans la prévention de
l’établissement d’une infection persistante de cellules du système nerveux
par le virus de la stomatite vésiculaire

Par
Marc Desforges

Thèse présentée pour l’obtention
du grade de Docteur ès sciences (PhD.)
en virologie et immunologie

Jury d’évaluation

Président du jury
et examinateur interne : François Denis, INRS-Institut Armand-Frappier

Examineur externe : Louis Flamand, Université Laval
 Yves Langelier, Université de Montréal

Directeur de recherche : Pierre Talbot, INRS-Institut Armand-Frappier
 Laurent Poliquin, Université du Québec à Montréal

© Droits réservés de Marc Desforges, 2003
Résumé

Dans l'étiologie de certaines pathologies neurodégénératives, les infections virales persistantes peuvent représenter un facteur important. Afin d'identifier les facteurs cellulaires et viraux importants pour mener à l'établissement d'une infection persistante par un virus cytopathique neuroinvasif et neurotrope, le virus de la stomatite vésiculaire (VSV) nous sert de modèle. L'utilisation éventuelle possible de VSV en tant que traitement antitumoral chez l'humain ajoute à l'intérêt de bien comprendre les facteurs associés à l'établissement d'une persistance par ce virus, en particulier à l'intérieur de cellules du SNC.

Dans certaines circonstances, ce virus habituellement très cytopathique, est susceptible de produire plusieurs quasi-espèces au cours de son cycle réplicatif afin de réduire son niveau de virulence. Parmi les variants ainsi produits, certains peuvent porter des mutations qui favorisent la mise en place d'un équilibre entre les virus et les cellules infectées; les dommages aux cellules sont ainsi limités et les cultures cellulaires infectées peuvent survivre en devenant un réservoir viral. Nos résultats, obtenus à l'aide d'une panoplie de variants VSV étudiés dans un modèle en culture cellulaire, indiquent que l'apoptose est induite par plusieurs voies simultanées suite à une infection par le VSV. Les variants de sérotype Indiana portant une protéine M de type sauvage induisent un fort degré d'apoptose où les cultures cellulaires sont complètement détruite en moins de 72 heures. Toutefois, une altération du processus apoptotique survient lors de l'infection par différents mutants VSV-Indiana portant une protéine M mutante ainsi que lors de l'infection par le sérotype moins virulent New Jersey. Ces variants moins cytolytiques permettent la survie des cellules infectées, entre autres en induisant moins fortement l'apoptose, et réussissent à y établir une infection persistante.

La souche VSV-Indiana de type sauvage induit l'apoptose sur la lignée cellulaire humaine H4 provenant du SNC, en partie par l'intermédiaire de la protéine M alors que les différents mutants de M et la souche New Jersey (moins cytopathique) induisent moins efficacement ce phénomène. L'analyse de l'expression de gènes cibles associés au mécanisme apoptotique ne révèlent aucune modulation significative, suggérant entre
autre que le facteur transcriptionnel pro-apoptotique p53 n’est pas nécessaire lors de l’induction d’apoptose par le VSV. La différence d’induction de la mort cellulaire programmée est plutôt à relier à un degré variable d’activation des caspases (protéases cellulaires contrôlant l’apoptose) et de relocalisation de la protéine Bax, un facteur pro-apoptotique de la famille Bcl-2, du cytoplasme vers les mitochondries tel que nous l’avons démontré par immunobuuvardage de type Western à partir de fractions cellulaires séparées et par microscopie confocale. De plus, il semble que la voie apoptotique principale induite suite à l’infection par VSV soit celle régulée par la mitochondrie et que l’activation de la caspase-8 représente un système d’amplification du processus global d’apoptose.

Néanmoins, la description globale du phénomène apoptotique induit lors de l’infection par le VSV n’est pas totalement complété et d’autres facteurs vitaux et cellulaires, non identifiés à ce jour, semblent impliqués. Parmi ceux-ci on retrouve le facteur transcriptionnel NF-kB, le PTP (permeability transition pore), ainsi que les calpains et les cathepsines, des cystéine protéases pouvant avoir un rôle en conjugaison avec les caspases lors de l’induction d’apoptose. Des résultats préliminaires de survie cellulaire lors de l’infection par nos variants en présence d’un inhibiteur de NFkB, indiquent d’ailleurs que la voie impliquant ce facteur serait probablement intéressante à décontiquer. L’implication du PTP, des calpains et des cathepsines est aussi discutée sur la base de résultats préliminaires qui suggèrent un rôle potentiel pour ces protéases dans la relocalisation de Bax vers les mitochondries; laissant présager une fonction dans l’apoptose induite par le VSV.
Avant-propos

Le présent document porte sur la problématique des infections virales persistantes au niveau du système nerveux central. Sans prétention, le modèle présenté dans cette thèse se veut une contribution modeste mais significative afin d’aider à mieux comprendre comment une infection persistante s’installe en identifiant quelques uns des facteurs vitaux et cellulaires impliqués dans ce processus.

Le premier chapitre de cette thèse présente « l’États des connaissances » sur l’infection virale d’un point de vue très large. Les 2e et 3e chapitres ont trait au travail réalisé durant les 4 années de mon doctorat et représente le cœur de notre étude. Le 4e et dernier chapitre s’organise autour d’une discussion plus large des principaux points présentés dans les articles des chapitres II et III, d’une présentation de résultats préliminaires et de leur discussion dans un contexte qui ouvre sur la suite du projet de caractérisation de l’apoptose induite lors de l’infection par le VSV et sur les perspectives à plus long terme. La dernière portion du chapitre 4 discute des enjeux possibles autour de l’établissement possible d’infection persistante par VSV au niveau du SNC entre autre dans le contexte bien particulier de l’utilisation de ce virus en tant que traitement antitumoral chez l’humain.
Remerciements

Il est parfois difficile de remonter en arrière et d’identifier quels événements ou quelles personnes peuvent nous avoir influencé au point où l’on décide de redevenir étudiant à temps plein. C’est le genre de décision qui ne devrait pas être prise à la légère et qui, dans mon cas en tous cas, a tout de même nécessité une réflexion en profondeur.

Ceux qui un jour tomberont par hasard sur mon mémoire de maîtrise, verront que j’avais parlé d’une drôle de mouche qui avait dû me piquer pour que je décide de revenir aux études. En fait, je me rend bien compte aujourd’hui qu’il y a plutôt eu plusieurs personnes et aucune mouche...

Parmi ces personnes, mon ami Laurent a bien sûr tenu le rôle principal pour un bon bout de temps, puis peu à peu, Pierre a tenu un rôle tout aussi primordial. Les Poliquinais et les Talbotins et certains amis, dont en particulier l’autre Pierre (celui des bibettes), auront aussi jouer un rôle dans tout ça. Toutefois……

On entend souvent dire que derrière chaque grand homme il y a une femme. Je crois que dans mon cas on pourrait rectifier en disant plutôt qu’à côté de cet homme ordinaire, il y avait et il y a encore aujourd’hui, une femme pas tout à fait ordinaire qui au cours de cette aventure assez particulière, s’est avérée d’une aide morale, d’une patience et d’un amour pas du tout ordinaire. Merci Annie…JVAKDN… Merci, même s’il ne le comprend pas pour l’instant à mon petit Poupourouchou Antoine. Même si ses nuits parfois mouvementées m’ont enlevé quelques heures de sommeil et d’étude, ses rires au retour du labo m’auront certainement permis de mieux passer à travers la dernière année de mon doctorat.

Merci à toutes les personnes qui prendront le temps de lire cette thèse...
Marc Desforges
Table des matières

1. INTRODUCTION

CHAPITRE I : ÉTAT DES CONNAISSANCES

2. Les Virus 3

3. Système immunitaire et infection virale 4
 3.1 Immunité antivirale naturelle 4
 3.2 Immunité antivirale spécifique 5

4. L'Interféron 6

5. Infection aiguë vs infection persistante 8
 5.1 Les infections persistantes 9
 5.2 Stratégies virales conduisant à la persistance 10
 5.2.1 Modulation du système immunitaire par les virus ; des exemples fascinants 11
 5.3 Persistance virale : quelques exemples 17
 5.4 Le Système Nerveux Central : un site de choix pour la persistance virale 20
 5.4.1 Immunité antivirale et autoimmunité au SNC 21
 5.4.2 Virus et persistance : modèles animaux de neuropathologies associées 25
 5.4.2.1 Le virus de Theiler 25
 5.4.2.2 Le coronavirus murin : MHV 26
 5.4.2.3 Virus mutants et persistance au SNC 27

6. VSV : Le Virus de la Stomatite Vésiculaire 28
 6.1 Caractéristiques et structure du VSV 31
 6.2 La protéine M de VSV : beaucoup plus qu’une protéine structurale 34
 6.3 VSV : Divers types d’infections possibles 37
 6.3.1 VSV : mutants et persistance 39
 6.3.2 Infection persistante par VSV ; autres cas 42

7. Apoptose et infection virale 43
 7.1 L’apoptose : un processus complexe de destruction cellulaire régulée 43
 7.1.1 Perspective historique 44
 7.1.2 Les caspases : des protéases particulières 45
 7.1.3 Différents stress et différents organites 47
 7.1.4 La mitochondrie : Un organite central dans la régulation de l’apoptose 51
 7.2 Importance de l’apoptose dans l’organisme 59
 7.3 Infection virale et déclenchement de l’apoptose 62
 7.3.1 Infection virale du SNC et induction d’apoptose 62
 7.4 Virus régulateurs d’apoptose 64
8. Virus oncolytyques : utilisation thérapeutique potentielle de vieux ennemis
8.1 Virus à ADN
8.2 Virus à ARN
8.3 VSV : une arme oncolytique

9. Conclusion

10. Approche générale et Objectifs

Avant-propos aux chapitres II et III

CHAPITRE II : Matrix protein mutations contribute to inefficient induction of apoptosis leading to persistent infection of human neural cells by vesicular stomatitis virus.

CHAPITRE III : Vesicular stomatitis virus-induced apoptosis in human neural cells is associated with Bax translocation to the mitochondria and activation of caspase-8

CHAPITRE IV : VSV ET APOPTOSE; UN CONTEXTE PLUS GLOBAL

11. Matériel et Méthodes

11.1 Cellules et virus
11.2 Viabilité cellulaire avec ou sans inhibiteur
11.3 Préparation d’extraits protéiques et Immunobuvardage de type Western
11.4 Immunofluorescence indirecte

12. Résultats/Discussion

12.1 Induction d’apoptose et prévention d’infection persistante par VSV
12.2 Induction d’apoptose liée aux récepteurs de mort
12.3 Induction d’apoptose : les autres facteurs possibles
12.4 Mort cellulaire induite par d’autres processus que l’apoptose
12.5 Résultats préliminaires et discussion complémentaire aux chapitres II et III
 12.5.1 Les calpaines
 12.5.2 NF-kB, Apoptose et Infection virale
12.5.3 Les Cathepsines et autres facteurs lysosomiaux 182
12.5.4 Potentiel membranaire mitochondrial, PTP, translocation de Bax et survie cellulaire 184
12.6 Modèle d’induction d’apoptose par VSV 187
12.7 Infection persistante possible de VSV à l’intérieur de cellules issues du SNC 190
12.7.1 Infection persistante de virus oncolytique 191
12.7.2 Infection persistante et problèmes auto-immunitaires 192
12.7.3 Mutations dans la protéine M et persistance de VSV 195

CONCLUSION 199

RÉFÉRENCES 200

ANNEXE 243
Liste des tableaux

Tableau 1. Exemples choisis de virus capables d’altérer la réponse immunitaire

Tableau 2. Exemples de virus altérant la réponse cellulaire liée à la production d’IFN

Tableau 3. Virus pouvant établir une infection persistante chez l’animal

Tableau 4. Virus pouvant établir une infection persistante chez l’humain

Tableau 5. Implication possible d’infections virales dans le développement de pathologies auto-immunitaires au système nerveux central

Tableau 6. Membres des deux principaux sérotypes du virus de la stomatite vésiculaire et autres *vesiculovirus* apparentés retrouvés dans la nature.

Tableau 7A. Virus et protéines virales impliqués dans l’induction d’apoptose

Tableau 7.B Virus et protéines virales impliqués dans l’inhibition d’apoptose
Liste des figures

Figure 1. Représentation schématique d'un virion du virus de la stomatite vésiculaire et organisation de son génome 31

Figure 2. Représentation schématique des principales voies apoptotiques faisant intervenir les caspases 48

Figure 3. Les différentes molécules relocalisées vers la mitochondrie durant l'apoptose 59

Figure 4. Immunobuvardage de type Western montrant l'activité des calpaines et le clivage de la protéine Bax lors de l'infection des cellules H4 par VSV-TP6 et suite à un traitement par la camptothécine 177

Figure 5. Survie cellulaire accrue suite à l'infection des cellules H4 par les variants non persistants de VSV-Indiana en présence de PDTC, un inhibiteur du facteur transcriptionnel NF-kB. 181

Figure 6. La relocalisation de la protéine Bax vers la mitochondrie est retardée en présence de CsA (inhibiteur du PTP) favorisant une survie cellulaire accrue suite à l'infection par VSV-TP6 186

Figure 7. Modèle proposé pour l'apoptose induite lors de l'infection par VSV-Indiana type sauvage. 189
Liste des abréviations

ADN : acide désoxyribonucléique
ARN : acide ribonucléique
ATCC : *American Type Culture Collection*
BHE : barrière hémato-encéphalique
°C : degré Celsius
CMH : complexe majeur d’histocompatibilité
CO₂ : dioxyde de carbone
CPA : cellule présentatrice d’antigène
dNTP : déoxynucléotide triphosphate
EDTA : acide éthylénediamine-tétracétique
HCoV : coronavirus humain
HEPES : acide N-2-hydroxyethylpiperazine-N’-2-ethanesulfonique
HRP : peroxydase de raifort (*horseradish peroxidase*)
HSV : virus de l’herpès simplex
HTLV-1 : virus T lymphotrope humain de type 1
IFN : interféron
IgG : immunoglobuline G
IgM : immunoglobuline M
IL : interleukine
IRF : *interferon-regulatory factor*
JHM : J. Howard Muller
kb : kilobases (10³ bases)
kDa : kilodalton (10³ dalton)
LCMV : virus de la chorioméningite lymphocytaire
M : molaire
DMEM : Dulbecco’s *modified eagle medium*
MgCl₂ : chlorure de magnésium
MHV : virus de l’hépatite murine (*murine hepatitis virus*)
mL : millilitres (10⁻³ litre)
mM : millimolaire (10⁻³ molaire)
MMP : métalloprotéinase de matrice
MOI : multiplicité d’infection
MOPS : acide 3-N-[morpholino]propanesulfonique
N : normale
NaCl : chlorure de sodium
NK : natural killer
nm : nanomètre (10⁻⁹ mètre)
PBM : protéine basique de la myéline
PBS : tampon salin phosphaté (phosphate buffered saline)
PCR : réaction de polymérisation en chaîne (polymerase chain reaction)
pH : potentiel d’hydrogène
p.i. : post-infection
PMSF : fluoride de phénylméthylsulfonyle
PTP : Permeability transition pore
p/v : poids sur volume
PVDF : polyvinylidene difluoride
RCT : récepteur des cellules T
RT : transcription inverse (reverse transcription)
SCID : severe combined immunodeficiency
SDS : sulfate dodécyl de sodium
SNC : système nerveux central
SVF : sérum de veau fœtal
TBS : Tris Buffered Saline
TBS-T : TBS additionné de Tween-20
TMEV : virus de l’encéphalomyélite de Theiler
TNF-α : tumor necrosis factor-alpha
TNF-R : récepteur du tumor necrosis factor
Tris : tris(hydroxyméthyl)aminométhane
μL : microlitres (10⁻⁶ litre)
v/v : volume sur volume
VSV : Virus de la stomatite vésiculaire
1. Introduction

Depuis leur découverte vers le milieu du XIXe siècle, les virus n’ont cessé de surprendre quant aux différents types d’infections et aux diverses formes de pathologies auxquelles ils ont pu être associés. Les infections persistantes représentent entre autre une réalité fort complexe dont les causes et conséquences sont souvent difficiles à identifier et à comprendre.

Afin d’établir une infection persistante, plusieurs virus ont développé diverses stratégies plus ou moins raffinées. Certaines de ces stratégies font appel à la modulation de la mort cellulaire programmée (l’apoptose), qui est engendrée par la machinerie cellulaire lors d’une infection virale ou encore à la modulation de diverses composantes du système immunitaire naturel ou acquis. Dans ces cas, des gènes vitaux encodent des protéines particulières qui peuvent être produites spécifiquement pour ces fonctions modulatrices lors de l’infection. Toutefois, d’autres virus, souvent parmi les plus simples et les plus cytopathiques, ne semblent pas vraiment avoir de stratégie précise inscrite dans leur génome qui leur permettrait de produire des facteurs modulateurs. En fait, il appert que ces virus doivent se fier aux lois exercées par la pression sélective pour engendrer des mutations particulièrement favorables pour mener à l’établissement d’une infection persistante. Ces virus ont souvent un cycle réplicatif très court et très performant qui leur permet de produire une quantité très appréciable de nouveaux virions dans un court laps de temps. En contrepartie, plusieurs mutations surviennent dans divers gènes et entraînent la formation de variants moins cytotoxiques qui peuvent entre autre établir une infection persistante.

Certaines infections virales persistantes peuvent mener à des conséquences variables et parfois dramatiques. Un des principaux exemples notoires fait référence au virus de l’immunodéficience humaine (VIH) et au SIDA. Pourtant, plusieurs autres virus peuvent établir une infection persistante et engendrer des problèmes de santé importants. Le virus de l’hépatite B, pouvant causer, dans les cas les plus graves, un hépatocarcinome et les virus HTLV-1 (*human T-lymphotropic virus*) et EBV (*Epstein-Barr virus*), pouvant être associés au développement de lymphomes ou de leucémies,
représentent également des cas où les conséquences sont parfois assez dramatiques. Parmi toutes les formes d'infections persistantes qui peuvent survenir, un sujet d'intérêt particulier est la capacité qu'auraient nombres de virus (notamment le VIH), à persister au niveau du système nerveux central (SNC).

Depuis plusieurs années, diverses études suggèrent l'implication d'infections virales persistantes dans certaines maladies neurodégénératives. Bien que plusieurs modèles d'étude existent, certains mécanismes qui influencent l'établissement et le maintien d'une infection persistante restent à identifier. Le virus de la stomatite vésiculaire (VSV) est un virus normalement très cytotoxique mais certains facteurs viraux et cellulaires peuvent participer à l'établissement d'une infection persistante dans laquelle le virus engendre moins de dégâts et permet à la cellule infectée de survivre. Différentes mutations au niveau de la protéine matricielle semblent pouvoir altérer la capacité du virus à induire le processus apoptotique dans certains types cellulaires issus du SNC. VSV représente donc un outil intéressant afin d'étudier les processus par lesquels certains virus neurotropes réussissent à persister au niveau des cellules du SNC et, le cas échéant, être associés au développement de certaines affections neurologiques.

De plus, des études récentes ont montré que le VSV présentait un potentiel intéressant dans la lutte contre le cancer. En effet, lorsque utilisé en combinaison avec les interférons de type 1 (un type de molécule antivirale très puissante), le VSV semble infecter et tuer de manière préférentielle les cellules tumorales sans trop affecter les cellules saines à l'intérieur d'un organisme. Chercher à comprendre quels facteurs cellulaires ou viraux peuvent contribuer à transformer une infection aiguë en infection persistante est donc d'une grande importance afin de contrer d'éventuels effets secondaires néfastes qui pourraient résulter d'un traitement anti-cancer utilisant le VSV.
CHAPITRE I : ÉTAT DES CONNAISSANCES

2. Les virus

C'est vers 1840 qu'on retrace les premières hypothèses modernes faisant état de l'existence d'une classe particulière d'agents infectieux responsables de l'étiologie de certaines affections jusqu'alors inexpliquées. Toutefois, ce n'est que durant la première guerre mondiale que Félix d'Hérelle démontre la nature corpusculaire de ces dits agents; les virus (Levine, 2001a).

Les virus représentent une classe bien à part d'agents infectieux. Ne pouvant se multiplier par eux-mêmes, ils sont des parasites obligatoires des cellules vivantes alors que leur statut biologique alimente sans cesse les polémiques. Ayant, pour la plupart, une structure fort rudimentaire, ils sont tout de même capables de s'accaparer la machinerie cellulaire pour l'utiliser à leur avantage et leur permettre de compléter leur cycle réplicatif afin de se propager. Quel que soit le statut biologique véritable des virus, ils représentent une classe de pathogènes fort importante. En constante relation avec l'ensemble du monde vivant, et en particulier avec les êtres humains, leur étude demeure un champ important de la biologie moderne.

Depuis des décennies, les virus ont souvent été vus comme un système simplifié d'étude pour tenter de mieux comprendre des mécanismes cellulaires complexes (Spriggs, 1996). Pourtant, il devient aujourd'hui de plus en plus clair que même les virus les plus simples ne le sont pas autant qu'on pouvait le croire, surtout lorsque le sujet d'étude porte sur la compréhension de l'interaction cellule-virus.

La constante obligation qu'ont les virus à infecter les cellules d'un hôte et l'éventail de réponses déclenchées par cet hôte pour limiter les dégâts possibles, soulignent l'importance du concept de co-évolution et l'intérêt de chercher à mieux comprendre comment s'établit la relation hôte-virus qui détermine le type d'infection. En 2001, l'organisme *International Commitee on Taxonomy of Viruses (ICTV)* dénombrait 3 ordres, 69 familles, 9 sous-familles, 243 genres, et 1550 espèces de virus (Condit, 2001). Leur grande diversité donne virtuellement aux virus le pouvoir d'infecter à peu
près tous les êtres vivants en occasionnant les pathologies les plus diverses. Malgré tout, il demeure que la plupart des virus ont un spectre plus ou moins restreint d'hôtes possibles, se limitant souvent à une ou quelques espèces chez qui ils n'infectent qu'un ou quelques types cellulaires (Fields et Knipe, 1991).

3. Système immunitaire et infection virale

Lors d'une infection virale typique, le système immunitaire de l'hôte met rapidement en branle une série d'événements en réponse à l'agression. Cette réponse immunitaire antivirale se fait à plus d'un niveau et utilise plusieurs armes différentes pour contrer l'intrus tout en limitant les dégâts. Pour engendrer une réponse immunitaire efficace, plusieurs cellules doivent coopérer pour arriver à contenir et éliminer le virus. Dans tout le branle-bas de combat mis en place pour contrer une infection virale, la branche d'immunité naturelle ou innée entre en jeu en deux phases. La phase initiale survient d'abord en réponse directe à la détection d'antigènes vitaux et est rapidement suivie par la phase innée proprement dite, qui est en quelque sorte une phase d'amplification. De plus, les composantes de l'immunité naturelle mettent en place les premières lignes de défense et préparent le terrain pour la mise en place de la réponse immunitaire acquise spécifique (Biron et Sen, 2001). La réponse immunitaire face à l'infection virale ne fait pas partie intégrante des objectifs reliés à notre étude et, bien que sa manipulation représente un moyen fort répandu et efficace utilisé par plusieurs virus pour réussir à établir une infection persistante chez un hôte, elle ne sera que très brièvement traitée dans le présent document.

3.1- Immunité antivirale naturelle

Pour contrer une infection, l'immunité naturelle compte d'abord sur la production de nombreuses cytokines dont les interférons de type 1. Les cellules infectées par un virus produisent habituellement ce facteur afin d'inhiber la réplication et la propagation virale et il s'agit de la cytokine dont la production est induite de façon la plus importante lors d'infections virales (Biron, 1998).
Les composantes de l'immunité naturelle joue un rôle dans la mise en place de l'immunité acquise spécifique. En effet, les cellules dendritiques, qui représentent ni plus ni moins qu'un intermédiaire entre les immunités innée et acquise, permettent souvent le véritable déclenchement de la réponse acquise spécifique en activant les lymphocytes T « naifs » spécifiques à un antigène viral ou autre (Kadowaki et al., 2000). Elles peuvent détecter une infection directement à l'aide de récepteurs particuliers ou par l'intermédiaire de cytokines tel les interférons de type 1 provenant d'autres cellules, ce qui entraîne l'activation de la réponse acquise impliquant les lymphocytes (LeBon et Tough, 2002). Ainsi, les cellules dendritiques réussissent à traduire une information captée par les cellules de l'immunité innée en langage compréhensible pour les cellules de l'immunité acquise et spécifique.

3.2- Immunité antivirale spécifique

L'immunité dite spécifique met en cause des mécanismes fort complexes de coopération entre diverses cellules très spécialisées afin de combattre les virus et autres pathogènes de façon efficace. Comme mentionné plus avant, de nombreuses cytokines sont produites pour faire face à une infection virale. Ces molécules servent entre autre à élaborer la mise en place d'un réseau de communication intercellulaire complexe et les signaux communiqués par ces cytokines dès la mise en place de l'immunité naturelle mènent éventuellement à une réponse acquise et spécifique optimale (Bloom et Ahmed, 1998). Cette seconde branche du système immunitaire se subdivise elle-même en deux voies, l'immunité humorale, faisant surtout référence aux différentes classes d'anticorps sécrétés par les lymphocytes B activés, et l'immunité à médiation cellulaire surtout liée aux lymphocytes T cytotoxiques, les CTL (cytotoxic T lymphocytes), qui reconnaissent des antigènes viraux, présents en association avec une molécule du complexe majeur d'histocompatibilité CMH I à la surface de cellules infectées. Comme la très grande majorité des cellules nucléées de l'organisme portent un CMH I, les CTL peuvent donc virtuellement détruire n'importe quelle cellule infectée. Les branches de l'immunité humorale et à médiation cellulaire sont complémentaires et selon le type de virus qui infecte, la branche de l'immunité spécifique efficace pourra changer. En effet, beaucoup
de virus cytopathiques, dont le virus de la forêt de Semliki (SFV), le virus de la vaccine (Vaccinia), et le virus de la stomatite vésiculaire (VSV), ont un cycle réplicatif très rapide et la cellule infectée est rapidement lysée en libérant de nouveaux virions. Les anticorps sont dans ce cas très efficaces pour contenir et éliminer les virus libres. Dans le cas de virus non cytopathiques, tel le LCMV (*lymphohoriomeningitis virus*), dont le cycle est plus lent, les lymphocytes T cytotoxiques peuvent agir plus efficacement et éliminer les cellules infectées. Les anticorps complètent le travail en éliminant les quelques particules virales qui peuvent s'échapper lors de la lyse cellulaire (Kagi et Hentgartner, 1996).

En bref, quel que soit le type de réponse immunitaire impliqué, les cellules qui y participent produisent et sécrètent plusieurs cytokines qui servent de médiateurs cellulaires afin de régir les communications intercellulaires ou qui peuvent avoir un rôle direct de protection. Parmi la panoplie de cytokines, les divers types d'interférons sont très importants contre l'infection virale.

4. L'Interféron

C'est à la fin des années 50 que Isaacs et Lindemann (1957) publient leurs travaux décrivant une molécule sécrétée pouvant *interférer* avec la réplication du virus Influenza. On sait aujourd'hui que diverses formes d'interférons existent, qu'elles peuvent jouer de nombreux rôles différents et qu'elles sont sécrétées par différents types cellulaires.

Parmi les diverses cytokines sécrétées par les cellules du système immunitaire en réponse à une infection virale, l'interféron γ, ou interféron immun, est une des plus importantes. Du macrophage au lymphocyte, les cellules immunitaires répondent d'une façon ou d'une autre à un stimulus induit par l'interféron γ et les principales cellules qui produisent cette cytokine sont certains lymphocytes T et dans une moindre mesure les cellules NK (Biron, 1998; Barber, 2001) et les lymphocytes T supprimers (Samuel, 2001). Les interférons α et β (IFN de type 1) représentent des facteurs apparentés à l'interféron γ et sont produits par d'autres cellules de l'organisme (Biron, 1998; Samuel,
2001) et la plupart des types cellulaires ont la capacité de les produire en proportion variable selon le type d'infection (Biron, 1998; Goodbourn et al., 2000). La synthèse des interférons est régulée de façon complexe. Sa production constitutive est très faible, voire inexistant, dans plusieurs type de cellules et l'induction de sa synthèse est très importante lors de l'infection par à peu près tous les virus, surtout pour l'interféron β (Biron, 1998). Un des principaux effets biologiques des interférons de type I est donc lié à la lutte antivirale et cette fonction se manifeste de plusieurs façons pour induire un état antiviral. Le rôle protecteur de l'interféron est clairement établi pour contrer l'infection par plusieurs virus, notamment VSV (Samuel, 2001), en bloquant leur cycle réplicatif et en permettant de conserver l'intégrité des cellules non infectées. Dans le cas de VSV, il semble que la présence d'IFN favorise la production de virions ayant un pouvoir infectieux très réduit (Maheshwari et Friedman, 1980). Il appert que les dites particules virales ont un déficit important en protéine matricielle (M) et en glycoprotéine (G) virales (Maheshwari et al., 1980a; 1980b; 1980c) dont la glycosylation est altérée (Maheshwari et al., 1980c).

Paradoxalement, bien que l'interféron protège la plupart du temps les cellules contre les effets néfastes de l'infection virale, notamment lors d'une infection par VSV, il ne permet pas l'élimination directe et complète du virus et pourrait, dans certains cas, contribuer à instaurer une infection persistante (Benedict et al., 2002; Ahmed et al., 1997; Joklik, 1991). Ce rôle particulier attribué à l'IFN a d'ailleurs été démontré lors de l'infection de cellules murines L par les sérotypes Indiana (Ramseur et Friedman, 1977) et New Jersey (Nishiyama, 1977) de VSV.

Les recherches des dernières années ont permis de mettre en évidence que, dans certains cas, comme lors de l'infection par le virus Influenza (Balachandran et al., 2000a), les interférons pouvaient aussi induire une susceptibilité accrue au processus apoptotique dans les cellules infectées. Le mécanisme semble principalement survenir via la voie faisant intervenir les facteurs FADD et caspase-8 reliés à la voie extrinsèque d'apoptose (Balachandran et al., 2000a; Barber, 2001). Actuellement, deux modèles existent afin d'expliquer comment l'interféron peut à la fois protéger certaines cellules contre une infection virale en permettant à ces dites cellules de conserver leur intégrité et
d’un autre côté rendre certains types cellulaires plus susceptibles à l’apoptose. Le premier modèle suggère que seules les cellules infectées par un virus peuvent induire leur processus de mort programmée. En effet, selon ce modèle, l’interféron, produit par les cellules infectées, agirait d’une part de façon autocrine en sensibilisant la cellule où se réplique un virus afin qu’elle mette en branle le processus de mort programmée. D’autre part, l’interféron pourrait aussi agir de façon paracrine, donc au niveau de cellulesvoisinetes non infectées, et, dans ce second cas, prévenir la réplication virale de même que l’induction d’apoptose qui pourrait être induite par une infection virale directe (Tanaka et al., 1998). Le second modèle favoriserait plutôt la mise en place d’un état antiviral dans la cellule infectée ou non et engendrerait ou bien le processus d’apoptose ou bien la survie cellulaire selon le type de virus qui infecte (Balachancran et al., 2000a; Barber, 2001).

De nombreuses études, réalisées à l’aide de souris dont l’expression du récepteur des interférons de type 1 est abolie (souris knock-out), ont clairement démontré l’importance des IFN dans la réponse immunitaire contre une panoplie de virus de familles différentes dont le virus de la Vaccine (Poxviridae), le LCMV (Arenaviridae), VSV (Rhabdoviridae), et les alphavirus Sindbis et virus de la forêt de Semliki (Togaviridae) (Samuel, 2001). Mais l’importance de l’interféron pour contrer l’infection virale est encore plus mise en évidence lorsque l’on note le nombre de virus portant des gènes codant pour des protéines qui peuvent d’une façon ou d’une autre altérer les fonctions antivirales de cette importante famille de molécules (Samuel, 2001). L’évolution a pris le temps de façonner des molécules dont la fonction spécifique est de brouiller la réponse antivirale liée à l’IFN afin de permettre que de nombreux virus puissent échapper aux mécanismes cellulaires reliés à cette cytokine. Ceci suggère fortement que l’IFN soit au centre d’une ou de multiples voies primordiales à éviter pour échapper au système immunitaire et peut-être arriver à établir une infection persistante.

5. Infection aiguë vs infection persistante

Selon la réponse antivirale mise en branle par l’hôte et selon le degré de virulence du virus, les infections virales peuvent être de deux types. Le premier, qualifié
d'infection aiguë, implique une multiplication et une propagation rapide du virus. C'est une course entre la réplication virale et la réponse antivirale de l'hôte. Dans ce cas, un effet cytopathique important peut être observé et un certain nombre de cellules peuvent être lysées lors du cycle réplicatif du virus. *In vivo*, le système immunitaire de l'hôte réussira à contre-attaquer afin d'éliminer le pathogène, à défaut de quoi des symptômes plus ou moins sévères apparaîtront et pourront même éventuellement mener à la mort. Comme prédablement mentionné, l'infection persistante existe aussi et représente une situation plus énigmatique où le virus demeure à l'intérieur de cellules infectées sans se faire détruire et sans détruire l'hôte. (Oldstone, 1996; Oldstone et de la Torre, 1996; Whitton et Oldstone, 2001) L'interaction virus-cellule est centrale dans la détermination du type d'infection qui survient. Toutefois, cette interaction demeure obscure à plus d'un niveau et plusieurs déterminants importants qui l’influencent restent à identifier.

5.1 Les infections persistantes

Certains virus ont développé des stratégies leur permettant de moduler une infection aiguë afin de s'établir dans un hôte et d'y persister. Selon le type d'infection persistante, il y aura production de virions complets de façon continuelle ou épisodique ou encore seul certaines composantes virales (génome viral par exemple) seront détectées à l'intérieur des cellules infectées.

L'infection dite persistante peut être de deux types *in vivo* (Ahmed et Stevens, 1991; Ahmed *et al.*, 1997). Dans le premier cas, on est face à une infection chronique où il y a continuellement production de virions pouvant être détectés. Des exemples sont le virus de l'hépatite B chez l'humain de même que le LCMV chez la souris (Ahmed et Stevens, 1991). D'un autre côté, une infection dite latente, où le génome viral peut demeurer sous différents états, dépendant du type de virus, et où la production de particules virales n'est qu'occasionnelle, peut aussi survenir. S'ajoutent aussi à cette classification, les infections à lentivirus comme le VIH (un rétrovirus), qui sont en fait un cas spécial d'infection latente qualifiée de lente, où le virus intègre carrément son génome dans celui de son hôte (Borzakian, 1993).
De plus, il a été démontré qu'in vitro, l'infection chronique peut se subdiviser encore en deux formes. La première, l'infection stable, (mieux connue sous le nom de steady state), est celle où à peu près toutes les cellules d'une population sont infectées par un virus non lytique. La seconde façon d'installer la persistance virale chronique dans une population cellulaire in vitro, est appelée état porteur (carrier state). Ici, seulement quelques cellules sont infectées puis lysées à chaque cycle viral. Il se crée un équilibre entre la multiplication des cellules résistantes au virus et la lyse de celles qui sont infectées et l'infection persistante survient. (Borzakian, 1993)

5.2 Stratégies virales conduisant à la persistance

Bien que beaucoup de mécanismes restent à éclaircir autour de la mise en place et du maintien d'une infection persistante, certains faits notoires sont tout de même connus.

Selon Oldstone (1991), le portrait histopathologique d'une infection persistante est habituellement différent de celui observé en infection aiguë. L'infiltration de lymphocytes et la destruction des cellules infectées qui est associée à l'infection de type aiguë, est souvent absente ou très peu présente lors d'une infection persistante. De plus, plusieurs antigènes viraux habituellement retrouvés à la surface des cellules infectées (en particulier des glycoprotéines) le sont peu ou même pas en contexte de persistance. Cette situation fait en sorte que la lyse nécessitant les anticorps devient fort peu efficace et réduit la capacité de l'immunité à médiation cellulaire à reconnaître et tuer les cellules infectées (Oldstone, 1991).

Comme mentionné plus avant, pour pouvoir persister, l'effet cytolytique d'un virus doit également être limité. Une des façons semble être l’infection de cellules semi-permissives dans lesquelles l'expression de certains gènes viraux est restreinte (Tyler et Nathanson, 2001). Les cas des virus HSV dans les neurones, EBV dans les lymphocytes B et du papillomavirus dans les cellules basales de la peau sont des exemples bien documentés (Ahmed et al., 1997)

Pour établir une persistance, les virus doivent également tenter de déjouer le système immunitaire et ainsi lui échapper. De nombreuses stratégies sont apparues au cours de l'évolution. Une façon fort répandue, qu'ont développé plusieurs virus pour
arriver à cette fin, est la production de protéines immunomodulatrices (Spriggs, 1996). Ces virokins sont de diverses natures. Plusieurs sont en fait des analogues de cytokines immunitaires inhibitrices qui empêchent certains types cellulaires de bien jouer leurs rôles dans la réponse antivirale. D'autres agissent plutôt de façon intracellulaire, en empêchant entre autre la cellule infectée de pouvoir présenter les antigènes viraux et/ou les molécules CMH à sa surface ou encore en stoppant l'induction de l'apoptose. (Spriggs, 1996; Oldstone and de la Torre, 1996).

5.2.1 Modulation du système immunitaire par les virus; des exemples fascinants

Selon Ahmed et collaborateurs, il existe au moins sept différentes stratégies ayant été élaborées par les différents virus au cours de leur coévolution avec leur hôte afin d'établir et de maintenir une infection persistante. Nommément, ces stratégies sont (1) l'expression restreinte de certains gènes viraux, (2) l'infection de site à surveillance immunitaire réduite, (3) la variation antigénique, (4) l'inhibition d'expression de molécule de surface essentielle pour la reconnaissance immunitaire, (5) l'interférence dans la présentation d'antigène, (6) la production de molécules interférant avec la fonction de cytokines immunitaires et (7) l'induction de la tolérance immunitaire face à un virus spécifique (Ahmed et al., 1997). Selon une certaine école de pensée, l'inhibition de l'apoptose devrait aussi être considérée comme faisant partie des stratégies de modulation des défenses de l'hôte contre les virus (Barber, 2001). Dans les pages qui suivent, plusieurs exemples de modulation du système immunitaire par une panoplie de virus différents sont résumés sous forme de tableaux. L'importance de déjouer les défenses de l'hôte afin d'avoir une chance d'établir une infection virale persistante, est mise en évidence de façon frappante lorsqu'on voit le nombre de virus ayant élaboré autant de moyens pour arriver à se faire « oublier un peu ».
<table>
<thead>
<tr>
<th>VIRUS</th>
<th>PROTÉINES</th>
<th>FONCTION</th>
<th>RÉférence</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSV</td>
<td>ICP47 (IE-12)</td>
<td>retient CMH I au réticulum endoplasmique en s'associant à TAP</td>
<td>Hill et al., 1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fruh et al., 1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tomazin et al., 1996</td>
</tr>
<tr>
<td>EBV</td>
<td>EBNA-1</td>
<td>altère dégradation de peptides au protésasome</td>
<td>Levitskaya et al., 1995; 1997</td>
</tr>
<tr>
<td>VZV</td>
<td>ORF66</td>
<td>accumulation de CMH I au Golgi</td>
<td>Abendroth et al., 2001</td>
</tr>
<tr>
<td>HCMV</td>
<td>US2</td>
<td>redirection de CMH I vers le protésasome</td>
<td>Mocarski, 2002</td>
</tr>
<tr>
<td></td>
<td>US3</td>
<td>empêche le passage des CMH I du réticulum vers le Golgi</td>
<td>Mocarski, 2002</td>
</tr>
<tr>
<td></td>
<td>US6</td>
<td>empêche le chargement des CMH I avec peptide en liant TAP dans réticulum</td>
<td>Mocarski, 2002</td>
</tr>
<tr>
<td></td>
<td>US11</td>
<td>redirection de CMH I vers le protésasome</td>
<td>Mocarski, 2002</td>
</tr>
<tr>
<td>HHV-8</td>
<td>K3 et K5</td>
<td>augmente l'endocytose des CMH I</td>
<td>Ishido et al., 2000</td>
</tr>
<tr>
<td>HHV-7</td>
<td>U21</td>
<td>redirige CMH I pour dégradation endocytique</td>
<td>Gewurz et al., 2001</td>
</tr>
<tr>
<td>Adénovirus B, C, D, E</td>
<td>E3-19K</td>
<td>retient CMH I au réticulum endoplasmique</td>
<td>Blair et Hall, 1998</td>
</tr>
<tr>
<td>Adénovirus 12 (sous-genre A)</td>
<td>E1A</td>
<td>inhibe d’expression de l’ARN de la chaîne lourde de CMH I</td>
<td>Blair et Hall, 1998</td>
</tr>
<tr>
<td>Virus Myxoma</td>
<td>MV-LAP</td>
<td>augmente endocytose de CMH I</td>
<td>Guérin et al., 2002</td>
</tr>
<tr>
<td>VIH</td>
<td>Nef</td>
<td>augmente endocytose et relocalisation de CMH I vers réseau trans-golgien</td>
<td>Schwartz et al., 1996</td>
</tr>
<tr>
<td></td>
<td>Vpu</td>
<td>induit dégradation de CMH I</td>
<td>Kerkau et al., 1997</td>
</tr>
<tr>
<td>HTLV-I</td>
<td>p12</td>
<td>se lie à la chaîne lourde du CMH I et la redirige pour dégradation au protésasome</td>
<td>Johnson et al., 2001</td>
</tr>
</tbody>
</table>

Tableau 1. Exemples choisis de virus capables d’altérer la réponse immunitaire

Altération de la présentation antigénique
<table>
<thead>
<tr>
<th>VIRUS</th>
<th>PROTÉINES</th>
<th>FONCTION</th>
<th>RÉFÉRENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHV-6</td>
<td>U12</td>
<td>homologue de récepteur à β-chimiokines (RANTES, MIP et MCP-1)</td>
<td>Isegawa et al., 1998</td>
</tr>
<tr>
<td></td>
<td>U51</td>
<td>altère recrutement de lymphocytes T en liant RANTES et en inhibant son expression</td>
<td>Milne et al., 2000</td>
</tr>
<tr>
<td>HCMV</td>
<td>US28</td>
<td>homologue de récepteur à β-chimiokines (RANTES, MIP et MCP-1) et à fractalkine</td>
<td>Bodaghi et al., 1998</td>
</tr>
<tr>
<td></td>
<td>cmvIL-10</td>
<td>homologue de l'IL-10 inhibe prolifération de PBMC</td>
<td>Kledal et al., 1998</td>
</tr>
<tr>
<td></td>
<td>vMIP-I</td>
<td>homologue de chimio kinase se liant au récepteur CCR8</td>
<td>Endres et al., 1999</td>
</tr>
<tr>
<td></td>
<td>vMIP-II</td>
<td>idem que vMIP I</td>
<td>Sozzani et al., 1998</td>
</tr>
<tr>
<td></td>
<td>vMIP-III</td>
<td>homologue de chimio kinase se liant au récepteur CCR4</td>
<td>Stine et al., 2000</td>
</tr>
<tr>
<td>EBV</td>
<td>BCRF1</td>
<td>homologue de l'IL-10 altère la production d'IFN γ</td>
<td>Moore et al., 1990</td>
</tr>
<tr>
<td>Vaccinia</td>
<td>VCP</td>
<td>inhibe le complément en s'associant aux sous-unités C3 et C4 du complément</td>
<td>Howard et al., 1998</td>
</tr>
<tr>
<td></td>
<td>B29R (C23L)</td>
<td>protéine soluble se liant à chimio kinases</td>
<td>Alcamì et al., 1998</td>
</tr>
<tr>
<td></td>
<td>vIL-18BP</td>
<td>homologue soluble du récepteur pour l'IL-18</td>
<td>Smith et al., 2000</td>
</tr>
<tr>
<td>Cowpox</td>
<td>A53R</td>
<td>homologue du récepteur TNF</td>
<td>Alcamì et al., 1998</td>
</tr>
<tr>
<td></td>
<td>vIL-18BP</td>
<td>homologue soluble du récepteur pour l'IL-18</td>
<td>Smith et al., 2000</td>
</tr>
<tr>
<td></td>
<td>CrmE</td>
<td>homologue récepteur TNF</td>
<td>Saraiva et Alcamì, 2001</td>
</tr>
<tr>
<td>Myxoma virus</td>
<td>M-T7</td>
<td>homologue récepteur IFNγ et protéine soluble se liant à chimio kinase</td>
<td>Upton et al., 1992</td>
</tr>
<tr>
<td></td>
<td>M-T1</td>
<td>protéine soluble se liant à chimio kinines et module la migration de leucocytes</td>
<td>Lalani et al., 1997</td>
</tr>
<tr>
<td></td>
<td>M-T2</td>
<td>homologue du récepteur à TNF</td>
<td>Xu et al., 2000</td>
</tr>
</tbody>
</table>
Tel qu'il en a été fait mention à la section 4.0, les interférons ont un rôle primordial dans la défense antivirale en général et lors d'une infection par le VSV en particulier (Samuel, 2001). Le Tableau 2 qui suit, entre autre inspiré de Garcia-Sastre (2002), illustre des exemples de virus ayant élaboré des stratégies pour contrer la production d'IFN ou la machinerie y étant associée, en particulier les mécanismes associés à PKR, à l'intérieur même des cellules. Sachant que PKR peut jouer un rôle important dans la prévention d'infection virale persistante (Yeung et al., 1999), la modulation à la baisse de cette kinase lors d'infections virales souligne l'importance d'une production adéquate d'IFN dans la réponse antivirale.
<table>
<thead>
<tr>
<th>VIRUS</th>
<th>PROTÉINES</th>
<th>FONCTION</th>
<th>RÉFÉRENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccinia</td>
<td>E3L</td>
<td>lie l'ARN bicaténaire et inhibe la PKR</td>
<td>Chang et al., 1992</td>
</tr>
<tr>
<td></td>
<td>K3L</td>
<td>inhibe la OAS</td>
<td>Rivas et al., 1998</td>
</tr>
<tr>
<td></td>
<td>B18R</td>
<td>homologue soluble du récepteur à l'IFN type 1</td>
<td>Symons et al., 1995</td>
</tr>
<tr>
<td></td>
<td>B8R</td>
<td>homologue soluble du récepteur à l'IFN γ</td>
<td>Alcamì et al., 2000</td>
</tr>
<tr>
<td>Influenza</td>
<td>NS1</td>
<td>lie l'ARN bicaténaire et inhibe la PKR</td>
<td>Lu et al., 1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inhibe l'auto-phosphorylation de PKR</td>
<td>Bergmann et al., 2000</td>
</tr>
<tr>
<td>VIH-1</td>
<td>Complexe Tat et ARN TAR</td>
<td>PKR lie TAR puis Tat lie ce complexe et inactive la capacité kinase de PKR et/ou Tat se lie à et inhibe directement PKR</td>
<td>Cai et al., 2000</td>
</tr>
<tr>
<td>HCV</td>
<td>NS5A</td>
<td>Inhibe l'homodimérisation de PKR et son activation</td>
<td>Gale et al., 1998</td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td>Inhibe l’activation de PKR</td>
<td>Taylor et al., 1999</td>
</tr>
<tr>
<td>HBV</td>
<td>Core antigen</td>
<td>Inhibe la production d'IFN β</td>
<td>Whitten et al., 1991</td>
</tr>
<tr>
<td>HPV</td>
<td>E6</td>
<td>Se lie au facteur de transcription IRF-3 et réprime la production d'IFN 1</td>
<td>Ronco et al., 1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S'associe à la tyrosine kinase Tyk2 et inhibe la voie de réponse liée à l'IFN 1</td>
<td>Li et al., 1999</td>
</tr>
<tr>
<td>HSV</td>
<td>ICP34.5</td>
<td>Recrute la phosphatase cellulaire 1α pour déphosphoryler eIF2α agissant donc en aval de PKR</td>
<td>He et al., 1997</td>
</tr>
<tr>
<td>Adénovirus</td>
<td>E1A</td>
<td>Interagit avec le facteur de transcription Stat 1 et bloque la production d'IFN γ</td>
<td>Look et al., 1998</td>
</tr>
<tr>
<td></td>
<td>VAI RNA</td>
<td>S'associe avec et inhibe PKR</td>
<td>Ghadge et al., 1994</td>
</tr>
</tbody>
</table>
La majorité des virus présentés dans les tableaux précédents sont des virus à ADN contenant souvent plus d’une centaine de gènes, voire même jusqu’environ 200 pour certains Poxvirus. Parmi tous ces gènes, ce type de virus possède, on l’a vu à l’aide des multiples exemples cités, plusieurs gènes encodant des protéines permettant d’élaborer, comme le disent si bien Lucas et collaborateurs, des stratégies de camouflage et de sabotage pour déjouer le système immunitaire pour faciliter l’établissement d’une persistance (Lucas et al., 2001). Cependant, même si certains virus à ARN possèdent des facteurs leur permettant de moduler le système immunitaire, la majorité des virus à ARN ont très peu d’espace dans leur génome et ne portent pas de gènes encodant des protéines immunomodulatrices efficaces. Pourtant, même parmi les plus petits virus à ARN qui ne possèdent pas autant de «technologie» que les virus à ADN, plusieurs réussissent à établir une persistance. Contrairement aux virus à ADN, qui possèdent des mécanismes de contrôle de la réplication, le génome des virus à ARN subit beaucoup plus de mutations dans le temps, ce qui, jusqu’à un certain point, leur permet d’évoluer dans leur hôte et dans bien des cas, de parvenir à y persister. Les principales stratégies de ces virus sont souvent basées sur la rapidité de réplication et d’adaptation au changement occasionné par la pression sélective du milieu (Lucas et al., 2001). Ces mutants peuvent représenter des populations de quasi-espèces qui sont en fait des variants potentiellement très utiles pour un type viral donné. En effet, parmi les formes les plus utiles de variants associés aux quasi-espèces, on retrouve entre autre la capacité réduite à induire la production d’IFN ainsi que la capacité à échapper aux anticorps ou aux lymphocytes T ; toutes des caractéristiques pouvant aider à la mise en place d’une persistance virale en déjouant le système immunitaire. La caractérisation de la dynamique de maintien des quasi-espèces compte aujourd’hui sur le concept révolutionnaire de mémoire moléculaire évolutive, retrouvée chez une minorité des mutants potentiels dans une population (Ruiz-Jarabo et al., 2000). En bref, il appert que, un peu à l’instar de la mémoire immunitaire, l’existence de cette mémoire moléculaire permet à une quasi-espèce donnée de réagir très rapidement à une pression sélective à laquelle la population virale a déjà été exposée (Domingo, 2000). Le virus LCMV représente un exemple particulièrement efficace d’adaptation. En effet, ce virus réussit à échapper à l’immunité
humorale en modifiant continuellement sa protéine d’enveloppe au niveau d’épitopes habituellement visés par les anticorps neutralisants (Ciurea et al., 2001). De plus, la très vaste majorité des virus, qu’ils soient à ADN ou à ARN, visent, à l’intérieur d’un organisme, des sites où les défenses de l’hôte, en particulier celles attribuables aux cellules immunitaires comme telles, sont moins efficaces.

5.3 Persistance virale: quelques exemples

Le Tableau 3, est adapté de Ahmed et collaborateurs (Ahmed et al., 1997) et présente des exemples de virus pouvant établir une infection persistante chez l’animal.
Tableau 3. Virus pouvant établir une infection persistante chez l'animal

<table>
<thead>
<tr>
<th>VIRUS</th>
<th>ANIMAL HÔTE</th>
<th>PATHOLOGIE(S) ASSOCIÉE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parvovirus félin</td>
<td>chat</td>
<td>ataxie cérébrale, panleucopénie</td>
</tr>
<tr>
<td>Herpès B</td>
<td>singe</td>
<td>encéphalite</td>
</tr>
<tr>
<td>Cytomégalovirus</td>
<td>souris</td>
<td>maladie d’inclusion du cytomegalovirus</td>
</tr>
<tr>
<td>virus du polyome</td>
<td>souris</td>
<td>tumeurs multiples</td>
</tr>
<tr>
<td>SV40</td>
<td>singe</td>
<td>Leucoencéphalopathie multifocale progressive chez sujet immunosupprimé</td>
</tr>
<tr>
<td>hépatite du canard</td>
<td>canard</td>
<td>hépatite, hépatocarcinome</td>
</tr>
<tr>
<td>hépatite de la marmotte</td>
<td>marmotte</td>
<td>hépatite, hépatocarcinome</td>
</tr>
<tr>
<td>ARN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virus de Theiler (TMEV)</td>
<td>souris</td>
<td>démyélinisation au SNC</td>
</tr>
<tr>
<td>Coronavirus murin (MHV)</td>
<td>souris</td>
<td>démyélinisation au SNC</td>
</tr>
<tr>
<td>Virus du Distemper canin</td>
<td>chien</td>
<td>démyélinisation au SNC</td>
</tr>
<tr>
<td>Virus de la chorioméningite lymphocytaire (LCMV)</td>
<td>souris</td>
<td>glomérulonéphrite chronique</td>
</tr>
<tr>
<td>Virus Visna</td>
<td>mouton</td>
<td>pneumonie, démyélinisation au SNC</td>
</tr>
<tr>
<td>Virus de l’encéphalite et de l’arthrite caprin</td>
<td>chèvre</td>
<td>Arthrite chronique, encéphalomyélite</td>
</tr>
<tr>
<td>Virus de l’anémie infectieuse équine</td>
<td>cheval</td>
<td>Anémie hémolytique récurrente</td>
</tr>
<tr>
<td>Virus de la leucose aviaire</td>
<td>poulet</td>
<td>Leucémie</td>
</tr>
<tr>
<td>Virus du sarcome aviaire</td>
<td>poulet</td>
<td>sarcome</td>
</tr>
<tr>
<td>Virus de la leucémie murine</td>
<td>souris</td>
<td>Leucémie</td>
</tr>
</tbody>
</table>

Certains virus humains semblent également être impliqués dans l'établissement de maladies dont l'étiologie serait, au moins en partie, reliée à une infection virale persistante. Le Tableau 4 qui suit est également adapté de Ahmed et collaborateurs (Ahmed et al., 1997) et présente une liste d’exemples bien documentés de virus pouvant établir une infection persistante chez l’humain et étant associés au développement de pathologie particulière.
Tableau 4. Virus pouvant établir une infection persistante chez l’humain

<table>
<thead>
<tr>
<th>VIRUS</th>
<th>SITE DE PERSISTANCE</th>
<th>PATHOLOGIE(S) ASSOCIÉE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adénovirus</td>
<td>glandes adénoïdes, amygdales, lymphocytes</td>
<td>possibilité de leucémie</td>
</tr>
<tr>
<td></td>
<td>reins, glandes salivaires, lymphocytes, macrophages</td>
<td>lymphoblastique aigué</td>
</tr>
<tr>
<td>Cytomégalovirus</td>
<td></td>
<td>pneumonie, rétinite</td>
</tr>
<tr>
<td>Virus Epstein-Barr</td>
<td>cellules épithéliales du pharynx, lymphocytes B</td>
<td>mononucléose infectieuse, lymphome de Burkitt,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>carcinome nasopharyngien, lymphome non-Hodgkinien</td>
</tr>
<tr>
<td>HSV-1 et 2</td>
<td>neurones dans ganglions sensitifs</td>
<td>feu sauvage, herpès génital, encephalite, kératite</td>
</tr>
<tr>
<td>HHV-6</td>
<td>monocytes/macrophages</td>
<td>roséole</td>
</tr>
<tr>
<td>HHV-8</td>
<td>cellules endotéliales/ lymphocytes B</td>
<td>sarcome de Kaposi, lymphome</td>
</tr>
<tr>
<td>Varicella zoster</td>
<td>neurones dans ganglions sensitifs</td>
<td>varicelle, zona</td>
</tr>
<tr>
<td>Hépatite B</td>
<td>hépatocytes, lymphocytes, macrophages</td>
<td>hépatite, hépatocarcinome</td>
</tr>
<tr>
<td>Hépatite D</td>
<td>hépatocytes</td>
<td>exacerbation de l’Hépatite B</td>
</tr>
<tr>
<td>Papillomavirus</td>
<td>cellules épithéliales de la peau</td>
<td>papillome, carcinome</td>
</tr>
<tr>
<td>Parvovirus B19</td>
<td>progéniteur érythroïde</td>
<td>Anémie hémolytique, déficience chronique de la moelle osseuse</td>
</tr>
<tr>
<td>Polyomavirus BK</td>
<td>rein</td>
<td>cystite hémorragique</td>
</tr>
<tr>
<td>Polyomavirus JC</td>
<td>rein, oligodendrocytes du SNC</td>
<td>Leucoencéphalopathie multifocale progressive</td>
</tr>
</tbody>
</table>
Tableau 4 (suite). Virus pouvant établir une infection persistante chez l'humain

<table>
<thead>
<tr>
<th>VIRUS</th>
<th>SITE DE PERSISTANCE</th>
<th>PATHOLOGIE(S) ASSOCIÉE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hépatite C</td>
<td>hépatocytes, lymphocytes, macrophages</td>
<td>hépatite, hépatocarcinome</td>
</tr>
<tr>
<td>Rougeole</td>
<td>neurones et cellules gliales (SNC)</td>
<td>Panencéphalite subaiguë sclérosante (PESS)</td>
</tr>
<tr>
<td>Rubéole</td>
<td>SNC</td>
<td>Panencéphalite progressive du virus de la rubéole</td>
</tr>
<tr>
<td>Virus de l'Immunodéficience Humaine (VIH)</td>
<td>lymphocytes T CD4, monocytes/macrophages, microglies</td>
<td>SIDA</td>
</tr>
<tr>
<td>Virus T-lymphotrope humain de type 1 (HTLV-1)</td>
<td>lymphocytes T</td>
<td>leucémie lymphoïde T, paraparésie spastique tropicale</td>
</tr>
<tr>
<td>Virus T-lymphotrope humain de type 2 (HTLV-2)</td>
<td>lymphocytes T</td>
<td>aucune connue</td>
</tr>
<tr>
<td>HCoV</td>
<td>SNC</td>
<td>aucune confirmée à ce jour</td>
</tr>
</tbody>
</table>

5.4 Le Système Nerveux Central : un site de choix pour la persistance virale

Le SNC représente un site de choix où plusieurs virus peuvent s’établir pour persister et l’implication potentielle de virus est suggérée dans un nombre grandissant de neuropathologies apparentemment liées à une infection persistante. En effet, la présence de divers virus demeurant dans un état de persistance à l’intérieur de certains types cellulaires semble être impliquée dans certaines maladies neurodégénératives.

Le HCoV (*human coronavirus*) représente un des virus fort intéressant à étudier dans le contexte de la persistance au SNC chez l’humain. En effet, bien qu’aucune pathologie n’ait à ce jour été associée hors de tout doute à la persistance du HCoV au niveau du SNC, plusieurs faits reliés à son neurotropisme (*Bonavia et al.*, 1997; *Arbour et al.*, 1999a; 1999b) et à son pouvoir neuroinvasif (*Arbour et al.*, 2000) rendent très intéressante l’étude de ce virus. Qui plus est, la capacité d’établir une infection
persistante à l’intérieur des lignées cellulaires humaines issues du SNC a aussi été mise en évidence (Arbour et al., 1999a; 1999b). L’activation de lignées de cellules gliales en culture a également été mise en évidence suite à l’infection par la souche HCoV-OC43 (Edwards et al., 2000). Bien qu’il convienne d’être prudent sur les conclusions à tirer de toutes ces études, il appert que l’infection de cellules représentatives du SNC par le coronavirus humain peut survenir et que chez certains types cellulaires, l’infection mène à la production de molécules pro-inflammatoires ayant déjà été associées à certaines pathologies neurodégénératives.

De plus, au moins deux virus humains, cités dans le Tableau 4, sont clairement associés à des pathologies neurologiques démyélinisantes. Le virus de la rougeole peut établir une infection persistante au niveau du SNC et, dans de rares cas, induire la panencéphalite subaiguë sclérosante (PESS ou SSPE en anglais), une encéphalite progressive à développement lent qui survient entre 5 et 10 ans après que les symptômes caractéristiques de la rougeole aient disparus. Des inclusions intranucléaires et cytoplasmiques caractéristiques sont observables à l’intérieur d’oligodendrocytes et de certains types de neurones. La pathologie est invariablement fatale et s’accompagne de zones de démyélinisation plus ou moins importantes au niveau de la matière blanche du cerveau. On observe aussi une importante astrogliose ainsi qu’une infiltration chronique de lymphocytes et de plasmocytes. (Stohlman et Hinton, 2001). La leucoencéphalopathie multifocale progressive est associée au polyomavirus JC, et comme la PESS, est une maladie démyélinisante progressive et fatale. Les cellules infectées par le virus sont les oligodendrocytes et les astrocytes et, contrairement à la PESS, il n’y a pas de réponse inflammatoire chronique associée. Même si la pathologie touche le SNC, il appert qu’avant le déclenchement des premiers symptômes, le virus établit son site de persistance en périphérie, probablement au niveau du rein, et qu’il migre vers le SNC lors d’épisodes particuliers chez les personnes immunosupprimées. (Stohlman et Hinton, 2001)

5.4.1 Immunité antivirale et auto-immunité au SNC

À part les neurones, le SNC se compose de plusieurs autres types cellulaires. Ces cellules gliales remplissent des fonctions très importantes mais bien différentes de celles
des neurones. Les oligodendrocytes représentent un type cellulaire important au niveau du SNC. Elles ne semblent pas jouer de rôle immunitaire mais sont très importantes en produisant la gaine de myéline autour des axones neuronaux. Ces cellules sont également des cibles de choix pour certains virus (Bilzer et Stitz, 1996).

Les microglies représentent une population vraisemblablement de même origine que les macrophages et sont donc considérées comme leur équivalent au SNC (Bilzer et Stitz, 1996). En réponse à une infection virale, elles produisent plusieurs des mêmes cytokines que les macrophages mais également certaines substances pouvant devenir toxiques pour les neurones. Ce sont les cellules qui remplissent le plus adéquatement la fonction de CPA au SNC (Aloisi et al., 1998).

Les astrocytes sont les cellules les plus abondantes du SNC et jouent plusieurs fonctions majeures au niveau du cerveau (Sun et al., 1997). Ils sont impliqués dans la régulation de l'eau et des ions de même que dans le métabolisme des acides aminés et de l'apport d'énergie et de nutriments pour les neurones (Cox et al., 1997). Ce sont aussi des cellules qui peuvent répondre fortement à l'infection virale. L'astroglose est d'ailleurs une réponse immunitaire caractéristique où les astrocytes se gonflent et migrent vers le site infectieux (Bilzer et Stitz, 1996; Cox et al., 1997).

Un processus complexe de régulation réciproque existe entre le SNC et le système immunitaire. D'un côté, le SNC envoie des signaux au système immunitaire par l'entremise d'hormones dont certains glucocorticoïdes, d'autre le système immunitaire communique avec le SNC à l'aide de cytokines dont l'IL-1β, le TNF α et l'IL-6, principalement relarguées par les macrophages et certains types de lymphocytes (Rivest, 2001; Rivest et al., 2000). La principale voie utilisée par le SNC pour réguler le système immunitaire est connue sous le nom d'axe hypothalamo-hypophysocoricosurrénalien, en Anglais; hypothalamic-pituitary-adrenal axis ou HPA (Webster et al., 2002). En altérant le métabolisme normal de certaines cellules gliales ou de neurones infectés et avoisinants, on peut penser qu'une infection virale persistante pourrait avoir une influence sur la bonne marche d'un mécanisme aussi important et complexe et occasionner divers types de problèmes, entre autres d'ordre auto-immunitaire.
Le SNC est un environnement très particulier de l'organisme où, la plupart du temps, les cellules effectrices du système immunitaire conventionnel ne sont pas les bienvenues lorsqu’elles sont activées. Les méninges, le liquide céphalorachidien (LCR), la barrière hémato-LCR au niveau du plexus choroïdien, l’absence de réseau lymphatique conventionnel et la fameuse barrière hémato-encéphalique proprement dite, représentent autant de barrières naturelles qui protègent le SNC contre les infections virales (Bilzer et Stitz, 1996).

Pourtant, le système n’est pas parfait puisque des infections virales peuvent survenir au SNC et engendrer une réaction inflammatoire, première étape d’une bonne réponse immunitaire conventionnelle. Comme mentionné plus avant, des cellules immunitaires peuvent ainsi passer les barrières naturelles, parmi celles-ci des lymphocytes T cytotoxiques activés. Le SNC est un site où les antigènes du soi risquent malencontreusement d’être reconnus comme étant étrangers par les lymphocytes T cytotoxiques, puisque certaines de ces cellules peuvent réagir contre des épitopes retrouvés sur les cellules. Une réaction auto-immunitaire importante peut s’en suivre et causer des dommages au tissu nerveux environnant. C'est ce qui semble l'explication la plus plausible dans l'apparition de maladies comme la sclérose en plaques par exemple (Poser, 1993).

Comme préalablement mentionné, diverses études tendent en effet à montrer l’implication d’infections virales persistantes en tant qu’agent étiologique partiel de pathologies neurodégénératives. Celles-ci impliqueraient peut-être un volet d’ordre auto-immunitaire; i-e où le système immunitaire, trompé par l'infection virale, devient lui-même cause de la maladie en s’attaquant au soi (Talbot et al., 2001). Le Tableau 5, adapté de Talbot et collaborateurs (2001), résume bien les différentes situations où infection virale au SNC et pathologie auto-immunitaire peuvent être liées. Il devient donc primordial de bien caractériser les facteurs permettant au VSV d’établir une infection persistante au niveau de cellules issues du SNC si, comme il est présenté à la dernière section du chapitre I, on entend éventuellement utiliser le VSV pour détruire des cellules tumorales situées au niveau du SNC ou même ailleurs dans l’organisme, étant donné le pouvoir neuroinvasif du virus.
Tableau 5. Implication possible d'infections virales dans le développement de pathologies auto-immunitaires au système nerveux central

<table>
<thead>
<tr>
<th>Effet systémique sur la réponse immunitaire</th>
<th>Effet au niveau du SNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction ou maintien de la réponse immunitaire spécifique</td>
<td>Réponse immunitaire contre Ag viral exprimé au niveau des cellules neuronales</td>
</tr>
<tr>
<td>Induction possible de réaction immunitaire croisée entre Ag viral et Ag du SNC (mimétisme moléculaire)</td>
<td>Augmentation du niveau d'expression ou libération d'Ag neural libéré par cellules infectées</td>
</tr>
<tr>
<td>Réponse immunitaire contre Ag du soi provenant du SNC et transportés vers les ganglions lymphatiques périphériques</td>
<td>Sensibilisation aux auto-Ag et induction d'un bris de tolérance immunitaire</td>
</tr>
<tr>
<td>Augmentation de réponse immunitaire non spécifique</td>
<td>Propagation de déterminants</td>
</tr>
<tr>
<td>Activation des CPA</td>
<td>Présentation antigénique par CPA du SNC à des lymphocytes présensibilisés</td>
</tr>
<tr>
<td>Modification dans l'équilibre entre les différentes cellules immunitaires et le patron de cytokines</td>
<td>Au niveau de la BHE : Induction de chimioines et de molécules d'adhésion</td>
</tr>
<tr>
<td>Induction de molécules impliquées dans la migration lymphocytaire</td>
<td>Activation de CPA périvasculaires</td>
</tr>
<tr>
<td>Au niveau du parenchyme : Activation des microglies comme CPA et cellules productrices de cytokines</td>
<td>Au niveau du parenchyme : Activation des microglies comme CPA et cellules productrices de cytokines</td>
</tr>
<tr>
<td>Augmentation des fonctions effectrices des cellules gliales en général : -Production de NO, -Cytokines, protéases -capacité ADCC</td>
<td>Augmentation des fonctions effectrices des cellules gliales en général : -Production de NO, -Cytokines, protéases -capacité ADCC</td>
</tr>
</tbody>
</table>

Ag: antigène CPA: cellule présentatrice d'antigène NO: oxydes nitrés ADCC : *Antibody Dependent Cell Cytotoxicity* BHE: Barrière Hémato-encéphalique
Bien que certains virus et des co-facteurs associés (notamment génétiques) soient déjà identifiés de façon plus ou moins formelle comme agents étiologiques possibles de certaines maladies neurologiques, il reste encore beaucoup à connaître à propos des mécanismes précis régissant le tout. Nombre de virus ont été utilisés comme modèle, autant in vitro que in vivo, pour tenter de comprendre comment l’infection persistante pourrait jouer un rôle pour mener à de telles pathologies.

5.4.2 Virus et persistance : modèles animaux de neuropathologies associées

Quelques modèles d’infection virale persistante existent chez l’animal et sont utilisés afin de tenter d’élucider, au moins en partie, comment ce type de pathologie peut survenir. Le coronavirus MHV et le virus de Theiler (TMEV; Theiler’s murine encephalomyelitis virus) sont deux modèles murins étudiés depuis longtemps et sont de mieux en mieux caractérisés et compris.

5.4.2.1 Le virus de Theiler : TMEV

Le virus de Theiler de la famille des Picornaviridae, est un pathogène entérique naturel de la souris. Étant donné la filiation avec le virus de la poliomyélite qui est aussi un picornavirus avec un cycle vital très similaire, Max Theiler a, au cours des années 30, surtout utilisé « son virus » comme modèle pour comprendre le virus de la poliomyélite. Toutefois, en virologie moderne, l’infection de souris SJL/J génétiquement susceptibles par le TMEV est devenu l’un des modèles animaux de la sclérose en plaques humaine les plus utilisés (Brahic, 2002). Les souches virulentes GDVII et FA ont la capacité d’induire une encéphalomyélite monophasique généralement fatale (Stohlman et Hinton, 2001). Les souches virales moins virulentes, DA (Daniel’s) et BeAn peuvent également induire une encéphalomyélite aiguë suivie de l’établissement d’une infection persistante associée à une phase démyélinisante chronique chez la souris (Talbot, 1995; Stohlman et Hinton, 2001). Il s’agit d’un des modèles les plus pertinents de la sclérose en plaques humaine à cause de nombreuses similarités d’ordre pathologique et immunologique (Miller et Gerety, 1990) En effet, dans ce modèle, la gaine de myéline abîmée par une
réaction auto-immunitaire peut se reformer entre des crises, ce qui représente une des formes de sclérose en plaques chez l'humain (Miller et al., 1995).

La capacité du virus à établir et maintenir une infection persistante semble en partie liée à la présence d'une protéine particulière, la protéine L\(^*\), issue d'un ORF alternatif à l'intérieur du gène VP2 du virus (van Eyll et Michiels, 2000; Ghadge et al., 1998).

5.4.2.2 Le coronavirus murin : MHV

Le Mouse Hepatitis Virus (MHV) fait partie de la famille des Coronaviridae. La plupart des souches de MHV sont d'abord, comme leur nom l'indique, des virus ayant un tropisme pour les cellules hépatiques (Matthews et al., 2002), pourtant certaines souches, en particulier MHV-A59 et JHM (MHV-4), peuvent aussi infecter les neurones ainsi que les cellules gliales (Matthews et al., 2002). Ces 2 souches neurotropes du MHV, peuvent créer une infection persistante au niveau du SNC chez la souris. Habituellement, lors d'une infection aiguë, le MHV entraîne une encéphalomyélite où toutes les cellules du SNC peuvent être infectées (Stohlman et Hinton, 2001). Suite à une infection aiguë au cerveau par la souche JHM, seulement un très faible pourcentage des souris infectées survivent et développent une pathologie chronique et démyélinisante (Lampert et al., 1973; Weiner, 1973), c'est pourquoi plusieurs des études sur la pathologie démyélinisante liée à une infection persistante se font aujourd'hui à l'aide de mutants dont la capacité à infecter les neurones est altérée (Perlman, 1998; Stohlman et Hinton, 2001). En fait, la souche MHV-JHM peut, après inoculation intranasale, engendrer une maladie démyélinisante plusieurs semaines plus tard et à ce point, la moelle épinière devient un site où l'ARN viral demeure (Perlman et al., 1990). Dans des conditions similaires d'infection, l'ARN de la souche MHV-A59 est retrouvé dans le cerveau jusqu'à 12 mois post-infection (Lavi et al., 1984a). De plus, la souche MHV-A59 injectée par voie intracrânienne ou intranasale, engendre une courte encéphalite aiguë dans certaines régions du SNC suivie d'une maladie démyélinisante chronique associée à une persistance du génome viral (Lavi et al., 1984a; 1984b; 1984c). Il est tout à fait clair que le système immunitaire, particulièrement par l'entremise des lymphocytes
T, est impliqué dans la pathologie démyélinisante associée à la persistance du MHV au SNC (Wu et Perlman, 1999; Wu et al., 2000).

5.4.2.3 Virus mutants et persistance au SNC

On l’a vu, certaines mutations virales peuvent altérer la capacité d’infection des virus en modifiant partiellement leur tropisme; c’est notamment le cas de la souche MHV-JHM (Perlman, 1998). D’autre part, certains virus ne persiste que lorsque des mutations rendent les virions moins virulents. Le tropisme des virus ou leur capacité à interagir avec certaines protéines cellulaires peuvent être modifiés, de même que leur capacité de réplication. Il existe un type particulier de mutation relié à la température ou plutôt à une sensibilité accrue à celle-ci. Il semble établi depuis déjà un bon moment que des mutants thermosensibles (ts) apparaissent à l’intérieur d’une population virale donnée lors des cycles réplicatifs successifs en conditions de croissance semi ou non permissives. In vitro et in vivo, un processus de sélection de ce type de mutants jouerait certainement un rôle dans l’établissement et/ou la maintenance d’une infection persistante. (Preble et Youngner, 1975)

Le virus de la rougeole est un type de virus dont la biologie favorise l’apparition de mutants ts. Une étude menée chez le hamster nouveau-né, afin de vérifier le potentiel "encéphalitogène" de neuf mutants ts de ce virus, a démontré que la réplication de ceux-ci pouvait être inhibée lors d’une infection par injection intracranienne. Le virus de type sauvage entraîne une encéphalite aiguë chez les hamsters nouveau-nés alors que les différents mutants ts sont plus ou moins fortement atténués au niveau de leur potentiel de neurovirulence selon la nature de leur mutation ts. En fait, il semble que si la mutation ts altère le cycle réplicatif de façon précoce, le mutant sera atténué. Inversement, si la perturbation survient vers la fin du cycle, le virus mutant gardera en bonne partie son potentiel de virulence. (Haspel et al., 1975)

Il semble toutefois clair que des facteurs cellulaires au niveau du SNC participent au processus d’atténuation virale en engendrant une altération dans l’expression de certains gènes viraux, ce qui favorise la mise en place d’une infection non-lytique et persistante (Schneider-Schaulies et al., 1999). Quoi qu’il en soit, il est également clair
que de nombreuses mutations ont été identifiées au niveau du gène M d'isolats cliniques de virus de la rougeole associés à des cas de panencéphalite subaiguë sclérosante (PESS) (Ayata et al., 1998), une maladie rare associée à une persistance du virus de la rougeole au niveau du SNC. Le *canine distemper virus* (CDV) représente un autre exemple intéressant de virus pouvant persister au SNC. Comme dans le cas de la rougeole, des mutations dans le gène codant pour la protéine matricielle ont été mises en évidence chez des souches virales pouvant persister au SNC (Stettler et al., 1997).

Malgré tous les exemples de virus déjà connus pour leur potentiel à causer une infection persistante reliée ou non à l'apparition de divers types de mutants, certains éléments manquent pour bien expliquer le portrait global. Un outil supplémentaire pour tenter de comprendre encore mieux l'infection persistante, et du même coup les neuropathologies qui pourraient y être reliées, est certes le Virus de la Stomatite Vésiculaire (VSV).

6. VSV : Le Virus de la Stomatite Vésiculaire

Le VSV fait partie d'une des plus grandes familles de virus connues, les *Rhabdoviridae*, nom dont l' étymologie est grecque, le terme *rhabdos* signifiant bâtonnet. On compte deux genres de *Rhabdoviridae*. Les *Lyssavirus*, dont fait partie le virus de la rage, forment le premier, alors que VSV représente le second, nommé *Vésiculovirus*. Ces virus peuvent s'attaquer à un grand nombre d'espèces vivantes, autant animales que végétales. Parmi cette myriade d'hôtes possibles, certains *Rhabdoviridae* dont le VSV, vont même pouvoir infecter des mammifères, incluant l'humain. (Wagner, 1991; Letchworth et al., 1999)

Les sérotypes New Jersey et Indiana représentent les deux souches ou sérotypes majeurs de VSV. Ils sont principalement présents dans la partie ouest de la planète. Le sérotype Indiana compte quelques sous-groupes et bien que les deux sérotypes soient considérés virulents, Indiana semble l'être beaucoup plus que New Jersey (Fultz et Holland, 1985). L'exercice de comparaison des génomes indique que les sérotypes Indiana et New Jersey sont passablement différents. En effet, l'homologie de séquences en acides aminés des protéines majeures des deux souches varie de 32% pour la protéine
P, à 68% pour la protéine N. Entre ces extrêmes, l'homologie entre les protéines M présente 62%, celle des deux protéines G est de 51% (Gill et Banerjee, 1986) et celle des protéines L est de 65,3% (Feldhaus et Lesnaw, 1988).

Plusieurs sérotypes moins répandus sont retrouvés à travers le monde. Le Tableau 6 qui suit, adapté de Rose et Whitt (2001) et de Letchworth et collaborateurs (1999), présente une liste exhaustive des différents sérotypes de VSV à travers le monde. Les souches portant un astérisque (*) sont celles pour lesquelles une capacité à infecter l'humain, en causant une maladie apparentée à une grippe sévère mais non fatale, a été démontrée (Letchworth et al., 1999). Du côté économique-agricole, il est à noter que le VSV engendre habituellement une stomatite vésiculaire, d'où son nom. La pathologie ressemble en fait aux symptômes attribués à la fièvre aphteuse et se traduit la plupart du temps par l'apparition de lésions vésiculaires et érosives sous la langue souvent accompagnée d’apparition de grosses vésicules sur les gencives, les lèvres, et même sur les trayons au niveau du pis ou encore sur le prépuce. Des symptômes plus sévères, impliquant entre autres une gliose au niveau du SNC, peuvent être observés suite à une injection intradermique dans la langue. Les conséquences économiques peuvent facilement se chiffrer à 100-250 dollars US par vache dans un troupeau (Letchworth et al., 1999).
TABLEAU 6. Membres des deux principaux sérotypes du Virus de la Stomatite Vésiculaire et autres *Vesiculovirus* retrouvés dans la nature

<table>
<thead>
<tr>
<th>VIRUS</th>
<th>ISOLATION</th>
<th>SOURCE EN NATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSV-New Jersey*</td>
<td>New Jersey, USA 1926 bestiaux, chevaux</td>
<td>mammifères, moustiques, mouches noires, mouches à cheval</td>
</tr>
<tr>
<td></td>
<td>(Cotton, 1927)</td>
<td></td>
</tr>
<tr>
<td>VSV-Indiana*</td>
<td>Indiana, USA 1925 bestiaux</td>
<td>mammifères, moustiques, mouches des sables</td>
</tr>
<tr>
<td></td>
<td>(Cotton, 1926)</td>
<td></td>
</tr>
<tr>
<td>VSV-Indiana 2*</td>
<td>Trinidad, Brésil, 1964 insectes, rongeurs</td>
<td>mammifères, moustiques, mites</td>
</tr>
<tr>
<td>(Cocal)</td>
<td>(Jonkers et al., 1964)</td>
<td></td>
</tr>
<tr>
<td>VSV-Indiana 3*</td>
<td>Brésil, 1964 chevaux, bestiaux, humains</td>
<td>mammifères, mouches des sables</td>
</tr>
<tr>
<td>(Alagoas)</td>
<td>(Federer et al., 1967)</td>
<td></td>
</tr>
</tbody>
</table>

Autres *vesiculovirus* apparentés

<table>
<thead>
<tr>
<th>VIRUS</th>
<th>ISOLATION</th>
<th>SOURCE EN NATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chandipura*</td>
<td>Indes, 1965</td>
<td>mammifères, mouches des sables</td>
</tr>
<tr>
<td></td>
<td>humains</td>
<td>(Bhatt et Rodrigues, 1967)</td>
</tr>
<tr>
<td>Piry*</td>
<td>Brésil, 1973</td>
<td>mammifères</td>
</tr>
<tr>
<td></td>
<td>opossum</td>
<td>(Theiler et Downs, 1973)</td>
</tr>
<tr>
<td>Isfahan*</td>
<td>Iran, 1975</td>
<td>mouches des sables, tiques</td>
</tr>
<tr>
<td></td>
<td>Humains</td>
<td>(Tesh et al., 1977)</td>
</tr>
<tr>
<td>Calchaqui*</td>
<td>Argentine, 1982</td>
<td>moustiques</td>
</tr>
<tr>
<td></td>
<td>Insectes</td>
<td>(Calisher et al., 1987)</td>
</tr>
<tr>
<td>Jureona</td>
<td></td>
<td>moustiques</td>
</tr>
<tr>
<td>Carajas</td>
<td></td>
<td>mouches des sables</td>
</tr>
<tr>
<td>Maraba</td>
<td></td>
<td>mouches des sables</td>
</tr>
<tr>
<td>Yug Bogdanovac</td>
<td></td>
<td>mouches des sables</td>
</tr>
<tr>
<td>Perinet</td>
<td></td>
<td>moustiques, mouches des sables</td>
</tr>
<tr>
<td>Porton-S</td>
<td></td>
<td>moustiques</td>
</tr>
</tbody>
</table>

* souches virales pouvant infecter les animaux domestiques et l'humain
Comme tous les *Rhabdoviridae*, VSV possède une forme caractéristique en balle de fusil, rappelant le bâtonnet ou *rhabdos* déjà mentionné. Il est composé de deux constituants structuraux majeurs, soit une nucléocapside ou ribonucléoprotéine et une enveloppe constituée d'une double couche lipidique recouvrant de très près la nucléocapside. Cette dernière est en fait constituée du génome d'ARN monocaténaire à polarité négative associé à 1258 molécules de la nucléoprotéine N arrangées comme les perles d'un chapelet autour du génome, à raison d'une molécule N par 9 nucléotides. Dans l'enveloppe, 1205 molécules de la glycoprotéine G ayant une portion transmembranaire forment des spicules trimériques à l'extérieur de l'enveloppe pour permettre une meilleure adsorption aux cellules cibles. On évalue donc à environ 400, le nombre de ces trimères à la surface d'un virion typique. De plus, 1826 molécules de protéine matricielle M sont situées à l'intérieur de l'enveloppe virale et forment ni plus ni moins qu'un pont permettant de rattacher la nucléocapside à l'enveloppe. Deux autres composantes structurales importantes du virion sont les protéines P et L. La protéine P est en fait une phosphoprotéine associée à L (*large protein*) pour former un complexe qui représente la ARN polymérase dépendante de l’ARN. On retrouve 50 molécules de L et 466 molécules de P par virion. (Rose et Whitt, 2001)

Le virus de la stomatite vésiculaire possède un génome d'ARN monocaténaire non-segmenté à polarité négative de 11 161 nucléotides (Figure 1) où cinq gènes, codant pour les protéines structurales.

![Diagram](image.png)

Figure 1. Représentation schématique d'un virion du virus de la stomatite vésiculaire et de l'organisation de son génome monocaténaire à polarité négative. le : *leader*, tr : *trailer*
Les gènes viraux sont présents de l'extrémité 3' vers 5' selon l'ordre dans lequel leur transcription s'effectue (Wagner, 1987). En amont de ces cinq gènes est retrouvé une séquence de tête (*leader*) de 47 nucléotides, transcrite mais non coiffée ni polyadénylée et non traduite. Cette région du génome a déjà été associée à une possible fonction d'inhibition de transcription chez la cellule hôte (Weck et Wagner, 1979; Weck *et al.*, 1979; McGowan *et al.*, 1982). Certaines études ont toutefois démontré que la séquence de tête n'avait pas de rôle essentiel dans ce processus (Dunnigan *et al.*, 1986). Quoiqu'il en soit, la séquence de tête sert principalement de promoteur pour les processus de transcription et de réplication du génome par l'ARN polymérase dépendante de l'ARN (Emerson, 1992; Whelan et Wertz, 1999a). Une étude plus pointue a permis de mettre en évidence que les 24 premiers nucléotides de la séquence de tête servaient à la fois pour la réplication et la transcription, alors que les nucléotides 25 à 47 ne servaient que pour rendre optimal le processus de transcription (Li et Pattnaik, 1999). Un modèle alternatif suggère que la polymérase peut aussi débuter la transcription à un site interne dans le génome en amont du gène N (Chuang et Perrault, 1997). Trois nucléotides (AAA) séparent la séquence de tête du premier gène N, correspondant au gène de la nucléoprotéine (1333 nucléotides), puis viennent ensuite les quatre autres gènes, toujours séparés entre eux par les 2 nucléotides GA ou CA. Dans l'ordre, on retrouve d'abord le gène P (anciennement NS), codant pour la phosphoprotéine du complexe polymérase, qui doit être phosphorylée pour être fonctionnelle (821 nucléotides). Deux petites protéines de 55 et 65 acides aminés respectivement appelée C et C’, sont également codées dans le gène P. Ces deux protéines n’ont aucun rôle identifié ni dans la réplication, ni dans la synthèse d’ARN et de protéines virales, ni dans la fonction de *shutoff* cellulaire engendré lors d’une infection par VSV. Toutefois, elles sont conservées chez tous les *vesiculovirus* et il est suggéré qu’elles pourraient avoir un rôle dans la pathogenèse (Rose et Whitt, 2001). En continuant sur le génome, viennent ensuite les gènes M, qui encode la protéine de la matrice (833 nucléotides), G, la glycoprotéine de surface (1672 nucléotides) et enfin L, qui code en fait pour la protéine principale du complexe polymérase viral (6380 nucléotides). Tous les ARN messagers débutent par la séquence coiffée AACAG et se terminent par UAUG-polyA (Rose et Whitt, 2001).
Complètement en aval, une queue de 59 nucléotides non traduits est également présente et un rôle dans la réplication, pour cette région nommée *trailer* (Tr), est aujourd’hui connu. Elle contient des séquences nucléotidiques importantes pour initier une réplication efficace de nouvelles molécules génomiques à polarité négative à partir de molécules antigénomiques (aussi appelées intermédiaires génomiques) à polarité positive. Le rôle du Tr est essentiellement attribué à la réplication du génome, contrairement à la séquence de tête qui est également importante pour une transcription efficace des ARNm viraux (Whelan et Wertz, 1999a). Le Tr contient également des séquences liées à l’encapsidation des génomes viraux (Whelan et Wertz, 1999b).

Le VSV possède donc sa propre ARN polymérase qui est en fait un complexe "ARN polymérase-ARN dépendante" afin de transcrire les cinq ARN messagers (ARNm) correspondants aux cinq protéines incluses dans le virion. Le génome est associé à la protéine N, pour former le *core* RNP ou ribonucléoprotéine. Les protéines L et P font également partie du *core* et l'association de toutes ces protéines semble nécessaire pour amorcer et entretenir la transcription. La transcription du *leader* en brin positif semble requise pour que le complexe associé à la polymérase puisse atteindre le gène N et vraiment initier la transcription d'ARNm. Les cinq ARNm correspondant aux cinq gènes sont coiffés et polyadénylés et la quantité de transcrit de chacun dépend de sa position sur le génome. Le *leader* est synthétisé en quantité plus grande que le gène N, qui lui l'est plus que P, et ainsi de suite. La traduction des cinq ARNm en protéines correspondantes se fait par la machinerie cellulaire, immédiatement après la transcription (il y a même chevauchement entre les deux processus) et la quantité relative de chaque protéine est à peu près proportionnelle à celle des ARNm correspondants (Wagner, 1987; Rose et Whitt, 2001). Les courtes régions intergéniques (en vert sur la Figure 1) semblent également importantes dans la régulation de la transcription des différents ARNm (Barr *et al.*, 1997).

Le mécanisme de réplication du virus doit aussi être mis en place. Il implique le même complexe de polymérisation mais en association avec des facteurs cellulaires tels la caséine kinase II (une protéine kinase) impliquée dans la phosphorylation de la protéine virale P ou encore un facteur d'elongation nécessaire à la synthèse protéique, le
EF-1 (Banerjee, 1997). La traduction se fait ici en parallèle au processus de réplication. Les mêmes protéines virales impliquées dans la formation du complexe servant à la transcription des messagers sont nécessaires. En fait, l'interaction entre l'ARN leader et la protéine N contrôle la réplication. Les protéines N, L et P, dans l'ordre, s'associent toutes trois à l'ARN leader et le tout forme un complexe ribonucléoprotéique résistant aux RNAses pour permettre la polymérisation et la réplication du génome entier (Wagner, 1987; Rose et Whitt, 2001). En fait, N agirait comme agent "anti-terminateur" en empêchant le clivage au site intercistronique (entre chaque gène) lors du processus de réplication du génome (Peluzo et Meyer, 1988). Il est aussi à noter qu'au moins trois types de protéines P existent à l'intérieur d'une cellule infectée; P-0, P-1 et P-2, qui diffèrent par leur niveau de phosphorylation (Banerjee, 1997). Lorsque P-2 se lie au complexe, le tout est dirigé vers la transcription alors que la réplication est inhibée. P-2 aurait en quelque sorte un rôle complémentaire à M qui elle, inhibe la transcription (Chang et al., 1994). La dite protéine M est très importante pour VSV au niveau structural mais elle possède également d'importantes fonctions permettant au VSV de rapidement prendre le contrôle de la cellule infectée.

6.2 La protéine M de VSV : beaucoup plus qu'une protéine structurale

Les travaux de différentes équipes de recherche ont depuis longtemps démontré que la protéine M du VSV pouvait jouer de multiples rôles. La structure de la protéine M du sérottype Indiana a été passablement étudiée et révèle des domaines relativement bien définis auxquels peuvent être associés certaines fonctions particulières. La protéine M participe entre autre à la régulation de la transcription virale (Clinton et al., 1978; Carrol et Wagner, 1979) et à l'assemblage des particules virales (Chong et Rose, 1994; 1993). Les domaines fonctionnels associés à l'assemblage du virion à la membrane plasmique sont situés entre les acides aminés 1 à 51 et 89 à 119. En effet, la région amino-terminale (acides aminés 1 à 10) forme une structure en hélice alpha et permet l'ancrage de la protéine à la membrane plasmique (Barge et al., 1996; Rigault et al., 1991). De plus, une interaction directe de M avec la membrane plasmique semble attribuable à la formation de liens électrostatiques entre cette membrane et le domaine 1 à 51 de M de même qu'à
une association hydrophobe créée entre le domaine 89-119 de M et la membrane plasmique (Ye et al., 1994). À l’intérieur de cellules infectées par VSV, on distingue environ 10% de la quantité totale de la protéine associée à la membrane plasmique (Chong et Rose, 1994; 1993).

La région amino-terminale de la protéine M contient également des domaines importants pour l’assemblage et le bourgeonnement des virions. Un premier motif particulier PPPY, situé entre les acides aminés 24 à 27 (Craven et al., 1999) est très important pour l’exocytose des virions. Un second motif, PSAP, situé entre les acides aminés 37 à 40 (Harty et al., 1999) semble avoir un rôle à jouer dans le déroulement adéquat du bourgeonnement des virions. Le domaine PPPY peut interagir avec diverses protéines cellulaires possédant des domaines WW dont une ubiquitine ligase localisée à la membrane plasmique et ayant un rôle dans l’endocytose et influençant le bourgeonnement de VSV (Harty et al., 2001)

Le domaine permettant l’association de M à la ribonucléoprotéine est quant à lui situé entre les acides aminés 17 et 43 et est aussi responsable de l’inhibition de la transcription virale (Coulon et al., 1990). La protéine M interagit également directement avec la glycoprotéine d’enveloppe (G) pour en stabiliser les sous-unités (Lyles et al., 1992).

En plus des différentes fonctions attribuées à M en rapport au cycle viral lui-même, en particulier dans l’assemblage éventuel des virions, on connaît plusieurs rôles joués par la protéine lors de l’infection pour aider le virus à prendre possession de la machinerie cellulaire. La protéine M peut entre autre inhiber la synthèse protéique cellulaire (Francoeur et al., 1987) en causant la déphosphorylation du facteur eIF4E et de la eIF4E binding protein, occasionnant un arrêt de la machinerie de synthèse protéique cellulaire tout en maintenant, au moins temporairement, la traduction des ARN viraux en protéines (Connor et Lyles, 2002). Depuis plusieurs années, on sait également que la transcription des gènes cellulaires (Lyles et al., 1996; Paik et al., 1995; Black et Lyles, 1992), entre autre au niveau du gène de l’interféron β (Ferran et Lucas-Lenard, 1997), est affectée de façon importante par M. Toutefois, cette fonction semble très peu spécifique puisque la quantité de plusieurs ARN dont la transcription dépend des trois différentes
ARN polymérases cellulaires est diminuée suite à l’expression ectopique de M seule ou lors d’une infection par VSV (Ahmed et Lyles, 1998). De plus, cette inhibition d’expression du gène de l’IFN β est clairement attribuable à une capacité de M à inhiber l’expression génique et la synthèse protéique de façon généralisée chez l’hôte (Ahmed et al., 2003).

La protéine M de VSV peut se retrouver au noyau (Lyles et al., 1988) entre autre par l’entremise de deux NLS (Nuclear Localisation Signals) (Glodowski et al., 2002). De plus, il a été montré que M pouvait bloquer le système de régulation de transport des ARN et des protéines entre le noyau et le cytoplasme (Her et al., 1997). Ce système de transport requiert la GTPase RAN (Ras related nuclear protein), une protéine G pouvant être couplée au GTP (au niveau du noyau durant l’interphase) ou au GDP (dans le cytoplasme, particulièrement au moment de la mitose) (Moore, 1998; Pennisi 1998). On sait maintenant que le processus implique une localisation de la protéine au niveau de pores nucléaires (Petersen et al., 2000). En fait une interaction directe de M avec la nucléoporine Nup98 a été mise en évidence pour expliquer le phénomène (von Kobbe et al., 2000). Lors d’une infection par le VSV la cellule abritant le virus meurt après avoir subit des changements morphologiques menant à un arrondissement caractéristique lié à un effet de M (Blondel et al., 1990). Une partie de l’explication du phénomène d’arrondissement provient probablement de l’interaction directe de M avec la tubuline du cytosquelette cellulaire (Melki et al., 1994). De plus, le gène M de VSV possède deux codons AUG supplémentaires qui codent pour des méthionines aux positions 33 et 51 de la protéine M mature. Jayakar et Whitt (2002) ont récemment montré que deux polypeptides supplémentaires, M2 et M3, peuvent être produits lors de l’infection par VSV et il appert que leur fonction principale serait liée à l’induction de l’arrondissement cellulaire caractéristique. En effet, sans la présence de ces deux peptides, cet effet cytopathique survient plus tardivement dans certains types cellulaires (Jayakar et Whitt, 2002).

Toutefois, des travaux plus récents (Kopecky et Lyles, 2003a) indiquent que l’arrondissement cellulaire est une conséquence directe de l’induction d’apoptose induite par la protéine M. Cependant, bien que la protéine M puisse être associée à l’induction
d'apoptose lorsqu'exprimée seule sans aucun autre composant viral (Kopecky et Lyles, 2003a; 2003b; Kopecky et al., 2001) ou lors d'une infection virale (Kopecky et Lyles, 2003b; Desforges et al., 2002; Kopecky et al., 2001), il appert qu'un autre composant viral est impliqué d'une quelconque façon dans l'induction d'apoptose par VSV (Kopecky et Lyles, 2003b; Kopecky et al., 2001). Le processus exact par lequel la protéine M induit l'apoptose n'est pas connu et les chapitres II et III de cette thèse visent à en donner un aperçu. Toutefois, il semble tout à fait clair que la fonction d'inhibition d'expression génique de la cellule hôte attribuée à M se fasse par l'intermédiaire des fonctions d'inhibition de transcription directe et de blocage de transport bidirectionnel entre le cytoplasme et le noyau dont il a été fait mention plus avant. Le phénomène d'inhibition d'expression des gènes de la cellule hôte semble être la cause d'une induction d'apoptose subséquente, qui elle engendre l'arrondissement cellulaire (Kopecky et Lyles, 2003a). Toutefois, un bémol doit être apporté à cette dernière conclusion. En effet, il semble que la protéine M induise rapidement l'apoptose dans les cellules où l'induction d'apoptose ne nécessite pas la transcription de nouveaux gènes. Dans les cellules où l'induction d'apoptose nécessite l'expression de nouveaux gènes ou l'augmentation d'expression de certains gènes, M agirait plutôt en retardant l'apoptose induit par un autre facteur viral non identifié, par son effet d'inhibition de transcription des gènes de la cellule-hôte (Kopecky et Lyles, 2003b). Les chapitres II et III de la présente thèse font d'ailleurs mention de l'importance d'une induction d'apoptose adéquate chez la cellule infectée pour prévenir le processus d'établissement d'une infection persistante en partie liée à la protéine M lors de l'infection par VSV (Desforges et al., soumis juin 2003; Desforges et al., 2002)

6.3 VSV : Divers types d'infections possibles

Comme il a été brièvement mentionné auparavant, VSV peut, de façon naturelle, infecter certains ruminants par l'entremise de vecteurs arthropodes (Wagner, 1991; Letchworth et al., 1999) en produisant des lésions au niveau des muqueuses à l'intérieur de la bouche des animaux. La plupart du temps, ces ulcérès guérissent et l'animal s'en
remet bien. Lors d'infection chez les bestiaux, il arrive cependant que le génome viral puisse être détecté plusieurs mois après que l'infection ait été diagnostiquée (Letchworth et al., 1996).

Diverses équipes ont de plus montré que des rongeurs tels le hamster (Stanners et al., 1975; Fultz et al., 1982; Barrera et Letchworth, 1996) ou la souris (Plakhov et al., 1995; Bi et al., 1995a) pouvaient adéquatement servir de modèles animaux afin de permettre l'étude de l'infection liée à VSV et de chercher à comprendre comment peut survenir une pathologie neurologique impliquant ce type de virus. Ces faits permettent de compléter des études en culture cellulaire, qui ont entre autres permis de mettre en évidence que VSV pouvait infecter des cultures primaires de neurones de souris (Dubois-Dalcq et al., 1982). Pourtant, ni les processus impliqués, ni le type précis d'infection comme tel, ne sont bien connus, d'où la pertinence de viser à comprendre de façon plus détaillée les mécanismes impliqués lors de l'infection.

VSV est aussi capable d'infecter l'humain (Hanson et al., 1950; Reif et al., 1987; Tesh et al., 1987; Quiroz et al., 1988). Les symptômes reliés à une infection par le VSV chez l'humain ressemblent en général à ceux que peut induire le virus influenza, responsable de la grippe. Pourtant dans un cas au moins, Quiroz et ses collaborateurs (1988) ont mis en évidence une relation entre l'infection par le VSV (Indiana) et le développement d'une encéphalite chez un jeune garçon panaméen. Enfin, un autre fait intéressant en rapport à une infection humaine provient d'une étude réalisée par l'équipe de Hardgrave (1993) qui montre que des anticorps anti-VSV sont retrouvés chez des patients atteints de lupus érythémateux, une maladie auto-immune répandue.

D'un autre côté, il convient de s'arrêter ici à un phénomène nouveau concernant le VSV. En effet, des études récentes ont montré que certains virus, dont le VSV, présentaient un potentiel intéressant dans la lutte contre le cancer. Lorsque utilisé en combinaison avec les interférons de type 1, le VSV semble infecter et tuer de manière préférentielle les cellules tumorales sans trop affecter les cellules saines à l'intérieur d'un organisme. Des travaux de deux équipes de recherche (Stodjil et al., 2000; Barber, 2001) laissent présager que VSV pourrait éventuellement être administré chez l'humain afin de tester son véritable pouvoir en tant qu'agent anti-tumoral. Chercher à
comprendre quels facteurs cellulaires ou viraux peuvent contribuer à transformer une infection aiguë en infection persistante est donc d’une grande importance afin de contrer d’éventuels effets secondaires néfastes qui pourraient résulter d’un traitement anti-cancer utilisant le VSV. La section 8 discute de façon plus détaillée du concept de virus oncoïytique et présente de façon plus complète comment et pourquoi plusieurs virus, en particulier le VSV, suscitent un véritable intérêt dans le domaine des traitements contre le cancer.

6.3.1 VSV : mutants et persistance

Tous les virus à ARN, surtout ceux possédant une ARN polymérase-ARN dépendante ne possédant pas d'activité de correction d'épreuve (proof reading), ont un taux de mutation très élevé. Il n'est donc pas rare de retrouver parmi une population, plusieurs mutants capables de se multiplier lorsque les conditions leur sont favorables. Beaucoup de ces mutants sont qualifiés de thermosensibles (ts) alors qu'une mutation sur une des protéines engendre une sensibilité accrue aux températures non-permissives. Le taux d'apparition de mutants VSV peut atteindre $1,1 \times 10^3$. Comme VSV possède cinq protéines, cinq groupes principaux de mutants ts, appelés groupe de complémentation, existent. Le groupe I représente les mutants dont la thermosensibilité est causée par une mutation sur la protéine L, où se retrouvent 90% des mutants ts. Les groupes II, III, IV et V sont respectivement à relier aux protéines P, M, N et G. Un groupe VI semble relié à P (peut-être P2) et certains mutants demeurent à ce jour "inclassifiables" (Wagner, 1987).

Dans le cas du sérotype Indiana, plusieurs mutants ts existent et nos études antérieures ont montré que six de ces mutants ts, tous issus d’un variant particulier nommé HR, pouvaient persister dans des cultures de cellules murines L-929 et simiennes VERO. Il a par la suite été démontré que tous, sans exception, portaient une seconde mutation sur la protéine matricielle M (Charron, 1996; Desforges et al., 2001). Les mutations de M sont identifiées (Beausoleil, 1994; Desforges et al., 2001) et toutes semblent altérer la fonction reliée à l'inhibition de synthèse protéique et de transcription génique. Cependant, les mutations induisant le phénotype ts à l'intérieur de cette série de
variants demeurent pour la plupart inconnues à ce jour. On sait toutefois qu’elles ne touchent pas la protéine M puisque tous les révertants conservent la mutation dans M.

Un mutant ts particulier de VSV-Indiana, G31 (groupe de complémentation III, protéine M), peut engendrer une infection persistante in vitro, lorsque l’infection est accompagnée de particules déficientes. Dans ces conditions particulières, ce mutant persiste sur trois différents types cellulaires; soit la lignée L-929 (fibroblastes de souris), une lignée issue d’un oligodendroglome humain ainsi qu’une lignée gliale de rat (Huprikar et al., 1986). Holland et Villareal (1974) avaient préalablement montré le même phénomène sur des cellules BHK-21 durant au moins 150 jours. Le même mutant ts, injecté par voie intracréânienne à des souriceaux nouveau-nés, entraîne une pathologie plus lente et progressive que ne le fait la souche sauvage. Une paralysie des membres inférieurs survient assez tôt puis la mort suit après environ une semaine. Un second mutant, ts 41, (groupe de complémentation IV, portant donc la mutation ts sur la protéine N), a été étudié de façon similaire mais aucun symptôme neurologique n’a cependant été observé (Rabinowitz et al., 1976).

Stanners et Goldberg (1975) avaient déjà démontré que le mutant ts T1026, issu de VSV Indiana-HR, pouvait induire une infection persistante in vitro en condition restrictive à 39°C. In vivo, le même mutant ts, engendre une paralysie des membres inférieurs et acquiert un pouvoir neuroinvasif accru par rapport à HR lorsqu’il est injecté de façon intra péritonéale (Stanners et Goldberg, 1975; Stanners et al., 1975). Les travaux réalisés par Charron (1996) ont confirmé les résultats in vitro établis par Stanners et Goldberg et ont également identifié au moins trois mutants ts supplémentaires, issus de la même souche sauvage HR-Indiana (Francoeur et al., 1987), pouvant induire la persistance in vitro sur des cellules L-929 et VERO. Ces mutants, TP-2, 3 et 4, possèdent également une protéine M mutée qui entraîne la perte de capacité d’inhibition de la synthèse protéique (PSI) et d’inhibition de transcription génique, fonction importante dans l’induction de l’infection aiguë accompagnée d’un important effet cytopathique. Ces deux caractéristiques doivent exister de façon concomitante pour que l’infection persistante puisse s’établir et demeurer au niveau des types cellulaires susmentionnés. Au moins deux mutants de la même série nemontrent qu’une sensibilité
accrue à la chaleur (donc ts), TP-5 et TP-6, et ne réussissent pas à établir une infection persistante sur les deux lignées fibroblastiques, pas plus d’ailleurs que ne le peut le mutant TP-1, également issu du virus HR, et portant une mutation sur M mais n’étant pas ts (Charron, 1996). Une mutation consensus à l’acide aminé 163 a aussi été mise en évidence dans la protéine M d’une population virale hétérogène issue d’une infection persistante de cellules L (Ahmed et Lyles, 1997).

Des cultures primaires de neurones d’embryons de 12-13 jours de souris C57BL/6 ont aussi été étudiées en relation avec une infection possible par le sérottype Indiana de VSV. Dans ce cas, il semble que des neurones différents sont affectés de façon variable. Les neurones sensitifs sont les premiers atteints alors qu’on y voit rapidement des antigènes viraux de même qu’une réplication plus ou moins active. Lorsque des particules déficientes (DI) sont ajoutées, l’infection se modifie et devient persistante. Dans ces circonstances, aucune particule virale n’est retrouvée dans le milieu mais il est possible d’observer la formation du complexe ribonucléoprotéique (RNP) de VSV au niveau de la membrane cytoplasmique des cellules infectées (Faulkner et al., 1979). Le VSV de sérottype Indiana peut persister de façon systémique pour plusieurs mois chez la souris (Cave et al., 1985) ou le hamster (Fultz et al., 1982) lorsque des particules déficientes ou des mutants ts (Doll et Johnson, 1988) sont présents lors de l’infection.

Pour expliquer la mise en place d’une infection persistante induite par VSV-Indiana, il semble donc important de considérer la formation de particules virales déficientes interférantes (DI). Celles-ci peuvent jouer un rôle important pour contrer la virulence d’une souche de type sauvage (Cave et al., 1985) mais aussi dans certains cas, pour atténuer une souche considérée ts (Holland et Villereal, 1974). Ainsi, on peut croire qu’au moins in vitro une des façons dont la thermosensibilité pourrait en bout de ligne s’exprimer, serait par la tendance d’un mutant ts à produire des particules DI. Selon le gène affecté par la mutation ts, le virus produira une quantité variable de virions (nécessairement plus faible que celui d’une souche non ts à température non permissive) et une proportion de ces virions seront incomplets ou déficients. Une des façons de
concevoir le pouvoir infectieux atténué d'un mutant ts, serait donc relié à sa capacité plus ou moins altérée à former des particules complètes

6.3.2 Infection persistante par VSV; autres cas

Des anticorps anti-VSV, ajoutés à des cultures primaires de neurones de souris, permettent de contenir l'infection et même d'établir une infection persistante pour au moins 2 semaines. En présence d'anticorps, il semble y avoir protection contre l'infection aiguë. Certaines cellules non neuronales, présentes dans la culture primaire, éliminent efficacement la proportion de neurones infectés qui produisent des particules virales. La plupart des neurones ne produisent pas de virions mais plusieurs d'entre eux contiennent bel et bien le génome viral sous une forme latente sans qu'on y retrouve d'antigènes viraux et encore moins de particules virales (Dubois-Dalcq et al., 1979).

Plus récemment, Barrera et Letchworth ont réussi à démontrer la persistance de VSV au niveau du SNC chez des hamsters en mettant en évidence la persistance d'ARN viral au niveau du SNC, plusieurs mois après l'infection intra péritonéale par la souche sauvage New Jersey (Barrera et Letchworth, 1996). Moins de 10% des animaux sont morts suite à l'infection aiguë et aucun virion n'est détecté chez les animaux qui survivent. L'ARN génomique viral est détecté de façon systémique 2 mois après l'infection chez la majorité des animaux de même que chez 2 animaux au niveau du SNC après 10 mois et chez un seul après 1 an.

La problématique générale, concernant l'étiologie de maladies neurologiques en est une qui semble fort complexe. Même si la cause demeure encore obscure aujourd'hui, l'implication possible des virus semble de plus en plus plausible. Plusieurs hypothèses sont mises de l'avant pouvoir expliquer au moins en partie ce phénomène et parmi celles-ci, une infection persistante liée à une modulation de l'apoptose par certains facteurs viraux pourrait être impliquée.
7. Apoptose et infection virale

Dans la dynamique de mise en place et d’entretien d’une infection virale, l’apoptose peut entrer en jeu. Dans le cas où les virus sont impliqués, il convient de parler de modutation de l’apoptose puisqu’il peut y avoir autant induction qu’inhibition du processus, dépendant du virus en cause ainsi que des cellules qu’il infecte. L’interaction virus-cellule est donc, encore une fois, primordiale. (Teodoro et Branton, 1997a)

Comme on l’a vu plus avant, plusieurs niveaux d’intervention existent pour que le système immunitaire puisse arriver à contrer une infection virale. Le processus évolutif a permis à l’hôte de développer un formidable réseau de défense intégré où les réponses immunitaires naturelle et adaptative se complètent. Au cours des dernières années, plusieurs travaux importants ont permis de mettre en lumière l’importance de la bonne mise en place du processus apoptotique pour que les divers éléments du système immunitaire puisse efficacement combattre les virus. La réplication et la propagation virale de même que l’établissement d’infection persistante des cellules infectées représentent différents niveaux d’intervention où l’apoptose entre en jeu. (Barber, 2001)

7.1 L’apoptose : un processus complexe de destruction cellulaire régulée

Avant de s’aventurer plus avant dans une discussion sur l’importance de l’apoptose en réponse à une infection virale, une présentation de ce phénomène complexe est de mise puisqu’il est au coeur de nos travaux.

De façon très générale, le processus peut être réduit à trois étapes principales. D’abord, le stimulus, étape nécessaire pouvant être due à différents événements dont l’infection virale. La seconde étape de l’apoptose est la phase d’exécution, où l’on observe un changement morphologique plus ou moins marqué des cellules infectées, avec une vacuolisation de leur cytoplasme, une condensation de la chromatine puis une fragmentation de l’ADN. À noter que de nombreux organites demeurent longtemps intacts et que les mitochondries sont actives très longtemps. Enfin, la formation de corps apoptotiques, (soit des structures de chromatine extrêmement condensée), qui s’associent à la membrane avant d’être phagocytés par d’autres cellules, représente la troisième
étape. C’est le bourgeonnement, souvent caractéristique, observé en microscopie. (Teodoro et Branton, 1997a)

Le processus apoptotique, souvent nommé mort cellulaire programmée, sert à plusieurs fins dans l’organisme. L’élimination de cellules en excès lors du développement embryonnaire, de lymphocytes lors des processus de sélection au niveau du thymus et de cellules devenues dangereuses parce qu’infectées ou transformées chez un organisme mature, résume de façon globale, les situations où il est extrêmement important de pouvoir compter sur la bonne mise en place de l’apoptose (Hengartner, 2000).

7.1.1 Perspective historique

Cependant, la véritable reconnaissance d’un processus actif de mort cellulaire programmée différent de la nécrose, date officiellement de 1972. C’est au Royaume-Uni, dans la revue British Journal of Cancer que Kerr, Willie et Currie proposent que le terme Apoptose (du Grec pour décrire la perte des pétales chez une fleur) soit utilisé pour décrire le mécanisme qui régit la mort cellulaire faisant contrepoids au processus de mitose pour réguler le développement cellulaire chez les animaux supérieurs (Kerr et al., 1972).

Pendant longtemps, les processus de prolifération et de différenciation cellulaire présentaient un grand intérêt pour de très nombreux chercheurs alors que le processus de mort cellulaire, que l’on croyait invariablement nécrotique et passif, n’attirait l’attention d’à peu près personne. Pourtant, la publication de Kerr et collaborateurs, en 1972, et de
nombreuses autres au cours des années 70, ont rapidement contribué à changer la façon de voir les choses à propos de la mort des cellules. À partir de ce moment, on prenait conscience et on avait la preuve que la mort des cellules pouvait être très intéressante à étudier parce qu’elle représentait un processus actif, contrôlé, voire même programmé sur lequel il serait peut-être possible d’intervenir (Wyllie et al., 1980).

7.1.2 Les caspases : des protéases particulières

La vaste majorité des changements morphologiques observés chez une cellule en apoptose sont à relier d’une façon ou d’une autre à une classe particulière de protéases à cystéines; les cysteine-dependent aspartate-specific proteases ou caspases. Il existe au moins 14 caspases différentes divisées en 3 groupes. Le groupe I contient les caspases impliquées dans la maturation de cytokines. Le groupe II est composé des principales caspases efféctrices; les caspases 2, 3 et 7 et les membres du troisième et dernier groupe comprend les caspases initiatrices 6, 8, 9,10 et 12. Même si leur rôle principal est associé à la maturation de cytokines (caspases du groupe I) ou à l’apoptose (groupe II et III), certaines études ont démontré que ces protéases pouvaient avoir d’autres fonctions dans la cellule (Algeciras-Schimnich et al., 2002a). En effet, des rôles ont été attribués à la caspase-1 dans la migration cellulaire (Antonopoulos et al., 2001), à la caspase-8 dans l’internalisation de récepteur (Algeciras-Schimnich et al., 2002b), la prolifération cellulaire (Kennedy et al., 1999) et la survie cellulaire, par un mode d’action impliquant un domaine différent de celui responsable de sa fonction pro-apoptotique (Chaudhary et al., 2000). Finalement, des rôles ont également été suggérés pour la caspase-3 dans l’inactivation de voie de survie cellulaire liée au facteur NF-kB pour favoriser l’induction d’apoptose (Tang et al., 2001; Kang et al., 2001). Il semble que la compartimentalisation des caspases à l’intérieur des cellules, au moins dans certaines situations particulières, puisse expliquer comment ces protéases peuvent jouer leur rôle accessoire sans nécessairement entraîner le processus d’apoptose (Algeciras-Schimnich et al., 2002a).

Les caspases sont synthétisées dans la cellule sous forme de zymogène, et sont en général composées de quatre domaines différents. Un prodomaïne de taille variable selon
la caspase se retrouve en portion amino-terminale. Une grande et une petite sous-unité sont également présentes dans cette forme inactive et sont séparées par une région charnière. Lors du processus d’activation, il y a clivage protéolytique entre les domaines et élimination de la région charnière et du prodomaine. Les grandes et petites sous-unités s’assemblent alors pour former un complexe actif hétérodimérique. En fait, la forme active des caspases comprend habituellement deux hétérodimères interagissant au niveau de la petite sous-unité et représente donc un tétramère où l’on retrouve deux sites catalytiques et chaque site actif est formé par des interactions précises entre acides aminés se retrouvant à la fois dans la grande et la petite sous-unité (Nunez et al., 1998). Bien qu’elles reconnaissent toutes des séquences où se retrouve un acide aspartique en position P1 et qu’elles puissent la plupart du temps cliver à plus d’une site de reconnaissance, les caspases présentent toutes une préférence de substrat optimal. La spécificité de substrat est en bonne partie déterminée par des séquences de quatre acides aminés incluant l’acide aspartique P1; en général, l’acide aminé en P4 est le plus critique car il interagit avec une sequence particulière d’une petite sous-unité du complexe caspase (Thornberry et al., 1997; Nunez et al., 1998).

Lors d’un stimulus pro-apoptotique, plusieurs caspases sont habituellement activées en cascade. Basé sur leur hiérarchie chronologique d’activation dans cette cascade protéolytique, les caspases sont divisées en caspases initiatrices (en amont de la cascade) et caspases effectrices (en aval dans la cascade). Dans de très nombreux cas, le clivage engendré par une caspase mène à l’inactivation de protéines-cibles. Cependant, il peut également mener à une activation; deux exemples très probants sont représentés par (1) l’inter-clivage de plusieurs molécules de caspase 8 menant à leur propre activation lors de l’induction d’apoptose par la voie extrinsèque liée aux récepteurs de mort de la famille TNF receptor et (2) le clivage de la caspase 3 soit par la caspase 8 (voie extrinsèque d’apoptose) soit par la caspase 9 comprise dans l’apoptosome, un phénomène lié à la voie apoptotique mitochondriale (Hentgartner, 2000).
7.1.3 Différents stress et différents organites

Il existe différentes voies métaboliques impliquées dans la bonne marche du processus apoptotique. La voie extrinsèque, utilisant différents récepteurs de la famille des récepteurs de mort situés à la membrane cytoplasmique dont les six membres actuellement bien caractérisés sont le récepteur TNF-R1 *TNF-Receptor1* (CD120a), Fas (CD95), DR-3 *Death Receptor3* (APO-3, TRAMP), TRAIL-R1 *TNF-Related Apoptosis-Inducing Ligand Receptor1* (APO-2, DR4), TRAIL-R2 *TNF-Related Apoptosis-Inducing Ligand Receptor2* (DR5, KILLER) et DR6 *Death Receptor6* (Sartorius *et al.*, 2001). Au moins dans les cas du TNF-R1 et de Fas, il y a trimérisation des récepteurs suite à leur ligation avec leur ligand trimérique. La suite des événements permet de recruter plusieurs molécules adaptatrices, ce qui en bout de ligne favorise la proximité de molécules de caspase-8 qui interagissent ensemble pour s'activer (*Sartorius et al.*, 2001; Hengartner, 2000).

Selon les plus récentes avancées en matière d'apoptose, la voie intrinsèque menant à la perturbation de l'homéostasie intracellulaire, longtemps assimilée à la seule mitochondrie, pourrait plutôt être associée à plusieurs mécanismes impliquant plusieurs organites cellulaires. Il semble en effet, que différents organites d'une cellule soient capables de détecter certains stress et d'induire une réponse locale pour s'adapter ou un processus menant vers la mort cellulaire, si le stress est trop fort et les altérations qui s'en suivent dépassent un certain seuil de tolérance (Ferri et Kroemer, 2001).

La Figure 2, adaptée de Hengartner (2000), Eldadah et Faden (2000) et Sartorius et collaborateurs (2001), présente de façon succinte les voies principales connues impliquant les caspases. Pour fin de simplification, certaines composantes des différentes voies n'ont pas été inclues dans le schéma afin de ne pas surcharger d'avantage une figure déjà fort complexe.
La voie extrinsèque fait intervenir les récepteurs de mort de la famille TNF. Dans le cas du récepteur TNF-1, la molécule adaptatrice TRADD (TNFR-associated death domain) forme le pont entre les récepteurs à la surface cellulaire et FADD (Fas-associated death domain). Cette voie permet de recruter plusieurs molécules de caspase-8 dans la même région. L'association de toutes ces molécules entre elles mène à la formation du DISC (Death-Inducing Signaling Complex) et active habituellement la caspase-8 (parfois la caspase-10) qui pourra directement aller activer la caspase-3 dans les cellules de type I. Dans les cellules de type II, une quantité moindre de DISC est formée et l'activation de la caspase-8 mène plutôt au clivage de Bid qui s'associe à Bax et l'entraîne vers la mitochondrie pour activer la voie mitochondriale. La caspase-8 peut-être inhibée par cFLIP, un inhibiteur cellulaire naturel. Il arrive que la caspase-8 soit activée en aval de la caspase-3.

La voie mitochondriale intrinsèque plus classique peut aussi être activée suite à un stimulus venant de l'intérieur de la cellule. Dans cette voie, le facteur transcriptionnel p53 peut être impliqué en augmentant l'expression de Bax qui sera rélocalisé vers la mitochondrie où il participe à la formation de pore menant à la libération de facteurs apoptogènes dont le cytochrome C. En présence d'ATP, ce dernier s'associe au facteur Apaf-1 et à la procaspase-9 pour former l'apoptosome qui peut activer la procaspase-3 en caspase-3. La voie impliquant le réticulum endoplasmique est aussi reliée à la voie intrinsèque et implique l'activation de la caspase-12, qui peut être activée par la calpain suite à une augmentation de la concentration de calcium intracellulaire. La caspase-12 peut jouer un rôle pour activer les caspases -8 et -9.

Dans tous les cas, la voie finale d'activation de la caspase-3 peut avoir des intermédiaires mais même inévitablement à l'apoptose suite au clivage de nombreux substrats et à la fragmentation de l'ADN. Les facteurs antiapoptotiques Bcl-2 et Bcl-X inhibent l'activation de la voie mitochondriale et Bcl-2 peut aussi altérer l'activation de la caspase-8.
Quel que soit le type de stress occasionné, les symptômes de changements morphologiques et biochimiques ultimes lié à l'apoptose sont souvent les mêmes. Cet état de fait a mené à l'élaboration du concept « d'exécuteur central » par lequel sont intégrés les diverses voies initiatrices d'apoptose pour ultimement mener à l'activation des caspases et à la perméabilisation des membranes interne et externe de la mitochondrie (Ferri et Kroemer, 2001).

Le réticulum endoplasmique (RE) peut également participer à l'induction d'apoptose dans une cellule par deux mécanismes différents. Le premier de ces mécanismes, nommé Unfolded Protein Response (UPR), est en fait une réponse liée à une accumulation trop importante de protéines souvent mal repliée à l'intérieur du RE. Ces protéines mal repliées peuvent entre autre s'associer à la chaperone Bip/Grp78, ce qui mènera éventuellement à une induction d'apoptose en favorisant entre autre l'expression du facteur transcriptionnel CHOP/GADD-153 qui inhibe l'expression du facteur anti-apoptotique Bcl-2. Une perméabilisation éventuelle possible de la mitochondrie surviendra et mènera à l'activation de plusieurs caspases (Ferri et Kroemer, 2001). Le second mécanisme d'induction d'apoptose passant par le RE est lié à l'activation de la caspase-12. Suite à une accumulation importante de calcium, cette
caspase, située du côté cytoplasmique du RE, est clivée et activée par la calpain I et pourra par la suite aller activer les caspase-8 et 9 (Jimbo et al., 2003). Comme le système UPR, ce second mécanisme de signalisation pouvant mener à une induction d’apoptose contrôlée par le RE est contrôlé par des chaperones dont la Bip/Grp78. C’est donc dire qu’il y a chevauchement dans le contrôle des deux voies de régulation de l’apoptose liée au RE (Oyadomari et al., 2002; Ferri et Kroemer, 2001).

L’appareil de Golgi est actuellement « sous observation » quant à sa possible participation à la régulation de l’apoptose. Plusieurs facteurs connus pour leur implication dans la régulation de l’apoptose se retrouvent en effet en grande quantité à la membrane de cet organite. Parmi ceux-ci, on retrouve la caspase-2, le récepteur à TNF 1, Fas, les récepteurs pour TRAIL 1 et 2, ainsi que la GD3 synthétase, une enzyme impliquée dans la transformation des céramides en gangliosides avant leur translocation vers la mitochondrie où ils peuvent participer à la perméabilisation de la membrane (Ferri et Kroemer, 2001).

(Houseweart et al., 2003). D’autres facteurs lysosomiaux semblent aussi pouvoir agir dans la régulation de l’apoptose sans que les cathepsines soient directement impliquées même si elles sont rapidement transloquées vers le cytoplasme lors du processus (Boya et al., 2003a; 2003b).

7.1.4 La mitochondrie : Un organite central dans la régulation de l’apoptose

Tel que présenté auparavant, de très nombreux signaux pro-apoptotiques convergent au niveau de la perméabilisation de la mitochondrie et affectent différemment les deux membranes mitochondriales. En général, la membrane externe devient perméable à une multitude de protéines alors que la membrane interne, bien que continuant de retenir les protéines de la matrice mitochondriale, peut subir des modifications menant à une modulation du potentiel transmembranaire. Un nombre impressionnant de facteurs, pour la plupart protéiques, impliqués dans divers mécanismes de régulation de l’apoptose liée à la mitochondrie peuvent (1) être transloqués vers la mitochondrie, (2) résidés dans les membranes mitochondriales ou (3) être expulsés hors de cet organite, en général vers le cytosol ou même le noyau, suite à un stimulus proapoptotique (Ferri et Kroemer, 2001).

Différents facteurs peuvent directement être relocalisés vers la mitochondrie ou tout au moins avoir un effet sur cet organite. Les céramides représentent le squelette hydrophobe des sphingolipides complexes, tels la sphingomyéline, les cérébrosides et les gangliosides. Ils sont générés lors de différents stimuli pro-apoptotiques, dont certaines infections virales, soit par hydrolyse de la sphingomyéline par 7 différentes sphingomyélinases, ou encore par synthèse de novo par la céramide synthétase (Tomassini et Testi, 2002). La voie extrinsèque d’induction d’apoptose liée aux récepteurs de mort représente un cas classique menant à la formation de céramides et à leur transformation possible en ganglioside GD3, une molécule reconnue pour son pouvoir pro-apoptotique important (DeMaria et al., 1998) lorsque relocalisé au niveau de la membrane interne de la mitochondrie où il peut causer l’ouverture du permeability transition pore PTP (Tomassini et Testi, 2002).
Plusieurs des facteurs relocalisés vers la mitochondrie lors d’un stimulus pro-apoptotique sont toutefois de nature protéique. Parmi ces facteurs, la protéine Bax, un membre pro-apoptotique de la famille Bcl-2, est transloqué vers la mitochondrie lors de l’induction d’apoptose (Gopin et al., 1998; Wolter et al., 1997). En condition normale, Bax est une protéine cytosolique qui, suite à une modification conformationnelle exposant certains domaines particuliers, passe du cytosol à la mitochondrie de façon rapide et importante (Roucou et Martinou, 2001). Une interaction avec le facteur Bid, un autre membre de la famille Bcl-2 des régulateurs d’apoptose, préalablement clivé, représente un mécanisme dépendant des caspases menant à la translocation de Bax (Li et al., 1998). D’autre part, la modification du pH cytoplasmique (Tafani et al., 2002; Khaled et al., 1999), la présence de céramides (von Haefen et al., 2002; Kim et al., 2001) ou les deux phénomènes à la fois (Belaud-Rotureau et al., 2000) ou encore l’accumulation d’un métabolite important des céramides, le ganglioside GD3, sont tous des mécanismes pouvant mener à la modification conformationnelle et à la translocation de Bax du cytosol vers la mitochondrie sans nécessiter l’action de caspases. De plus, la protéine Akt, une kinase impliquée dans des voies de survie cellulaire liées aux facteurs de croissance, peut également avoir un rôle à jouer dans la prévention de la translocation de Bax vers la mitochondrie (Karpinich et al., 2002) en prévenant le changement de conformation de Bax (Yamaguchi et Wang, 2001).

Une fois à la mitochondrie, il est suggéré que Bax peut former des oligomères, avec lui-même et avec le facteur Bak (Sundararajan et White, 2001) qui lui réside dans la membrane externe de la mitochondrie. Il semble que ce processus d’oligomérisation survienne en une deuxième phase distincte de la simple translocation de Bax à la mitochondrie et seulement lorsque Bax n’est plus présent au cytosol (Capano et Crompton, 2002).

En plus de recevoir plusieurs facteurs en provenance des autres compartiments cellulaires et d’avoir plusieurs facteurs anti-apoptotiques intégrés dans sa membrane externe, la mitochondrie semble être un réservoir pour une multitude de protéines apoptogènes résidant dans l’espace intermembranaire. Certains de ces facteurs pourront être expulsés lors d’un stress pro-apoptotique. Le cytochrome C, la protéine
Smac/Diablo (*second mitochondria-derived activator of caspases/direct IAP binding protein*), le facteur AIF (*Apoptosis Inducing Factor*), l’endonucléase G, Omi/HtrA2, et même, dans certains types cellulaires, les procaspases 2, 3, 8 et 9, sont autant de ces protéines. De ce point de vue, il est aisé d’attribuer à la mitochondrie un rôle de plaquetournante, intégrant de nombreux différents stimuli pro-apoptotiques pour relayer en aval les signaux adéquats afin de mettre en œuvre la bonne marche de l’apoptose lorsque cela est nécessaire. (Mayer et Oberbauer, 2003; Parone et al., 2002)

De façon générale, la perméabilité de la membrane externe de la mitochondrie est contrôlée par les différents membres de la famille Bcl-2. Les facteurs anti-apoptotiques tel Bcl-2, Bcl-xl, Bcl-w, Mcl-1 et Bcl-B (Mayer et Oberbauer, 2003), se retrouvent habituellement intégrés aux membranes de la mitochondrie, du RE ainsi que du noyau par leur domaine hydrophobe situé dans leur portion carboxy-terminale. En contrepartie, plusieurs facteurs pro-apoptotiques de la grande famille Bcl-2, dont Bax et les protéines Bid, Bad et Bim sont plutôt présentes sous forme soluble dans le cytosol ou très lâchement associées aux membranes. Après un stress, les facteurs pro-apoptotiques subissent des changements conformationnels et peuvent être transloqués vers la mitochondrie. (Martinou et Green, 2001)

La façon précise dont les protéines apoptogènes résidantes de l’espace intermembranaire mitochondrial sont relarguées hors de la mitochondrie demeure inconnue. Bien que plusieurs questions demeurent, il existe différents modèles non mutuellement exclusifs pour expliquer ce processus complexe. En fait, il semble logique de penser que la séquence d’événements ou la mise en place des événements menant à la perméabilité membranaire de la mitochondrie (*mitochondrial membrane permeabilization; MMP*) eux-mêmes, varie selon les différents stimuli proapoptotiques et peut-être selon le type cellulaire.

Le modèle des canaux, décrit la formation de canaux autonomes dans la membrane mitochondriale externe par des membres proapoptotiques de la famille Bcl-2, en particulier Bax et Bak, qui peuvent s’oligomériser et former des pores assez gros pour laisser passer le cytochrome C vers l’extérieur de la mitochondrie (Parone et al., 2002). Certaines protéines de la famille Bcl-2 peuvent également recruter d’autres protéines
mitochondriales capables de s’associer pour former des pores. Ici Bax semble jouer un rôle proapoptotique en s’associant au voltage-dependent anion channel (VDAC) (Shimizu et al., 2000a), alors que Bcl-2 peut prévenir l’apoptose en empêchant l’ouverture du canal formé de Bax et du VDAC (Shimizu et al., 2000b).

La formation du fameux PTP (permeability transition pore) peut éventuellement aussi survenir au niveau de la membrane externe mitochondriale. Cette structure complexe est en fait un megacanal formé par l’association du VDAC, du adenine nucleotide translocator (ANT) et de la cyclophiline D ainsi que de plusieurs autre protéines dont certaines de la famille Bcl-2 (Parone et al., 2002). Suite à la formation du PTP, il y aurait entrée massive d’eau et de solutés au niveau de la matrice mitochondriale (Crompton, 1999) ce qui entraîne un gonflement de la matrice mitochondriale et une expansion excessive de la membrane interne pouvant même entraîner une rupture de la membrane externe (Parone et al., 2002; Martinou et Greene, 2001). En bout de compte, les facteurs apoptogènes présents dans l’espace intermembranaire peuvent être libérés vers le cytosol (Mayer et Oberbauer, 2003; Parone et al., 2002). Même s’il demeure possible, le modèle suggérant une rupture véritable de la membrane externe est toutefois questionné par des études morphologiques (Martinou et al., 1999; Kluck et al., 1999) où la membrane externe n’est pas rompue. Il est aussi suggéré que les facteurs apoptogènes puissent passer vers le cytosol par les mégacanaux que forme le PTP (Mayer et Oberbauer, 2003).

De plus, à l’aide d’un système simplifié acellulaire utilisant des membranes mitochondriales, il a été démontré que Bax pourrait, lorsque associé à la forme tronquée de Bid, s’insérer dans la membrane de la mitochondrie riche en cardiolipine, un lipidé spécifique à cet organite, et former des pores pouvant aisément laisser passer diverses molécules de grande taille de l’espace intermembranaire vers le cytosol sans rupture de membrane; un modèle peut-être plus prêt de la réalité (Zamzani et Kroemer, 2003; Kuwana et al., 2002).

L’intégrité membranaire de la mitochondrie préservée par certains membres antiapoptotiques de la famille Bcl-2 dont entre autre Bcl-XL, pourrait aussi participer de façon importante à empêcher l’induction d’apoptose reliée à la mitochondrie. En effet, il
appert qu’un des rôles importants de BclX\textsubscript{L} soit d’assurer que le VDAC demeure dans une conformation où il peut assurer un transport d’ATP de la matrice mitochondriale vers le cytosol (Vander Heiden \textit{et al.}, 2001). Si un membre proapoptotique de la famille Bcl-2 s’associe au VDAC, il pourra y avoir accumulation d’ATP à l’intérieur de la mitochondrie ce qui mènera à un mauvais fonctionnement de ANT et à l’entrée d’eau et de solutés avec les mêmes conséquences élaborées plus avant (Mayer et Oberbauer, 2003).

Enfin, un nouveau mécanisme potentiel pouvant peut-être mener à la MMP fait référence à une co-localisation au niveau de la membrane externe mitochondriale (Karbowski \textit{et al.}, 2002) de Bax et des protéines Drp-1 (\textit{Dynaminrelated protein 1}), impliquée dans la fission du réseau mitochondrial en conditions physiologiques lors de la mitose et lors de processus pathologiques lors de l’induction d’apoptose (Frank \textit{et al.}, 2001) et Mfn2 (\textit{mitofusin 2}), responsable du processus de fusion des mitochondries en réseau lors de l’interphase (Santel et Fuller, 2001). De plus, la surexpression de Bax favorise la fission mitochondriale associée à l’apoptose et l’expression ectopique d’une protéine Drp-1 mutante (\textit{dominant negative}) protège les cellules contre l’apoptose. Toutefois, la fonction de Drp-1 et de Mfn 2 demeure spéculative quant à la capacité de Bax à s’insérer dans la membrane pour y former des pores, puisque le rôle direct de la
fission du réseau mitochondrial dans le phénomène d'induction d'apoptose reste à prouver (Newmeyer et Ferguson-Miller, 2003).

Quoi qu'il en soit, la perméabilisation de la membrane mitochondriale externe et la libération des facteurs apoptogènes nommés plus avant, mène la plupart du temps à l'activation de la machinerie des caspases qui sera suivi de l'apparition de changements morphologiques caractéristiques de l'apoptose dont il a été fait mention au début de cette section.

Malgré le rôle central que jouent les caspases dans la phase d'exécution de l'apoptose, il existe des voies métaboliques où l'apoptose se met parfois en branle sans que ces protéases soient impliquées ou alors qu'elles le sont en conjonction avec d'autres facteurs. L'exemple des cathèpsines lysosomiales, décrit auparavant, est assez éloquent. Les calpâines, représentent un autre groupe de protéases à cystéine formé d'une douzaine de membres. Les plus connues sont la μ-calpâine ou calpâine I, activée par de faible concentration (μM) de calcium libre dans la cellule et la m-calpâine ou calpâine II, activée par des concentration plus élevée (mM) de calcium libre. Toutes deux sont exprimées de façon ubiquitaire (Huang et Wang, 2001; Johnson, 2000). Lors de certains traumatismes cérébraux, les calpâines I et II peuvent participer au processus apoptotique et agir en synergie avec la caspase-3 (Blomgren et al, 2001; Wang, 2000). De plus, il a été démontré que les calpâines peuvent jouer un rôle important dans l'induction d'apoptose lors d'infections virales (DeBiasi et al., 2001; 1999).

Comme la caspase-3, les calpâines sont activées par clivage et peuvent cliver une panoplie de substrat. Les deux types de protéases clivent souvent les mêmes substrats mais à des sites spécifiques différents. De nombreuses protéines du cytosquelette, dont en particulier l'α-spectrine, subissent souvent les foudres de la caspase-3 et des calpâines simultanément (Wang, 2000). Suite à une activation liée à une importante augmentation de la concentration intracellulaire de calcium dans la cellule, les calpâines I et II peuvent également cliver la caspase-12 et initier un processus apoptotique suite à un stress lié au RE (Nakagawa et Yuan, 2000). Il a également été démontré que les calpâines pouvaient être redistribuées vers la mitochondrie suite à l'exposition de cellules à la camptothécine (CPT), un inhibiteur de la topoisomérase I impliqué dans la réplication de l'ADN, et
utilisé comme agent chimiothérapeutique (Wood et al., 1998). Au niveau de la membrane mitochondriale, les calpâines peuvent cliver le facteur Bax, augmentant ainsi son pouvoir pro-apoptotique de façon importante (Wood et Newcomb, 2000).

En plus des différentes familles de protéases décrites jusqu’ici, certains autres facteurs ont un pouvoir apoptosis génèse important. Parmi ceux-ci, AIF (Apoptosis Inducing Factor), l’endonucléase G, ainsi que les protéines Smac/Diablo et HtrA2/Omi, deux protéines pouvant inactiver les inhibiteurs cytosoliques naturels de caspases que sont les IAP (Inhibitors of Apoptosis Proteins), représentent des facteurs issus de la mitochondrie ayant un rôle dans l’induction de l’apoptose (Ravagnan et al., 2002). Smac/Diablo et HtrA2/Omi fonctionnent en collaboration avec les caspases –3 et –9. D’autre part, AIF est une oxidoreductase qui passe de la mitochondrie au noyau suite à la perméabilisation mitochondriale. Une fois au noyau, AIF induit un processus apoptotique indépendant des caspases en engendrant une condensation de la chromatine ainsi qu’un clivage de l’ADN en fragment d’environ 50 kbp (Candé et al., 2002; Ravagnan et al., 2002). Comme le facteur AIF, l’endonucléase G peut passer de la mitochondrie vers le noyau suite à un stimulus pro-apoptotique. Au noyau, cette nucléase est capable de couper l’ADN en fragments oligonucléosomals caractéristiques, même en présence d’inhibiteurs de caspases (Ravagnan et al., 2002; Li et al., 2001).

D’autre part, p53 et Nur77, deux protéines plutôt connues pour leur rôle en tant que facteur transcriptionnel, peuvent être relocalisées à la mitochondrie. Il semble en effet possible de retrouver la protéine p53 au niveau de la mitochondrie où elle peut participer à l’induction d’apoptose. Toutefois, il appert que cette situation ne survient que lors d’induction d’apoptose dépendante de p53; soit lorsque p53 agit également comme facteur de transcription. Une accumulation de p53 à la membrane mitochondriale semble participer directement à l’activation de la cascade des caspases en aval et il semble clair que cette fonction ne dépend pas de son rôle classique de facteur transcriptionnel (Parone et al., 2002; Marchenko et al., 2000). Ce rôle de p53 semble plus important pour le variant naturel dont l’acide aminé 72 est une arginine plutôt qu’une proline (Dumont et al., 2003). La protéine Nur77 (TR3) peut également se retrouver à la mitochondrie. Suite à un dommage induit à l’ADN, ce récepteur nucléaire
peut effectivement passer de la membrane nucléaire à celle de la mitochondrie, où il engendre la libération de cytochrome c vers le cytosol (Parone et al., 2002; Li et al., 2000). Nombreuses sont donc les molécules qui peuvent se voir relocatisées à la mitochondrie et participer au déroulement de l’apoptose, la protéine kinase C δ en est une autre (Majumder et al., 2000).
La Figure 3, adaptée de Brenner et Kroemer (2000) et de Parone et collaborateurs (2002), donne un aperçu bref et concis de tous les facteurs pouvant influencer l’apoptose régulée par la mitochondrie.

Figure 3. Les différentes molécules relocalisées vers la mitochondrie durant l’apoptose
De nombreuses et différentes molécules peuvent être relocalisées à la mitochondrie suite à une panoplie de stimuli pro-apoptotiques et avoir un effet sur la régulation de la voie apoptotique mitochondriale.

7.2 Importance de l’apoptose dans l’organisme
À l’intérieur d’un organisme, les cellules en processus d’apoptose, peuvent être phagocytées par différentes cellules possédant cette capacité, et dans cette tâche les macrophages semblent être passés maîtres. Ce processus de phagocytose de cellules apoptotiques survient de façon assez rapide et sans induction de réponse inflammatoire (Krieser et White, 2002). Des interactions entre molécules particulières à la surface de la cellule apoptotique et de la cellule phagocytaire sont essentielles lors du processus. Par
exemple, le récepteur CD14, présent à la surface de macrophages, peut interagir avec la molécule d’adhésion ICAM-3 (*Intercellular adhesion molecule* -3) modifiée présente à la surface des leucocytes apoptotiques (Moffatt *et al.*, 1999). Le récepteur MER, un membre de la famille des tyrosines kinases exprimé à la surface des macrophages, joue également un rôle pour reconnaître les thymocytes en apoptose en interagissant probablement avec la molécule Gas-6, qui elle, lie la phosphatidylsérine (PS) à la surface des cellules en apoptose (Scott, *et al.*, 2001; Krieser et White, 2002). La PS est un phospholipide demeurant habituellement du côté intracellulaire de la membrane plasmique d’une cellule grâce à une enzyme, l’aminophospholipide translocase, qui génère et maintient l’assymétrie membranaire d’une cellule (Bevers *et al.*, 1998; 1999). Suite à une induction d’apoptose, la translocase cesse de fonctionner et il y a translocation importante de PS vers le côté extracellulaire de la membrane plasmique. Les cellules arborant cette PS à leur surface sont reconnues par un récepteur particulier à la surface des phagocytes (Fadok *et al.*, 2000). Cette voie, impliquant directement la PS, semble particulièrement importante dans tout le processus car elle est associée à l’inhibition de production de cytokines pro-inflammatoires (Fadok *et al.*, 1998; Huynh *et al.*, 2002).

Le portrait du processus de reconnaissance et de phagocytose des cellules en apoptose *in vivo*, continue de se préciser et il apparaît maintenant qu’il nécessite plusieurs joueurs dont l’action est coordonnée. Il est maintenant reconnu que le complément peut opsoniser les cellules apoptotiques et permettre leur phagocytose plus rapide et plus efficace afin d’éliminer tout risque de réponse inflammatoire due à une nécrose secondaire (Fishelson *et al.*, 2001). De plus, le récepteur CD36 (*Scavenger receptor* B1) principalement exprimé à la surface des macrophages, mais aussi à la surface de certaines cellules en apoptose, permet d’augmenter la capacité phagocytaire (Ren *et al.*, 1995) et joue également un rôle de reconnaissance réciproque entre les phagocytes et leur proie (Moodley *et al.*, 2003). La thrombospondine (*TSP1*) sécrétée entre autres par des fibroblastes apoptotiques afin de recruter des macrophages et faciliter leur phagocytose est également associée à ce processus complexe de reconnaissance impliquant le récepteur CD36 (Moodley *et al.*, 2003). En bout de ligne,
la reconnaissance spécifique des cellules apoptotiques est donc assurée et leur phagocytose permet à l’organisme de s’en débarrasser tout en empêchant la mise en place d’une réponse inflammatoire complexe lorsque ce n’est pas nécessaire.

Toutefois, il peut y avoir induction d’apoptose lors d’une réponse inflammatoire. En effet, comme mentionné dans une section précédente, les lymphocytes T cytotoxiques (CTL) et les cellules NK peuvent tuer les cellules infectées par un virus en utilisant ce mécanisme. D’une part, la stimulation de la cascade apoptotique initiée par les récepteurs de mort, en particulier la voie utilisant Fas, peut être utilisée par les cellules effectrices (Barry et Bleackley, 2002; Johnson, 2000). Néanmoins, un second système semble plus utilisé par les CTL et les NK afin d’induire l’apoptose chez les cellules infectées. Ce mécanisme « d’exocytose de granules » implique le transfert des molécules apoptogènes, que sont la perforine et certains granzymes, contenues dans des granules cytoplasmiques des cellules effectrices à l’intérieur des cellules cibles (Barry et Bleackley, 2002).

Bien qu’il soit clair que la perforine serve à faciliter l’entrée de granzymes, en particulier les A et B, elle semble jouer ce rôle de diverses façons. En effet, on a longtemps cru que la perforine, en se polymérisant, pouvait former des pores dans la membrane des cellules cibles afin de laisser passer les granzymes à l’intérieur (Smyth et al, 2001). Cette fonction demeure vraisemblable mais un second mécanisme semble possible. En bref, le récepteur pour le mannose-6-phosphate a été récemment identifié comme un récepteur utilisé par le granzyme B afin de pénétrer dans les cellules cibles par endocytose (Trapani et Smyth, 2002). Dans cette situation, la perforine semblerait plutôt agir en formant des pores dans la membrane des endosomes où se retrouve les granzymes B suite à leur endocytose. D’autre part, en induisant des dommages à la membrane, la perforine pourrait aussi aider à l’entrée du granzyme B dans les cellules cibles (Barry et Bleackley, 2002; Trapani et Smyth, 2002). Une fois à l’intérieur des cellules cibles, le granzyme B peut jouer un rôle très similaire aux caspases en clivant plusieurs substrats au niveau d’un résidu d’acide aspartique à l’intérieur d’une séquence particulière de reconnaissance. Les caspases -3 et -8 représentent des substrats
importants du granzyme B dans le processus d’induction d’apoptose (Barry et Bleackley, 2002).

Bien qu’essentielle dans la régulation de plusieurs processus importants visant l’homéostasie générale de l’organisme, l’apoptose représente aussi un phénomène particulièrement répandu lors de l’infection par bon nombre de virus.

7.3 Infection virale et déclenchement de l’apoptose

Un très grand nombre de virus induisent le déclenchement de l’apoptose chez les cellules qu’ils infectent (Roulston et al., 1999). Dans de rares cas, il semble que ce processus, s’il est induit tardivement dans le cycle de réplication virale, puisse mener à une meilleure propagation de particules virales, ce qui est à l’avantage du virus; cette situation particulière est entre autre suggérée pour le VIH (Teodoro et Branton, 1997a; Strack et al., 1996). De plus, l’apoptose pourrait entre autre servir à limiter la réaction inflammatoire, ce qui serait, au moins dans certains cas, bénéfique pour le virus (Teodoro et Branton, 1997a). Dans de plus nombreux cas, l’apoptose se présente plutôt comme un processus primitif de défense antivirale (Allsopp et al., 1998), permettant de limiter la propagation du virus (Barber, 2001) ou au mieux que les cellules infectées soient adéquatement et rapidement éliminées avec un minimum de dommage dans les tissus environnants (Koyama et al., 2000).

7.3.1 Infection virale du SNC et induction d’apoptose

Plusieurs virus peuvent atteindre le SNC et parmi ceux-ci, certains, dont VSV, sont habituellement hautement cytopathiques. Dans beaucoup de cas où un virus cytopathique détruit directement des cellules du SNC, il le fait par apoptose (Anderson, 2001). L’utilisation de modèles animaux a d’ailleurs permis de mettre en évidence la capacité de quelques virus à ADN, en particulier les herpesvirus, et de plusieurs virus à ARN d’au moins 9 familles différentes à induire ce processus dans les neurones. Dans la majorité des cas, des types bien particulier de neurones sont visés et font partie de régions bien circonscrites. L’induction d’apoptose y est habituellement directement associée à l’infection par le virus de même que la neurovirulence et la neuropathologie
(Levine, 2001b). C’est d’ailleurs le cas pour VSV lorsque le virus est administré par voie intranasale chez la souris (Sur et al., 2003).

L’apoptose de cellules du SNC peut toutefois avoir un rôle de protection dans l’organisme, notamment en évitant qu’un virus puisse établir une infection persistante. Bien que la perte de neurones puisse engendrer des conséquences très néfastes pour l’organisme, l’incapacité de certains neurones à induire un mécanisme d’apoptose efficace peut faire de même (Levine, 2001b). Plusieurs problèmes reliés au développement d’infections virales persistantes au SNC demeurent encore à ce jour hypothétiques. Toutefois, comme il a été mentionné à plusieurs reprises dans le présent texte, de plus en plus d’études laissent sérieusement envisager que la persistance virale au SNC puisse être associée à de nombreuses pathologies neurodégénératives, dont certaines sont démyélinisantes, comme la sclérose en plaques. En fait la perte d’une quantité limitée de neurones engendrera très probablement des problèmes à court terme mais il est aussi établi qu’une infection à long terme mènera vraisemblablement vers différents problèmes. Parmi ceux-ci, la mort ou la dysfonction neuronale, des pathologies d’ordre immunitaire et, si des régions vitales du cerveau sont touchées de façon trop importante, la mort de l’individu (Liebert, 2001).

Donc, il est largement admis que l’apoptose soit un mécanisme de défense pour l’organisme. Il est connu que certains virus réussissent à la manipuler à leur avantage. Dans cette vision des choses, selon le type cellulaire ou le tissu où il se retrouve, il peut être profitable au virus de réprimer l’apoptose, par exemple pour maintenir une infection persistante, alors que dans certains cas, le déclenchement de l’apoptose par le même virus, servira à sa meilleure propagation (Roulston et al., 1999; Miller et White, 1998).

Au même titre que les différents mécanismes permettant d’échapper au système immunitaire, la capacité de moduler l’apoptose, représente un mécanisme que plusieurs virus ont élaboré et raffiné de plusieurs façons afin de leur permettre d’établir et de maintenir une infection persistante.
7.4 Virus régulateurs d'apoptose

<table>
<thead>
<tr>
<th>VIRUS</th>
<th>PROTÉINE</th>
<th>FONCTION</th>
<th>RÉFÉRENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adénovirus</td>
<td>EIA</td>
<td>Active p53</td>
<td>Debbs et White, 1993</td>
</tr>
<tr>
<td></td>
<td>E4orf4</td>
<td>Augmente sensibilité à l'apoptose liée au TNF</td>
<td>Duerksen-Hughes et al., 1989</td>
</tr>
<tr>
<td>Papillomavirus</td>
<td>E7</td>
<td>Active p53</td>
<td>Howes et al., 1994</td>
</tr>
<tr>
<td>EBV</td>
<td>EBNA3C</td>
<td>Se lie pRb et induit progression du cycle cellulaire</td>
<td>Parker et al., 1996</td>
</tr>
<tr>
<td></td>
<td>EBNA1</td>
<td>Lorsque exprimé sans aucun autre facteur viral en latence</td>
<td>Gregory et al., 1991</td>
</tr>
<tr>
<td>Hépatite B</td>
<td>HBx</td>
<td>Augmente activité de p53 et c-myc</td>
<td>Chirillo et al., 1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interagit avec VDAC</td>
<td>Rahmani et al., 2000</td>
</tr>
<tr>
<td>VIH-1</td>
<td>Tat</td>
<td>Augmente l'expression de Fas-L</td>
<td>Westendorp et al., 1995</td>
</tr>
<tr>
<td></td>
<td>Vpr</td>
<td>Induit arrêt du cycle cellulaire (G2)</td>
<td>Stewart et al., 1997</td>
</tr>
<tr>
<td></td>
<td>gp160</td>
<td>Interagit avec ANT</td>
<td>Jacotot et al., 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Augmente la concentration de Ca^{2+} intracellulaire</td>
<td>Sasaki et al., 1996</td>
</tr>
<tr>
<td>Virus forêt Semliki</td>
<td>NS</td>
<td>Non déterminé</td>
<td>Scallan et al., 1997</td>
</tr>
<tr>
<td>Virus Sindbis</td>
<td>E1, E2</td>
<td>Augmente l'activité de NF-kB (neurones)</td>
<td>Ubol et al., 1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Joe et al., 1998</td>
</tr>
<tr>
<td>Hépatite C</td>
<td>Core</td>
<td>S'associe au domaine cytoplasmique du récepteur de TNF</td>
<td>Zhu et al., 1998</td>
</tr>
<tr>
<td>NDV</td>
<td>HN</td>
<td>Induit production d'IFN et expression de TRAIL</td>
<td>Zang et al., 2002</td>
</tr>
<tr>
<td>Influenza</td>
<td>Non identifiée</td>
<td>Augmente l'expression de Fas</td>
<td>Takizawa et al., 1996</td>
</tr>
<tr>
<td>Réovirus</td>
<td>σ1 et M2</td>
<td>Active JNK et phosphoryle c-Jun</td>
<td>Clarke et al., 2001</td>
</tr>
<tr>
<td>Rage</td>
<td>glycoprotéine G</td>
<td>Non déterminé</td>
<td>Faber et al., 2002</td>
</tr>
<tr>
<td>VSV</td>
<td>M</td>
<td>Non déterminé</td>
<td>Kopecky et al., 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Desforges et al., 2002</td>
</tr>
<tr>
<td></td>
<td>Non identifiée</td>
<td>Non déterminé</td>
<td>Kopecky et Lyles, 2003</td>
</tr>
<tr>
<td>VIRUS</td>
<td>PROTÉINE</td>
<td>FONCTION</td>
<td>RÉFÉRENCE</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>--</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Vaccinia</td>
<td>E3L</td>
<td>Inhibe PKR et RNase L dans voie de réponse à l'IFN</td>
<td>Davies et al., 1997</td>
</tr>
<tr>
<td></td>
<td>K3L</td>
<td>Inhibe PKR dans voie de réponse à l'IFN</td>
<td>Davies et al., 1997</td>
</tr>
<tr>
<td>Cowpox</td>
<td>B13R</td>
<td>Serpine : Inhibiteur de caspase</td>
<td>Kettle et al., 1997</td>
</tr>
<tr>
<td></td>
<td>CrmA</td>
<td>Serpine : Inhibiteur de caspase</td>
<td>Tewari et al., 1995</td>
</tr>
<tr>
<td></td>
<td>CrmB</td>
<td>Homologue de récepteur TNF</td>
<td>Hu et al., 1994</td>
</tr>
<tr>
<td></td>
<td>CrmC</td>
<td>Homologue de récepteur TNF</td>
<td>Upton et al., 1991</td>
</tr>
<tr>
<td>Myxoma virus</td>
<td>MT-2</td>
<td>Homologue de récepteur TNF</td>
<td>Schreiber et al., 1996</td>
</tr>
<tr>
<td></td>
<td>Serp-2</td>
<td>Serpine : Inhibiteur de caspase</td>
<td>Messud-Petit et al., 1998</td>
</tr>
<tr>
<td>HSV-1</td>
<td>γ34.5</td>
<td>Déphosphoryle eIF2α</td>
<td>Chou et Roizman., 1992</td>
</tr>
<tr>
<td></td>
<td>US3</td>
<td>Phosphoryle et inhibe Bad</td>
<td>Munger et Roizman, 2001</td>
</tr>
<tr>
<td>EBV</td>
<td>LMP-1</td>
<td>Interfère dans voie des récepteurs de mort en s'associant à TRAF et TRADD et augmente expression de Bcl-2</td>
<td>Devergne et al., 1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kaye et al., 1996</td>
</tr>
<tr>
<td></td>
<td>EBNA4</td>
<td>Augmente expression de Bcl-2</td>
<td>Sillins et Sculley, 1995</td>
</tr>
<tr>
<td></td>
<td>BHRF-1</td>
<td>Homologue de Bcl-2</td>
<td>Henderson et al., 1993</td>
</tr>
<tr>
<td>HHV-8</td>
<td>K13</td>
<td>vFLIP : homologue de cFLIP inhibiteur de caspase-8</td>
<td>Sturzl et al., 1999</td>
</tr>
<tr>
<td></td>
<td>KSbcl-2</td>
<td>Homologue de Bcl-2</td>
<td>Cheng et al., 1997</td>
</tr>
<tr>
<td>HCMV</td>
<td>IE1 et IE2</td>
<td>S'associe à p53 et l'inactive Séquestre p53 dans le cytoplasme</td>
<td>Zhu et al., 1995</td>
</tr>
<tr>
<td></td>
<td>vICA</td>
<td>Prévient l'activation de caspase-8</td>
<td>Skaletskaya et al., 2001</td>
</tr>
<tr>
<td></td>
<td>vMIA</td>
<td>Forme un complexe avec ANT et bloque la formation du PTP</td>
<td>Goldmacher et al., 1999</td>
</tr>
<tr>
<td>Adénovirus</td>
<td>E1B-19K</td>
<td>Interfère dans voie des récepteurs de mort en s'associant avec FADD et homologue de Bcl-2</td>
<td>Perez et White., 1998</td>
</tr>
<tr>
<td></td>
<td>E1B-55K</td>
<td>S'associe à p53 et l'inactive</td>
<td>Teodoro et Branton, 1997b</td>
</tr>
<tr>
<td></td>
<td>E4orf6</td>
<td>S'associe à p53 et l'inactive</td>
<td>Dobner et al., 1996</td>
</tr>
<tr>
<td></td>
<td>E1B-55K+E4orf6</td>
<td>Dégrade p53</td>
<td>Querido et al., 1997</td>
</tr>
<tr>
<td></td>
<td>RID</td>
<td>Bloque apoptose par TNF</td>
<td>Gooding et al., 1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bloque phospholipase A2</td>
<td>Dimitrov et al., 1997</td>
</tr>
</tbody>
</table>
TABLEAU 7.B (suite)- Virus et protéines virales impliquées dans l'inhibition d'apoptose

<table>
<thead>
<tr>
<th>VIRUS</th>
<th>PROTÉINE</th>
<th>FONCTION</th>
<th>RÉFÉRENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papillomavirus</td>
<td>E6</td>
<td>Induit dégradation de p53 par le protéasome</td>
<td>Scheffner et al., 1990</td>
</tr>
<tr>
<td>Polyomavirus</td>
<td>MT</td>
<td>Même signalisation par facteur de survie : active PI-3K et inactivation de Bad via Akt</td>
<td>Dahl et al., 1998</td>
</tr>
<tr>
<td>VIH</td>
<td>Tat</td>
<td>Augmente expression de Bcl-2</td>
<td>Zauli et al., 1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Même signalisation par facteur de survie : active PI-3K</td>
<td>Borgatti et al., 1997</td>
</tr>
<tr>
<td></td>
<td>Vpr</td>
<td>Inhibe NF-kB dans lymphocyte T</td>
<td>Ayyavoo et al., 1997</td>
</tr>
<tr>
<td>HTLV-I</td>
<td>Tax</td>
<td>Inhibe transcription dépendante de p53</td>
<td>Mulloy et al., 1998</td>
</tr>
<tr>
<td>Hépatite B</td>
<td>HBx</td>
<td>S'associe à p53 et l'inactive</td>
<td>Wang et al., 1995</td>
</tr>
<tr>
<td>Hépatite C</td>
<td>Core</td>
<td>Interagit avec domaine cytoplasmique du récepteur TNF</td>
<td>Ray et al., 1998</td>
</tr>
<tr>
<td>Réovirus</td>
<td>σ3</td>
<td>Inhibe PKR dans voie de réponse à l'IFN</td>
<td>Denzler et Jacobs, 1994</td>
</tr>
<tr>
<td>Influenza</td>
<td>NS1</td>
<td>Inhibe PKR dans voie de réponse à l'IFN</td>
<td>Lu et al., 1995</td>
</tr>
<tr>
<td>Baculovirus</td>
<td>p35</td>
<td>Substrat et inhibiteur de caspases -1, -3, -6, -7, -8, 10</td>
<td>Bertin et al., 1996</td>
</tr>
<tr>
<td>AcNPV</td>
<td></td>
<td></td>
<td>Zhou et al., 1998</td>
</tr>
<tr>
<td>OpNPV</td>
<td>IAP</td>
<td>Substrat et inhibiteur de caspases -3, -6, -7</td>
<td>Crook et al., 1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Seshagiri et Miller, 1997</td>
</tr>
</tbody>
</table>

L'apoptose est donc un mode d'induction de mort cellulaire fréquent lors d'infections virales et sa modulation par autant de différents types de protéines virales suggère que le processus est important pour contrer une infection virale ou tout au moins de se transformer en infection persistante. Les formidables avancées de la biologie moléculaire ont permis au cours des deux dernières décennies de mieux comprendre le processus apoptotique en tant que tel et a permis d'accroître de façon importante notre compréhension du lien hôte-virus lors d'infections virales. La recherche fondamentale en virologie a évidemment bénéficiée de cette accumulation de nouvelles connaissances. Toutefois, les recherches à visées plus appliquées, de plus en plus populaires depuis le
début des années 90, ont aussi pu profiter du volet fondamental de la recherche. Aujourd'hui, certaines utilisations de virus inducteurs d’apoptose, permettent finalement d’espérer de nouvelles avancées dans le domaine fort complexe du traitement du cancer. Il importe donc plus que jamais de bien comprendre comment peut survenir le dérèglement de l’apoptose, afin d’identifier les principaux facteurs qui pourront influencer la mise en place d’une infection persistante indésirable suite à un traitement clinique utilisant des virus.

8. Virus oncolytiques : utilisation thérapeutique potentielle de vieux ennemis

Malgré plusieurs améliorations majeures dans sa détection précoce et son traitement au cours des dernières années, le cancer demeure toujours une cause majeure de décès, surtout en Amérique du Nord. Bien que la biologie moléculaire ait permis des avancées extraordinaires dans la compréhension du développement et du maintien de plusieurs types de cancer, les applications thérapeutiques réelles ne sont pas toujours au rendez-vous encore aujourd’hui. Haracher certains virus pour en faire des armes efficaces et actives contre certains types de tumeurs pourrait devenir une voie intéressante à moyen terme (Bell et al., 2002).

L’idée de pouvoir utiliser des virus comme traitement anti-cancer potentiel n’est pas complètement nouvelle. En effet, dès le début du XXe siècle, certains auteurs avaient rapporté une régression spontanée de tumeurs chez certains patients suite à une vaccination anti-rabique ou un accès de fièvre lié à une infection virale. De plus, les premières expériences bien documentées réalisées sur des souris, dès les années 20 et jusqu’à la fin des années 50, ont permis de confirmer le potentiel oncolylique de certains virus, dont en particulier le virus de NewCastle (NDV) et le virus Influenza (Mullen et Tanabe, 2002). Toutefois, c’est en 1956 que sont publiés les premiers résultats notables à propos du pouvoir oncolylique des virus. Dans cette étude, Smith et ses collaborateurs démontrent le pouvoir oncolylique d’un adénovirus chez l’humain. L’expérience s’étant toutefois avérée peu fructueuse puisque la régression tumorale observée chez plus de 50% des patients, est malheureusement temporaire et est suivie d’une nouvelle progression des cellules tumorales (Smith et al., 1956). Jusqu’au début des années 70,
plusieurs études débouchent sur ce type de résultats ambigus et finissent par miner les premiers espoirs autour du réel pouvoir oncolytique des virus. Le traitement par oncolyse virale du cancer est donc plus ou moins mis de côté jusqu’au début des années 90 (Mullen et Tanabe, 2002; Chiocca, 2002). En effet, depuis le début de la dernière décennie les recherches ont repris de plus belle afin de développer de nouveaux traitements basés sur l’utilisation rationnelle de virus dans l’incessante lutte contre le cancer.

Une des caractéristiques principales d’un virus oncolytique est qu’il se réplique beaucoup plus efficacement dans les cellules tumorales que dans les cellules des tissus sains environnants et, plus important encore, il détruit les dites cellules cancéreuses tout en affectant pas ou très peu les cellules normales. Pour ce faire, un virus oncolytique utilise la plupart du temps certaines anomalies génétiques propres aux cellules tumorales (Bell, 2002; Chiocca, 2002). Certaines approches visent également à utiliser les virus en tant que vecteur de gènes ayant des propriétés anti-tumorales; dans ces cas, le virus sera ou non lytique en lui-même (Markert et al., 2001; Mullen et Tanabe, 2002; Ring, 2002). Ce dernier volet sur l’utilisation des virus comme agent anti-tumoral n’est toutefois pas traité de façon détaillée ici. Qu’il suffise de dire que certaines approches visent à intégrer des transgènes, codant pour des facteurs pro-apoptotiques ou encore certaines cytokines, dans le génome viral afin de rendre le virus encore plus efficace à détruire les cellules tumorales (Mullen et Tanabe, 2002; Ring, 2002). Plusieurs virus différents présentent un potentiel intéressant quant à leur utilisation contre le cancer.

8.1 Virus à ADN

Le virus HSV-1 de la famille des *Herpesviridae* (Stanziale et Fong, 2003; Markert et al., 2001), et le virus de la vaccine (*Vaccinia*), un *Orthopoxvirus* de la famille des *Poxviridae*, (McCart et al., 2000; Puhlmann et al., 2000) sont deux virus à ADN possédant un potentiel anti-tumoral très intéressant. Toutefois, les adénovirus de type 2 et 5 (Biederer et al., 2002; Nemunaitis et al., 2001; 2000; Fueyo et al., 2000; Heise et al. 2000; Ganly et al., 2000; Khuri et al., 2000; Alemany et al., 1999; Bischoff et al., 1996; Barker et Berk, 1987) représente en ce moment le prototype viral le plus étudié pour son
potentiel oncolytique. Cependant, même si les résultats sont extrêmement encourageants, plusieurs équipes visent en ce moment à modifier le tropisme du virus pour faciliter l’infection de cellules tumorales in vivo (Shyakhmetov et al., 2002; Douglas et al., 2001; Suzuki et al., 2001; Li et al., 1999). Les trois virus ont jusqu’à présent été utilisés avec un certain succès dans des modèles animaux et des études cliniques impliquant des sujets humains (Mullen et Tanabe, 2002).

8.2 Virus à ARN

Malgré le développement d’outils tels que ceux décrits plus haut, la plupart des virus à l’étude pour leur potentiel oncolytique sont des virus à ARN (Russell, 2002).

Le virus de la poliomyélite (Gromeier et al., 2000; 1999; 1996) de la famille des Picornaviridae, le virus des oreillons (Shimizu et al., 1988; Asada, 1974), celui de la rougeole (Peng et al., 2002; 2001; Grote et al., 2001; Pasquinucci, 1971; Gross, 1971; Bluming et Ziegler, 1971) et le virus de la maladie de Newcastle (Newcastle disease virus; NDV) (Pecora et al., 2002; Reichard et al., 1992; Lorence et al., 1988) de la famille des Paramyxoviridae sont à l’étude en rapport à leur pouvoir oncolytique. Plusieurs études, utilisant le concept de VPC (Vector Producer Cells), décrivent également l’injection de fibroblastes produisant des rétrovirus à proximité de tumeurs (Alavi et Eck, 2001; Floeth et al., 2001; Shand et al., 1999; Ram et al., 1997; Culver et al., 1992). Le réovirus, un membre de la famille des Reoviridae, a comme hôte naturel l’humain où, bien qu’il ait été isolé à partir des voies respiratoires et du tractus entérique, il ne cause aucun symptôme clinique; d’où son nom de reovirus pour Respiratory Enteric Orphan virus (Sabin, 1959). Les capacités oncolytiques du réovirus de type 3 ont déjà été mises en évidence il y a 35 ans (Bennette et al., 1967). De plus, on sait, depuis près de 25 ans, que les cellules transformées sont souvent très susceptibles au réovirus alors que les cellules normales sont plutôt réfractaires au virus (Hashiro et al., 1977; Duncan et al., 1978). L’équipe dirigée par Patrick Lee travaille depuis quelques années déjà à développer l’utilisation rationnelle du réovirus T3 Dearing (T3D) en tant qu’agent anti-cancer (Wilcox et al., 2001; Norman et Lee, 2000; Coffey et al., 1998; Strong et al., 1998). Finalement, au moins une équipe travaille à la mise au point d’un virus influenza
recombinant avec une délétion dans NS1 pour tenter de favoriser sa réplication dans les cellules tumorales. Ce virus ne se réplique efficacement que dans les cellules possédant un oncogène Ras constitutivement actif et avec une activité PKR très faible ou inexistante, deux caractéristiques fréquemment retrouvées chez les cellules transformées (Bergmann et al., 2001). Parmi tous les virus à ARN étudiés en rapport à leur pouvoir oncolytique, à cause de certaines caractéristiques particulières, VSV apparaît comme un candidat très intéressant.

8.3 VSV : une arme oncolytique

Les travaux des équipes de John C. Bell (Stodjl et al., 2000; Bell et al., 2002) au Ottawa Cancer Center et de Glen N. Barber (Balachandran et al., 2000b; 2001; Barber, 2001) à l'Université de Miami, ont montré que VSV-Indiana peut infecter et tuer de manière préférentielle les cellules tumorales sans trop affecter les cellules saines à l'intérieur d'un organisme, ce qui laisse présager que VSV pourrait devenir membre du club des virus employés dans la lutte contre le cancer chez l'humain.

L'IFN β semble important dans l'utilisation que l'on voudrait faire de VSV en tant qu'agent anti-tumoral. Même si certains virus ont développé diverses stratégies pour contrer l'effet des interférons de type 1, VSV demeure quant à lui, très sensible à l'interférence induite par ces cytokines. Lors de la réponse anti-VSV d'une cellule normale, PKR est fortement activée, suggérant que cette kinase est importante dans la mise en place de l'état antiviral. Il a d'ailleurs été démontré qu'une très faible dose de VSV-Indiana tuait rapidement des souris PKR −/− (Stojdl, et al., 2000a, Balachandran et al. 2000c) et que des fibroblastes embryonnaires issus de ces souris étaient beaucoup plus susceptibles à l'infection par le VSV et à l'induction du processus apoptotique, que des fibroblastes embryonnaires de souris normales (Balachandran et al. 2000c). De plus, une panoplie de lignées cellulaires humaines provenant de divers types de tumeurs, infectées en présence d'IFN de type 1 sont rapidement détruites et produisent beaucoup plus de virus infectieux que des cellules normales fibroblastiques et épithéliales ou que des cellules normales provenant de la moelle osseuse (Stojdl et al., 2000b). Balachandran et collaborateurs ont aussi démontré que l'infection de sept différentes
lignées de cellules humaines tumorales produisait une quantité importante de virus infectieux et que l’ajout d’IFN β altérait de façon seulement partielle cette production de virions. Sans la présence d’IFN, les cellules étaient très susceptibles à l’induction d’apoptose et l’ajout de cette cytokine engendrait un taux de survie significativement plus élevé suite à l’infection par VSV. L’absence de protection complète contre la mort cellulaire en présence d’IFN β suggérerait, selon les auteurs, une anomalie dans la voie métabolique reliée à l’IFN dans les cellules tumorales testées et qu’un défaut d’activation de PKR serait en cause (Balachandran et al., 2000b). Or, bien que cette voie demeure véridique, le portrait pourrait être plus complexe puisqu’il semble possible que VSV puisse infecter et détruire des cellules tumorigènes C6 issues d’un glioblastome de rat et déficiente pour le facteur pro-apoptotique p53, mais où PKR est activée suite à l’infection. Il semble donc que VSV puisse utiliser d’autres déficiences génétiques des cellules tumorales pour s’y répliquer efficacement et détruire les dites cellules (Balachandran et al., 2000b; 2001). Les auteurs ont également induit la transformation de cellules BALB/3T3 spontanément immortalisées en y transfectant les oncogènes c-myc ou K-ras. Ces nouvelles cellules transformées ont ensuite été inoculées à des souris nues et les tumeurs formées ont par la suite été injectées par une dose de VSV. Comme les cellules C6, ces cellules tumorales ont été détruites par apoptose et il a été démontré que le phénomène était directement attribuable à l’infection par VSV et non au système immunitaire (Balachandran et al., 2001). Ces derniers résultats font de VSV un candidat encore plus intéressant pour détruire divers types de cellules cancéreuses. Les résultats observés par Stojdl et collaborateurs chez des souris nues (nude) où l’on avait inoculé des cellules tumorigènes issues de mélanome humain (Stojdl et al., 2000b) confirme ce potentiel anti-tumoral de VSV. Selon les deux équipes qui travaillent à l’élaboration de protocole d’utilisation de VSV, la principale conclusion à tirer est que VSV a un potentiel certain pour traiter les tumeurs (Balachandran et al., 2000b; Stojdl et al., 2000b), en particulier celles qui ne répondent pas à des traitements à l’IFN (Stojdl et al., 2000b).

L’équipe de Glen Barber (Fernandez et al., 2002) a réussi à fabriquer des virus recombinants portant soit le gène codant pour l’IL-4, une cytokine pouvant favoriser
l'immunité anti-tumorale, soit le gène codant pour une thymidine kinase (TK) qui phosphoryle le ganciclovir (GCV) et altère la réplication virale, permettant d'augmenter l'effet cytotoxique du virus par un effet paracrine sur les cellules avoisinantes (Elshami et al., 1996). L'injection par voie intraveineuse chez des souris BALB/c immunocompétentes, chez qui on avait préalablement implanté des cellules d'adénocarcinome mammaire, a démontré que les virus recombinants engendraient une régression tumorale plus importante que le virus de type sauvage (Fernandez et al., 2002). De nouveaux VSV recombinants où l'on a inséré les gènes de l'IFN β murin ou humain présentent également un intéressant pouvoir oncolytique tout en affectant très peu diverse cultures primaires murines et humaines respectivement (Obuchi et al., 2003).

L'apoptose est le principal mode de mort cellulaire induit lors de l'infection par le VSV (Desforges et al., 2002; Kopecky et al., 2001; Koyama, 1995) et comme mentionné plus avant, la protéine M semble, au moins en partie, responsable (Desforges et al., 2002; Kopecky et al., 2001). Des travaux présentement en cours au laboratoire, tentent d'identifier les domaines importants pour l'induction d'apoptose et de développer l'utilisation éventuelle de la protéine M seule comme agent anti-tumoral.
9. Conclusion

Bien que le virus de la stomatite vésiculaire soit habituellement un virus hautement cytopathique, des circonstances surviennent où il lui est permis d’établir une infection persistante. En effet, certaines mutations spécifiques peuvent participer à l’induction d’une infection persistante in vitro et in vivo. Au moins un mutant thermosensible et altéré au niveau de sa protéine M, est connu pour sa capacité à induire une infection persistante in vivo au niveau du SNC chez le hamster. C'est la raison pour laquelle l'étude décrite dans les prochains chapitres utilise certains mutants de la protéine M de VSV-Indiana, ainsi que la souche moins virulente New Jersey, pour infecter la lignée de cellules H4 issue du SNC. Ayant déjà établi que ces cellules pouvaient être infectées par nos différents mutants, chercher à comprendre comment l'infection peut y devenir persistante représente l'objectif premier du projet. Les résultats de notre étude, présentés dans les prochains chapitres, corroborent la possibilité d’établir une infection persistante à l’intérieur de cellules du SNC, rapportée par certains auteurs auparavant dans des modèles animaux et dans quelques cas sporadiques chez l’humain. Dans notre modèle il appert que les variants moins cytopathiques de VSV induisent moins efficacement l’apoptose et qu’ils réussissent par le fait même à persister. Étant donné l’implication possible d’infections virales persistantes dans certaines pathologies neurodégénératives, il est essentiel de chercher à comprendre les raisons et d’expliquer les mécanismes qui font qu’une persistance virale puisse survenir. L’utilisation éventuelle possible de VSV en tant que traitement antitumoral chez l’humain ajoute encore à l’intérêt de bien comprendre les facteurs associés à l’établissement d’une persistance par ce virus, en particulier à l’intérieur de cellules du SNC.
10. Approche générale et Objectifs

Le sérotype VSV-New Jersey et certains mutants de la protéine M du virus de la stomatite vésiculaire peuvent induire une infection persistante sur des cellules immortalisées provenant du système nerveux central. Puisque ce type d'infection virale peut être relié à des neuropathologies, il va de soi d'en étudier l'apparition sur des cellules issues du tissu nerveux, pour éventuellement tenter d'en comprendre le mécanisme d'induction et de maintien. De plus, des études suggérant l'utilisation éventuelle de VSV en tant qu'agent antitumoral, se poursuivent. Tenter de comprendre les mécanismes d'induction de mort cellulaire et d'identifier quels facteurs pourraient être modulés et mener à l'établissement possible d'une persistance virale à l'intérieur de cellules immortalisées devient donc d'autant plus essentiel aujourd'hui. Le contexte de notre étude se restreint à la culture de cellules issues du système nerveux central (SNC), où le virus limite son attaque et permet à la cellule de réagir. Ainsi, un équilibre se créé afin que chaque partie puisse rester minimalement fonctionnelle et viable. À l'aide de ce modèle d'étude in vitro, il est possible de caractériser directement l'interaction virus-hôte au niveau cellulaire afin d'identifier quels facteurs participent à ou empêchent l'établissement d'une persistance virale par le VSV.
AVANT-PROPOS AUX CHAPITRES II et III

Les articles présentés dans les prochains chapitres de cette thèse décrivent l’établissement d’une infection persistante par divers variants du Virus de la Stomatite Vésiculaire (VSV) de même qu’une caractérisation partielle des mécanismes reliés au phénomène d’apoptose, puisqu’il semble qu’une induction inefficace de ce processus soit potentiellement reliée à l’établissement d’une persistance par VSV.

Le travail qui y est présenté est de façon prévalente celui de Marc Desforges et celui des quelques personnes dont le nom apparaît dans les différents titres. La rédaction de ces manuscrits est d’abord le fruit d’efforts déployés par Marc Desforges mais aussi la mise en commun du travail concerté de Pierre Talbot, Laurent Poliquin et de Marc Desforges. D.S. Lyles et M.O. McKenzie ont fourni les vecteurs d’expression permettant une expression adéquate de la protéine M à l’intérieur de cellules transfectées et G. Despars a effectué les expériences de transfusions d’ARN messager. M. Gosselin et S. Bérard ont pour leur part participé à la mise au point de certaines techniques pour mettre en évidence l’apoptose induite lors de l’infection de VSV.
CHAPITRE II : Matrix protein mutations contribute to inefficient induction of apoptosis leading to persistent infection of human neural cells by vesicular stomatitis virus.

Matrix Protein Mutations Contribute To Inefficient Induction of Apoptosis Leading To Persistent Infection Of Human Neural Cells By Vesicular Stomatitis Virus

Marc Desforges\(^1,3\), Geneviève Despars\(^1\), Stéphane Bérard\(^1\)
Myriam Gosselin\(^1\), Margie O. McKenzie\(^2\), Douglas S. Lyles\(^2\), Pierre J. Talbot\(^3\) and Laurent Poliquin\(^1\)*

Running title: Apoptosis and persistent infection by Vesicular Stomatitis Virus

\(^1\)Department of Biological Sciences, Université du Québec à Montréal, Montréal, Québec, Canada H3C 3P8
\(^2\)Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
\(^3\)Human Health Research Center, INRS-Armand Frappier Institute, Laval, Québec, Canada H7V 1B7

*corresponding author:

Département des sciences biologiques,
Univ. du Québec à Montréal,
P.O. box 8888, Station Centre-ville,
Montreal, Qc
Canada H3C 3P8
Phone: 514-987-3000, ext. 6192
Fax: 514-987-4647

Email: poliquin.laurent@ugam.ca
ABSTRACT

In a model system to study factors involved in the establishment of a persistent viral infection that may lead to neurodegenerative diseases, Indiana and New Jersey variants of Vesicular Stomatitis Virus (VSV) with different capacities to infect and persist in human neural cells were studied. Indiana matrix (M) protein mutants and the wild type New Jersey strain persisted in the human neural cell line H4 for at least 120 days. The Indiana wild type virus (HR) and a non M mutant (TP6), both unable to persist, induced apoptosis more strongly than all the other variants tested, as indicated by higher levels of DNA fragmentation and caspase-3-like activity. Transfection of H4 cells with mRNA coding for the VSV M protein confirmed the importance of this protein in the induction of apoptosis. Furthermore, the pan-caspase inhibitor ZVAD-fmk maintained cell survival to about 80%, whereas inhibition of either caspase-8, caspase-9 or both, only partially protected the cells against death consistent with the fact that anti-apoptotic molecules from the Bcl-2 family also protect cells from death only partially. These results suggest that VSV activates many pathways of cell death and that an inefficient induction of caspase-3-related apoptosis participates in the establishment of a persistent infection of human neural cells by less virulent VSV variants.
INTRODUCTION

Neurodegenerative diseases may be linked to persistent viral infections of the central nervous system (CNS). Indeed, viral induction of long term neuropathology is well described for subacute sclerosing panencephalitis and measles virus (Haase et al., 1985; Schneider-Schaulies and ter Meulen, 1999), Theiler's murine encephalitis virus (TMEV) induced demyelination disease in mice (Miller et al., 1997; Tsunoda et al., 1997) and subtle neurological deficit associated with lymphocytic choriomeningitis virus (LCMV) (Oldstone, 1989). The murine coronavirus mouse hepatitis virus (MHV) also provides a useful model for demyelinating diseases such as multiple sclerosis (MS) (Castro et al., 1994; Houtman and Fleming., 1996; Wege et al., 1998; Buchmeier and Lane, 1999) and can persist in neural cells (Lavi et al., 1987; Chen et Baric, 1996). Furthermore, the human counterparts of MHV, Human Coronavirus (strains HCoV-229E and HCoV-OC43) present a special interest in relation to persistent viral infection of the CNS as viral RNA was detected by RT-PCR in human brain tissue (Arbour et al., 2000), and both strains can persistently infect human neural cells (Arbour et al., 1999a, 1999b).

A viral infection is one of several factors that, taken together, can lead to a chronic neuropathology (Talbot et al., 2001). In several of these pathologies, a persistent infection, whereby a virus has elaborated a strategy of non-lytic replication in the infected cells, often seems to be a key factor in the triggering of illness (de la Torre and Oldstone, 1996). Among the various viruses that have been studied for viral and cellular functions involved in the initiation of a persistent infection is the Vesicular Stomatitis Virus (VSV), a member of the Rhabdoviridae family from the Mononegavirales order.
This virus is usually highly cytopathic, but has also been shown to persist in cell culture (Stanners et al., 1975; Huprikar et al., 1986; Desforges et al., 2001) and to infect the CNS (Huneycutt et al., 1994; Plakhov et al., 1995) where at least viral RNA can persist (Fultz et al., 1982; Barrera et al., 1996).

The cytopathic effect (CPE) caused by VSV usually leads rapidly to cell death. One important mechanism that may be involved in virus mediated cell death is apoptosis, which appears to be induced by various DNA and RNA viruses (see reviews by Razvi and Welch, 1995; Teodoro and Branton, 1997; Griffin and Hardwick, 1999). It has also been shown that wild type Indiana (Bi et al., 1995; Balachandran et al., 2000; 2001) and New Jersey (Koyama, 1995) strains of VSV can induce apoptosis.

Apoptosis is a complex and highly regulated mechanism that usually results in the activation of a special type of cystein proteases called the caspases (cystein-dependent aspartate specific proteases). By initiating a complex cascade of reactions that usually involve these caspases, the cell finally kills itself (Nunez et al., 1998; Earnshaw et al., 1999; Hengartner, 2000). In the situation of a viral infection, apoptosis may have various consequences. The first is to limit the inflammatory response (Teodoro and Branton, 1997; Marcellus et al., 1998), a situation which can be beneficial to the virus for evading the immune system of the host more efficiently. In some cases, apoptosis may even enable virus spread, as it has been suggested for HIV (Strack et al., 1996). Nevertheless, apoptosis may also represent a potent defense mechanism for the host, limiting viral proliferation in the infected organism (Tsunoda et al., 1997; Allsopp et al., 1998). However, cell death itself may contribute to and enhance pathogenesis (Jelachich
and Lipton, 1996; Ubol et al., 1998). In the end, the modulation of this complex mechanism can sometimes be profitable to the virus and deleterious to the host. If apoptosis is not induced correctly or not induced at all in a context where it should, it may allow the establishment of a persistent infection by a virus that should have been eliminated otherwise. In the present study we used an in vitro system to investigate factors that could be associated with inefficient regulation of virus-induced apoptosis at the cellular level and thereby with the initiation of a persistent infection in neural cells.

We report that VSV induces apoptosis in human neural cells in culture and that this is at least in part related to the viral matrix (M) protein. Indeed, the Indiana strain of VSV induced apoptosis very rapidly with more than 90% of all cells killed by 48 hours post-infection. On the other hand, a series of M protein mutants of the Indiana strain (Francoeur et al., 1987; Desforges et al., 2001) and the less cytopathic wild type New Jersey strain, induced cell death by apoptosis but to a lesser extent, thereby allowing the establishment of a persistent infection of the neural cells. Thus, VSV may provide a good model to characterize the importance of the regulation of apoptosis as a mechanism involved in the control of viral persistence in cells of the central nervous system.
MATERIALS AND METHODS

Cell lines and viruses

The simian kidney fibroblast Vero cells (ATCC-CCL-81) used for virus titration experiments were grown to 100% confluence before infection at 37°C in a 5% (v/v) CO₂ atmosphere, in MEM α medium supplemented with 10% (v/v) calf serum, penicillin G (100 units/ml), streptomycin sulfate 100 μg/ml and fungizone (2.5 μg/ml amphotericin B and 2.5 μg/ml sodium deoxycholate). The human neural cell line H4 (ATCC-HTB-148) was grown the same way except that DMEM supplemented with 10% (v/v) fetal calf serum (FCS) was used. The wild-type HR strain of VSV Indiana has been described elsewhere, as were the M mutants derived from it (Francoeur et al., 1987; Desforges et al., 2001). The New Jersey Hazelhurst strain was a gift from Dr. Yong Kang (University of Western Ontario). Experimental infections were performed at m.o.i. ranging from 0.01 to 1. For the infection of the H4 cells, all viruses were diluted in PBS containing 2% (v/v) FCS and incubated with the cells in a minimal volume for 1 hour at 37°C to allow adsorption and penetration into the cells, before washing once with PBS and adding complete DMEM (all cell culture products were from Canadian Life Technologies).

Indirect immunofluorescence

H4 cells (1.5x10⁴) persistently infected were seeded on 12-well multitest slides (ICN Biomedicals) and fixed the next day with cold acetone. Detection of viral antigen was performed the next day using a rabbit polyclonal antibody against VSV antigen (1/500) as primary antibody and secondary antibody was F(ab')₂ anti-rabbit coupled to FITC.
(1/100). After detection of viral antigen with specific antibody, cells were counterstained with Evans Blue dye to allow the visualization of all the cells in the culture.

Cell viability

Viability of the cells was estimated by Trypan blue dye exclusion. Briefly, after a 2 minute treatment with 0.25% trypsin (w/v), cells were resuspended in 2 ml of complete DMEM. An aliquot was then mixed with one volume of 0.4% (w/v) Trypan blue and the viability of the cells was estimated by microscopic observation on an hemacytometer.

Metabolic activity of the cells in presence of apoptosis inhibitors

The MTS/PMS tetrazolium assay (Cory et al 1991) was used to measure the survival of the culture after infection. MTS (Promega) was added to the culture medium (final concentration of 0.6 mM) with PMS (Sigma-Aldrich) (final concentration of 0.014 mM). The reduction of MTS, a measure of mitochondrial respiration, and therefore a direct indication of cell viability and viral cytotoxicity is monitored by optical density reading at 540 nm. The cells were preincubated for 2 hours with complete DMEM high glucose alone or with medium containing either 0.2% (v/v) DMSO, 100 µM ZFA-fmk or 100 µM ZVAD-fmk (Enzyme System Products). The infection was performed as described earlier at an m.o.i. of 1 for 1 hour and then complete DMEM was added, either alone or with 0.2% (v/v) DMSO, 100 µM ZFA-fmk (inhibitor of cystein proteases other than caspases) or 100 µM ZVAD-fmk (pan-caspases inhibitor), 70 µM Z-IETD-fmk (inhibitor of caspase-8) or 70 µM Z-LEHD-fmk (inhibitor of caspase-9) (Enzyme System Products).
Establishment of cell lines and clones overexpressing Bcl-2 and Bcl-XL

Transfection of 1 μg of DNA from pRSV-HA-Bcl-2-neo or pcDNA-HA-Bcl-XL-neo (kind gift from Dr. Gordon Shore, McGill University) or pRSV-neo as control (gift from Dr. Éric Rassart, University of Quebec in Montreal) was performed using 10 μl of Lipofectamine (Invitrogen Life Technologies) on 2×10^5 H4 cells at 2/3 confluence in 6-well plates (Falcon cat no. 3046). Selection of H4 cells sub-populations and isolated clones overexpressing either Bcl-2 or Bcl-XL was performed with G418 (Invitrogen Life Technologies) at 1 mg/ml and then kept under selection at 500 μg/ml of this selecting agent. Viability of sub-populations composed of 50 different clones overexpressing Bcl-2 was evaluated by Trypan Blue dye exclusion and metabolic activity of isolated clones overexpressing either Bcl-2 or Bcl-XL was evaluated by the MTS/PMS tetrazolium assay.

Infectious viral particles production

Aliquots of medium were taken at different times during the course of the infection and titrated to evaluate whether or not the infection was productive. The plaque assay was performed by infecting confluent Vero cells grown in 6-well plates (Falcon cat no. 3046) using serial dilutions in PBS supplemented with 2% (v/v) FCS. After a 1 hour incubation in a minimal volume, complete MEM α medium containing 0.2% (w/v) agarose was added (Desforges et al., 2001). Infectious virus titers were expressed as pfu/ml.
DNA fragmentation and TdT-dUTP-Nick-End-Labeling (TUNEL)

After infection, DNA was extracted from 4×10^6 cells as described elsewhere (Appel et al., 2000). Briefly, detached and adherent cells were collected, washed with cold PBS and lysed on ice for one hour in 1 ml of cold lysis buffer (10 mM Tris pH 7.5, 10 mM EDTA and 0.2% (v/v) Triton X-100). Lysates were centrifuged at 10,000xg, 20 min at 4°C and low-molecular-weight DNA was extracted by conventional phenol, phenol-chloroform, and chloroform extractions and precipitated with ethanol. The pellet was resuspended in 25 μl of water and treated 30 min with RNase A (10μg/μl) at 37°C. Samples were then run on a 1.8% (w/v) agarose gel in Tris Borate EDTA buffer (TBE) stained with ethidium bromide (0.5μg/ml).

For TUNEL staining, 1.5×10^4 cells were infected on 16-well glass slides (Nunc), fixed with freshly prepared 4% (v/v) paraformaldehyde in PBS at room temperature and permeabilized with 0.2% (v/v) Triton X-100 : 0.2% (w/v) sodium citrate for 3 min on ice. Labeling was performed according to the manufacturer’s instruction (Roche Diagnostics) except that the labeling solution was previously diluted by 50% with a solution containing 30 mM Tris pH 7.2, 140 mM sodium cacodylate and 1 mM CoCl₂.

Measurement of Caspase-3-like activity

Induction of caspase-3-like activity in cells was measured with a Caspase-3 colorimetric assay (R&D Systems) as described by the manufacturer. Briefly, 4×10^6 cells were infected at an m.o.i. of 1 and floating and adherent cells were recovered together at indicated times post-infection. After two washes in cold PBS, cells were
counted, lysed in buffer (25 μl per 1 x 10^6 cells) and left on ice for 10 min. Lysates were cleared by a 1 minute centrifugation at 10,000xg and kept at -80°C until analysis. Caspase-3-like activity was measured by optical density reading at 405 nm after a two hour incubation period at 37°C.

Fifty micrograms of total cell extract proteins were migrated on a 12.5% (w/v) acrylamide gel and transferred to a PVDF membrane (Millipore) using a semi-dry apparatus (BioRad). Western blotting was performed using anti-caspase3 rabbit antiserum (Kind gift from Dr. Michele Barry, University of Alberta), diluted 1/5000 in TBS-0.1% (v/v) Tween -20 containing 5% (w/v) of non fat dry milk. Secondary antibody was anti-rabbit-HRP (Amersham Biosciences) diluted 1/5000 in TBS-0.1% (v/v) Tween-20. Revelation was performed using ECL detection kit (Amersham Biosciences).

Cloning and transfection of viral M gene in neural cells

The M gene cDNAs (wild type MTP6 and N-terminal mutant MT1026R1) were prepared as described elsewhere (Desforges et al., 2001) and cloned in pSD4, a plasmid derived from vector pSP65 (Invitrogen-Life Technologies) which contain the Sp6 phage promoter for in vitro transcription. The mRNAs were synthesized in vitro using mMessage mMachne Sp6 kit (Ambion). The quantity and quality of mRNAs were double-checked by optical density reading at 260 nm and by electrophoresis on agarose gel.
The day before transfection, H4 cells were seeded at 3×10^4 cells/well in 4 well slides (Nunc). Cells were transfected with 0.15 μg of mRNA transcribed in vitro and 2.5 μl of Lipofectamine according to manufacturers instruction (Invitrogen-Life Technologies). Cells were then fixed with 4% (w/v) paraformaldehyde 18 hours post-transfection. The TUNEL reaction was performed as indicated for VSV infections.
RESULTS

Human neural cells sustain persistent infection

The human H4 neural cell line sustained a persistent productive infection by the M protein mutants of the Indiana serotype and by the wild type New Jersey for at least 120 days (Fig. 1a, Table 1). A representative series of microscopic immunodetection of viral proteins during persistence in neural cells is shown in Fig. 1b. VSV Indiana variants induced a high level of viral antigen production in a small number of cells, whereas VSV New Jersey induced the production of a low level of viral antigen in the majority of cells. Figure 1a shows that the end result in either case was similar levels of production of infectious particles through 120 days. On the other hand, cells infected by Indiana variants without any mutation in the M gene (HR-Ind and TP6) could not sustain long term infection, even when low m.o.i. (0.01) was used to start the infection (data not shown). In fact, all cells were killed between 48 and 72 hours p.i. when the infection was initiated at an m.o.i. of 1 by these viruses (Fig 2a). In comparison, cell cultures remained viable throughout infection by Indiana M protein mutants or wild type New Jersey (Fig. 2a) even though there was no significant difference in production of infectious virus (Fig. 2b) except for mutant T1026 which has a thermosensitive mutation in the L gene and for TP6 at 72 hours p.i..

Short term events show that infected cells die by several pathways of apoptosis

To identify mechanisms that are important in the establishment of the persistent infection, the induction of cell death in short term infections of human neural cells was
analyzed. All viruses studied induced apoptosis of neural cells as seen by TUNEL positive reaction at 16 hours p.i. (Fig. 3a) and DNA fragmentation (Fig. 3b). It is notable that the percentage of TUNEL-positive cells was higher and the characteristic DNA laddering was stronger and observed earlier in cells infected with HR-Indiana and TP6 than in cells infected with M mutant T1026R1 and New Jersey wild type viruses. Caspase activity in extracts from virus-infected H4 cells was measured using a chromogenic substrate for caspase-3 as an additional test for the induction of apoptosis. This enzymatic activity was clearly induced to a lower extent by infection with the Indiana M protein mutants and wild-type New Jersey serotype viruses compared to HR and TP6 viruses (Fig. 4A). These results were confirmed by analysis of cleavage of procaspase-3 by western blots (Fig. 4B). More of the activated 17-19 kDa caspase-3 fragments were generated in H4 cells infected with HR-Indiana and TP6 viruses than in cells infected with M mutant T1026R1 and New Jersey wild type viruses. Thus, although hallmarks of apoptosis could be observed for all VSV variants, they appeared weaker in Indiana M mutants and wild type New Jersey infections, correlating with the differences in cell viability (Fig.2a).

To further determine the apoptotic pathways induced by the different VSV variants, neural cells were infected in the presence of various apoptosis inhibitors. Infection in the presence of a pan-caspase inhibitor of apoptosis, ZVAD-fmk, protected H4 neural cells. Indeed, even at 2 days p.i., cells retained up to 80% of their mitochondrial metabolic activity depending on the virus (Fig. 5a). On the other hand, cells infected in the presence of 70 μM of inhibitors of caspase-8 (Z-IETD-fmk) or
caspase-9 (Z-LEHD-fmk) did not sustain infection as well, as neither inhibitor was able to protect the cells from death as efficiently as ZVAD-fmk for more virulent non-persisting viruses. The ZFA-fmk is the negative control for ZVAD-fmk, as it does not inhibit any known caspases. It protected the cells to a much weaker extent (Fig. 5a). Moreover, stable overexpression of antiapoptotic molecule Bcl-2 and to a lesser extent Bcl-XL was correlated with an increased survival of infected cells (Fig. 5b and 5c) and did permit the establishment of a long term infection for at least two weeks by VSV-HR-Indiana when infection was initiated at an m.o.i. of 0.01 or less (data not shown). On the other hand, neither of these antiapoptotic molecules led to VSV-TP6 persistence in H4 cells (data not shown).

Inhibition of caspase-related apoptosis allows a more effective production of virus

As ZVAD-fmk protected cells from VSV-induced caspase-associated apoptosis, we wished to determine whether this protection had any effect on viral replication. Measurement of infectious virus titers (pfu) indicated that inhibition of caspases allowed production of infectious virus for a longer period of time (Fig. 6a). As shown in Fig. 6b, inhibition of caspases using ZVAD-fmk led to an increased production of infectious virus by up to -2 logs for all Indiana variants. Thus inhibition of apoptosis appears to participate in a better propagation of infectious VSV between 45 and 72 hours p.i., with the exception of wild type New Jersey (Fig. 6b).

M protein participates to DNA fragmentation

Recent results (Despars et al, unpublished; Kopecky et al., 2001) point to the involvement of the matrix (M) protein in the apoptosis induction process. Thus, we
tested whether production of M protein in the absence of other viral components was sufficient to induce apoptosis in H4 cells. In view of the inhibitory effect of M protein on host transcription, M protein was expressed from transfected mRNA rather than plasmid DNA, since M protein inhibits its own expression from DNA vectors that depend on host transcriptional activity (Black et Lyles, 1992; Black et al., 1994). Expression of either wild type or T1026R1 mutant M protein alone in H4 neural cells induced DNA fragmentation at 18 hours post-transfection as shown in Fig. 7 which is a field that is representative of two different experiments. In both experiments, it appeared that wild type M protein led to a stronger positive TUNEL reaction than the T1026R1 mutant and vehicle (lipofectamine alone), in agreement with DNA fragmentation observed during whole virus infection (fig 3a and 3b).

DISCUSSION

Given the observation that several viruses induce or modulate apoptosis, it appears that this process is a key factor in the complex regulation that takes place to control the infection, including modulation from an acute infection to viral persistence. The central nervous system represents a privileged site for viral persistence and this could imply relevance to the development of neurological disorders. Therefore, we wished to study how a viral infection can become persistent in a neural cell model. For that purpose, we used VSV, a usually highly cytopathic virus that has been shown to induce apoptosis (Bi et al, 1995; Balachandran et al, 2000; 2001; Koyama, 1995) as
well as to persist in the nervous system (Fultz et al., 1982; Barrera et al., 1996) and for which we possess a series of attenuated mutants.

Induction of DNA fragmentation and activation of caspase-3-like proteases are usually important hallmarks of apoptosis, and their extent is correlated with the degree of apoptosis. The fact that a reduced activation of these markers occurs in cells infected by Indiana M protein mutants and wild type New Jersey compared to Indiana wild type (Fig. 3 and 4) is crucial as it correlated with a limited induction of cell death, thereby allowing survival of a large portion of the infected cells (Fig. 2a), and providing the virus a reservoir to maintain itself (Fig. 1). Expression of the M protein alone in H4 cells induced apoptosis, as seen by DNA fragmentation (Fig. 7). The apparent difference in the degree of apoptosis induced by wild type and the T1026R1 mutant M protein is very interesting as it correlates with results observed during viral infection (Fig. 3a and 3b) and with the fact that the only difference between wild type virus HR-Ind and mutant T1026R1 genome is in the M gene, as we have previously shown (Desforges et al., 2001; see Table 1). Furthermore, this difference in induction of apoptosis between wild type and mutant M protein is supported by recent results which indicate that expression of a similar mutant M protein expressed alone in HeLa or BHK cells activates little if any caspase-3 (Kopecky et al., 2001).

Overexpression of Bcl-2 has already been shown to be associated with persistent infection of cells by other cytopathic viruses such as Sindbis virus (Levine et al., 1993), Semliki Forest Virus (Scallan et al., 1997) and Japanese encephalitis virus (Liao et al., 1998). In our system, cells overexpressing Bcl-XL and especially Bcl-2 survived
significantly better to infection (Fig. 5b and 5c) especially when infection was done at a low m.o.i. This ectopic expression of antiapoptotic molecules even allowed HR-Indiana virus to persist in culture when the infection was initiated at 0.01 pfu/cell (data not shown), indicating that those antiapoptotic Bcl-2 family members are of some importance for the control of VSV-induced apoptosis and possible viral persistence. Further analysis of the possible modulation of regulatory proteins such as anti-apoptotic Bcl-2 and Bcl-XL and of pro-apoptotic Bax and Bid are currently performed to further characterize the mechanisms underlying VSV-induced apoptosis.

Our results so far indicate that there may be other pathways involved in VSV-induced apoptosis besides the mitochondrial pathway which is regulated by the Bcl-2 family of proteins. Indeed, inhibition of caspase-9 protected cells from death only partially and for both Indiana variants with wild type M protein (HR and TP6), to the same level as inhibition of caspase-8 (Fig. 5a), which can be independent of mitochondria-related apoptosis by directly activating the effector caspase-3 (Hentgartner, 2000). Partial protection by caspase-8 and -9 inhibitors therefore suggests that intrinsic (caspase-9 associated) and extrinsic (caspase-8 associated) pathways of apoptosis are both important in regulating VSV-induced apoptosis, as is the case for Sindbis virus (Nava et al., 1998). Moreover, the pan-caspase inhibitor ZVAD-fmk protected from VSV-induced cell death, as up to 80% of mitochondrial metabolic activity remained at 48 hours p.i. (Fig. 5a) and up to 70% at 68 hours p.i. (data not shown). This indicates that caspase-related apoptosis is implicated in cell death but also that a fraction of the cells may die by alternative death pathways such as passive
necrosis. Poliovirus has been shown to induce cell death by distinct pathways which could lead to caspase-related apoptosis or classical cytopathic effect (CPE) leading to death even in the presence of caspase-inhibitors (Agol et al., 1998). Moreover ZVAD-fmk did not completely protect from cell rounding, a well documented VSV-induced CPE. Others have recently observed the same pattern of survival during VSV infection of C6 rat glial cells when using ZVAD-fmk and specific inhibitors of caspase-8, -9 or even -3 (Balachandran et al., 2001). Even though the mean metabolic activity of H4 cells infected by M mutant T1026R1 appeared to be reduced in the presence of caspase-9 inhibitor (Z-LEHD) compared to ZVAD, the difference is not significantly different (ANOVA p > 0.05). This could imply differences in induction of apoptotic pathways between M mutants and wild type Indiana. On the other hand, like cells infected with wild-type Indiana virus, infection with this mutant in the presence of both Z-LEHD and Z-IETD did not protect the cells from death as well as ZVAD (ANOVA p < 0.01), suggesting that other proteases are involved in the induction of apoptosis. Calpain is a cysteine protease that has been linked to activation of caspase-3 in rat brain (Blomgren et al., 2001), and it can be activated during reovirus infection (Debiasi et al., 1999). Given these facts, characterization of calpain activation during infection by our different VSV variants is currently underway to determine if it could account for differences in caspase-3 activation by the less cytopathic viruses.

It has been reported that VSV was partially inhibited in its capacity to produce infectious virions in Hep-2 cells undergoing apoptosis (Koyama et al., 1998). Despite a 10-fold reduction in virion production at 10 hours p.i. when cells were undergoing
apoptosis, these authors suggested that the replicative cycle of VSV was not significantly
affected. Although our results indicate the same tendency, the differences appeared at
later times, ZVAD-fmk being associated with a better production of infectious virions
for Indiana variants between 45 and 72 hours p.i. (Fig. 6a and 6b). At this time in the
infection, the increase in titers of infectious virions reached its maximum and went as
high as 283-fold for TP6 when caspases are inhibited by ZVAD-fmk. This is in
agreement with the fact that during a normal infection, there is an important drop of
pfas production for TP6 between 45 and 72 hours (Fig. 2b)

In conclusion, it appears from our results that apoptotic cell death is important
during VSV infection and that a restricted activation of this pathway by less cytopathic
variants of VSV may lead to a persistent infection of neural cells. Moreover, VSV-
induced apoptosis during wild type Indiana infection seems to be a potent mechanism to
limit viral replication and to prevent viral persistence in a human neural cell
line. Infection of neural cells in vitro does not necessarily recreate all the complexity of
the CNS but viral persistence at this privileged site has been extensively decribed. Of
course, further investigation has to be made to correlate our results to the situation in
vivo. However it is already known that VSV mutant T1026 is associated with possible
persistence and delayed CNS pathology in newborn hamsters (Stanners et al. 1975).
Moreover, modulation of apoptosis has been described as a viral strategy that can permit
the establishment of persistence in other systems (Shen and Shenk, 1995; Hardwick,
1998; Kalvakolanu, 1999). Hallmarks of apoptosis have been reported to appear in the
mouse olfactory bulb during VSV Indiana wild type infection. Thus, studying how the
apoptotic process may be modulated or impaired during infection of neural cells should further our understanding of the establishment of a long term infection that may be associated with neurodegenerative diseases. Further investigation also remains necessary to explain the complete pathways of programmed cell death related to VSV infection of neural cells. In trying to identify what cellular and viral factors are important for cell death to happen it should be possible to understand why and how persistent infection can be established and maintained in neural cells by usually cytopathic viruses such as VSV. Furthermore, knowing that VSV is currently studied in relation to its possible use in cancer therapy (Stojdl et al., 2000; Balachandran et al., 2001), it is of major importance to understand how VSV persistence may appear in infected cells, especially in the CNS.
ACKNOWLEDGMENTS

We thank Dr. Éric Rassart and Francois Denis for helpful discussions and continuous support and Dr. Pierre Paquin for help with statistical analysis. This work was supported by funds from the Natural Sciences and Engineering Council of Canada (NSERC) and Université du Québec à Montréal to L. Poliquin and Canadian Institutes for Health Research (CIHR) to P.J. Talbot and by Public Health Service Grant AI32983 to D. S. Lyles from the National Institute of Allergy and Infectious Diseases. M. Desforges was supported by a CIHR studentship and G. Despars by a NSERC studentship.
REFERENCES

1. LEGENDS TO FIGURES

Fig. 1- Persistent infection of H4 cells by VSV variants. (A) Production of infectious virus was measured by plaque assay up to 120 days post-infection.

T1026, T1026R1, TP3 and New Jersey serotype. (B) Detection of viral proteins by indirect immunofluorescence with a polyclonal antiviral antiserum (green-yellow) during the course of persistent infection. Magnification 200x. Cells were counterstained with Evans blue dye (red) to allow visualization of all cells in the culture.

Fig. 2- (A) Cell survival after infection with VSV variants (m.o.i. of 1) evaluated by Trypan blue dye exclusion and (B) production of infectious virus during short term events (first three days) of infection.

Fig. 3- Comparison of virus-induced apoptosis. (A) left-hand panel: Micrograph of TUNEL assay at 16 h post-infection (magnification 200x); right-hand panel: quantification of TUNEL-positive cells (5 fields of more than 50 cells, 2 independent experiments). (B) DNA fragmentation analysis on 1.8% (w/v) agarose gel stained with EtBr 0.5 μg/ml; m is 100-basepair DNA ladder.
Fig. 4- Evaluation of caspase-3 during infection. (A) Measurement of enzymatic activity was performed at 3, 17, 24 and 42 h post-infection for Indiana M mutants and New Jersey serotype and at 3, 17 and 24 h post-infection for HR-Ind and TP6, the two variants that do not persist. Comparison was performed at 17 and 24 h and statistical analysis (ANOVA) shows that the difference in caspase-3 activity induction is significant between the viruses that did persist and those that did not, as indicated by the p values. ** p < 0.01, differences are significant, *** p < 0.001, differences are highly significant. Values of fold induction represent the mean for 5 different experiments in duplicate. The bars represent the standard deviations. (B) Evaluation of caspase-3 activation by western blot analysis. Cleavage of procaspase-3 (32 kDa) into smaller fragments (19 and 17 kDa) indicates that caspase-3 is activated at different levels by the different VSV variants at 18 h post infection. Lane 1: mock 18h; lane 2: mock 40h; lane 3: HR 18h; lane 4: TP6 18h; lane 5: T1026R1 18h; lane 6: TP3 18h; lane 7: New Jersey 18h.

Fig 5- Modulation of apoptosis allows longer cell survival. (A) Evaluation of metabolic activity of the cells by MTS-PMS at 48 h post-infection (m.o.i. 1) reveals caspase-dependent apoptosis (units are % of metabolic activity measured by optical density at 540 nm as compared to mock infected cells). DMSO is the inhibitors solvant, ZFA is a negative control for caspase inhibitors, ZVAD-fmk is a pan-caspase inhibitor, Z-IETD-fmk is a caspase-8 inhibitor and Z-LEHD-fmk is a caspase-9 inhibitor. (B)
Evaluation of viability by trypan blue dye exclusion of H4 cells subpopulation overexpressing Bcl-2. Bcl-2 overexpression delays cell death significantly. (C) Evaluation of metabolic activity of the H4 cells. Five clones overexpressing Bcl-2 or Bcl-XL were infected and metabolic activity was measured by MTS-PMS at 48 h post-infection (m.o.i. 1).

Fig. 6.- Infectious virus production in the presence or absence of caspase-related apoptosis inhibitors. (A) Inhibition of caspases by pan-caspase inhibitor ZVAD-fmk led to increased production of viruses between 45 and 72 h p.i.. (B) Ratio of infectious virus production (pfu) in the presence of caspase inhibitor ZVAD-fmk over infectious virus production in the presence of DMSO at 45 and 72h indicated a better production of infectious virions for all Indiana variants when caspases were inhibited.

Fig. 7.- VSV M protein is related to the induction of apoptosis. H4 Cells were seeded the day before transfection in 4 well slides and left untreated (a,e), treated with Lipofectamine alone (b,f), transfected with T1026R1 mutant M mRNA (c,g), or transfected with wild type M mRNA (d,h). Cells were fixed 18 h post-transfection and the TUNEL reaction was performed. The same micrographs are shown under fluorescence for TUNEL assay (a,b,c,d) and phase contrast (e,f,g,h). Magnification 200x (Representative field of two independent experiments).
Desforges et al. fig. 1

A

B
Figure 4

A

Fold induction

mock HR TP6 T1026R1 T1026 TP3 NJ

3h 24h 17h 42h

** ** ** **

B

Procaspase-3 (32 kDa)

Activated caspase-3 (17-19 kDa)
A

\[\text{log}_{10} \text{ pfu/ml} \]

<table>
<thead>
<tr>
<th></th>
<th>HR</th>
<th>TP6</th>
<th>T1026R1</th>
<th>T1026</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hours post-infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ✷ milieu
- ■ DMSO
- △ ZFA
- ▲ ZVAD

B

\[\text{fold increase pfu production} \]

<table>
<thead>
<tr>
<th></th>
<th>45h</th>
<th>72h</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1026R1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NJ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Desorges et al., Figure 6
Table I

Relation between the studied VSV variants ability to persist on H4 human neural cells and mutation in the M gene compared to Indiana-HR.

<table>
<thead>
<tr>
<th>Virus</th>
<th>M gene mutation</th>
<th>Other known mutation</th>
<th>Persistence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana-HR</td>
<td>–(^{a})</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>TP6</td>
<td>none(^{b})</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>T1026</td>
<td>M(_{51})R(^{b})</td>
<td>L(_{ts})</td>
<td>Yes</td>
</tr>
<tr>
<td>T1026R1</td>
<td>M(_{51})R(^{b})</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>TP3</td>
<td>V({221})F, S({226})R(^{b})</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>New Jersey</td>
<td>62% homology(^{c})</td>
<td>–</td>
<td>Yes</td>
</tr>
</tbody>
</table>

a sequence of M gene ; Rose and Galione, 1981
b sequence of M gene ; Desforges *et al.*, 2001
c The M gene sequence of New Jersey Hazelhurst serotype is not known but the sequence of Ogden serotype presents a 62% homology with Indiana ; Gills and Banerjee, 1986
CHAPITRE III: *Vesicular stomatitis virus-induced apoptosis in human neural cells is associated with Bax translocation to the mitochondria and activation of caspase-8*

Soumis pour publication à *Journal of General Virology*, 10 juin 2003

Nouvelle version modifiée en préparation novembre 2003
VESICULAR STOMATITIS VIRUS-INDUCED APOPTOSIS IN HUMAN NEURAL CELLS IS ASSOCIATED WITH BAX TRANSLOCATION TO THE MITOCHONDRIA AND ACTIVATION OF CASPASE-8

Marc Desforges1,2, Pierre J. Talbot2, and Laurent Poliquin1*

\textbf{Running title:} Mechanisms of apoptosis induction by Vesicular Stomatitis Virus

1Department of Biological Sciences, Université du Québec à Montréal, Montréal, Québec, Canada H3C 3P8

2INRS-Armand Frappier Institute, Laval, Qc, Canada H7V 1B7

*corresponding author: Department of biological sciences, Univ. du Québec à Montréal, P.O. box 8888, Station Centre-ville, Montreal, Qc Canada H3C 3P8
Phone: 514-987-3000, ext. 6192
Fax: 514-987-4647

Email: poliquin.laurent@ugam.ca
SUMMARY

Vesicular Stomatitis Virus (VSV) infects neural cells and induces apoptosis with varying efficiencies depending on the viral variant used. In order to identify factors accounting for these differences, characterization of apoptosis pathways was undertaken in the neural human cell line H4 infected with a panel of VSV variants. Hallmarks of apoptosis were evident, without significant modulation in the levels of Bcl-2 and Bax proteins and transcriptional activity of p53. However, VSV-HR and TP6, which both have a wild type matrix (M) protein, induced a more rapid and massive relocation of Bax to the mitochondria, simultaneously favoring cytochrome c release into the cytosol. Our results also indicate that caspase-8 was involved in VSV-induced apoptosis, especially during infection by the two non-persisting viruses HR and TP6, as suggested by a more important caspase-8-like activity early in the infection and by increased cell survival at two days p.i. in cFLIP-overexpressing cells. Moreover, cFLIP and Bcl-2 overexpression both inhibited this caspase-8-like activity and altered caspase 3 activation. Taken together our result suggest that VSV can induce apoptosis mainly through the mitochondria-related pathway and that there is a possible crosstalk between the activation of caspase 3 and caspase 8. Less cytocidal VSV variants had a defect in the induction of apoptosis, a process which may participate in the short term events important for the establishment of a persistent infection in human neural cells.
INTRODUCTION

Apoptosis is involved in virus-mediated cell death and it appears to be induced and modulated by various viruses (Koyama et al., 2000; Griffin and Hardwick, 1999; Teodoro and Branton, 1997). Apoptosis is complex and highly regulated and it may have various consequences during a viral infection. Nevertheless, apoptosis appears to represent a defence mechanism for the host (Barber, 2001; Allsopp et al., 1998, Teodoro and Branton, 1997). Indeed, this is supported by the fact that many different viruses have developed strategies to overcome premature programmed cell death (Benedict et al., 2002).

Vesicular Stomatitis Virus (VSV), a member of the Rhabdoviridae family from the order Mononegavirales, is a small RNA virus that developed a very rapid multiplication cycle to circumvent induction of apoptosis (Koyama et al., 1998). Infection by VSV produces a large progeny; despite the fact that it usually leads to rapid cell death in part through apoptosis involvement (Balachandran et al., 2000; 2001; Desforges et al., 2002; Koyama, 1995). Nevertheless, VSV variants may persist in several cell cultures (Desforges et al., 2001; Stanners et al., 1975) including neural cells (Desforges et al., 2002; Huprikar et al., 1986) and have been studied to investigate mechanisms involved in the initiation of a persistent infection. Inappropriate control of apoptosis may be profitable to viruses, with potential deleterious effects to the host. Moreover, we have already shown that inefficient apoptosis induction was related to the establishment of VSV persistence in human neural cells (Desforges et al., 2002). Importantly, VSV has been described as a neurotropic (Huneycutt et al., 1994; Plakhov et al., 1995) and neuroinvasive virus (Fultz et al., 1982) and is currently studied in
relation to its possible use in cancer therapy (Balachandran et al., 2001; Balachandran and Barber, 2000; Stojdl et al., 2000). Therefore, it is of major importance to understand how VSV persistence may be established, especially in human cells representative of the central nervous system (CNS).

In the present study we have investigated apoptosis-related factors in an effort to better understand how VSV-induced apoptosis proceeds and, in turn, how its inefficient regulation could have an implication on the initiation of a persistent infection. As we have reported earlier, the Indiana strain of VSV induces apoptosis very rapidly while a series of matrix (M) protein mutants from the Indiana strain (Desforges et al., 2001; Francoeur et al., 1987) and the less cytopathic wild type New Jersey strain, also kill the cells by apoptosis but to a lesser and slower extent (Desforges et al., 2002). We report here underlying molecular events associated with VSV-induced apoptosis in human neural cells in culture. Regulation of VSV-induced apoptosis was p53-independent and proceeded through a relocation of the proapoptotic protein Bax to the mitochondria and activation of caspase-8. VSV may provide a good model to characterize the importance of an efficient regulation of apoptosis as a mechanism involved in the control of viral persistence in CNS cells. Identifying factors important for cell death to occur is essential to understand why and how a persistent infection can be established and maintained in some neural cells by usually cytopathic viruses.
METHODS

Cell lines and viruses

The human neural cell line H4 (ATCC-HTB-148) was grown at 37°C in a 5% (v/v) CO₂ atmosphere, in DMEM culture medium supplemented with 10% (v/v) FCS, 100 units/ml of penicillin G, 100 μg/ml of streptomycin sulfate and fungizone (2.5 μg/ml amphotericin B and 2.5 μg/ml sodium deoxycholate). The wild-type strain of VSV-Indiana HR and the derived M protein mutants were described elsewhere (Desforges et al., 2001; Francoeur et al., 1987). The New Jersey Hazelhurst strain was a gift from Dr. Yong Kang, University of Western Ontario. Reovirus T3D strain was a gift from Dr Guy Lemay, University of Montreal. The relevant characteristics of all VSV variants used for the present study were described earlier (Desforges et al., 2002). Experimental infections were performed at an m.o.i. of 1. Viruses were diluted in PBS containing 2% (v/v) FCS and incubated with the cells for 1 hour at 37°C before washing once with PBS and adding complete DMEM, (culture products were from Invitrogen Life Technologies).

Infectious viral particles production

Aliquots of medium were taken at different times post-infection and titrated by a plaque assay performed as described elsewhere (Desforges et al., 2001).

Protein extraction and Immunoblotting

Cells were scraped into culture medium and washed twice with cold PBS before being frozen at -80°C as a dry pellet. Total cell proteins were extracted with RIPA buffer; (150 mM NaCl, 1% (v/v) NP-40, 0.5% (w/v) deoxycholate, 0.1% (w/v) SDS,
50 mM Tris-HCl pH 8.0 with freshly added 1 mM PMSF). After 10 minutes on ice, lysates were centrifuged at 10,000 x g for 10 minutes at 4°C. Supernatants were recovered and protein concentration was evaluated. Samples were aliquoted and kept at –20°C until analyzed. Rabbit polyclonal anti-Bax (Santa Cruz) and mouse monoclonal anti-human Bcl-2 (BD Pharmingen) were used at dilution 1/1000 and rabbit anti-actin (Sigma-Aldrich) at 1/1500. All dilutions were in TBS (Tris Buffered Saline pH 7.6; Tris-HCl 20 mM, NaCl 100 mM) -0.1% (v/v) Tween-20 with 5% (w/v) dry non-fat milk. Secondary antibodies were anti-rabbit-HRP from Pharmingen (1/5000) or anti-mouse-HRP from KPL (1/5000) in TBS-0.1% (v/v) Tween-20. Analysis of caspase 3 activation was performed with a rabbit polyclonal antibody (gift from Dr. Michele Barry, University of Alberta) at 1/5000 followed by an anti-rabbit-HRP (Amersham Biosciences) secondary antibody at 1/10000.

Subcellular fractionation of proteins was performed according to a protocol modified from both Drapier et al. (1993) and Bronfman et al. (1998). Briefly, detached and adherent cells were collected, washed with cold PBS and transferred into a microtube for a second cold PBS wash followed by lysis on ice for 30 seconds in digitonin buffer (1 mg/ml digitonin, Sigma-Aldrich); 20 mM HEPES buffer pH 7.4 (Invitrogen-Life Technologies); 250 mM sucrose; 1 mM PMSF, Sigma-Aldrich). Lysates were centrifuged at 14,000 x g 30 sec at room temperature and rapidly put on ice. Supernatants were recovered and transferred to another tube; this was the cytosolic fraction (C). Pellet was then lysed in lysis buffer (0.2% (v/v) Triton X-100; 150 mM NaCl; 30 mM Tris-HCl pH 7.2; PMSF 1 mM) for 10 min on ice and then centrifuged at
4°C for 15 min at 5000 x g. Supernatants were considered the mitochondrial fraction (M) and the pelleted nuclear fraction (N) was resuspended in digitonin buffer. Protein concentrations were evaluated and samples were kept at -20°C until analyzed. For all western blot analysis, twenty micrograms of samples were resolved in a 12.5 % (w/v) SDS-PAGE and transferred onto a PVDF membranes (Millipore).

Northern Blotting

Cells were scraped into culture medium, washed twice with cold PBS and kept frozen at -80°C as a dry pellet. Total RNA was extracted with the QIAGEN Rneasy minikit according to the manufacturer’s protocol. Fifteen micrograms of total RNA were then run on a 1% (w/v) agarose denaturing gel (MOPS-formaldehyde) and transferred overnight onto a nylon membrane (Osmonics). Probes were prepared by random priming starting from a human Bax cDNA (gift from Dr. Gordon Shore, McGill University) and the hybridization was performed overnight in Church buffer (0.5 M phosphate buffer pH 7.2, 1 mM EDTA, 7% (w/v) SDS) at 65°C.

Indirect immunofluorescence

H4 cells (1.5x10⁴) were infected on 16-well glass Lab-Tek slides (Nunc). For confocal photographs (Nikon Eclipse E-800 microscope with leoX N.A. 1.4 objective) and analysis (Bio-Rad Radiance 2000 software), cells were labelled with Mitotracker[™] (M7512, Molecular Probes) diluted in fresh DMEM at a final concentration of 250 nM, for 20 min at 37°C at the indicated times post-infection to assess for relocation of the
Bax protein to mitochondria. After removal of the media, cells were fixed for 20 minutes at room temperature with fresh 4% (w/v) paraformaldehyde, permeabilized 5 min with cold methanol at −20°C and washed three times in PBS. Immunodetection of Bax was performed using a rabbit polyclonal antibody (Santa Cruz, N-20) as primary antibody (1/200) and secondary antibody (1/1500) was F(ab')2 fragments of anti-rabbit antibodies coupled to Alexafluor 488 (Molecular Probes). Negative control for Bax immunodetection was performed using rabbit IgG (Sigma-Aldrich). Bax relocation was correlated with the induction of DNA fragmentation by staining cells with DAPI (1 μg/ml) for 5 minutes before adding Prolong antifade mounting medium (Molecular Probes) for confocal analysis or Gelvatol as described elsewhere (Bonavia et al., 1997) for standard immunofluorescence analysis (Nikon Eclipse E-800 microscope). All standard immunofluorescence pictures were taken with a digital camera (Nikon Coolpix model 990). Immunofluorescence for the detection of Bax and DAPI staining for evaluation of nuclei fragmentation was also performed during VSV infections in the presence of various inhibitors of cystein proteases; ZVAD-fmk, Z-IETD-fmk and ZFA-fmk (Enzyme System Products); all dissolved in DMSO at 50 mM and used at 100 μM. The number of cells positive for Bax punctate appearance and for nuclear fragmentation were evaluated by counting six different fields of at least 50 cells in two independent experiments.
Establishment of cell lines and clones overexpressing human FLIP and / or Bcl-2

Transfection of 0.5 µg of pCR3-hFLIP-neo or pCR3-neo DNA (kind gift from Dr. Lars French, Geneva University Medical Center) or 0.5 µg of pRSV-HABcl-2-neo DNA (gift from Dr. Gordon Shore, McGill Univesity) or 0.5 µg of pRSV-HABcl-2 plus 0.5 µg of pCR3-hFLIP-neo were performed using 10 µl of Lipofectamine (Invitrogen-Life Technologies) on H4 cells at two-third confluence in 6-well plates (Falcon). Selection of cells overexpressing human cFLIP and Bcl-2 was performed with G418 (Invitrogen-Life Technologies) at 1 mg/ml and cells were then kept under selection at 800 µg/ml of this selecting agent. RT-PCR analysis was performed using primers listed in Table 1 to detect overexpression of cFLIP and Bcl-2 in cells. Viability of sub-populations composed of 50 different clones overexpressing cFLIP, Bcl-2 or both or of isolated clones overexpressing cFLIP was evaluated by Trypan Blue dye exclusion. The Bcl-2 overexpressing cells used in experiments presented in figure 5 and 7 are those used in Desforges et al. (2002).

Colorimetric measurement of caspase 8-like activation

As the activity of caspase-8 is measured by a colorimetric assay which uses an artificial substrate that represents the consensus sequence recognized by caspase-8 related to its protease activity, we use the term caspase-like activity. H4 (4 x 10^6) cells were infected and floating and adherent cells were recovered together at the indicated times post-infection. After two washes in cold PBS, cells were counted and the induction of activity was measured with a caspase-8 colorimetric assay using IETD-pNA as substrate (R&d systems) as described by the manufacturer.
RESULTS

Bax gene expression is stable or downregulated following VSV infection

During apoptosis induction, the expression of the Bax gene is often upregulated by the proapoptotic transcriptional factor p53 (Jimenez et al., 1999; May and May, 1999). As shown in Fig.1A, RNA analysis revealed that there was no significant induction of Bax RNA expression during the course of the infection. Subtle variations in the level of Bax transcripts were observed during infection by most VSV variants as well as in mock-infected cells. Starting at 15 h.p.i., there was a significant decrease in the amount of the Bax mRNA for the most cytocidal virus TP6 (Fig. 2), even though more than 60% of the cells were still alive (Desforges et al., 2002). The same decrease was observed for the actin gene and dot-blot hybridization of total RNA with a poly (dT) probe confirmed that there was a general down-regulation of mRNA expression (data not shown). Ribosomal 28S RNA served as a loading control.

Amounts of Bax and Bcl-2 regulatory proteins remain stable in VSV-infected cells

The equilibrium between the amount of the anti-apoptotic protein Bcl-2 and of the pro-apoptotic protein Bax is a key factor for cell maintenance and survival. These regulators of apoptosis may be modulated during viral infection. Indeed Sindbis virus (Appel et al., 2000), HIV (Aillet et al., 1998; Genini et al., 2001), rubella virus (Megyri et al., 1999), rabies virus (Ubol et al., 1998) have all been shown to increase the ratio of Bax to Bcl-2 proteins, a situation that leads to cell death (Oltvai et al., 1993).
Nevertheless, western blot analysis showed that there were no significant changes in the total amount of either Bax or Bcl-2 proteins (Figure 1B) in the infected cells for all our VSV variants. Although some apparent variations are observable at different points between 4 and 48 h.p.i, statistical analysis of the average (four experiments) densitometric quantitation of Bax and Bcl-2 protein levels relative to actin levels showed that the differences were not significant (ANOVA, p ≥ 0.05). The variations in the time points analysed is due to the shorter survival of HR- and TP6-infected cells.

From our results on Bax and Bcl-2 expression during VSV infection, it was tempting to conclude that p53 was dispensable during VSV-induced apoptosis. The functionality of p53 in the H4 cells was thus verified by upregulation of Bax and p21waf (two known targets of p53) after a treatment with 50 nM of camptothecin (CPT), a topoisomerase 1 inhibitor known to induce p53-dependent apoptosis (data not shown).

Although a previous report indicated that wild type VSV-Indiana could induce apoptosis in the p53-deficient rodent C6 glial cell line (Balachandran \textit{et al.}, 2001), our results further show that p53 is not involved even when present in a functional state in human cells.

\textbf{VSV-infected cells undergo Bax relocation to the mitochondria and cytochrome-c efflux towards the cytosol}

Recent results (Desforges \textit{et al.}, 2002; Balachandran \textit{et al.}, 2001; 2000) indicated that the mitochondria-associated pathway of apoptosis induction was important during VSV infection, a process related to the M protein of the virus (Kopecky and Lyles, 2003; Desforges \textit{et al.}, 2002). Indeed, overexpression of Bcl-2 or Bcl-XL, two antiapoptotic
regulators of this pathway, partially protected H4 cells from VSV-induced programmed cell death (Desforges et al., 2002). The absence of modulation in the total amount of Bax protein in VSV-infected cells during apoptosis (Fig. 1B) led us to verify if Bax was translocated to mitochondrial membranes during VSV infection, as is observed during other apoptic stresses (Goping et al., 1998; Wolter et al., 1997). Confocal microscopic analysis revealed that Bax was translocated from the cytosol towards mitochondria where it colocalized with the specific dye Mitotracker™ (Fig. 2A). The strong signal of Bax detection in a punctate appearance is not related to an increase in the total amount of Bax protein in the cell. It rather indicates that Bax is now concentrated in aggregates at the mitochondria compared to a diffuse signal everywhere in mock-infected cells. Furthermore, when Bax relocates to the mitochondria, conformational changes make the epitope recognized by the N-20 antibody more easily detected, so the intensity of the Bax signal becomes stronger (Dubrez et al., 2001).

Subcellular fractionation followed by Western blot analysis (Fig. 2B) was consistent with this observation, as Bax was present in larger amounts in the mitochondrial fraction of VSV-Indiana HR and TP6 infected cells (the two most cytocidal variants) at 15 hours post-infection and to a lesser extent during the infection by M protein mutant T1026R1. Concordingly, there was less Bax protein in the cytosol at the same time post-infection. The amount of Bax in the mitochondrial and cytosolic fractions remained unchanged during wild type New Jersey infection as well as for mock-infected cells for up to 20 hours post-infection. A fraction of Bax was also detected in the nuclear fraction from HR and TP6-infected cells and to a lesser extent for
the T1026R1 M protein mutant, a location previously observed during interphase (Hoetelmans et al., 2000).

Bax incorporation in the mitochondrial membrane can induce cytochrome C efflux from the mitochondria to the cytosol. As shown in Fig. 2B, Bax relocation to the mitochondria was accompanied by leakage of cytochrome C towards the cytosolic fraction for HR- and TP6-infected cells, and to a smaller extent for T1026R1-infected cells, in correlation with the virulence of each VSV variants. The absence of cytochrome C in cytosolic and nuclear fractions in the cases where no apoptosis was measured (Fig. 2B, mock-infected cells) led us to believe that the fractions were highly enriched.

Translocation of Bax to the mitochondrial membrane is associated with nuclear condensation and DNA fragmentation.

As Bax was relocated to the mitochondria, we investigated the correlation with the induction of apoptosis. Cells showing a punctate appearance of the protein (Fig. 3A) also showed nuclear condensation or DNA fragmentation, both hallmarks of apoptosis. The number of cells presenting a punctate Bax appearance and DNA fragmentation (Fig. 3A and 3C) was correlated to the virulence of each VSV variant.

Bax translocation to mitochondria during VSV infection of H4 cells is caspase-independent but is delayed by cystein protease inhibitor

Bax translocation to mitochondria can occur through specific activation of caspase 8 (Li et al., 1998) or general activation of caspases (Goping et al., 1998). To verify if it was the case in our model, cells were infected with VSV-TP6, the strongest
inducer of apoptosis, during inhibition of different cystein proteases that can be linked to this phenomenon. Not only did translocation of Bax to mitochondria continue during inhibition of caspase 8 (zIETD-fmk) or inhibition of all caspases (zVAD-fmk), it even accelerated. Indeed, more cells presented a punctate Bax appearance in the presence of caspase inhibitors (Fig. 4A and B). Despite this increased translocation of Bax, even though some cells presented nuclear condensation, DNA fragmentation was partially (zIETD) or totally (zVAD) inhibited as observed by DAPI staining either at 18h (Fig. 4A) or 24 h (data not shown) post-infection. Moreover, many Bax translocation-positive cells did not even present DNA condensation or morphological changes (Fig. 4A, zVAD, white arrowheads).

Lysosomal proteases cathepsins have been associated with the induction of apoptosis (Stoka et al., 2001). When cathepsin B and L were inhibited (ZFA-fmk), an important delay of Bax translocation to mitochondria at 18 h.p.i. was observed (Fig. 4A). Nevertheless, the effect was transient as Bax appeared in a punctate form characteristic of mitochondrial location in many cells at 24 h post infection (data not shown). We have previously observed that ZFA-fmk, protected cells from death over the first 24 h of infection (unpublished results) and reduced infectious virus production in the first 20 h post-infection for most VSV variants studied (Desforges et al., 2002), including VSV-TP6.

As a positive control for Bax translocation to the mitochondria, we submitted the cells to camptothecin and etoposide treatment, two anticancer drugs known to induce mitochondria-associated apoptosis through Bax translocation (Godlewski et al., 2001;
Jia et al., 2001). Mock-treated cells (DMSO and DMSO zVAD-fmk) indicated that zVAD-fmk alone did not produce the relocation of Bax to the mitochondria (data not shown).

Overexpression of antiapoptotic molecules Bcl-2 and cFLIP modulate Bax translocation towards mitochondria, virus production and caspase-3 activation

We have shown that Bcl-2 partially protects against VSV-induced cell death. We therefore investigated if this situation was related to the Bax translocation towards mitochondria. Our results indicate that this Bax relocation was strongly inhibited at 18 h.p.i. by overexpression of Bcl-2, but less so by overexpression of cFLIP (Fig.5A). The cathepsin inhibitor ZFA-fmk also delays Bax translocation to mitochondria (Fig. 4A and B) and we have previously reported that it could delay virus production up to 20h.p.i. (Desorges et al., 2002). Therefore, we evaluated whether Bcl-2 overexpression had an effect on viral production as it strongly delayed the induction of apoptosis during VSV-TP6 infection. As shown in Fig.5B, Bcl-2 overexpression delayed virus production by up to 20 fold at 16 h.p.i., although virus production did recover and surpassed the production in control cells at later times. Interestingly, cFLIP also delayed virus production but to a much lesser extent at 16 h.p.i. (about 50%), (Fig.5B). Overexpression of both cFLIP and Bcl-2 had an effect on caspase-3 activation. Indeed, the fragment corresponding to procaspase-3 is already disappearing in neo control cells at 14 h post-infection with VSV-TP6 but overexpression of cFLIP delayed this process and Bcl-2 completely abolished it until at least 18 h.p.i. (Fig.5C)
Overexpression of antiapoptotic molecules Bcl-2 and cFLIP partially protects cells from VSV-induced cell death

Microscopic observations of Bax relocation to the mitochondria in the presence of different inhibitors (Fig. 4A) indicate that caspases were not implicated as a positive trigger of the phenomenon. Nevertheless, previous results (Desforges et al., 2002; Balachandran et al., 2001) showed that chemical inhibition of caspase-8 and caspase-9 as well as overexpression of Bcl-2 yielded partial protection against cell death during VSV infection. Here, we studied the effect of the overexpression of cFLIP, a natural caspase-8 inhibitor, to confirm the implication of caspase 8 in VSV-induced apoptosis. The outcome of the ectopic expression of cFLIP was evaluated on populations of about 50 pooled clones (average of 2 pools) as well as on isolated single clones. Overexpression of cFLIP induced partial protection when cells were infected by the non-persisting variants VSV-HR and TP6. At 45 h p.i., survival rates ranged between 15 and 30% (Fig 6A and 6B, right-hand panels), which does represent a significant increase (ANOVA, p < 0.01). Indeed, this is a 2.4- to 3-fold increase in cell survival compared to neo control cells, whether measures were performed on cFLIP overexpressing cell populations (Fig. 6A) or on isolated clones which were expressing cFLIP at levels up to 6 times higher than the endogenous molecule (Fig. 6B). Adding the overexpression of Bcl-2 to established stable cell populations already overexpressing cFLIP did not induce a significantly better survival rate when compared to cells overexpressing equivalent levels of ectopic cFLIP alone (Fig. 6A).
Caspase-8-like activity is induced during VSV infection and is modulated by cFLIP and Bcl-2 overexpression

Overexpression of cFLIP increased cell survival after VSV-HR and TP6 infection, suggesting caspase-8 involvement. Caspase-8-like activity was measured during infection of H4 cells with VSV variants, in the presence or absence of overexpression of cFLIP and Bcl-2. Figure 7A shows that caspase-8-like activity was induced by HR and TP6 infection as soon as 14 h p.i, whereas induction during infection by T1026R1 was observed only at 24 h.p.i. Furthermore, the level of caspase-8-like activity induced by VSV was stronger than the level observed after Reovirus infection or after agonistic anti-Fas antibody induction of the Fas-related apoptosis, both previously characterized to induce apoptosis involving caspase-8 activity (Clarke et al., 2001, Wajant, 2002). As observed on Fig. 7B, caspase-8-like activity was equivalently abrogated by cFLIP and Bcl-2 at 14 h.p.i.

DISCUSSION

Many different viruses induce or modulate apoptosis, which appears to be a crucial factor in the complex regulation that takes place during the infection and is determinant in the evolution towards acute or persistent infection (Hardwick, 1998; Teodoro and Branton, 1997; Shen and Shenk, 1995). We have been studying VSV infection of H4 neural cells as a model system to look at persistence in CNS cells, a privileged site for viruses to persist. Using wild type New Jersey strain and a panel of M protein mutants of VSV-Indiana, the modulation of apoptosis was shown to be related to
the ability to persist (Desforges et al., 2002). During many types of stress response, including viral infection, different apoptotic pathways can be activated. Different but complementary arms of the complex apoptotic process exist.

Bax and Bcl-2 are two antagonistic molecules of the family that together participate in the complex mitochondrial regulation of apoptosis. In many instances, the upregulation of Bax and/or the downregulation of Bcl-2 are key events to determine cell fate. Even though, there was no such modification in Bax/Bcl-2 ratios (Fig. 1B) in our model, overexpression of Bcl-2 correlates with a significant prolongation in H4 cell survival after a VSV infection (Fig. 6A and Desforges et al., 2002), especially when infection is performed at a low m.o.i., where Bcl-2 may even allow HR-Indiana virus to persist in culture (Desforges et al., 2002). Overexpression of Bcl-2 has also been shown to be associated with persistent infection of cells by other cytopathic viruses such as Sindbis virus (Levine et al., 1993), Semliki Forest Virus (Scallan et al., 1997) and Japanese encephalitis virus (Liao et al., 1998).

Many studies have described Bax translocation from the cytosol to the mitochondrial membrane in cells undergoing apoptosis, this relocation being sufficient for the induction of apoptosis (Goping et al., 1998; Wolter et al., 1997). Pore formation at the mitochondrial membrane by insertion of Bax homodimers (Martinou and Green, 2001) or of larger Bax/Bak complexes (Antonsson, 2001; Korsmeyer et al., 2000; Sundararajan et White, 2001) is believed to cause leakage of mitochondrial factors into the cytosol, initiating apoptosis. In our system, the rapidity of Bax translocation to the mitochondria and its amount at this organelle’s membrane correlated well with the
degree of apoptosis induction in H4 cells, since the VSV M protein mutant T1026R1 and
the VSV New Jersey strain were less effective in inducing Bax relocation to the
mitochondria and consequently in causing DNA fragmentation (Fig. 3). This is in
agreement with previous results that indicated that the M protein was in part responsible
for VSV-induced apoptosis and that mutations in either the N-terminal or the C-terminal
part of the protein was responsible for a partial loss of function leading to a reduction of
apoptosis induction (Desforges et al., 2002; Kopecky et al., 2001). Both non-persisting
Indiana variants studied here, HR and TP6, Furthermore, even though both non-
persisting variants HR and TP6 induced a higher level of Bax translocation and DNA
fragmentation compared to the persisting variants, TP6 unquestionably induced
apoptotic symptoms and cell death more rapidly than did HR (Desforges et al., 2002 and
Figs. 2 and 3). Accordingly, as cited by Kopecky and colleagues in another system,
other unidentified viral component(s) may be necessary for an optimal induction of
apoptosis (Kopecky et al., 2001). The small amount of Bax protein observed at the
nucleus (Fig. 2B), mostly during HR and TP6 infection has not been thoroughly analysed
but this relocation of the protein was reported in the context of growth factor deprivation
(Mandai et al., 1998).

As overexpression of cFLIP increased cell survival significantly for the non-
persisting HR and TP6 at 2 days p.i. (Fig. 6), our results suggest that VSV-induced
apoptosis relates in part to a caspase-8-related pathway of apoptosis. Bax translocation to
the mitochondria is often related to the cleavage of Bid by caspase-8 (Li et al., 1998;
Slee et al., 2000; Tang et al., 2000). However, our results showing Bax relocation even
during caspase 8 inhibition (Z-IETD-fmk, Fig. 4 or in cells overexpressing cFLIP, Fig. 5A) suggest that this is not the pathway activated during VSV infection. Nevertheless, cFLIP overexpression delayed caspase-3 activation in our system (Fig. 5C), suggesting that caspase 8 targets caspase 3 directly. Indeed, caspase 3, which is strongly activated during VSV infection (Desforges et al., 2002), is often directly activated by caspase 8 (Scaffidi et al., 1999). The delay in caspase-8-like activation during infection by the M protein mutant T1026R1 compared to variants with wild type M protein (Fig. 7A) is thus interesting as we have shown that caspase 3 was significantly less active in H4 cells infected by less virulent VSV variants, including T1026R1 (Desforges et al., 2002). Furthermore, cFLIP overexpression abrogated caspase-8-like activity during infection by reovirus T3D and treatment of cells with agonistic antibody to Fas, which are both known to induce caspase-8 activation. Nevertheless, caspase-8-like activity in cFLIP overexpressing cells was reduced, but not completely inhibited, during infection by all our VSV variants tested. Even though there was a decrease in the level of enzyme activity compared to the neo control cells, ectopic expression of cFLIP was somehow overwhelmed by caspase-8-like activation during VSV infection at 24 h p.i.

Caspase-8 is often activated via the death-receptor-associated pathway during different apoptotic stimuli such as viral infection (Clarke et al., 2001; Kominski et al., 2002) or Fas-Fas ligand interaction (Scaffidi et al., 1999). But the pathway implicating caspase 8 activation could also function in a second stage as an amplifying loop to increase the first apoptotic stimulus that takes place using the intrinsic pathway. Such system implicates caspase 8 activation downstream of caspase 3 and have recently been
reported during 3-deazaadenosine (DZA) induced apoptosis of the U-937 cell line (Cha et al., 2001) and anticancer drugs (Wieder et al., 2001; Tang et al., 2000). Furthermore, our results (Fig. 7B) shows that Bcl-2 overexpression inhibited caspase-8 activation as well as cFLIP. This Bcl-2-associated inhibition was also reported during MHV infection (Chen et Makino, 2002). This result (Fig. 7B), coupled to the important delay of Bax translocation towards mitochondria (Fig. 5A) and to the inhibition of caspase 3 for up to 18 h.p.i. (Fig. 5C) in cells overexpressing Bcl-2, suggests that the caspase-8-like activity measured during VSV infection is dependent of a mitochondria-mediated pathway that first activates caspase-3 following the translocation of Bax towards the mitochondria. In the end, caspase 8 activation would be dependent on previous caspase 3 activation but could also result in an amplifying mechanism to further activate caspase 3.

Besides this delay in Bax translocation to the mitochondria, overexpression of Bcl-2 did protect the cells in part by inhibiting VSV-TP6 replication (Fig. 5B) as it has been reported for Semliki Forest virus (Scallan et al., 1997). Our results (Fig. 5B) also indicate that after inducing a significant initial delay in virus replication, Bcl-2 overexpression allowed a steady increase in time as opposed to neo control cells, as was also observed with SFV by Scallan and colleagues (1997).

On the other hand, the accelerated translocation of Bax during inhibition of caspases (Fig. 4) suggested that regulation of this relocation may require a negative control of caspases. The delayed translocation of Bax when inhibitors of cathepsins B and L was present (Fig. 4; ZFA-fmk) suggests that there could be a cross-talk between caspases and cathepsins for the control of VSV-induced apoptosis, as it has been
proposed for ischemic neuronal death of primates (Yamashima, 2000) Even though we observed positive or negative modulation according to the type of inhibition, relocation of Bax was always apparent during infection of cells with VSV-TP6, the strongest inducer of apoptosis. In all cases, except when caspases were inhibited by either ZVAD-fmk and Z-IETD-fmk (Fig. 4), each and every cell that had Bax translocated to the mitochondria presented a fragmented nucleus. This clearly indicates that when Bax is mostly located at the mitochondria, apoptosis occurs in part through downstream activation of caspases and cell death will therefore follow. Furthermore, the increase in Bax relocation to the mitochondria coupled to significant inhibition of DNA fragmentation in the presence ZVAD-fmk (Fig. 4) implies that this movement of Bax is necessary for efficient casapse activation and induction of the intrinsic pathway of apoptosis.

Persisting viral mutants may appear naturally. As VSV has been proposed as a treatment against cancer cells in vivo, it is fundamental to evaluate the importance of cellular or viral factors, such as the M protein, for programmed cell death to happen adequately and to understand why and how persistent infection can be established and maintained in cells. In this regard, the major conclusion of our study is that mitochondria-related apoptosis is central during VSV infection and involves relocation of Bax towards mitochondria, caspase 3 and caspase-8 activation. A cross-talk between those events may serve to amplify the apoptotic stimulus during infection, at least for the most virulent variants, thus preventing the establishment of a viral persistence.
ACKNOWLEDGMENTS

We gratefully thank Francine Lambert and Marcel Desrosiers for fabulous technical support for immunofluorescence and confocal experiments and analysis and Julie Guenoun for help with subcellular fractionation experiments.

This work was supported by the Institute of Infection and Immunity, Canadian Institutes for Health Research (CIHR) funds to Pierre J. Talbot and by Natural Sciences and Engineering Council of Canada (NSERC) and Université du Québec à Montréal financial support to Laurent Poliquin. Marc Desforges was supported by a studentship from CIHR, Fondation Armand-Frappier and INRS-Institut Armand-Frappier.
REFERENCES

Korsmeyer, S.J., M.C. Wei, M. Saito, S. Weiler, K.J. Oh and P.H. Schlesinger. (2000). Pro-apoptotic cascade activates Bid, which oligomerizes Bak or Bax into pores that result in the release of cytochrome C. *Cell Death and Differentiation* 7, 1166-1173.

LEGENDS TO FIGURES

Fig. 1. Absence of significant variations in the total amount of Bax and Bcl-2 levels after infection with VSV variants. (A) Northern blot analysis of the apoptosis-related Bax gene indicate that VSV-induced apoptosis is p53-independent. Analysis of transcript levels were performed after infection of H4 cells for the indicated times p.i. with the VSV variants. Fifteen micrograms of total RNA was migrated on a 1% (w/v) agarose formaldehyde denaturing gel and transferred overnight onto a Nylon membrane (Osmonics). Radiolabelled probe from human Bax cDNA was used. EtBr staining of total 28S rRNA was used as a loading control. (B) Representative detection of Bax protein (left-hand panel) and of Bcl-2 protein (right-hand panel) compared to β-Actin. Twenty micrograms of proteins were resolved on a 12.5 % (w/v) SDS-PAGE. Statistical analysis by ANOVA revealed that there were no significant differences in the amounts of both Bax and Bcl-2 proteins in total cell extracts. Values were always p ≥ 0.05. Densitometric analysis was performed for 4 different experiments.
Fig. 2. Infected cells undergo apoptosis related to Bax relocation to the mitochondria and slight cytochrome-c efflux from the mitochondria in apoptotic cells after infection with VSV. (A) Immunodetection of Bax protein revealed its translocation towards the mitochondria during VSV infection (18 h post-infection). The punctate form of Bax colocalized with the mitochondrial-specific dye (MitotrackerTM) after infection with VSV-TP6, as seen by confocal analysis. (B) Twenty micrograms of subcellular fractions samples harvested at 2, 15 and 20 h p.i., were resolved on 12.5 % (w/v) SDS-PAGE and Western blots confirmed that Bax was mainly translocated from the cytosol to the mitochondria during VSV-Indiana HR, TP6 and to a lesser extent for M mutant T1026R1. No Bax movement was observed for mock-infected and New Jersey-infected cells up to 20 h post-infection. Cytochrome C (Cyt C) immunodetection revealed a release from mitochondria during VSV-HR, TP6 and to a lesser extent for M mutant T1026R1. No Cyt C movement was observed for mock-infected and New Jersey infected cells up to 20 h post-infection.

Fig. 3. Translocation of Bax to the mitochondrial membrane is associated with nuclear condensation and DNA fragmentation. (A) Immunodetection of Bax was correlated with DNA condensation and fragmentation (hallmarks of apoptosis) in VSV-infected H4 human neural cells as seen by DAPI staining of the nucleus. (B) Negative control of Bax immunodetection. (C) The number of apoptotic cells was in direct relation with the virulence of the different VSV variants. Non-persisting HR and TP6 induced more Bax translocation more rapidly to the mitochondria and thus more DNA fragmentation.
Fig. 4. Cystein protease inhibition modulate translocation of Bax to the mitochondrial membrane during VSV-TP6 infection of H4 cells. (A) Infection during inhibition of caspase (z-IETD-fmk or zVAD-fmk) increased Bax relocation to mitochondria. Many cells positive for Bax relocation did not show a fragmented nucleus during infection in the presence of zVAD-fmk (white arrowheads). Inhibition of cathepsins B and L (zFA-fmk) decreased this relocation to the mitochondria. (B) Quantitation (mean of the count of six different fields in two independent experiments) of cells positive for the punctate appearance of Bax.

Fig. 5. Overexpression of Bcl-2 and cFLIP modulate the production of infectious virus and the induction of apoptosis. (A) Bcl-2 strongly inhibited Bax relocation towards mitochondria while cFLIP did not alter it significantly when compared to neo control cells. (B) VSV replication was significantly delayed by overexpression of Bcl-2. (C) Procaspase 3 fragment of 32 kDa disappearance (revealing caspase 3 activation) was delayed by overexpression cFLIP and inhibited by overexpression of Bcl-2 for up to 18 h.p.i.
Fig. 6. Overexpression of cFLIP and Bcl-2 partially protected cells from VSV-induced cell death. (A) Evaluation of cell survival by Trypan blue dye exclusion indicated that cells overexpressing either Bcl-2, cFLIP or both were all partially protected from VSV-induced cell death. Cells are representing populations of 50 pooled clones. Viability of the population [Bcl-2-FLIP]-1 and [Bcl-2-FLIP]-2 are shown together as a mean as well as FLIP-1 and FLIP-2. ANOVA statistical analysis revealed that Bcl-2 allowed a significant increase in survival during infection by the three variants tested while cFLIP did allow a significant increase in cell survival at 45 h p.i. only for wild type M protein VSV variants HR and TP6. RT-PCR analysis indicated that the transgenes (either Bcl-2 or cFLIP or both) were expressed at higher levels than the corresponding endogenous genes. GAPDH was the internal control. (B) Evaluation of cell survival (Trypan blue dye exclusion) at 45 h p.i and the level of cFLIP transgene expression (RT-PCR) in three different individual cFLIP-transfected clones and neomycin (neo) control. Survival of all three cFLIP isolated clones differed significantly from the neo control, but the variations between clones were not significant. (ANOVA p > 0.05).
Fig. 7. Monitoring of caspase-8-like activity by colorimetric assay using IETD-pNA, indicated that caspase-8 was activated during infection with VSV variants and modulated by overexpression of cFLIP and Bcl-2. (A) VSV variants with wild type M protein (VSV-HR and -TP6) induced caspase-8-like activity more rapidly (14h p.i) than the VSV T1026R1 M mutant and reovirus T3D strain in neo control cells. Induction of caspase-8 like activity observed for VSV-HR and TP6 was partially abrogated during VSV infection in cFLIP-overexpressing cells. Reovirus T3D strain and agonistic antibody to Fas were used as positive controls of caspase-8-like activity induction. Asterisks in panel A indicate significant (*ANOVA, p < 0.05) or highly significant (**ANOVA, p < 0.01) variations in caspase-8-like activity between neo- and cFLIP-overexpressing cells for each virus. (B) Another series of experiments revealed that overexpression of Bcl-2 inhibited caspase-8-like activation as well as cFLIP overexpression.
% of cells with punctate or fragmented nucleus

A

B

C

DNA

Control

mock

TP6

HR

T1026R1

New Jersey

DNA

Bax

mock
Fig. 7
<table>
<thead>
<tr>
<th>RNA amplified nucleotides</th>
<th>Primer name</th>
<th>Primer sequence 5’ to 3’</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human cFLIP</td>
<td>FLIP-S</td>
<td>GTACATATGCTCTGACATCCATGCTCCATCAGGTTG</td>
<td>383-418</td>
</tr>
<tr>
<td>Human cFLIP</td>
<td>FLIP-AS</td>
<td>GTGACTCGAGTGAGGAGAGGATAAGTTTCTTCTTC</td>
<td>1822-1785</td>
</tr>
<tr>
<td>Human Bcl-2</td>
<td>Bcl-2-S</td>
<td>TGGGCCCTTCCTTAGTTCG</td>
<td>1899-1918</td>
</tr>
<tr>
<td>Human Bcl-2</td>
<td>Bcl-2-AS</td>
<td>TCAGTTCTGGAAGTACATTAGG</td>
<td>2178-2159</td>
</tr>
<tr>
<td>Human GAPDH</td>
<td>GAPDH-H</td>
<td>CGGAGTCAACGGATTGGTCTATGTAT</td>
<td>78-101</td>
</tr>
<tr>
<td>Human GAPDH</td>
<td>GAPDH-I</td>
<td>AGCCTTCTCCATGGTGCTGAAAGC</td>
<td>384-361</td>
</tr>
</tbody>
</table>

* a Tepper and Seldin, 1999

* b Gene Bank access number M13994

* c Gene Bank access number M33197; Lafleur et al., 2001
CHAPITRE IV : VSV ET APOPTOSE; UN CONTEXTE PLUS GLOBAL

11 Matériel et Méthodes

11.1 Cellules et Virus
La lignée de cellules humaines H4 (ATCC-HTB-148) a été cultivée à 37°C dans une atmosphère à 5% de CO₂ dans le milieu DMEM contenant 10% (v/v) de sérum de veau fetal, 100 unités/mL de pénicilline G et 100 µg/mL de sulfate de streptomycine. Le variant VSV-HR et les mutants de la protéine M qui en sont dérivés sont décrits dans le Tableau 1 au chapitre II de cette thèse. Le variant TP6, également dérivé de HR, porte un gène M identique mais sa capacité à induire la production d’IFNβ chez les cellules infectées est toutefois plus grande que celle de HR. La souche New Jersey Hazelhurst est un don du Dr Yong Kang (University of Western Ontario). Le réovirus T3D est un don du Dr Guy Lemay de l’Université de Montréal. Les infections ont été réalisées à une multiplicité d’infection (m.o.i.) de 1, les virus étant dilués dans un tampon PBS additionné de 2% (v/v) de sérum de veau fétal et incubés une heure à 37°C dans un volume minimal variable selon le contenant utilisé pour chaque expérience. Après adsorption d’une heure, les cellules ont été lavées dans le PBS et réadditionnées de milieu DMEM complet. Tous les produits pour la culture cellulaire provenaient de chez Invitrogen Life Technologies.

11.2 Viabilité cellulaire avec ou sans inhibiteur
La viabilité des cellules a été estimée par une coloration au bleu de Trypan 0.2% (v/v). Après un traitement de 2 minutes à la trypsine (0.25% p/v), les cellules ont été resuspendues dans du DMEM complet. Quatre volumes de suspension cellulaire étaient mélangés à un volume de bleu de Trypan 1% et le pourcentage de viabilité était évalué en microscopie à l’aide d’un hémacymètre. Les infections en présence des inhibiteurs ZFA-fmk (100 µM) et de cyclosporine A (CsA 10 µM) ont été précédées d’une préincubation des cellules d’une durée de 2 heures dans le DMEM contenant l’inhibiteur à la concentration indiquée. Les cellules servant de témoins ont été incubées en présence de DMSO, le solvant des deux inhibiteurs utilisés. La même période de préincubation a été utilisée pour les infections en présence du Pyrrolidine Dithiocarbamate (PDTC 100
μM). Comme cet inhibiteur est soluble en solution aqueuse, les cellules témoins ont été infectées en présence de PBS dilué dans le milieu DMEM dans les mêmes proportions que le PDTC.

11.3 Préparation d'extraits protéiques et Immunobuvardage de type Western

Les cellules ont été préincubées 2 heures en présence de Mu-Val-Hph 100 μM, de ZVAD-fmk 100 μM (Enzyme System) ou de DMSO avant d’être infectées tel qu’indiqué auparavant. Le fractionnement cellulaire des protéines a été réalisé en récupérant les cellules par grattage. Les échantillons ont ensuite été lavés deux fois au PBS, transférés dans un microtube de 1.5 mL et centrifugés 5 minutes à 3500 rpm à 4°C. Les culots récupérés ont été lysés pour une période de 30 secondes dans un tampon digitonine; (1 mg/mL de digitonine (Sigma-Aldrich), 20 mM HEPES ph 7.4 (Invitrogen Life Technologies), 250 mM sucrose, 1 mM PMSF (Sigma-Aldrich)). Après centrifugation 30 secondes à 14,000 x g à température ambiante, les lysats ont été remis sur glace. Les surnageants récupérés ont été transférés à un nouveau microtube de 1.5 mL et représentaient les fractions cytosoliques (C). Les culots ont par la suite été lysés dans un tampon de lyse (0.2% (v/v) Triton X-100; 150 mM NaCl; 30 mM Tris-HCl pH 7.2; PMSF 1 mM) pour une période de 10 minutes sur la glace et centrifugés à 4°C pour une période de 15 minutes à 5000 x g. Les surnageants issus de cette centrifugation représentaient la fraction mitochondriale (M) et le culot, qui représentait la fraction nucléaire (N) a été resuspendu dans le tampon digitonine. La concentration en protéines totales des échantillons a été évaluée par la technique de Bradford et les dits échantillons ont été conservés à −20°C jusqu’à analyse. Cinquante microgrammes (détectection de Bax) et 30 μg (détectection de la sous-unité 30kDa des calpaines) de protéines de fraction mitochondriale et cytosolique ont été déposés sur SDS-PAGE et transférés sur membrane de PVDF. La qualité du transfert a été évalué par coloration au rouge Ponceau-S (Sigma-Aldrich).

Les analyses par immunobuvardage visant à détecter la protéine Bax ont été réalisées en incubant les membranes en présence d’un anticorps primaire polyclonal de lapin (BD-Pharmingen) à la dilution de 1/1500 dans le TBS-T (Tris Buffered Saline pH
7.6; Tris-HCl 20 mM, NaCl 100 mM) additionné de 0.1% (v/v) de Tween-20) additionné de 5% (p/v) de lait en poudre écrémé suivit d’une incubation avec un anticorps secondaire anti-lapin couplé à la HRP (*Horse Radish Peroxidase*) (Amersham Biosciences) à la dilution de 1/7500 dans le TBS-T (*Tris Buffered Saline* pH 7.6; Tris-HCl 20 mM, NaCl 100 mM) additionné de 0.1% (v/v) de Tween-20). Les analyses visant à détecter les calpâines ont été réalisées en incubant les membranes en présence d’un anticorps primaire monoclonal de souris détectant la sous-unité de 30kDa clivée ou non (Chemicon) à la dilution 1/1500 dans le TBS-T + 5% (p/v) de lait écrémé. La seconde incubation a été réalisée en présence d’un anticorps secondaire anti-souris couplé à la HRP (*Horse Radish Peroxidase*) (Amersham Biosciences) à la dilution de 1/7500 dans le TBS-T. L’immunodétetection a été réalisée avec la trousse ECL-Plus (Amersham Biosciences).

11.4 Immunofluorescence indirecte

Les cellules H4 ensemencées 48 heures auparavant dans des lames à 16 puits de type LABTEK (Nunc) à raison de 8 x 10³ cellules par puits. L’infection (m.o.i. de 1) était réalisée au moment où les cellules atteignaient 90% de confluence, soit 2 x 10⁸ cellules/puits. À 18 heures post-infection, le milieu de culture était retiré et les cellules fixées pour une période de 20 minutes à température ambiante dans une solution de paraformaldehyde 4% (p/v), perméabilisées 5 minutes au méthanol froid (-20°C) et lavées trois fois au PBS. L’immunodétectio de Bax était réalisée à l’aide de l’anticorps primaire polyclonal de lapin (Santa Cruz N-20) à la dilution 1/200 dans le PBS. Après une incubation d’une heure à température ambiante dans le noir, les cellules étaient lavées trois fois au PBS puis réincubées en présence d’un anticorps secondaire couplé au fluorochrome AlexaFluor-488 (Molecular Probes) dilué à 1/1500 dans le PBS. Après 3 lavages au PBS, les cellules étaient incubées 5 minutes en présence d’une solution de DAPI 1µg/mL afin de pouvoir observé les noyaux. Le milieu de montage subséquent était le gelvatol.
12 Résultats / Discussion

Le but ultime de toute l'étude présentée dans les pages de cette thèse était d'établir comment le sérotype New Jersey et différents mutants de la protéine M du sérotype Indiana du VSV pouvaient induire une infection persistante. Le coeur des résultats concerne l'infection d'une lignée de cellules humaines issue du système nerveux central. Les principaux résultats sont présentés dans deux articles (chapitre II et III) et permettent de mettre en lumière l'implication de la bonne mise en œuvre du processus apoptotique pour éviter l'établissement d'une persistance par VSV. Bien que certains points liés aux mécanismes d'induction de l'apoptose soient expliqués, plusieurs questions restent en suspens.

Les résultats complémentaires du chapitre IV représentent des données préliminaires mais tout de même fort intéressantes pouvant aider à élaborer un portrait plus complet du processus menant à la mort ou à la survie de cellules infectées par nos différents variants de VSV. Les sections 12.1 et 12.2 de ce chapitre comprennent d'abord un retour sur les principaux résultats présentés dans les chapitres II et III dans un contexte plus large et les sections 12.3 et 12.4 apporte une ouverture sur quelques facteurs supplémentaires qui pourraient être impliqués dans le phénomène d'induction d'apoptose par VSV. Afin de tenter de tracer un portrait plus global des mécanismes associés à l'induction du processus apoptotique par VSV, une réflexion sur une série de résultats préliminaires suggérant des avenues possibles concrètes pour compléter le portrait d'induction d'apoptose par VSV est présentée à la section 12.5. La section 12.6 propose un modèle rassemblant les données expérimentales jumelées aux connaissances théoriques sur l'apoptose en général et finalement la section 12.7 décrit certaines conséquences néfastes potentielles d'une induction inadéquate ou inefficace d'apoptose lors d'une infection naturelle ou artificielle par VSV au SNC.
12.1. Induction d’apoptose et prévention d’infection persistante par VSV

L’article composant le chapitre II (Desforges et al., 2002) démontre que VSV induit l’apoptose de cellules humaines provenant du SNC et suggère qu’une induction inefficace de ce processus est un des facteurs lié à l’établissement possible d’une infection persistante. Dans le cas du sérotype Indiana, l’ensemble des résultats du chapitre II suggère fortement que la protéine M soit impliquée dans le processus. La figure 7 de cet article suggère que l’expression ectopique de cette protéine sans aucun autre facteur viral puisse induire la fragmentation d’ADN et que cette caractéristique apoptotique est diminuée lorsqu’une protéine M mutante est exprimée. Le choix de faire exprimer la protéine M seule en utilisant une technique de transfection d’ARNm s’explique par les nombreux insuccès à réussir à obtenir une bonne expression de la protéine M (expression transitoire ou obtention de lignées stables avec expression du gène M sous le contrôle de promoteurs inducibles), probablement à cause de l’effet d’inhibition engendrée par la protéine M sur une très grande quantité de promoteur, un phénomène lié à la fonction d’inhibition de transcription de M. En fait, même s’il semble, dans certaines circonstances, possible de faire exprimer la protéine M à partir d’un ADNc cloné dans un vecteur d’expression (Terstegen et al., 2001) ou encore à l’aide d’un système d’infection utilisation le virus de la vaccine (Black et al., 1993), par la transfection d’un ARNm, on évite la possible répression sur un promoteur dont l’activité dépend de la transcription de l’hôte pour faire exprimer un gène M cloné dans un vecteur d’expression et le niveau de détection de la protéine M est en général meilleur. L’utilisation d’un vecteur viral de type adénovirus modifié, permettant l’expression de protéine toxique de façon inducible par l’utilisation du système tétracycline, pourrait être envisagée étant donné la possibilité de faire produire des protéines toxiques en bonne quantité à l’intérieur de cellules eucaryote (Gagnon et al., 2003).

Néanmoins, le résultat présenté à la figure 7 du chapitre II est qualitatif et corrobore des résultats obtenus par d’autres auteurs (Kopecky et al., 2001). Toutefois, l’expression de la protéine M n’a pas été mesurée suite à la transfection d’ARNm. Or, on sait aujourd’hui que l’expression de la protéine M mutante provenant du mutant
T1026R1 (M51R), utilisée dans l'expérience, nécessite la transfection d'environ 10 fois plus d'ARNm pour obtenir un niveau d'expression de protéine M comparable à celui de la protéine M de type sauvage (Ahmed et al., 2003). De plus, la quantité de cellules positives pour la réaction TUNEL, indiquant une fragmentation d'ADN, est significativement plus faible que suite à l'infection par VSV. Il appert qu'une quantité beaucoup moins importante de protéine M est synthétisée lors d'une transfection que lors d'une infection par le virus entier (Black et al., 1994; Black et Lyles, 1992) ce qui peut expliquer la moins grande quantité de cellules H4 en apoptose lorsque M est transfectée seule (Figure 7) que lors de l'infection par VSV (Figure 3). Il convient donc, comme il a été fait dans l'article présenté au chapitre II, d'être prudent sur la signification réelle du résultat présenté. Une étude utilisant une co-transfection d'un ARNm de M et un excès d'ARNm de la Enhanced Green Fluorescence Protein (EGFP) ou encore où les différents gènes M seraient clonés en fusion avec celui de la EGFP permettrait aisément de mesurer la quantité de cellules réellement transfectée et présentant des symptômes apoptotiques en faisant une réaction TUNEL ou une quelconque mesure de fragmentation d'ADN caractéristique de l'apoptose.

Quoiqu'il en soit, il est clairement démontré que la protéine M exprimée seule dans un cellule, peut induire l'apoptose (Kopecky et Lyles, 2003a; 2003b; Kopecky et al., 2001) et des résultats comparant des virus recombinants issus de la souche Indiana dont seule la protéine M varie, démontre que l'induction d'apoptose est retardée dans les cellules HeLa (Kopecky et Lyles 2003b). Il appert que cette baisse dans l'induction d'apoptose par la protéine M mutante ne survient que dans des cellules où l'induction d'apoptose ne nécessite pas de modulation de transcription de gènes liés à l'apoptose. En fait, il semble que la fonction d'inhibition d'expression des gènes de la cellule-hôte liée à la protéine M de type sauvage soit directement responsable de l'induction d'apoptose dans les cellules HeLa (Kopecky et Lyles, 2003a). Les cellules H4 utilisées dans notre modèle, semblent être du même type que les cellules HeLa en rapport à l'induction d'apoptose par VSV. En effet, l'induction d'apoptose est la plus forte et la plus rapide
lors de l’infection par les variants Indiana HR et TP6 qui possèdent tous deux la même protéine M de type sauvage associé à une capacité à inhiber la transcription chez l’hôte.

Nos résultats suggèrent fortement que la relocalisation de la protéine Bax est un événement précoce essentiel dans l’induction d’apoptose induite lors de l’infection par VSV. Bien que la preuve irréfutable du rôle de Bax dans ce processus et le mécanisme menant à son activation, en induisant sa translocation vers la mitochondrie, ne soit pas illustrés dans les chapitres II et III, la section 12.5 suggère des avenues possibles. Il est très fortement suggéré que la protéine M puisse jouer un rôle dans l’induction d’apoptose dans les cellules H4 (Desforges et al, 2002) comme elle peut le faire dans d’autres modèles (Kopecky et Lyles, 2003a; 2003b; Kopecky et al., 2001). Quoiqu’il en soit, l’implication de la protéine M n’est pas directement démontrée dans l’activation de Bax. Des études de surexpression de M pourront être entreprises dans les cellules H4 afin vérifier si l’induction d’apoptose déjà observée (Desforges et al., 2002) est associée à la relocalisation de Bax vers la mitochondrie. Néanmoins, le séquençage complet des génomes des variants Indiana moins virulents n’a pu démontrer aucune autre mutation que celles identifiées dans la protéine M lorsque comparé au variant HR (Desforges et al., 2001).

Les résultats présentés dans les chapitres II (Figure 5A) et III (Figure 6) suggèrent également que l’apoptose induite lors de l’infection par VSV induit plusieurs voies apoptotiques de façon simultanée en impliquant l’activation de caspase-8 et –9; ce qui corrobore des données déjà publiées par d’autres auteurs (Balachandran et al., 2001). Dans leurs travaux présentés en 2003, Kopecky et Lyles (2003b), démontrent que l’activation de la caspase-9 associée à la voie mitochondriale est la voie principalement activée par la protéine M sans toutefois mettre de côté l’importance de la caspase-8 dans le portrait global. Nos résultats indiquent que suite à l’infection par VSV, la survie cellulaire est augmentée lors d’une inhibition chimique de caspase ou lors de l’expression ectopique de Bcl-2, (inhibiteur de la voie apoptotique mitochondriale empêchant habituellement l’activation de la caspase-9) ou de l’inhibiteur naturel de la caspase-8 cFLIP (Krueger et al., 2001). Ces résultats suggèrent que l’activité des deux
caspases survient lors de l’infection par VSV. De plus, la figure 5C du chapitre III indique que l’expression ectopique de Bel-2 retardé l’activation de la caspase-3 et la figure 7B, celle de la caspase-8, ce qui laisse présager que l’activation de la caspase-8 surviendrait en aval de la permeabilisation de la membrane mitochondriale suite à une translocation de Bax vers cet organite. Le retard d’activation caspase-8-like observée lors l’infection par le mutant de la protéine M T1026R1, supporte cette hypothèse puisque la relocalisation de la protéine Bax vers la mitochondrie est moins rapide lors de l’infection des cellules H4 par ce mutant. Ainsi, l’activation de la caspase-8 pourrait servir en quelque sorte de système d’amplification à la voie mitochondriale qui elle représenterait la voie apoptotique principale induite par la protéine M de VSV, tel que suggéré par les résultats de Kopecky et Lyles (2003b).

12.2 Induction d’apoptose liée aux récepteurs de mort

L’activation de caspase-8 (parfois de la caspase 10) survient très souvent suite à un stimulus utilisant la voie extrinsèque liée aux récepteurs de mort (Sartorius et al., 2001; Hengartner, 2000) et de nombreux virus utilisent cette façon de faire pour induire en tout ou en partie l’apoptose de cellules infectées. En effet, le réovirus (Richardson-Burns et al., 2002; Clarke et al., 2001; 2000), le virus Influenza (Balachandran et al., 2000), le virus de Sindbis (Sarid et al., 2001), le virus de l’hépatite C (Zhu et al., 2001; 1998), le HIV (de Oliveira Pinto et al., 2002; Pinti et al., 2000) le MHV (Chen et Makino, 2002) peuvent tous induire l’apoptose reliée à la voie des récepteurs de mort. Dans le cas de VSV, il a été démontré que l’ajout de TNF-α durant l’infection par le sérotype New Jersey accélérerait l’induction d’apoptose dans les cellules HeLa infectées (Koyama et al., 1998b), suggérant peut-être un effet additif entre VSV-New Jersey et le TNF-α ou la possibilité que le virus induise l’apoptose par une voie différente de celle impliquant les récepteurs de mort dans ce type cellulaire. Quoiqu’il en soit, le tout reste à prouver et il n’a jamais été directement démontré que VSV pouvait induire la voie des récepteurs de mort pour activer la caspase-8. Les résultats présentés au chapitre III ainsi
que ceux des équipes de D.S. Lyles (Kopecky et Lyles, 2003b) et de G.N. Barber (Balachandran et al., 2001) indiquent que la caspase-8 joue un rôle lors de l’induction d’apoptose suite à l’infection par VSV. Toutefois, il semble que cette activation soit plus significative lors de l’induction d’apoptose suite à l’infection par VSV dans notre modèle. Comme précédemment mentionné, nos résultats suggèrent que l’activation de caspase 8 agirait comme une sorte de système d’amplification de la voie mitochondriale puisque la surexpression de Bcl-2 altère l’activation de la dite caspase, ce qui n’exclut pas que la caspase-8 puisse être activée par la voie des récepteurs de mort comme c’est le cas pour le réovirus T3D (Clarke et al., 2001). La voie apoptotique liée aux récepteurs de mort est associée à la formation du DISC et peut faire intervenir des molécules différentes selon le récepteur particulier sollicité. Comme la molécule cFLIP joue habituellement son rôle inhibiteur au niveau du DISC (Krueger et al., 2001), nos résultats suggèrent fortement une activation de la voie des récepteurs de mort, notamment suite à l’infection par les variants VSV-Indiana portant une protéine M de type sauvage. Quoi qu’il en soit, la protéine cFLIP peut être phosphorylée et devenir moins efficace pour s’associer au DISC et prévenir l’apoptose (Higuchi et al., 2003). Il conviendrait de vérifier si ce phénomène survient dans notre modèle. De plus, la protéine adaptatrice FADD est toujours présente dans le DISC. Ainsi, l’expression ectopique d’un mutant de type dominant négative (DN-FADD) serait une bonne façon de démontrer si l’activation de caspase-8 associée à l’infection par VSV peut, entre autre, être liée à l’induction d’apoptose via des récepteurs de mort. De plus, en engendrant une lignée cellulaire surexprimant à la fois Bcl-2 et le DN-FADD, il serait beaucoup plus aisé de départager l’importance des voies mitochondriale et des récepteurs de mort suite à l’infection par VSV.

12.3 Induction d’apoptose : les autres facteurs possibles

L’inhibition partielle d’activation de caspase-8 par la surexpression de Bcl-2 dans notre modèle, peut aussi suggérer un rôle de la caspase-12 dans l’induction d’apoptose par VSV. Située au niveau du réticulum endoplasmique cette caspase est capable d’activer la caspase-8 (Jimbo et al., 2003) et une surexpression de Bcl-2 peut modifier
cette cascade pro-apoptotique étant donné la présence de ce facteur anti-apoptotique au niveau de la membrane de la mitochondrie et du réticulum endoplasmique (Häcki et al., 2000). De plus, la caspase 12 peut être activée par les calpains (Nakagawa et Yuan, 2000). Sachant que ces protéases semblent activées lors de l’infection par VSV (Fig. 4A), il serait opportun de vérifier dans quelle mesure la caspase 12 peut être activée et participer à la cascade apoptotique induite lors de l’infection par VSV.

On l’a vu dans le chapitre I, nombre d’autres facteurs cellulaires peuvent d’une façon ou d’une autre participer à l’induction d’apoptose. Une des voies d’induction d’apoptose fait intervenir la formation de céramides par les sphingomyélinases à partir de la membrane plasmique. Comme décrit auparavant, ces lipides peuvent influencer la voie mitochondriale d’apoptose en favorisant la relocalisation de Bax vers la mitochondrie (von Haefen et al., 2002; Kim et al., 2001). Il a déjà été démontré que le virus de Sindbis pouvait induire l’apoptose en partie par la formation des dits céramides même lorsqu’un virus traité aux U.V. et donc non-réplicatif est utilisé. Ce phénomène est à relier d’une quelconque façon à l’acidification lysosomiale puisque lorsque ce dernier processus est bloqué par le NH4Cl, la génération de céramides est inhibée (Jan et al., 2000). Un fait encore plus intéressant provient du fait que lorsqu’une très forte multiplicité d’infection est utilisée pour infecter des cellules Vero-76 par un VSV-Indiana (San Juan) inactivé aux U.V., il peut y avoir induction d’apoptose et que, comme préalablement mentionné, le traitement des cellules au NH4Cl altère le processus apoptotique induit par VSV dans ces cellules (Gadaleta et al., 2002).

La protéine AIF est certainement un candidat intéressant dont il faudrait évaluer l’impact sur l’induction d’apoptose lors de l’infection par VSV. En effet, ce facteur peut passer de la mitochondrie vers le cytosol pour finir au noyau et engendrer la fragmentation de l’ADN et l’apoptose indépendamment de l’activation des caspases (Candé et al., 2002). Au moins un virus, le HSV-1, induit la translocation de AIF vers le noyau et donc induit une apoptose partiellement indépendante de l’activation de caspases (Zhou et Roizman, 2000). Selon les résultats de survie cellulaire présentés au chapitre II (Desforges et al., 2002), la présence de l’inhibiteur des caspases zVAD-fmk permet une
survie d’environ 80% des cellules à 48 heures post-infection. Le 20% de cellules n’étant pas protégé pourrait être confronté à une induction d’apoptose reliée à AIF. De plus, la translocation de Bax à la mitochondrie et son insertion dans la membrane externe mitochondriale favorise le passage sélectif de AIF vers le cytosol (Bidère et al., 2003).

Finalement, la caspase-2 pourrait représenter un facteur pro-apoptotique dont il conviendrait de vérifier l’activation dans notre modèle. Cette caspase est notamment capable de favoriser directement la libération de cytochrome c et d’autres facteurs apoptogènes vers le cytosol et donc de participer à l’induction d’apoptose via la voie intrinsèque (Guo et al., 2002).

12.4 Mort cellulaire induite par d’autres processus que l’apoptose

Certains auteurs ont également décrit que l’inhibition des caspases par le zVAD-fmk pouvait mener à un changement dans le type de mort cellulaire observé. En effet, il appert qu’en présence de zVAD-fmk, des lymphocytes B (Lemaire et al., 1998) et des neurones (Nicotera, 2002; 2000) qui auraient dû mourir par apoptose, finissent plutôt par mourir par un processus nécrotique associé à une dépletion en ATP dans les cellules. Enfin, la paraptose, un mode de mort cellulaire à mi-chemin entre l’apoptose proprement dite et la nécrose a déjà été décrite (Chen et al., 2002; Sperandio et al., 2000). À l’instar de l’apoptose, il s’agit d’un processus actif nécessitant de l’énergie mais qu’il n’est pas possible d’inhiber par le zVAD-fmk et où l’on observe ni fragmentation d’ADN ni activation de caspase-3 (Sperandio et al., 2000).

Quoiqu’il en soit, parmi toute la panoplie de facteurs pouvant être associés à l’induction d’apoptose par VSV, certaines pistes sont ouvertes par quelques données préliminaires présentées dans la prochaine section. Ces résultats complémentaires suggèrent quelques voies à explorer pour mieux comprendre les mécanismes impliqués dans le contrôle de l’apoptose induite lors de l’infection par VSV.
12.5 Résultats préliminaires et discussion complémentaire aux chapitres II et III

La section 12.5 présentée ici, suggère des avenues ayant entre autres trait aux mécanismes possibles pour expliquer la relocalisation de la protéine Bax du cytosol vers la mitochondrie suite à l’infection par VSV. Ces résultats font référence aux Figures 4 et 6. Une implication potentielle du facteur transcriptionnel NF-kB dans la régulation de la mort cellulaire induite suite à une infection par VSV est également mise en évidence à la figure 5.

12.5.1 Les Calpaines

La Figure 4A présente une analyse par immunobuvardage de type *Western* d’échantillons protéiques de fraction cytosolique (C) et mitochondriale (M), où l’on peut voir un court fragment de 18 kDa correspondant à un produit clivé de la sous unité 30 kDa de la calpaine. L’échantillon témoin, récolté à partir de cellules n’ayant subies aucun traitement, présente un tel fragment au niveau de la fraction cytosolique. Il semble donc qu’il y ait une activité constitutive basale et physiologiques de calpaines à l’intérieur des cellules H4, comme c’est le cas pour d’autres types cellulaires en rapport à des fonctions de motilité (Potter *et al*., 1998), de contrôle de neurotransmetteurs (Bi *et al*., 1998) ou du cycle cellulaire (Choi *et al*., 1997). Le processus d’extraction de protéines par fractionnement cellulaire pourrait également induire un faible niveau d’activation de ces protéases (Wood *et al*., 1998). Dans l’échantillon représentant des cellules ayant été traitées à la camptothécine (CPT), un inhibiteur de la topoisomérase I et un agent reconnu pour induire l’activation de la calpaine (Mandic *et al*., 2002), le clivage de la calpaine apparaît important. L’échantillon de protéines extraites à partir de cellules infectées par VSV-TP6 présente le même fragment de 18 kDa pouvant être associé à l’activation de calpaines.

La Figure 4B présente également une analyse de type *Western* à partir d’échantillons protéiques de fraction cytosolique (C) et mitochondriale (M) récoltés lors de l’infection par VSV-TP6 ou lors de l’exposition des cellules à la CPT. La détection
d'un fragment de 21 kDa représente la protéine Bax native et un second fragment de 18 kDa, issu du clivage de Bax est également détecté.

L'implication possible des calpâines dans l'induction du processus de mort cellulaire, dont il est fait mention dans la portion discussion de l'article présenté au chapitre II, semble être vérifiée lors de l'infection par le variant VSV-Indiana-TP6, soit le plus virulent, tel que l'illustre l'apparition d'un fragment de 18 kDa (Fig. 4A), souvent associé au clivage partiel de la petite sous-unité de 30 kDa de la calpâine (Wang, 2000). De plus, lorsque activées, les calpâines peuvent également cliver certaines protéines régulatrices de l'apoptose, dont Bax (Choi et al., 2001; Gao et Dou, 2000; Wood et al., 1998) et Bid (Mandic et al., 2002; Chen et al., 2001), en augmentant leur pouvoir pro-apoptotique (Mandic et al., 2002; Wood et Newcomb, 2000). Tel qu'observé (Fig. 4B), le clivage de Bax survient lors de l'infection par VSV-TP6 en générant, comme dans le cas des cellules exposées à la camptothécine, un fragment de 18 kDa. Bien que ne démontrant pas à lui seul l'activation réelle de calpâine, l'apparition de ce fragment de Bax, jumelé à la détection d'un fragment clivé de 18 kDa dans les fractions cytosolique et mitochondriale lors de la détection de calpâine, suggère fortement que ces cystéines protéases peuvent être activées pendant l'infection des cellules H4 par VSV-TP6. Des expériences réalisées en présence de divers inhibiteurs chimiques de calpâine, ont bel et bien permis de confirmer que le clivage de Bax survient à la mitochondrie mais n'ont malheureusement pas permis de confirmer avec certitude que ce clivage était dû à la calpâine (Fig. 4B). En fait, il semble que l'inhibiteur Mu-Val-Hph (Enzyme System) inhibe partiellement le clivage de Bax lors de l'infection des cellules par VSV-TP6 et lors d'un traitement à la camptothécine (Figure 4B). Cependant, la même analyse réalisée sur des cellules témoins démontre qu'il y a clivage de Bax à la mitochondrie (Figure 4B), toutefois, bien que réel, ce niveau basal est très faible comme l'est aussi l'activation de calpâines, presque inexistante dans les fractions mitochondriales (Fig. 4A). De plus, le niveau d'activation de calpâine (apparition du fragment de 18 kDa) est beaucoup plus important suite au traitement des cellules par la CPT, un témoin positif d'activation de ces protéases cellulaires. La quantité de protéine Bax clivée est également augmentée de façon importante dans la fraction mitochondriale des cellules.
ayant été traitées à la CPT ou infectées par VSV-TP6. Ce résultat corrobore celui présenté à la figure 2 du chapitre III où l'on observe une translocation de Bax vers la mitochondrie. L'anticorps utilisé dans l'analyse de type Western présentée à la Figure 4B permet toutefois de détecter les formes complètes et clivées de Bax tandis que l'anticorps utilisé pour l'analyse de la Figure 2 du chapitre III ne peut pas détecter la forme clivée de 18 kDa de Bax.

Néanmoins, l'inhibiteur chimique (Mu-Val-Hph), reconnu pour inhiber les calpains, représente un outil très peu efficace dans notre modèle. De nouvelles expériences réalisées en présence de calpastatine, l'inhibiteur cellulaire naturel des calpains devraient être entreprises afin de vérifier que l'apparition des fragments de 18 kDa associés à la calpain activée et à Bax, sont véritablement imputables à une activation de calpains.

Parmi les substrats possibles des calpains, on retrouve également quelques caspases et selon le stimulus de départ, les calpains peuvent avoir un effet positif sur l'activation de la caspase-3 (Blomgren et al., 2001) ou un effet négatif en inactivant les caspases -8 et -9 qui ne seront plus en mesure d'activer adéquatement la caspase-3 (Tin Chua et al., 2000). Ainsi, les calpains pourront servir de système d'amplification ou de régulation négative de l'apoptose selon le cas. D'un autre côté, les calpains peuvent être activées de façon importante par les caspases -1, -3 et -7, ce qui mène à une apoptose plus importante et rapide (Kato et al., 2000; Wang et al., 1998). Dans le cas de l'infection par VSV, il est peu probable que l'activation suspectée de calpains soit associée à un mode de régulation négative de l'apoptose. En effet, cette possible activation semble survenir de façon notable lors de l'infection par VSV-TP6, soit le variant induisant le plus rapidement l'apoptose dans les cellules H4. Il est également connu que les calpains et les caspases peuvent agir en synergie pour causer l'apoptose de neurones dans la région de l'hippocampe au niveau du SNC chez le rat (Rami et al., 2000) ou chez les mêmes neurones en cultures primaires (Newcomb-Fernandez et al., 2001).

Enfin, il a déjà été démontré que les calpains pouvaient être activées de façon très précoce et associées à l'induction d'apoptose suite à l'infection par les réovirus T3A et T3D (DeBiasi et al., 1999). De plus, les calpains peuvent avoir un effet direct sur
l'activation des facteurs transcriptionnels de la famille NF-kB. En effet, suite à une exposition au TNFα, l'activation rapide de la calpâine II peut mener à la dégradation de IkBα et donc engendrer l'activation de NF-kB (Han et al., 1999). Sachant qu'une infection par le réovirus T3D engendre à la fois une activation des calpâines (DeBiasi et al., 1999) et de NF-kB (Connolly et al., 2000), il paraît intéressant et très pertinent de chercher à déterminer si ces événements surviennent lors de l'infection par le VSV, d'autant plus que les résultats préliminaires de la Figure 4 jumelés à ceux de la Figure 5 (survie cellulaire en présence d’inhibiteur de NF-kB) permettent de spéculer que les calpâines et NF-kB sont activés et peuvent avoir un rôle à jouer lors de l’infection par VSV-TP6.
Fig. 4. Immunobuuvardage de type Western montrant l'activation de calpaines et le clivage de Bax lors de l'infection de cellules H4 par VSV-TP6 et suite à un traitement par la camptothechine (CPT). (A) Détectation d'un fragment de 18 kDa correspondant à la petite sous-unité de calpain activée. Le niveau de base dans cytosol témoin est augmenté suite à l'infection par VSV-TP6 et le traitement à la CPT. (B) Détectation d'un fragment de 18 kDa correspondant à la protéine Bax clivée. MuVal-Hph-fmk; inhibiteur de calpaine et ZVAD-fmk; inhibiteur de caspases. Niveau de base dans mitochondrie témoin est augmenté suite à l'infection par VSV-TP6 et le traitement à la CPT.
12.5.2 NF-kB, Apoptose et Infection virale

Les résultats présentés en rapport à une implication possible du facteur transcriptionnel NF-kB sont très préliminaires mais aussi très intéressants. La Figure 5 illustre que la viabilité cellulaire est augmentée de façon significative pour le réovirus T3D lorsque l'infection est réalisée en présence de PDTC, un inhibiteur reconnu pour altérer l'activité de NF-kB. Le réovirus est utilisé comme témoin positif pouvant induire une apoptose liée à l'activation du facteur NF-kB. L'augmentation de survie cellulaire est encore plus significative pour les infections de cellules H4 réalisées par VSV-HR et VSV-TP6, les deux variants de VSV-Indiana possédant la séquence de type sauvage du gène M.

Le terme NF-kB est générique et réfère en fait à un ensemble de facteurs transcriptionnels dimériques. Chez les vertébrés, on compte 5 protéines regroupées en 2 classes. Les protéines c-Rel, RelA (p65) et RelB, sont synthétisées sous forme mature, alors que p100 et p105 doivent subir un clivage menant respectivement à la production des protéines p52 et p50. L'action des facteurs dimériques NF-kB est régulée par un mécanisme de navette entre le cytoplasme et le noyau et fait intervenir les facteurs IkB (Inhibitor of kB), inhibiteurs cellulaires naturels de l'activation des facteurs NF-kB (Karin et Lin, 2002). L'activation des facteurs transcriptionnels de la famille Rel / NF-kB peut survenir suite à une panoplie de stimuli différents en général reliés aux processus de croissance ou de différenciation cellulaire ainsi qu'à la régulation de la réponse inflammatoire et de l'apoptose (Barkett et Gilmore, 1999). NF-kB peut participer à l'inhibition ou à l'induction d'apoptose, probablement selon le type cellulaire et le stimulus auquel fait face la cellule. Lors de l'inhibition de l'apoptose, NF-kB engendre l'augmentation d'expression de plusieurs gènes dont les IAP (Inhibitors of Apoptosis), des inhibiteurs naturels cellulaires des caspases -3, -6, -7 et -9. Ainsi NF-kB peut participer à l'inhibition d'apoptose induite autant via la voie intrinsèque qu'extrinsèque (Karin et Lin, 2002). D'autre part, la fonction pro-apoptotique de NF-kB est plutôt à relier à sa capacité à augmenter l'expression de facteurs de la famille des récepteurs au TNF et à diminuer l'expression de gènes de la famille Bcl-2 (Barkett et Gilmore, 1999).
L’infection virale est un des stimuli pouvant engendrer l’activation de NF-kB. Lors de cette activation, le rôle dans la régulation de l’apoptose est parfois sollicité. L’infection par le HHV-8 (Keller et al., 2000), le HTLV-1 (Kawakami et al., 1999) et le EMCV (Schwarz et al., 1998) induisent un rôle anti-apoptotique alors que l’infection par le virus de Sindbis (Lin et al., 1998) et le réovirus T3D (Clarke et al., 2000; Connolly et al., 2000) induisent plutôt la fonction pro-apoptotique de NF-kB.

Le mutant T1026R1 de VSV-Indiana, induit une activation de NF-kB alors que le virus de type sauvage HR semble pouvoir empêcher cette activation (Hamid Boulares et al., 1996). Il n’est toutefois pas connu si NF-kB joue un rôle dans la modulation de l’apoptose induite lors de l’infection par VSV. L’importante augmentation du taux de survie cellulaire observée suite à l’infection par les variants HR et TP6, portant tous deux la protéine M Indiana de type sauvage, en présence de PDTC, pourrait suggérer que le facteur transcriptionnel NF-kB est impliqué dans la régulation du processus de mort cellulaire suite à l’infection. En effet, le PDTC, un agent chélateur des métaux lourds ayant des propriétés antioxydantes, est reconnu pour sa capacité à inhiber NF-kB de façon importante dans plusieurs types cellulaires (Bian et al., 2002; Bian et al., 2001; Gao et al., 2001; Kawakami et al., 1999). Sachant que le mutant T1026R1 peut induire l’activation de NF-kB, on se serait attendu à observer une différence dans le taux de survie cellulaire suite à l’infection par ce virus en présence d’un inhibiteur de NF-kB, si ce dernier joue un rôle dans l’induction de l’apoptose par VSV. Cependant, comme l’indique la Figure 2, le taux de survie des cellules est le même en présence et en absence d’inhibiteur de NF-kB suite à l’infection par le mutant T1026R1, de même que lors de l’infection par tous les variants Indiana portant une ou des mutations dans la protéine M de même que pour le virus de sérotype New Jersey. Si le PDTC agit bel et bien en inhibant NF-kB dans notre modèle, il semble plutôt logique de penser que ce facteur transcriptionnel est activé lors de l’infection par les virus Indiana portant une protéine M de type sauvage et qu’il joue un rôle proapoptotique.

D’autre part, on sait que des fibroblastes embryonnaires de souris déficientes pour la kinase PKR sont beaucoup plus sensibles à l’induction d’apoptose par VSV
(Balachandran et al. 2000c), ce qui démontre l'importance d'une activation de cette kinase lors d'une infection par VSV. Comme une des nombreuses fonctions attribuées à PKR est justement l'activation de NF-kB (Goodbourn et al., 2000), il devient d'autant plus opportun de vérifier si NF-kB est impliqué dans l'apoptose induite suite à une infection par VSV et s'il l'est, de quelle façon.

Des études de transfections transitoires de mutant « dominant négatif » de IkBα, (un des membres de la famille IkB) sont présentement en cours afin de vérifier plus adéquatement le rôle de NF-kB dans la régulation de l'apoptose induite par VSV. La transfection transitoire de plasmide portant le gène rapporteur de la luciférase (Luc) sous le contrôle d'un promoteur minimal sur lequel NF-kB peut se lier afin d'engendrer l'expression de luciférase, est également débutée afin de mesurer l'activation relative de NF-kB pour chacun des variants VSV utilisés dans notre modèle.

La filière apoptose / PKR / NF-kB serait certainement à étudier plus à fond dans le cas d'une infection par VSV. En effet, puisque PKR et NF-kB sont reliés à la voie de réponse à l'IFN (Samuel, 2001) et à l'infection par VSV (Balachandran et al., 2000c; Ferran et Lucas-Lenard, 1997), il convient d'analyser les choses plus en profondeur. Sachant qu'un des modèles d'action de l'IFN suggère l'induction d'apoptose dans les cellules infectées et la protection des cellules avoisinantes (Tanaka et al., 1998), il apparaît de mise de vérifier si l'infection par VSV confirme ou infirme ce modèle. Toutefois, étant donné l'activation de PKR mesurée lors d'une infection par VSV (Balachandran et al., 2000) et l'importance de cette kinase pour protéger des cellules primaires contre cette infection (Stojdl, et al., 2000a, Balachandran et al. 2000c), il semble peu probable que PKR et NF-kB soit impliqués ensemble pour induire l'apoptose des cellules infectées par VSV dans notre modèle. Cependant, le fait que certains de nos variants VSV puissent persister à l'intérieur des cellules H4 pourrait peut-être être attribuable à un défaut d'activation de PKR. Ainsi, on peut émettre l'hypothèse que les variants Indiana possédant une protéine M de type sauvage (VSV-HR et VSV-TP6) tuent les cellules en utilisant entre autres voies, PKR, qui irait activer NF-kB qui jouerait un rôle pro-apoptotique dans notre modèle utilisant des cellules immortalisées.
Fig. 5. Survie cellulaire accrue suite à l’infection des cellules H4 par les variants non persistants de VSV-Indiana en présence de PDTC, un inhibiteur du facteur transcriptionnel NF-kB. La présence de PDTC augmente la survie cellulaire de façon significative lors de l’infection des cellules par les variants VSV-Indiana HR et TP6 ainsi que lors de l’infection par le réovirus T3D servant de témoin positif pour l’implication de NF-kB dans l’induction de mort cellulaire par apoptose.
12.5.3 Les Cathepsines et autres facteurs lysosomiaux

Tel qu’illustré à la Figure 6 du chapitre III ainsi qu’à la Figure 6A dans la présente section, les cathepsines pourraient avoir un rôle précoce à jouer lors de l’apoptose induite par le VSV dans notre modèle. En effet, en inhibant la cathepsine B, une des cathepsines les plus en vue en rapport à l’induction d’apoptose (Johnson, 2000), l’inhibiteur zFA-fmk (inhibiteur des cathepsines B et L) retarde de façon très marquée la translocation de Bax vers la mitochondrie, et de ce fait la fragmentation d’ADN caractéristique de l’apoptose (Chapitre III, Desforges et al., en préparation 2003). L’inhibition de ces deux cathepsines permet d’ailleurs une augmentation du taux de survie cellulaire très significatif jusqu’à 24 heures post-infection, de même qu’un retard dans la production de particules infectieuses pour tous les variants VSV-Indiana utilisés dans notre étude. Il est toutefois important de mentionner que le retard de translocation de Bax engendré par l’inhibition de la cathepsine B est transitoire, ce qui concorde avec les résultats en rapport à la survie cellulaire et l’inhibition de production virale. Comme plusieurs caspases, dont la caspase-3, et les calpains I et II, les cathepsines semblent avoir un rôle à jouer dans la mort neuronale par apoptose et par nécrose au niveau du SNC. Un réseau complexe pourrait d’ailleurs exister entre ces trois classes de cystéines protéases afin d’assurer un mode de fonctionnement optimal (Yamashima, 2000). De plus, des lymphocytes T primaires humains mis en présence de staurosporine entre en processus d’apoptose sans la participation des caspases. Dans ce modèle, la cathepsine D peut permettre la translocation de Bax vers la membrane externe mitochondriale, ce qui favorise le passage sélectif du facteur AIF de l’espace intermembranaire mitochondrial vers le cytosol (Bidère et al., 2003, E-pub). Quoi qu’il en soit, alors que l’inhibition de la cathepsine D ou de l’acidification lysosomiale inhibe la relocalisation de Bax vers la mitochondrie, l’inhibition des cathepsines B et L par le zFA-fmk n’a aucun effet sur ce processus.

Ainsi, l’inhibition transitoire de la relocalisation de la protéine Bax observée lorsque l’infection des cellules H4 par VSV se fait en inhibant les cathepsines B et L (zFA-fmk), pourrait sous-entendre qu’il existe un mécanisme amenant l’activation de
Bax par la cathepsine B ou L ou les deux. Il convient toutefois d’être prudent car le zFA-fmk pourrait participer à l’inhibition de la cathepsine D ou de d’autres protéases dans notre modèle. Cependant, l’étude citée en rapport à la capacité de la cathepsine D à activer Bax (Bidère et al., 2003) a révélé que l’inhibiteur zFA-fmk n’hibait aucunement l’activité des cathepsines B et L lors de l’apoptose de lymphocytes T humains.

D’autre part, l’implication de la perméabilisation de la membrane lysosomiale (LMP; lysosomal membrane permeabilisation) et le déversement subsuquent du contenu de ces organites dans le cytosol vient récemment d’être mis en évidence et représen
t une étape précoce pouvant mener à l’induction d’apoptose liée à la mitochondrie et nécessitant la relocalisation du facteur Bax du cytosol vers la membrane externe mitochondriale (Boya et al., 2003a; 2003b). Toutefois, dans ces deux études, la
translocation de Bax et l’induction de la voie apoptotique mitochondriale ne sont pas liées à une activation via les cathepsines. En effet, aucun changement dans la cinétique de relocalisation de Bax n’est observé lorsque le stimulus proapoptotique est engendré sur des fibroblastes embryonnaires muirns normaux ou dont l’expression des gènes des
différentes cathepsines lysosomiales a été réduit au silence. Il est donc suggéré que dans ces cas, la translocation de Bax faisant suite à la LMP pourrait dépendre d’autres enzymes lysosomiales dont l’activité n’a pas encore été reliée à l’induction d’apoptose (Boya et al., 2003a; 2003b). Il est à noter que les deux études excluant un rôle des
cathepsines ont été réalisées à l’aide de cellules murines alors que l’étude démontrant une activation de Bax par la cathepsine D a été réalisée à l’aide de lymphocytes primaires humains. Il conviendrait de tenter de comprendre comment des cathepsines ou d’autres facteurs lysosomiaux pourrait être réellement impliqués dans la translocation de
Bax vers la mitochondrie dans notre modèle. Pour ce faire, un blocage de l’acidification lysosomiale à l’aide de NH4Cl (Gadaleta et al., 2002), de monensine (Jan et Griffin, 1999) ou de bafilomycine A (Bidère et al., 2003) permettrait de mesurer l’importance de facteurs issus des lysosomes, dont les cathepsines B et L, se retrouvant dans le cytosol lors de l’induction du processus apoptotique induit par VSV. D’ailleurs, le blocage d’acidification des lysosomes (NH4Cl) réalisé lors de l’infection par VSV dans un autre
modèle cellulaire altère le processus apoptotique et aucune fragmentation d’ADN n’est observée jusqu’à 12 heures p.i. De plus, l’inhibition chimique ou génétique (à l’aide de la technologie d’ARN interférants) (Bidère et al., 2003) des différentes cathepsines individuellement permettrait de démontrer l’implication de ces enzymes dans l’induction d’apoptose lors d’une infection par VSV dans notre modèle de cellules humaines.

12.5.4 Potentiel membranaire mitochondrial, PTP, translocation de Bax et survie cellulaire

Le maintien d’un potentiel membranaire mitochondrial ou gradient électrochimique ($\Delta\psi$) est un des facteurs important qui semble régir l’ouverture du PTP pour assurer un bon fonctionnement de la mitochondrie. Or, lors de certains stress proapoptotiques, il peut y avoir une chute rapide du $\Delta\psi$ et ouverture rapide et irréversible du PTP (Ly et al., 2003). La Figure 6A montre qu’à 20 heures post-infection, la translocation de Bax à la mitochondrie est retardée en présence de cyclosporine A (CsA), un inhibiteur potentiel d’apoptose reliée au PTP. Ce retard de translocation est du même ordre que lors de l’infection en présence zFA-fmk dont il est question à la Figure 6 de l’article présenté au chapitre III. D’autre part, la Figure 6B démontre clairement que la survie cellulaire est augmentée jusqu’à au moins 30 heures post-infection lorsque l’infection des cellules se fait en présence de CsA.

La Figure 6 présente des résultats préliminaires reproductibles pouvant permettre de spéculer sur un des mécanismes très précoce régissant la relocalisation de Bax à la mitochondrie durant l’infection par VSV. En effet, tel que le démontre cette figure, le processus de relocalisation de Bax vers la mitochondrie est retardée lorsque l’infection des cellules H4 par VSV-TP6 est faite en présence de cyclosporine A (CsA). Cette dernière est reconnue pour sa capacité à inhiber la cyclophiline D, une des composantes majeures permettant la régulation du PTP au niveau de la membrane mitochondriale. Ce faisant, la CsA peut altérer l’ouverture du PTP et retarder l’apoptose reliée à la voie mitochondriale. Des travaux récents ont montré que la formation de ce PTP pouvait survenir avant la translocation de Bax vers la mitochondrie et que la relocalisation de ce dernier pouvait dépendre en bonne partie de la formation du PTP au niveau de la
membrane mitochondriale (De Giorgi et al., 2002). Il serait donc approprié de mesurer si une chute de potentiel survient au niveau mitochondrial lors de l’infection par VSV. Comme le mécanisme de translocation de Bax vers la mitochondrie lors de l’infection par VSV n’est pas identifié, on peut penser que la régulation par le PTP, suite à une dépolarisation par exemple, en fait partie. De plus, ce retard dans la translocation de la protéine Bax vers la mitochondrie en présence de CsA est associée à une augmentation de survie (Figure 3B). Ceci renforce le fait que la translocation de Bax vers la mitochondrie est un événement important qui participe à l’induction de mort cellulaire durant l’infection par VSV. L’importance directe de Bax a récemment été démontrée durant l’induction d’apoptose lors de l’infection par un mutant adénoviral de type 2 en utilisant un modèle de cellules dont l’expression de Bax est inactivée (Bax -/-) et en comparant les résultats aux mêmes cellules où l’expression de Bax est normale (Lomonosova et al., 2002). Cette approche serait intéressante à utiliser pour démontrer hors de tout doute l’importance de Bax lors de l’apoptose induite par VSV.
Figure 6. La relocalisation de la protéine Bax vers la mitochondrie est retardée en présence de cyclosporine A (CsA) favorisant ainsi une survie cellulaire accrue suite à l’infection par VSV-TP6. (A) Immunolocalisation de Bax par immunofluorescence à l’intérieur de cellules témoins et suite à l’infection par VSV-TP6 (18h.p.i.). (B) Évaluation de survie cellulaire suite à l’infection par VSV-TP6 en absence ou en présence de CsA.
12.6 Modèle d'induction d'apoptose par VSV

La figure 7 qui suit présente un modèle proposé pour tenter d'englober l'ensemble des résultats en rapport à l'induction d'apoptose lors de l'infection par un VSV-Indiana possédant une protéine M non mutante et qui ne peut donc établir de persistance. Le schéma de la figure 7 présente d'une part les conclusions les plus plausibles auxquelles nos résultats nous permettent d'arriver et d'autre part des déductions spéculatives faites à partir de résultats préliminaires et de l'état des connaissances en matière d'apoptose.
Figure 7. Modèle global proposé pour expliquer l’induction d’apoptose suite à l’infection par VSV. Suite à l’infection par VSV, la translocation de Bax vers la mitochondrie survient rapidement sans impliqué les caspases et est associée au relargage de cytochrome de la mitochondrie vers le cytosol et activation éventuelle de la caspase-3 et fragmentation d’ADN. L’expression ectopique de Bcl-2 retarde de façon importante la translocation de Bax vers la mitochondrie. Cette surexpression de Bcl-2 retarde aussi l’activation de caspase-3 et de caspase-8; ce qui suggère que la voie mitochondriale d’induction d’apoptose soit la voie principale et que la caspase-8 est activée via cette voie pour servir de système d’amplification du stimulus apoptotique. La caspase-8 est au moins en partie activée via la caspase-3 et inversement. L’expression ectopique de cFLIP (inhibiteur spécifique de la caspase-8) altère aussi l’activation de la caspase-8 et de la caspase-3. Selon nos résultats préliminaires présentés au chapitre IV, la translocation de Bax pourrait être à relier à l’activation des cathepsines B et L ou d’autres facteurs lysosomiaux et/ou par une chute du potentiel membranaire au niveau de la membrane interne de la mitochondrie entraînant l’ouverture du PTP. Comme la calpain semble activée suite à l’infection, elle pourrait cliver le facteur Bax au niveau de la mitochondrie et augmenter son pouvoir proapoptotique. Cette activation possible de calpain peut survenir suite à une augmentation rapide et importante du calcium au niveau du cytosol et pourrait activer la caspase-12 reliée à la voie d’induction d’apoptose impliquant le stress au niveau du réticulum endoplasmique. Cette activation possible de la caspase-12 pourrait entre autres participer à l’activation de la caspase-8. L’activation de la caspase-8 pourrait aussi être partiellement associée à voie apoptotique reliée aux récepteurs de mort.
Fig. 7. Modèle proposé pour l’apoptose induite lors de l’infection par VSV-Indiana type sauvage.

Mécanismes apoptotiques les plus plausibles selon nos résultats expérimentaux des chapitres II et III
Mécanismes apoptotiques proposés selon les résultats préliminaires présentés au chapitre IV
Mécanismes apoptotiques spéculatifs selon la discussion du chapitre IV
12.7 Infection persistante possible de VSV à l'intérieur de cellules issues du SNC

Indépendamment des mécanismes d'apoptose induits lors d'une infection par VSV, nos résultats suggèrent fortement qu'une induction inefficace du processus fait partie des facteurs permettant la mise en place d'une infection persistante par divers variants moins cytotoxiques. Deux points majeurs pouvant découler de toutes nos données sont à considérer pour tenter de dresser un portrait global permettant de comprendre les conséquences possibles liées à l'établissement d'une infection persistante par VSV à l'intérieur de cellules issues du SNC. Même si l'on sait maintenant qu'une induction d'apoptose peut survenir au SNC chez des souris infectées par la voie intranasale par VSV-Indiana (Bi et al., 1995b) et par un variant naturel pathogène du sérotype New Jersey en entraînant des lésions importantes, voire même la mort (Sur et al., 2003), on connaît le pouvoir neuroinvasif de VSV depuis longtemps (Stanners et Goldberg, 1975) et l'on sait que dans certaines conditions ce virus peut persister au niveau du SNC.

Cette possibilité qu'a VSV de persister au niveau de tissus sain du SNC (Barrera et Letchworth, 1996; Fultz et al., 1982) mais surtout, comme le démontre les résultats exposés dans cette thèse, sa capacité à persister à l'intérieur de cellules immortalisées provenant d'une tumeur issue du SNC, souligne l'importance de bien comprendre comment s'établi et se maintient cette infection persistante. En effet, la possible utilisation de VSV-Indiana en tant qu'agent antitumoral confère à ce dernier point une importance réelle. En effet, la présence de virus infectieux au niveau de cellules tumorales résiduelles (Balachandran et Barber, 2000) peut laisser croire à la création éventuelle d'un réservoir viral qui pourrait servir à établir une infection persistante par des mutants moins cytotoxiques du VSV au niveau du SNC avec toutes les implications possibles en rapport à des problèmes potentiels d'ordre auto-immunitaire, tel que ceux décrits dans le tableau 6 du chapitre I (Talbot et al., 2001).
12.7.1 Infection persistante de virus oncolytique

Les études de l'équipe de Glen Barber décrivant l'utilisation de VSV dans le traitement antitumoral chez la souris présentent des résultats fort encourageants quant à la possibilité de réduction, voire d'élimination de tumeur *in vivo*. De plus, il est intéressant de noter qu'une prise d'échantillon de tissus à 21 jours post-traitement par VSV, n'a pas permis de détecter de particules virales infectieuses dans les tissus sains environnants la tumeur. Toutefois, entre 2x10⁴ et 5x10⁵ particules infectieuses par gramme de tissus ont été détectées dans les tissus tumoraux résiduels (Balachandran *et al.*, 2000b; 2001). Ce dernier point amène peut-être une ombre au tableau en ce qui a trait à l'utilisation de VSV contre le cancer *in vivo*. En effet, la présence de virus infectieux au niveau des cellules tumorales résiduelles peut laisser croire à la création éventuelle d'un réservoir viral qui pourrait servir à établir une infection persistante par des mutants moins cytotoxiques du VSV. En effet, VSV est un de ces virus pour lesquels un grand nombre de mutants peuvent être générés sur un court laps de temps; le haut taux d'erreur de la polymérase virale (10⁻³) (Wagner, 1987), étant partiellement responsable de cette situation. *In vivo*, la pression sélective intracellulaire jumelée à celle exercée par le système immunitaire, pourrait également contribuer à favoriser l'apparition de mutants moins cytotoxiques et moins facilement détectables par le système immunitaire. Il est donc essentiel, d'étudier de manière approfondie les mécanismes d'induction de mort cellulaire par apoptose ou autre lors de l'infection de lignées cellulaires par VSV pour bien comprendre quels phénomènes pourraient être associés à l'établissement d'une infection persistante. Le virus de la rougeole est également à l'étude pour utilisation potentielle antitumorale. Cependant, il est clair que dans certains cas, les cellules tumorales infectées par le virus de la rougeole ne meurent pas et deviennent une sorte de réservoir où le virus établit une infection persistante (Russell, 2002). Cette seconde hypothèse pourrait s'avérer vraie pour le VSV et souligne l'importance de bien comprendre tous les mécanismes menant à la mort cellulaire par apoptose lors d'une infection virale.
12.7.2 Infection persistante et problèmes auto-immunitaires

À l'aide de modèle animal, il a été mis en évidence que VSV pouvait persister au niveau du SNC (Barrera et Letchworth, 1996; Fultz et al., 1982; Stanners et Goldberg, 1975). Bien que la production de particules infectieuses soit absente, il n’en demeure pas moins que l’on peut retrouver des ARN après plusieurs mois chez une proportion des individus. Or, cette présence virale pourrait occasionnellement engendrer la production d’antigènes viraux, une situation dont le risque est probablement faible mais qui peut tout de même potentiellement devenir néfaste si elle entraîne des réactions immunitaires impliquant aussi bien les cellules résidentes du SNC que des cellules effectrices du système immunitaire (Talbot et al. 2001).

Les lymphocytes T activés (Hickey, 2001; Brown 2001) ou naïfs et « au repos » (Owens et Babcock, 2002) peuvent traverser la BHE et avoir accès au SNC pour aider à éliminer une infection virale après avoir reçu un signal de co-activation pour être efficacement activées (Krakowski et Owens, 2000; Brabb et al., 2000). Des problèmes d'ordre auto-immunitaires pourraient bien expliquer certains événements survenant suite à une infection par VSV. En effet, dans un système in vitro, utilisant une lignée de cellules produisant des protéines constituant de la myéline, le virus induit, chez des lymphocytes T, une réponse efficace contre la protéine basique de la myéline. In vivo, ces mêmes lymphocytes réagissent fortement contre le virus de la stomatite vésiculaire. Il est donc tentant d'établir un lien et de penser que VSV pourrait participer à l'induction d'une réaction auto-immunitaire au niveau du SNC (Rott et al., 1994).

De plus, lorsqu'il y a infection virale au SNC, les astrocytes peuvent agir sur les cellules endothéliales de la barrière hématocéphalique pour que celles-ci laissent pénétrer les cellules immunitaires activées, dont les lymphocytes T, encore plus facilement (Joseph et al., 1997). Les astrocytes expriment le CMH I mais, de façon constitutive, les neurones et les oligodendrocytes n'expriment habituellement pas ou très peu cet antigène. L'expression du CMH I peut cependant être induite lors d'infection par le virus de la rougeole et le VSV (Bilzer and Stitz, 1996) et le MHV (Redwine et al., 2001), permettant de faciliter l'élimination du virus infectieux mais avec la possibilité d'endommager des cellules importantes du SNC.
De plus, les astrocytes augmentent leur niveau d'expression de molécules du CMH II lorsque mis en présence de certains virus (Sun et al., 1997). Comme ces molécules sont reconnues par les lymphocytes CD4+ responsables de la démyélinisation dans certaines maladies auto-immunitaires, la surexpression de CMH II des astrocytes pourrait participer à l'incidence de telles pathologies suite à l'établissement d'une infection persistante par VSV. Toutefois, les astrocytes semblent capables d'inactiver certains lymphocytes T ayant pénétré au SNC et causant une encéphalite allergique expérimentale (Xiao et al., 1998).

Les exemples du MHV et du TMEV sont notoires pour illustrer le type de problèmes d'ordre auto-immunitaire pouvant survenir lors d'une infection virale persistante au SNC. L'infection persistante par le TMEV semble pouvoir induire la pathologie via les mécanismes de propagation de déterminants (epitope spreading) (Tompkins et al., 2002; Miller et al., 1997) ou de mimétisme moléculaire (Olson et al., 2002). Dans le premier cas, des lymphocytes T CD4+ réagissent contre des antigènes du soi qui étaient préalablement séquestrés alors que dans le mimétisme moléculaire, il y a méprise d'un épitope du soi pour un épitope viral à cause de la reconnaissance de portions très homologues par les lymphocytes. La souche virulente GDVII induit une encéphalite rapide et fatale en infectant les neurones où le processus d'apoptose serait déclenché. Certaines souches moins virulentes, comme la souche DA peuvent infecter les oligodendrocytes qui produisent la myéline enveloppant les axones neuronaux. Ces cellules finissent par être affectées par la présence du virus de la souche DA et la mort par apoptosis s'en suit chez une portion des oligodendrocytes, affectant ainsi la production de myéline. (Tsunoda et al., 1997) L'équipe de Rodriguez (Murray et al., 1998) prétend que la maladie neurologique et démyélinisante induite par le TMEV impliquerait des cellules T CD8+. Durant l'infection persistante impliquant le TMEV au SNC, la pathologie serait induite par l'absence de réponse immunitaire protectrice liée au CMH I (donc aux CD8+) et par une réponse liée au CMH II (donc aux CD4+) qui induit directement les dommages (Murray et al., 1998).

Il est tout à fait clair que le système immunitaire, particulièrement par l'entremise des lymphocytes T, est aussi impliqué dans la pathologie démyélinisante associée à la
persistance du MHV au SNC (Wu and Perlman, 1999; Wu et al., 2000). D’ailleurs, les résultats d’une étude de Watanabe et collaborateurs (Watanabe et al., 1983) suggèrent que des cellules T spécifiques à la myéline puissent être détectées suite à une infection par le MHV-JHM chez le rat. Des résultats récents laissent présager que ces lymphocytes T pourraient être dirigés contre la protéine basique de la myéline (PBM, mieux connue sous l’acronyme MBP) (Gruslin et al., en préparation 2003).

Avant que les différents lymphocytes puissent traverser la BHE, il existe un autre système pour aider à contrer l’infection virale au SNC. L’immunité innée semble jouer un rôle important pour protéger contre l’infection du SNC par les virus et en particulier contre le VSV (Plakhov et al., 1995; Komatsu et al., 1996). La production d’oxydes nitriques (NO) représente une arme efficace pour altérer la réplication virale à court terme. Ils peuvent être produits de façon constitutive par les neurones et les cellules endothéliales et de façon inducible par les astrocytes et les microglies et sont produits par des enzymes, les NO synthétases (NOS) dont il existe au moins trois types. En perturbant la réplication de VSV ou d'autres virus, ils représentent un moyen efficace d’éliminer le virus sans qu’il y ait cytolysé (Bi et al., 1995b; Barna et al., 1996). Des études en rapport à l’infection par un alphavirus (Levine et al., 1991) et par celui de la rage (Dietzschold et Koprowski, 1992) ont d'ailleurs déjà montré qu’il y aurait un mécanisme non cytotoxique et non lié au CMH permettant, dans certains cas, d'éliminer le virus des neurones infectés sans les lyser.

Suite à l'infection de neurones du SNC par VSV chez la souris, il y a augmentation d'activité de NOS de type III dans les astrocytes. Cette intensification de production de NO pourrait être reliée à l’influence de cytokines puisque l’on sait que l’expression des NOS est augmentée dans des astrocytes mis en culture en présence d’interleukine-12 (IL-12), de TNF-α ou encore d’IFN γ. Les NO produits par les astrocytes pourraient diffuser vers les autres cellules, dont les neurones, pour aider à contenir l’infection. Cette production de NO par les astrocytes pourrait également jouer un rôle sur la perturbation de la barrière hémato-encéphalique dont il a été fait mention auparavant. Bien que la production de NO par les cellules gliales apparaîsse efficace pour contrer un virus, il convient de souligner que lorsque cette production devient trop
importante elle peut aussi entraîner des effets cytotoxiques au cerveau (Bilzer and Stitz, 1996). L'inhibition des iNOS produites lors de l'infection par le virus de Theiler peut d'ailleurs participer à réduire l'inflammation et à la démyelinisation habituellement causées par cette infection virale (Rose et al., 1998). De plus, l'infection des microglies par le VIH induit l'apoptose des neurones avoisinants par un processus impliquant soit des protéines virales solubles et le TNF-α (New et al., 1998) ou les NO provenant des astrocytes environnants (Hori et al., 1999). Il est donc plausible de croire que les NO et certaines cytokines pourraient induire directement ou indirectement des effets secondaires néfastes sur le tissu cérébral sain lors d'une infection par des mutants persistants de VSV.

12.7.3 Mutations dans la protéine M et persistance de VSV

Le phénotype ts, nécessaire en conjuguaison avec la mutation M, pour induire une persistance sur les lignées fibroblastiques produisant ou non de l'interféron (Desforges et al., 2001), n'est pas nécessaire pour qu'une infection persistante survienne sur des cultures primaires d'astrocytes (Desforges, 1999) de même que sur la lignée de cellules neuronales H4 (Desforges et al., 2002). La mutation dans M devient donc la seule caractéristique permettant de différencier les virus capables d'établir une persistance de ceux qui ne le sont pas. Or, lorsqu'une protéine virale est mutée, sa capacité à interagir avec des facteurs cellulaires peut très certainement l'être. Les mutations dans la protéine M peuvent donc faire en sorte que celle-ci ne puisse plus interagir de la même façon avec certaines protéines cellulaires occasionnant un changement radical dans l'interaction virus-cellule.

Le canine distemper virus (CDV) ainsi que le virus de la rougeole représentent deux exemples de virus dont la persistance au SNC est associée d'une façon ou d'une autre à des modifications dans la protéine M. Dans le cas du CDV, une étude comparative utilisant cinq souches différentes a révélée que toutes les souches pouvant persister possédaient des mutations dans le gène N et dans la région 5' non codante du gène M ainsi qu'un cadre de lecture ouvert (open reading frame) de 52 acides aminés à l'intérieur du gène M (Stettler et al., 1997). Tel que présenté dans le chapitre I (section
5.4, p. 25) le virus de la rougeole peut, dans de rares cas, établir une persistance au SNC et induire une pancréaphalite subaiguë sclérosante (PESS). Une étude analysant plusieurs souches associées à des cas de PESS a mis en évidence que le gène M portait invariablement plusieurs mutations (Ayata et al., 1998). Plusieurs études ont également mis en cause différents problèmes associés à une mauvaise production de protéine M (Cattaneo et al., 1986; Sheppard et al., 1985; Carter et al., 1983) chez les virus de la rougeole persistants associé à une production de particules infectieuses très atténuée. Puisque le virus de la rougeole peut se propager efficacement de cellule à cellule par un processus efficace de fusion entre les neurones sans nécessiter la formation de virions infectieux, il semble que l'accumulation de mutations dans le gène M participe au maintien de l'infection persistante en altérant de façon très importante la production de particules infectieuses, rendant très difficile la détection d'antigènes viraux par le système immunitaire.

La protéine M de VSV a des effets pléiotropes et semble importante pour affecter des fonctions cellulaires essentielles. En plus de son rôle en tant que protéine structurale dans le virion, la protéine M de VSV possède de nombreuses fonctions lors de l'infection de cellules par le virus. Son implication a déjà été démontrée dans l'inhibition de la transcription (Ahmed et Lyles, 1998; Ferran et Lucas-Lenard, 1997; Black et Lyles, 1992), l'inhibition de synthèse protéique (Connor et Lyles, 2002; Francoeur et al., 1987), l'effet cytopathique par arrondissement cellulaire (Lyles et McKenzie, 1997), le blocage du transport de macromolécules entre le noyau et le cytoplasme (von Kobbe et al., 2000; Petersen et al., 2000; Her et al., 1997) en étant dirigée vers le noyau (Glodowski et al., 2002) et récemment dans l'induction d'apoptose (Kopecky et Lyles, 2003; Desforges et al., 2002; Kopecky et al., 2001). Or, nos propres travaux et ceux de l'équipe de Doug Lyles ont déjà démontré qu'une ou des mutations au niveau de M engendrait une perte partielle du potentiel d'induction d'apoptose (Desforges et al., 2002; Kopecky et al., 2001) et de la capacité à inhiber la transcription (Lyles et al., 1996). De plus, la capacité de la protéine M de VSV à inhiber le transport bidirectionnel requiert la présence d'une méthionine à la position 51 (Petersen et al., 2001; 2000). Le mutant T1026R1 possède une mutation sur la protéine M à la position 51 où une méthionine est remplacée par une
arginine. Ce virus compte parmi ceux qui peuvent induire une infection persistante dans les cultures primaires d'astrocytes (Desforges, 1999) et à l'intérieur de cellules H4 (Desforges et al., 2002). En plus de sa capacité altérée à engendrer l'apoptose et l'inhibition de transcription, le mutant T1026R1 (utilisé par Petersen et collaborateurs (2001) semble ne pas pouvoir inhiber la voie de transport entre le noyau et le cytoplasme. La perte de cette fonction peut assurément faire en sorte que les cellules infectées vont pouvoir réagir et mettre en place des systèmes de protection pour survivre et le virus pourra établir une persistance.

Il a aussi été observé (Greenstein et al., 1981) que T1026R1 engendre une infection à plus long terme et une paralysie chez des souris BALB/c alors que la souche sauvage Indiana cause une encéphalite aiguë puis est éliminée ou cause la mort en 2 à 3 jours. T1026R1 semble entre autre affecté dans sa réplication et cette restriction pourrait provenir d'un empêchement temporaire d'une interaction obligatoire de la transcriptase virale avec un ou des facteurs cellulaires. La mutation sur M altérant la fonction d'inhibition de synthèse protéique, essentielle à VSV pour établir son effet cytopathique, pourrait aussi avoir un impact alors que l'effet de T1026-R1 varie selon le type de cellules infectées. Dans ce cas aussi, des facteurs cellulaires pourraient être impliqués (Greenstein et al., 1981). De plus, il a été démontré que des protéines M incomplètes, M2 (débutant à la méthionine 33 de la protéine M complète) et M3 (débutant à la méthionine 51), sont générées durant l'infection par VSV. Ces protéines jouent un rôle important dans l'effet cytopathique induit par le VSV. Or, chez des mutants où ces méthionines sont mutées artificiellement, la production des protéines M2 et/ou M3 est réduite, voire absente et l'effet cytopathique par arrondissement cellulaire est réduit de façon importante (Jayakar et Whitt, 2002). Sachant que cet arrondissement est génétiquement associé à l'induction d'apoptose (Kopecky et Lyles, 2003b), on peut supposer que le mutant T1026R1, portant la mutation M51R, ne produit pas de protéine M3 (débutant à la méthionine 51 de la protéine M complète), ce qui explique au moins en partie la baisse dans le niveau d'induction d'apoptose par rapport aux variants Indiana portant une protéine M non mutée.
Le virus TP3 représente une autre catégorie de mutants, portant des mutations en région C-terminale de la protéine M. Les mutations valine pour phénylalanine à l'acide aminé 221 et sérine pour arginine à la position 226, se retrouvent sur la protéine M. La protéine M est multifonctionnelle. Que la mutation soit présente dans la portion aminoterminale ou carboxy-terminale, l'altération possible de sa structure chez nos différents mutants peut causer des modifications dans des interactions avec des facteurs cellulaires à différents niveaux et rendre le virus moins virulent et moins efficace à induire l'apoptose.

En plus d'illustrer les différences entre différents variants de la souche VSV-Indiana quant à leur capacité à induire l'apoptose et de ce fait d'établir ou non une infection persistante, les chapitres II et III décrivent aussi la capacité de la souche de type sauvage New Jersey à faire de même. La souche New Jersey est reconnue pour être moins virulente que Indiana (Fultz et Holland, 1985) et ne possède qu'une identité variant de 32% à 68% selon la protéine étudiée (Feldhaus et Lesnaw, 1998; Gill and Banerjee, 1986). Ces différentes données sont peut-être à relier à la capacité du virus New Jersey à pouvoir établir une persistance alors que la souche Indiana en est incapable. Quelles que soient les raisons sous-jacentes, il est en tous cas évident que la capacité d'induction d'apoptose du sérotype New Jersey est beaucoup moins importante que celle de Indiana et comme le suggèrent les articles des chapitres II et III, cette capacité réduite fait partie des facteurs associés à l'établissement d'une infection persistante dans un modèle utilisant des cellules humaines issues du SNC.
CONCLUSION

Le VSV représente un outil intéressant pour étudier l'infection persistante. En étudiant ce type d'infection, établie par des mutants de la protéine M de la souche Indiana du VSV et par la souche moins virulente New Jersey, on a voulu identifier des facteurs viraux et cellulaires déterminants pour sa mise en place. La protéine M peut normalement interagir avec de nombreux facteurs cellulaires et participer activement à l'infection aiguë et rapide par le VSV. Elle est un facteur important lié à la virulence et à la capacité du virus à induire ou non une infection persistante sur différents types cellulaires, dont certaines cellules du SNC. Ayant établi que le degré d'apoptose induit chez les cellules infectées pouvait être associé en partie à la protéine M, il conviendra donc dans l'avenir d'étudier où et comment cette importante protéine virale joue ses rôles et d'identifier des protéines cellulaires avec lesquelles elle peut interagir ou dont elle pourrait moduler l’activation, la synthèse ou l'expression lors de l'induction d’apoptose.
Il appert que la voie apoptotique intrinsèque régulée au niveau de la mitochondrie est centrale et nécessaire, comme lors de nombreux différents stimuli, l'implication du facteur proapoptotique Bax.

Des cellules humaines issues du SNC résistent suffisamment à l'induction d'apoptose suite à l'infection par certains mutants de la protéine M et la souche New Jersey pour qu'il y ait établissement d'une infection persistante (Desforges et al., 2002). Ces résultats sont basés sur l'analyse d'une seule lignée cellulaire et il conviendrait d'en étudier d'autres pour tenter de dresser un portrait plus général. On sait déjà que VSV ne réussit pas à établir une infection persistante sur tous les types cellulaires qu'il peut infecter. Toutefois, le fait que certaines cellules puissent soutenir ce type d'infection souligne qu'il vaut la peine de s'y arrêter. Le fait que VSV-Indiana soit capable d'infecter l'humain (Hanson et al., 1950; Reif et al., 1987; Quiroz et al., 1988; Tesh et al., 1987) et dans au moins un cas d'être relié à l'apparition d'une encéphalite chez un jeune garçon (Quiroz et al., 1988) apporte une note intéressante (bien que triste pour ce jeune garçon). Il est certainement trop tôt pour conclure que VSV engendre de fait des problèmes d'ordre neurologique au SNC chez l'humain. Cependant, comme l'a énoncé l'équipe de
Quiroz, la chose pourrait exister et nos résultats préliminaires sur les cellules neurales humaines laisse tout au moins entrevoir que ce virus pourrait persister au niveau du SNC.

La suggestion d’éventuellement utiliser VSV pour traiter certains cancers et l’intérêt fondamental de comprendre la mise en place et le maintien d’une infection persistante par un virus normalement très cytopathique à l’intérieur de cellules issues du SNC représentent deux raisons majeures justifiant l’entreprise décrite dans cette thèse.

Le portrait n’est certes pas simple et pourrait compter plusieurs voies indépendantes ou qui s’entrecroisent et fonctionnent ensemble pour mener à la mise en place d’une persistance virale par un virus neurotrope et normalement cytopathique tel le VSV. Tenter de relier toutes ces voies métaboliques s’avère une tâche des plus complexes à laquelle nous pensons avoir participé de façon modeste mais tout de même pertinente et significative.
Références

GRUSLIN, É., S. Moisan, Y. St-Pierre, and P.J. Talbot. Activation of self-reactive t cells specific for a CNS antigen following mouse mHV infection. En preparation. 2003

SCHREIBER, M., K. Rajaratnam, et G. McFadden. 1996. Myxomavirus T2 protein, a tumor necrosis factor (TNF) receptor homolog, is secreted as a monomer and dimer that each bind rabbit TNFalpha, but the dimer is a more potent TNF inhibitor. J.Biol.Chem. vol.271, p. 13333-13341.

ANNEXE

Les pages qui suivent présentent une copie de l'article présenté au chapitre II du présent document ainsi qu'une copie de l'article *Different host-cel/ shutoff strategies related to the matrix protein lead to persistence of vesicular stomatitis virus mutants on fibroblast cells*, issu du travail réalisé au cours de ma maîtrise et paru dans *Virus Research*, vol. 76, p. 87-102. Ces deux copies d'article sont annexées pour que les quelques lecteurs de cette thèse puissent avoir accès à une information supplémentaire qui pourrait s'avérer pertinente pour la bonne compréhension du document.

Cet article a dû être retiré en raison de restrictions liées au droit d'auteur.