ÉVALUATION DE L'EFFICACITÉ MICROBIOLOGIQUE DE PURIFICATEURS D'EAU ET DE LEUR APPLICATION AUX PUIS DOMESTIQUES

Par
Louise-Michelle Verrier

Mémoire présenté
pour l'obtention
du grade de Maître ès sciences (M.Sc.)
en microbiologie appliquée

Jury d'évaluation

Directeur de recherche
Pierre Payment,
INRS-Institut Armand-Frappier

Examinateur interne
Charles Dozois,
INRS-Institut Armand-Frappier

Examinateur externe
Christian Bouchard,
Université Laval

© droits réservés de Louise-Michelle Verrier, 2004
RÉSUMÉ

Dans le but d’évaluer l’efficacité microbiologique de purificateurs d’eau, deux bancs d’essais ont été élaborés. Le premier banc d’essai permet des bioessais microbiens à petite échelle (<1 L/min). Il a servi à tester quatre paires de prototypes de membranes d’ultrafiltration (UF) en PVDF ainsi qu’un purificateur d’eau s’employant au point d’utilisation (POU : «point of use») qui combine les technologies de l’irradiation UV, de l’ozonation et de la filtration au charbon activé. Ce banc d’essai reposait sur le passage dans les purificateurs d’un cocktail de micro-organismes à base de tampon phosphate 0,1 mM pH 7 et pouvant contenir, ensemble ou séparément, des coliphages MS2, des coliphages T7 et/ou des spores de B. subtilis. Le deuxième banc d’essai consistait en de l’eau municipale déchlorée par l’ajout de thiosulfate de sodium (10 mg/L) dans laquelle sont injectés des coliphages MS2 seuls ou en suspension avec des spores de B. subtilis. Il a permis d’évaluer l’efficacité microbiologique d’une unité d’UF HomeSpring™ de Zenon Environmental Inc. et un réacteur UV SPV6 de R-Can. Ces deux appareils sont vendus au Canada pour être utilisés au point d’entrée (POE : «point of entry») mais seul le réacteur UV est présentement certifié par la NSF.

Les prototypes de membranes d’UF ayant une grosseur de pores de 50nm ou moins ont permis l’enlèvement d’au moins 2 log de MS2, >6 log de T7 et >5 log de spores de B. subtilis. L’unité d’UF HomeSpring™ enlève au moins 3 log de MS2 au cours d’un épisode de contamination de 12 minutes. Malgré les bons résultats obtenus avec les membranes d’UF, une libération continue de particules biologiques dans le filtrat a été observée après un épisode de contamination mais, il est impossible de dire s’il s’agit d’une défectuosité de l’appareil ou d’un comportement intrinsèque des membranes. Le purificateur en POU élimine plus de 3 log de MS2 et plus de 2 log de spores après 2 et 3 minutes d’utilisation. Ces performances sont surtout attribuables à la lampe UV/O3 pour les phages (3 log) et au filtre au charbon pour les spores (2 log). Finalement le réacteur UV SPV6 a montré un fonctionnement se détériorant après chaque test. Seuls les deux premiers essais effectués avec cet appareil sont considérés. Des réductions de 2,98 log de MS2 et de >3,75 log de spores ont été obtenues.

La technologie de l’UF fait face à certains problèmes pour son application aux puits domestiques. Bien que la technologie des UV soit bien implantée dans le domaine du traitement d’eau résidentiel et que des certifications soient émises pour garantir la satisfaction de normes, des problèmes de stabilité des réacteurs sont encore courants. La stratégie employée par le SWM à utiliser plusieurs technologies à la fois peut constituer un avantage. La confiance des consommateurs en ces appareils et l’amélioration de leur qualité passe nécessairement par un effort concerté entre les fabricants, les organismes de contrôle, les détaillants et les gouvernements.

Louise-Michelle Verrier,
eduandante

Pierre Payment,
directeur
SUMMARY

To evaluate microbiological efficiency of water purifiers, 2 test benches were developed. The first one is for small scale microbial challenges (<1L/min). It served to test four pairs of ultrafiltration (UF) membrane prototypes in PVDF and one commercially available water purifier used in POU that consists of a combination of UV irradiation, ozonation and activated carbon filtration. The feed water was a cocktail of micro-organisms (coliphages MS2 and/or coliphages T7 and/or *B. subtilis* spores) in 0.1 mM phosphate buffer pH 7.

The second test bench consisted of dechlorinated municipal water (sodium thiosulfate 10 mg/L) containing MS2 alone or in suspension with *B. subtilis* spores. It was used to evaluate microbiological efficiency of a HomeSpring™ UF unit from Zenon Environmental Inc. and a SPV6 UV reactor manufactured by R-Can. These 2 apparatus are sold as POE in Canada but only the UV reactor is NSF certified.

The UF membrane prototypes with pore sizes of 50 nm or less were able to remove at least 2 log of MS2, >6 log of T7 and >5 log of *B. subtilis* spores. The HomeSpring™ unit removed >3 log of MS2 during a contamination period of 12 minutes. Despite the good performances achieved with UF membranes, a continuous release of biological particles in the filtrate was observed after the contamination period. It was impossible to determine whether it was an apparatus malfunction or an intrinsic behaviour of the membranes. The POU purifier removed/inactivated >3 log MS2 and >2 log *B. subtilis* spores after 2 and 3 minutes of use. This microbial reduction is mainly attributed to the UV/O₃ lamp for the phages (3 log) and to the charcoal filter for the spores (2 log). The SPV6 UV reactor showed worsening operation after each challenge. Only the 2 first tests done with this apparatus were considered. Reduction of 2.98 log MS2 and >3.95 log *B. subtilis* spores were obtained.

Limitations of UF technology in residential use must be addressed before such systems can be fully implemented. In spite of the already well implemented UV technology in residential purification industry and the fact that certifications are emitted to guaranty satisfaction of standards, stability of the individual apparatus is still an issue. The strategy of multi-technologies used in the SWM is surely worthwhile. Consumer confidence in water purifiers and their quality improvement requires a concerted effort between manufacturers, control organisations, retailers and governments.
AVANT-PROPOS ET REMERCIEMENTS

«Nul ne connaît la valeur de l'eau jusqu'à ce que le puits tarisse».
(Franklin, 1746)

Je remercie sincèrement :

- Dr Pierre Payment, sans qui ce projet n’aurait pas vu le jour.
- Les compagnies canadiennes Zenon Environmental et R-Can pour le prêt et la fourniture d’équipement de désinfection.
- Luigi Fabbricino et Andreas Draesner pour leur intérêt dans le projet et leur soutien.
- Philippe Boileau pour ses conseils techniques.
- Le personnel et les étudiants du laboratoire de Pierre Payment : Louise Courtemanche et Martine Caplette, des techniciennes en or. Annie Locas, Marie-Christine Hains, Simon Paquette et Josée Demers, pour leur collaboration à différents niveaux de la réalisation de ce projet.
- Mes proches dont, mon père, pour me mettre au courant des récents développements et questionnements dans l’industrie du traitement d’eau résidentiel, ma mère, pour son travail de révision et mon copain, pour m’avoir supportée au cours des dernières années.
- La Power Corporation pour le soutien financier qu’elle m’a accordée durant ces deux années au travers la Fondation Armand-Frappier, que je remercie également.
TABLE DES MATIÈRES

Résumé .. i
Summary ... ii
Avant-propos et remerciements ... iii
Table des matières ... iv
Liste des tableaux ... vii
Liste des figures ... ix
Liste des abréviations ... x

INTRODUCTION .. 1

CHAPITRE I ... 3

REVUE DE LITTÉRATURE ... 3

1.1 - L’APPROVISIONNEMENT EN EAU POTABLE.. 3
1.2 - LES PUITs PRIVÉs ... 5
1.3 - LES TYPES D’APPROVISIONNEMENT EN EAU 6
1.4 - LES CONTAMINANTS DE L’EAU ... 8
 1.4.1 - Bactéries ... 9
 1.4.2 - Virus .. 10
 1.4.3 - Parasites protozoaires .. 11
1.5 - LES ENJEUX DE SANTÉ PUBLIQUE .. 11
1.6 - LE TRAITEMENT D’EAU .. 13
 1.6.1 - Filtres mécaniques .. 14
 1.6.2 - Chloration ... 14
 1.6.3 - Ozonation ... 15
 1.6.4 - Lampes UV ... 15
 1.6.5 - Filtration sur membranes .. 16
1.7 - LE CHOIX D’UN DISPOSITIF .. 16
1.8 - ÉVALUATION DE L’EFFICACITÉ MICROBIOLOGIQUE 17
 1.8.1 - Les membranes d’ultrafiltration .. 17
 1.8.2 - Les lampes à rayons ultraviolets ... 22
1.9 - LES INDICATEURS MICROBIENS ... 25
1.10 - HYPOSE
CHAPITRE 2 ... 27
MATÉRIEL ET MÉTHODES ... 27

2.1 - ANALYSES VIROLOGIQUES .. 27
 2.1.1 - Production de E. coli en phase logarithmique ... 27
 2.1.2 - Production des phages ... 27
 2.1.3 - Titrage des phages .. 28
 2.1.3.1 - Principe ... 28
 2.1.3.2 - Souche bactérienne .. 28
 2.1.3.3 - TSA 1,5% ... 28
 2.1.3.4 - TSA 0,7% ... 29
 2.1.3.5 - Titrage ... 29

2.2 - ANALYSES BACTÉRIOLOGIQUES .. 29
 2.2.1 - Production des spores de Bacillus subtilis ... 29
 2.2.1.1 - Mise en culture ... 29
 2.2.1.2 - Procédure de récupération ... 30
 2.2.2 - Titrage des spores ... 30

2.3 - BIOESSAIS MICROBIENS ... 31
 2.3.1 - Mini-modules d’ultrafiltration ... 31
 2.3.1.1 - Caractéristiques des mini-modules .. 31
 2.3.1.2 - Description du banc d’essai à petite échelle 33
 2.3.1.3 - Conservation et désinfection des membranes et équipements 35
 2.3.1.4 - Conditions des bioessais ... 36
 2.3.2 - Unité d’ultrafiltration HomeSpring™ ... 38
 2.3.2.1 - Caractéristiques du HomeSpring™ .. 38
 2.3.2.2 - Description du banc d’essai pour le système de filtration HomeSpring™ 39
 2.3.2.3 - Conditions des bioessais microbiens ... 41
 2.3.3 - Purificateur Sterilight Water Machine .. 41
 2.3.3.1 - Caractéristiques du Sterilight Water Machine 41
 2.3.3.2 - Description du banc d’essai pour le Sterilight Water Machine 42
 2.3.3.3 - Conditions des bioessais microbiens ... 43
 2.3.4 - Réacteur UV Sterilight Platinum SPV6 .. 43
 2.3.4.1 - Courbe dose-réponse .. 43
 2.3.4.2 - Caractéristiques du réacteur UV SPV6 ... 47
 2.3.4.3 - Description du banc d’essai du réacteur UV SPV6 47
 2.3.4.4 - Conditions des bioessais microbiens ... 50

CHAPITRE 3 ... 51
RÉSULTATS ... 51

3.1 - MINI-MODULES D’ULTRAFILTRATION .. 51
 3.1.1 - Tests préliminaires ... 51
 3.1.2 - Bioessais avec MS2 .. 55
 3.1.3 - Bioessais avec T7 et spores .. 56
 3.1.4 - Tests complémentaires avec les VR3 ... 59
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.4.1 - Bilan des bactériophages MS2</td>
<td>59</td>
</tr>
<tr>
<td>3.1.4.2 - Élution</td>
<td>59</td>
</tr>
<tr>
<td>3.1.4.3 - Élution en fonction du temps</td>
<td>59</td>
</tr>
<tr>
<td>3.1.4.4 - Nettoyage chimique</td>
<td>60</td>
</tr>
<tr>
<td>3.2 - UNITÉ D’ULTRAFILTRATION HOME SPRING™</td>
<td>65</td>
</tr>
<tr>
<td>3.3 - PURIFICATEUR STERILIGHT WATER MACHINE</td>
<td>68</td>
</tr>
<tr>
<td>3.4 - RÉACTEUR UV SPV6</td>
<td>70</td>
</tr>
<tr>
<td>3.4.1 - Courbe dose-réponse</td>
<td>70</td>
</tr>
<tr>
<td>3.4.2 - Biodosimétrie</td>
<td>72</td>
</tr>
<tr>
<td>CHAPITRE 4</td>
<td>75</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>75</td>
</tr>
<tr>
<td>4.1 - MINI-MODULES D’ULTRAFILTRATION</td>
<td>75</td>
</tr>
<tr>
<td>4.1.1 - Tests préliminaires</td>
<td>75</td>
</tr>
<tr>
<td>4.1.2 - Bioessais avec MS2</td>
<td>76</td>
</tr>
<tr>
<td>4.1.3 - Bioessais avec T7 et spores</td>
<td>77</td>
</tr>
<tr>
<td>4.1.4 - Tests complémentaires avec les VR3</td>
<td>77</td>
</tr>
<tr>
<td>4.1.4.1 - Bilan des bactériophages</td>
<td>77</td>
</tr>
<tr>
<td>4.1.4.2 - Élution</td>
<td>78</td>
</tr>
<tr>
<td>4.1.4.3 - Élution dans le temps</td>
<td>78</td>
</tr>
<tr>
<td>4.1.4.4 - Nettoyage chimique</td>
<td>79</td>
</tr>
<tr>
<td>4.2 - UNITÉ D’ULTRAFILTRATION HOME SPRING™</td>
<td>79</td>
</tr>
<tr>
<td>4.3 - PURIFICATEUR STERILIGHT WATER MACHINE</td>
<td>80</td>
</tr>
<tr>
<td>4.4 - RÉACTEUR UV SPV6</td>
<td>81</td>
</tr>
<tr>
<td>4.4.1 - Courbe dose-réponse de MS2</td>
<td>81</td>
</tr>
<tr>
<td>4.4.2 - Biodosimétrie</td>
<td>82</td>
</tr>
<tr>
<td>4.5 - APPLICATION DE L’UF AUX PUITS DOMESTIQUES</td>
<td>83</td>
</tr>
<tr>
<td>4.6 - APPLICATION DES UV AUX PUITS DOMESTIQUES</td>
<td>84</td>
</tr>
<tr>
<td>4.7 - AVENIR DES PURIFICATEURS D’EAU</td>
<td>85</td>
</tr>
<tr>
<td>4.7.1 - Fabricants</td>
<td>85</td>
</tr>
<tr>
<td>4.7.2 - Vendeurs, installateurs, opérateurs et entretien</td>
<td>85</td>
</tr>
<tr>
<td>4.7.3 - Gouvernements</td>
<td>86</td>
</tr>
<tr>
<td>Conclusion</td>
<td>87</td>
</tr>
<tr>
<td>Références</td>
<td>89</td>
</tr>
<tr>
<td>Site Web consultés</td>
<td>93</td>
</tr>
<tr>
<td>Annexe A - Solutions et tampons</td>
<td>94</td>
</tr>
<tr>
<td>Annexe B - Calcul du facteur pétri</td>
<td>95</td>
</tr>
</tbody>
</table>
LISTE DES TABLEAUX

Tableau I : Catégories de systèmes d'eau publics aux États-Unis, leur nombre et la population desservie par ceux-ci en l'an 2000. 4

Tableau II : Proportion de systèmes de petite et très petite taille par catégorie en pourcentage et en quantité de personnes desservie par ceux-ci en 2000 aux États-Unis. 4

Tableau III : Principales bactéries responsables de maladies associées à l'eau ainsi que les maladies qu'elles peuvent causer. 10

Tableau IV : Principaux virus responsables de maladies associées à l'eau ainsi que les maladies qu'ils peuvent provoquer. 10

Tableau V : Traitements pouvant être appliqués à l'eau pour en améliorer la qualité et quelques unes de leurs utilités. 14

Tableau VI : Caractéristiques des mini-modules d'UF fourni par Zenon Environmental. 32

Tableau VII : Calendrier des tâches effectuées pour l'expérience de nettoyage chimique des mini-modules VR3A et VR3B. 38

Tableau VIII : Débit de production des mini-modules mesuré avec un débitmètre gradué de 0 à 40 mL/min raccordé en ligne. 52

Tableau IX : Concentration résiduelle de chlore dans l'eau de trempage des membranes. 54

Tableau X : Concentration résiduelle de chlore dans les mini-modules rincés avec de l'eau MilliQ sous une pression de 0,86 bar, 18 jours après une désinfection de 30 minutes dans une solution aqueuse de chlore 5 mg/L. 54

Tableau XI : Efficacité d'enlèvement de MS2 par les 8 mini-modules d'UF. 55

Tableau XII : Efficacité d'enlèvement des coliphages T7 et des spores de B. subtilis par les 8 mini-modules d'UF. 57

Tableau XIII : Flux spécifique (perméabilité) des mini-modules calculé à 20°C et caractéristiques physiques impliquées dans son calcul. 58

Tableau XIV : Bilan des bactériophages MS2 trouvé à 3 reprises pour les mini-modules VR3A et VR3B. 61

Tableau XV : Proportion des coliphages MS2 perdus qui ont été récupérés par une élution du module VR3A avec 142 mL de tampon d'élution, suite à une expérience de bilan de MS2. 62
Tableau XVI : Quantité de coliphages MS2 récupérée dans le filtrat et le circulat lors de l’élution du mini-module VR3A avec 484 mL de tampon d’élution sur 5 minutes.

Tableau XVII : Enlèvement des coliphages MS2 par les mini-modules d’UF avant et après une épreuve de nettoyage chimique à haute concentration en chlore.

Tableau XVIII : Moyenne d’enlèvement des MS2 par le système de filtration d’eau HomeSpring™ pour quatre essais dont l’injection se fait de 0 à 12 minutes.

Tableau XIX : Moyenne de 2 essais pour la réduction des coliphages MS2 et des spores de *B. subtilis* par le SWM lorsque la lampe est mise en marche après 2,5 minutes de filtration.

Tableau XX : Enlèvement des coliphages MS2 et des spores de *B. subtilis* par le SWM lors de 2 essais indépendants où la lampe UV/O3 est éteinte et qu’un temps de 2 minutes de filtration est alloué avant la prise d’échantillon.

Tableau XXI : Enlèvement des coliphages MS2 et des spores de *B. subtilis* par le réacteur à rayons UV SPV6 pour deux essais dont l’injection débute à 0 minute et se termine à 15 minutes.

Tableau XXII : Données brutes relatives au calcul du facteur Pétri pour les tubes 1, 2 et 3 de l’appareil à faisceaux collimateurs.
LISTE DES FIGURES

Figure 1 : Photo d’un mini-module d’UF fourni par Zenon Environmental. 32
Figure 2 : Schéma du banc d’essai à petite échelle pour les mini-modules d’UF. 34
Figure 3a : Photo du banc d’essai à grande échelle pour le système de filtration d’eau HomeSpring™. 39
Figure 3b : Schéma du banc d’essai à grande échelle pour le système de filtration d’eau HomeSpring™. 40
Figure 4 : Photo d’un purificateur d’eau Sterilight Water Machine. 42
Figure 5a : Photo de l’appareil à faisceaux collimateurs. 45
Figure 5b : Schéma de l’appareil à faisceaux collimateurs vu de face (A) et vu de côté (B). 46
Figure 6a : Photo du banc d’essai d’un réacteur UV Sterilight Platinum SPV6. 48
Figure 6b : Schéma du banc d’essai d’un réacteur UV Sterilight Platinum SPV6. 49
Figure 7 : Détection des coliphages MS2 (A) et phi-X 174 (B) lorsqu’ils sont incubés dans des récipients en matériaux différents, en fonction du temps. 53
Figure 8 : Stabilité des coliphages MS2 dans le tampon d’éluision sur une période de 30 minutes. 62
Figure 9 : Concentration des coliphages MS2 dans le filtrat et le circulat du module VR3A en fonction du temps d’éluision avec un tampon d’éluision. 63
Figure 10 : Concentration des coliphages MS2 trouvée dans les trois fractions d’eau du HomeSpring™ en fonction du temps lorsque l’injection se fait de 0 à 12 minutes. (Moyenne sur 2 essais à 5, 15 et 30 minutes). 67
Figure 11 : Courbe dose-réponse des coliphages MS2 tracée à partir de la moyenne sur trois essais. 71
Figure 12 : Inactivation des coliphages MS2 (2 essais) et des spores de B. subtilis par le réacteur UV SPV6 pour une injection de micro-organismes débutant à 0 minute et se terminant à 15 minutes. 74
Figure 13 : Comparaison des courbes dose-réponse pour les coliphages MS2 lors de la présente étude et de celle de Wilson et al. (1992). 81
<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO</td>
<td>Densité optique</td>
</tr>
<tr>
<td>ESSIDES</td>
<td>Eau souterraine sous influence directe d’une eau de surface</td>
</tr>
<tr>
<td>MENV</td>
<td>Ministère de l’environnement du Québec</td>
</tr>
<tr>
<td>MF</td>
<td>Microfiltration</td>
</tr>
<tr>
<td>MWCO</td>
<td>«Molecular Weight Cut-Off»</td>
</tr>
<tr>
<td>NF</td>
<td>Nanofiltration</td>
</tr>
<tr>
<td>NSF</td>
<td>«National Sanitary Foundation»</td>
</tr>
<tr>
<td>OI</td>
<td>Osmose inverse</td>
</tr>
<tr>
<td>OMS</td>
<td>Organisation mondiale de la santé</td>
</tr>
<tr>
<td>POE</td>
<td>Point d’entrée (de l'anglais point of entry)</td>
</tr>
<tr>
<td>POU</td>
<td>Point d’utilisation (de l’anglais point of use)</td>
</tr>
<tr>
<td>PTM</td>
<td>Pression trans-membranaire</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinyle difluorure</td>
</tr>
<tr>
<td>PWS</td>
<td>«Public Water System»</td>
</tr>
<tr>
<td>RQEP</td>
<td>Règlement sur la qualité de l’eau potable (Québec)</td>
</tr>
<tr>
<td>SCHL</td>
<td>Société canadienne d’hypothèques et de logement</td>
</tr>
<tr>
<td>SDWA</td>
<td>«Safe Drinking Water Act»</td>
</tr>
<tr>
<td>SHU</td>
<td>Syndrome hémolytique et urémique</td>
</tr>
<tr>
<td>SWM</td>
<td>«Sterilight Water Machine»</td>
</tr>
<tr>
<td>THM</td>
<td>Trihalométhanes</td>
</tr>
<tr>
<td>TSA</td>
<td>«Trypticase Soy Agar»</td>
</tr>
<tr>
<td>TSB</td>
<td>«Trypticase Soy Broth»</td>
</tr>
<tr>
<td>U.S. EPA</td>
<td>«United States Environmental Protection Agency»</td>
</tr>
<tr>
<td>UF</td>
<td>Ultrafiltration</td>
</tr>
<tr>
<td>ufc</td>
<td>Unité (s) formatrice (s) de colonie</td>
</tr>
<tr>
<td>upf</td>
<td>Unité (s) formatrice (s) de plage</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
</tbody>
</table>
INTRODUCTION

Au Québec, le nouveau Règlement sur la qualité de l’eau potable (RQEP) vise à mieux protéger la population contre d’éventuelles éclissions de maladies d’origine hydrique. Ses normes sont parmi les plus sévères au monde. La mise à jour du RQEP a aussi mis en lumière tout un secteur d’approvisionnement en eau qui n’était pas, autrefois, soumis à la réglementation. Dorénavant, les approvisionnements en eau de petite taille sont aussi soumis à la loi, au même titre que les plus grands exploitants. Ces petits approvisionnements ne comprennent pas seulement les puits privés individuels. Ils comptent aussi dans leurs rangs les approvisionnements en eau des entreprises touristiques, des institutions et les exploitations desservant un petit nombre de résidences.

Cette avancée législative va certes permettre d’assurer une qualité d’eau supérieure partout sur le territoire québécois. Un effort considérable est présentement déployé pour amener à des niveaux acceptables l’eau de plusieurs établissements en région (Caisses populaires, restaurants, auberges, pourvoiries, colonies de vacances, terrains de camping, etc.). Malheureusement, les types de traitements qui s’offrent à eux ne sont pas aussi éprouvés que dans le cas d’usines de traitement à grande échelle. Il faut donc procéder à l’évaluation de l’efficacité microbiologique de purificateurs d’eau pouvant s’utiliser à petite échelle. C’est ce que le projet tente de faire en testant divers types de traitements avec des micro-organismes indicateurs.

L’élaboration d’un banc d’essais à petite échelle a servi à tester des prototypes de membranes d’ultrafiltration (UF) en polyvinyle difluorure (PVDF) ainsi qu’un purificateur d’eau commercialement disponible qui s’emploie au point d’utilisation (POU). L’injection d’un cocktail de micro-organismes indicateurs (coliphages MS2, coliphages T7 et/ou spores de B. subtilis) a permis d’évaluer leur efficacité microbiologique. Un deuxième banc d’essai à plus fort débit utilise de l’eau municipale déchlorée et additionnée de coliphages MS2 seuls ou en suspension avec des spores de B. subtilis. Il a servi à évaluer l’efficacité microbiologique de deux appareils vendus au Canada. Ces derniers sont conçus pour une utilisation en point d’entrée (POE) et font appel à la technologie de l’UF et de l’irradiation ultraviolette (UV).
Suite à cette courte introduction, une revue étayée de la littérature qui a trait au sujet sera présentée. Le détail de la méthodologie expérimentale suivra. Les résultats obtenus seront ensuite exposés puis commentés dans la section suivante. La conclusion bouclera la discussion après quoi, la littérature citée est présentée par ordre alphabétique d’auteurs. Le document se termine par les annexes.
CHAPITRE 1

REVUE DE LITTÉRATURE

1.1 - L’approvisionnement en eau potable

L’eau potable est devenue un enjeu de taille, tant à l’échelle régionale qu’à l’échelle internationale. Outre les régions du globe qui subissent des sécheresses à répétition, plusieurs pays occidentaux s’inquiètent maintenant de leur approvisionnement à long terme en eau potable. À mesure que la population mondiale croît, les réserves d’eau diminuent et l’eau douce disponible coûte de plus en plus cher à traiter. Les conséquences se font sentir à plusieurs niveaux : querelles entre pays, querelles entre voisins, pénuries, contaminations, etc. Les enjeux concernant les systèmes de traitement d’eau publics font souvent la manchette. Des expressions comme « privatisation », « compteurs d’eau » , « taxe d’eau », et « bris de conduite » sont maintenant connues de tous.

Tableau I : Catégories de systèmes d’eau publics aux États-Unis, leur nombre et la population desservie par ceux-ci en l’an 2000.

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Nombre de systèmes</th>
<th>Population desservie (millions de personnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWS</td>
<td>54 000</td>
<td>264</td>
</tr>
<tr>
<td>NTNCWS</td>
<td>20 000</td>
<td>7</td>
</tr>
<tr>
<td>TNCWS</td>
<td>93 000</td>
<td>13</td>
</tr>
</tbody>
</table>

Tiré de : U.S. EPA, 2002

Tableau II : Proportion de systèmes de petite et très petite taille par catégorie en pourcentage et en quantité de personnes desservie par ceux-ci en 2000 aux États-Unis.

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Proportion de systèmes de petite et très petite taille (%)</th>
<th>Population desservie (millions de personnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWS</td>
<td>85</td>
<td>26</td>
</tr>
<tr>
<td>NTNCWS</td>
<td>99,4</td>
<td>5</td>
</tr>
<tr>
<td>TNCWS</td>
<td>99,8</td>
<td>10</td>
</tr>
</tbody>
</table>

Tiré de : U.S. EPA, 2002

Le Québec compterait 3 000 réseaux de distribution d’eau potable dont 1 550 sont considérés comme desservant moins de 200 personnes. Ces petits réseaux sont majoritairement des réseaux privés (600). Ils peuvent aussi desservir des entreprises touristiques (450), des municipalités (300) et des institutions (200). La plupart de ces réseaux n’utilisent aucun traitement (Ellis, 2003). Le nouveau règlement sur la qualité de l’eau potable spécifie que «toute eau destinée à la consommation humaine (incluant les puits individuels) doit respecter les normes de qualité de l’eau potable» (Ministère de l’Environnement du Québec (MENV), 2003a). Plusieurs
établissements hôteliers, commerces de restauration, et entreprises en région doivent dorénavant traiter leur eau.

À l'extérieur des pays industrialisés, l'approvisionnement en eau potable varie beaucoup. À Mexico, une ville comptant près de 20 millions d'habitants, le système de distribution d'eau potable se fait vieux et arbore de sérieuses fuites. De plus, il est touché par de fréquentes interruptions de services et périodes de basse pression, le rendant susceptible à la contamination. Ceci a été démontré par la présence d'organismes pathogènes dans des échantillons d'eau prélevés de robinets domestiques (National Research Council, 1995). Finalement, un rapport publié par l'Organisation mondiale de la santé (OMS) en 2000 montre que 20% des Asiatiques, soit 693 millions de personnes, n'avaient pas alors accès à de l'eau potable. Du côté de l'Afrique, 38% de la population n'a pas accès à de l'eau potable, ce qui correspond à 300 millions de personnes (OMS, 2000).

1.2 - Les puits privés

Au Canada, 4 millions de personnes dépendent de puits privés pour leur approvisionnement en eau potable (Santé Canada, 2000a). Santé Canada affirme que ses «Recommandations pour la qualité de l’eau potable au Canada» (1996) s'appliquent à toutes les sources d’approvisionnement
en eau potable, tant publiques que privées. Par contre, ces recommandations n’ont pas force de loi puisque l’eau est de juridiction provinciale.

Approximativement 10% de la population québécoise n’est pas desservie par un réseau municipal d’eau potable. Cela équivaut à environ 600 000 personnes alimentées par 150 000 puits individuels, en excluant les résidants saisonniers (Office de la protection du consommateur du Québec, 1995). «C’est au propriétaire du puits individuel ou du petit réseau (desservant moins de 21 personnes) que revient la responsabilité de s’assurer de la qualité et de la sécurité de l’eau qu’il offre pour consommation» (MENV, 2002a). De plus, le Ministère prévient qu’une eau de consommation qui provient d’un puits de surface ou d’un puits artésien «doit être de bonne qualité et respecter les normes édictées dans le Règlement sur la qualité de l’eau potable».

1.3 - Les types d’approvisionnement en eau

Il existe deux grands types d’approvisionnement en eau qui valent autant pour les approvisionnements résidentiels que pour les usines de filtration. D’abord, l’eau de surface est définie comme étant puisée directement de fleuves, de rivières, de ruisseaux, de lacs ou de sources (MENV, 2003b). Ensuite, l’eau souterraine provient de la nappe phréatique et est mise à la disposition du consommateur au moyen d’un puits. Selon le type d’eau qui sert à l’approvisionnement, les traitements de potabilisation diffèrent. L’eau de surface représente, de façon générale, un plus grand risque de contamination microbiologique et chimique qu’une eau souterraine et nécessite, par conséquent, des traitements souvent complexes (MENV, 2002b). Au Québec, la filtration est obligatoire pour l’eau de surface en plus d’un traitement de désinfection (MENV, 2003b). Dans le cas d’une eau souterraine dont la qualité microbiologique n’est pas susceptible d’être altérée par des eaux de surface, aucun traitement n’est nécessaire hormis l’ajout de désinfectant pour sa distribution en réseau (MENV, 2003a).

Il est vrai que l’eau souterraine est moins vulnérable aux contaminations bactériennes que l’eau de surface mais des recherches effectuées aux États-Unis montrent qu’elle serait un véhicule idéal pour les virus entériques (Borchardt et al., 2003). De plus, les eaux souterraines tendent à montrer plus de dureté et de salinité que les eaux de surface (Environnement Canada, 2003). Une eau souterraine peut être contaminée par une eau de surface ou par des matières fécales provenant
par exemple de fosses septiques, de tuyaux d’égouts qui fuient ou de sites d’épandage. Aussi, des contaminants peuvent atteindre la nappe d’eau souterraine via le revêtement d’un puits ou à travers des craques du joint sanitaire si un puits n’est pas construit de façon adéquate ou s’il est mal protégé ou mal entretenu (U.S. EPA, 2000). Cette eau souterraine contaminée est alors appelée « eau souterraine sous influence directe d’une eau de surface » ou ESSIDES.

Il existe plusieurs variantes dans la construction d’un puits. Au niveau résidentiel, le puits de surface et le puits artésien sont les plus communs. Le premier est aussi appelé puits creusé, puits foré à la tarière ou puits à pointe filtrante. Il est alimenté par l’eau qui circule près de la surface du sol, provenant directement de la nappe phréatique. Sa profondeur habituelle ne dépasse pas 15 mètres (Société canadienne d’hypothèques et de logement (SCHL), 2004). De nombreux facteurs, tels que les types de sols en présence, le relief du terrain et surtout la façon dont le puits est construit, affectent la quantité et la qualité d’eau d’un puits de surface. De façon générale, cette eau est assez vulnérable tant pour les infiltrations d’eau de surface que pour les risques de pénurie. Son rendement peut être affecté par les précipitations et il voit ses risques de contamination bactérienne s’accroître à la fonte des neiges et en été. (Site Web : Techn’eau conseil)

Le nom de puits artésien est souvent utilisé à tort pour désigner tous les puits forés. Le vrai puits artésien est soit alimenté par l’eau qui circule dans les fractures du roc ou par l’eau présente dans le gravier ou du sable sous une couche d’argile (Site Web : Techn’eau conseil). Il est obtenu par forage avec une sondeuse en perforant une couche de sol imperméable pour accéder à une nappe d’eau profonde, généralement entre 15 m et 60 m dans le sol (SCHL, 2004). Malgré son coût de réalisation plus élevé, ce type de puits est habituellement stable toute l’année pour ce qui est de la quantité d’eau. Lorsque le forage et l’installation de la pompe sont faits convenablement, l’infiltration des eaux de surface dans le puits devrait être nulle (SCHL, 2004).
1.4 - Les contaminants de l'eau

Les contaminants esthétiques ne sont pas dangereux pour la santé. Ils comprennent le fer et le manganèse qui tachent (lavabos, vêtements), donnent un mauvais goût et colorent l'eau. Le sulfate à haute concentration peut donner un effet laxatif à l'eau. L'hydrogène sulfuré (H₂S), un gaz provenant de la décomposition de la matière organique, donne une odeur d'oeufs pourris à l'eau et cause la corrosion. La dureté de l'eau est causée par des minéraux dissous, surtout le calcium et le magnésium. À haute concentration, la dureté cause l'encrassement de la tuyauterie, une demande plus élevée de détergent et un remplacement prématuré des chauffe-eau (Pennsylvania Department of Environmental Protection, 2002).

Les contaminants chimiques comprennent une gamme de composés très diversifiés. Ils peuvent être naturellement présents dans le sol ou provenir d'activités humaines. Mais, contrairement aux contaminants esthétiques, ils menacent la santé. Les nitrates sont abondamment utilisés comme engrais inorganique et peuvent causer la méthémoglobinémie chez les nourrissons de moins de trois mois (Santé Canada, 1996). Au Québec, tout nouvel ouvrage de captage doit être testé pour la présence d'arsenic, de baryum et de fluorures dans l'eau. Ces substances peuvent être naturellement présentes dans les eaux souterraines (MENV, 2002a). Les composés chimiques synthétiques (BPC, dioxines, lindanes), les pesticides, les composés organiques volatils, le plomb
et le radon entrent aussi dans ce type de contamination (Pennsylvania Department of Environmental Protection, 2002). Enfin, certains composés non dangereux à la base, réagissent avec les désinfectants et forment des sous-produits de désinfection qui eux peuvent être classés parmi les contaminants chimiques.

Les principaux contaminants microbiologiques comprennent les bactéries, les virus ainsi que les parasites protozoaires. Toutes les bactéries ne sont pas pathogènes mais, certaines le sont. Par contre, les virus et les parasites protozoaires sont des parasites obligatoires et sont donc pathogènes en tout temps. Pour chaque micro-organisme pathogène, une dose minimale doit être ingérée pour qu’il provoque la maladie. Cette dose minimale infectieuse est généralement élevée chez les bactéries pathogènes (1 000 à 100 000) et faible pour les protozoaires (1 à 100) et les virus (1 à 10) (Bitton, 1999). Une écllosion de maladie associée à l’eau potable (waterborne disease outbreak) se produit lorsque au moins deux personnes ont une même maladie après l’ingestion d’une eau potable spécifique (American Water Works Association (AWWA), 1999).

1.4.1 - Bactéries

Tableau III : Principales bactéries responsables de maladies associées à l'eau ainsi que les maladies qu'elles peuvent causer.

<table>
<thead>
<tr>
<th>Bactéries pathogènes</th>
<th>Maladies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter jejuni</td>
<td>Gastroentérites, méningites</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Gastroentérites, SHU</td>
</tr>
<tr>
<td>Legionella spp.</td>
<td>Maladie du légionnaire, fièvre de Pontiac</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>Gastroentérites, septicémies, anorexies</td>
</tr>
<tr>
<td>Shigella spp.</td>
<td>Gastroentérites, dysenteries, SHU</td>
</tr>
<tr>
<td>Vibrio cholerae</td>
<td>Cholera</td>
</tr>
<tr>
<td>Yersinia enterocolitica</td>
<td>Gastroentérites</td>
</tr>
</tbody>
</table>

Tiré de U.S. EPA 2000

1.4.2 - Virus

Les virus trouvés dans l'eau (tableau IV) sont particulièrement résistants aux conditions prévalant dans les eaux souterraines : ils s'y déplacent mieux et y survivent plus longtemps que les bactéries. Les virus démontrent en général une spécificité d'hôte, c'est-à-dire qu'ils infectent une espèce en particulier. Les virus humains doivent être distingués des virus animaux, aviaires ou des virus de bactéries, aussi appelés bactériophages. Comme les virus humains sont plus infectieux que les bactéries et qu'ils sont tous pathogènes pour les humains, ils représentent la plus grande menace microbiologique (U.S. EPA, 2000).

Tableau IV : Principaux virus responsables de maladies associées à l'eau ainsi que les maladies qu'ils peuvent provoquer.

<table>
<thead>
<tr>
<th>Virus</th>
<th>Maladies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adénovirus enteriques</td>
<td>Symptômes respiratoires, gastroentérites</td>
</tr>
<tr>
<td>Astrovirus</td>
<td>Gastroentérites</td>
</tr>
<tr>
<td>Calicivirus, dont Norwalk</td>
<td>Gastroentérites</td>
</tr>
<tr>
<td>Coxsackievirus A</td>
<td>Méningite, fièvre, symptômes respiratoires</td>
</tr>
<tr>
<td>Coxsackievirus B</td>
<td>Myocardites, maladies cardiaques congénitales</td>
</tr>
<tr>
<td>Echovirus</td>
<td>Meningites, encéphalites, fièvre, gastroentérites</td>
</tr>
<tr>
<td>Hépatite A</td>
<td>Hépatite</td>
</tr>
<tr>
<td>Hépatite E</td>
<td>Hépatite</td>
</tr>
<tr>
<td>Petits virus de structure ronde</td>
<td>Gastroentérites</td>
</tr>
<tr>
<td>Poliovirus</td>
<td>Paralysie</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>Gastroentérites</td>
</tr>
</tbody>
</table>

Tiré de U.S. EPA 2000
1.4.3 - Parasites protozoaires

1.5 - Les enjeux de santé publique

Outre les micro-organismes, certains produits chimiques présents dans l’eau peuvent affecter la santé des individus à court, moyen et long terme. Certains contaminants causent beaucoup d’inquiétude, notamment les nitrates et les résidus de pesticides, trouvés en régions agricoles, ainsi que le plomb et l’arsenic. La chloration de l’eau soulève plusieurs inquiétudes à cause des trihalométhanes (THM), sous-produits toxiques de la chloration (Organisation for Economic Co-Operation and Development, 2003), et de la qualité esthétique affectée par le mauvais goût donné par le chlore.
Les mises à jour de la réglementation visent à offrir une plus grande protection lors de la consommation d'eau potable. En général, les grandes villes sont bien protégées par l'automatisation des usines de filtration et des échantillonnages fréquents. Par contre, les petits systèmes ont plus de difficultés à se conformer à la réglementation pour des raisons financières et par manque de main-d’œuvre qualifiée. Depuis quelques années, les propriétaires de puits individuels du Québec sont encouragés à faire analyser l'eau de leur puits deux fois l'an, à l'automne et au printemps (MENV, 2002a). Ces enquêtes ponctuelles sur la qualité de l'eau trouvent leur mérite lorsqu'elles décèlent un problème permanent de contamination. Malheureusement, il est connu que les épisodes de contamination peuvent survenir de façon ponctuelle, souvent à la fonte des neiges ou lors de pluies abondantes. Si l'échantillonnage se fait à l'extérieur de ces périodes, on peut croire à tort qu'un puits est sécuritaire. Les gens alimentés par des petits systèmes et ceux qui dépendent de puits privés ont aussi droit à une eau potable de bonne qualité. Non seulement leur propre santé peut être compromise mais aussi celle de leur famille, de leurs enfants, de leurs invités et même de leur communauté.

En cas de contamination d'un puits, il faut tenter de trouver la source des contaminants et, si possible, l'enrayer (MENV, 2002a). Sinon, les propriétaires de puits disposent de plus en plus de solutions pour accéder à une eau de qualité. Premièrement, il faut envisager la désinfection du puits. En cas d'échec, les propriétaires peuvent se tourner vers l'eau embouteillée ou le traitement de leur eau. L'utilisation d'eau embouteillée comporte certains inconvénients ayant trait à son transport et son entreposage. Pour une résidence de 3 à 4 personnes, Cotruvo (2003) estime à environ 100 L la quantité d'eau nécessaire par mois, soit environ 5 bouteilles de 18 L. De plus, il semblerait que l'eau embouteillée ne soit pas toujours aussi «pure» que l'on pense. Dans un article récent, Rosenberg (2003) mentionne des cas, rares mais existants, d'eaux embouteillées contaminées par des micro-organismes pathogènes.

Si les propriétaires choisissent le traitement, plusieurs options s'offrent à eux. D'abord, ils peuvent avoir recourt à des dispositifs au point d'utilisation (POU). Ceux-ci peuvent être portatifs, raccordés à la plomberie ou montés sur un robinet, celui de la cuisine le plus souvent (Santé Canada, 2000a). Les pichets filtrants entrent aussi dans cette catégorie. Leur avantage est qu'ils nécessitent peu d'investissement initial mais, ils n'empêchent pas la contamination ailleurs
qu’au robinet où ils sont installés, par exemple dans la salle de bain. Mais, sachant que moins de 1% de l’eau d’une résidence sert pour la cuisine et la boisson (Cotruvo et Cotruvo Jr., 2003), ils peuvent s’avérer être un choix judicieux. Ensuite, les dispositifs en point d’entrée (POE) sont installés sur l’approvisionnement principal en eau de la résidence et traitent toute l’eau qui entre (Santé Canada, 2000a). Ils coûtent nécessairement plus cher que les POU mais assurent une eau potable partout dans la maison.

1.6 - Le traitement d’eau

Le traitement d’eau est une solution avantageuse pour contrer les problèmes de contamination microbiologique des puits privés. Il permet d’éliminer le problème de façon permanente et la solution est adaptée au cas par cas. Cela contribue à diminuer le risque d’éclosion de maladie d’origine hydrique et peut même améliorer la qualité esthétique de l’eau. Déjà largement utilisé pour traiter les approvisionnements privés d’eau de surface, le traitement d’eau pourra aussi satisfaire les usagers de systèmes publics qui n’ont pas confiance en l’eau qui leur est acheminée. Par delà les puits privés, les solutions de traitement résidentielles peuvent être appliquées à des petits réseaux, maintenant soumis au RQEP au Québec.

Pour assurer la qualité de l’eau partout dans une maison, les dispositifs en POE représentent le choix le plus approprié. Le but des POE est de réduire le risque de contamination des gens qui boivent l’eau de surface ou souterraine par des moyens techniques. Un dispositif de traitement d’eau en point d’entrée pour usage domestique doit pouvoir traiter 25 à 40 L/min (36 à 60 m³/jour).

Il existe plusieurs types de traitement (tableau V) disponible pour usage domestique dont chacun permet de traiter un ou des problèmes particuliers. Ces traitements incluent l’adsorption, l’échange ionique, la filtration, l’oxydation chimique, la neutralisation, l’aération, la distillation, l’osmose inverse et la désinfection (chloration, ozonation, irradiation ultraviolette (UV), filtration membranaire).
Tableau V : Traitements pouvant être appliqués à l’eau pour en améliorer la qualité et quelques unes de leurs utilisés.

<table>
<thead>
<tr>
<th>Traitements</th>
<th>Utilités</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtration au charbon actif</td>
<td>Odeurs, goûts, composés organiques</td>
</tr>
<tr>
<td>Filtration mécanique</td>
<td>Kystes, oocystes, sédiments</td>
</tr>
<tr>
<td>Échange ionique (adoucisseur)</td>
<td>Durété</td>
</tr>
<tr>
<td>Neutralisateurs</td>
<td>pH</td>
</tr>
<tr>
<td>Aérateur</td>
<td>Composés organiques volatils</td>
</tr>
<tr>
<td>Distillateur</td>
<td>Micro-organismes, métaux, sels, sédiments</td>
</tr>
<tr>
<td>Osmose inverse</td>
<td>Composés inorganiques, petites molécules organiques, sels</td>
</tr>
<tr>
<td>Désinfection</td>
<td>Micro-organismes</td>
</tr>
<tr>
<td>Chloration</td>
<td>Majorité des micro-organismes, fer, H₂S</td>
</tr>
</tbody>
</table>

Adapté de Pennsylvania Department of Environmental Protection (2002)

Pour une réduction appréciable des micro-organismes, incluant les bactéries pathogènes, les virus et les parasites, il est recommandé de procéder à une filtration mécanique suivie d’une désinfection. Voici une description sommaire des équipements utiles à cette fin :

1.6.1 - Filtres mécaniques

1.6.2 - Chloration

Le moyen le plus commun de désinfecter l’eau est l’utilisation du chlore. Son principe consiste en une oxydation tant des composés chimiques que des structures externes des micro-organismes. Ainsi, le microbe subit des lésions qui causent éventuellement sa mort. Par contre, son utilisation est rendue complexe par le calcul des CT [Concentration (mg/L) x Temps de contact (min)],
l'influence importante du pH et de la température de l'eau. De plus, la présence de composés organiques et inorganiques dans l'eau crée une demande additionnelle en chlore et forment des sous-produits de désinfection potentiellement cancérigènes tels que les THM (Bitton, 1999).

À l'échelle résidentielle, la chloration coûte cher et prend beaucoup d'espace car elle nécessite un réservoir de solution, une pompe doseuse, un réservoir de rétention, un filtre à particules et parfois un filtre au charbon activé. De plus, les temps de contact à appliquer sont difficilement atteignables à si petite échelle (Pennsylvania Department of Environmental Protection, 2002). La chloration permet néanmoins une désinfection résiduelle après traitement car elle laisse une petite quantité de désinfectant dans l'eau (Hargy, 2001).

1.6.3 - Ozonation

L'ozone peut jouer deux rôles dans l'amélioration de la qualité de l'eau potable. Il est un désinfectant puissant et il peut aussi servir à oxyder des contaminants chimiques (Lykins, et al., 1992). Comme désinfectant, l'ozone inactive efficacement les micro-organismes, incluant les parasites protozoaires, généralement assez résistants à la désinfection chimique. Le mécanisme d'action de l'ozone n'est pas encore bien caractérisé mais, les chercheurs s'entendent pour dire qu'il s'agit d'une réaction radicaleaire en chaîne. Les problèmes liés à l'utilisation de l'ozone tiennent à sa faible solubilité dans l'eau et à la formation possible de sous-produits de désinfection, notamment les ions bromates (Zhou et Smith, 2001). Il est peu utilisé en traitement résidentiel car il nécessite la production d'ozone sur le site au moyen de lampe UV à 185nm ou de réacteurs à décharge en couronne. Sa forte réactivité et des fuites de gaz dans l'air peuvent représenter des risques si le système n'est pas installé adéquatement (Lykins, et al., 1992).

1.6.4 - Lampes UV

Le rayonnement des lampes UV inflige des dommages au matériel génétique des microbes. Ces derniers ne peuvent plus se reproduire et sont dès lors, considérés comme morts (Hargy, 2001). Les lampes sur le marché de la désinfection d'eau résidentielle sont essentiellement de spectre
monochromatique, c’est-à-dire qu’elles émettent une lumière ayant une seule longueur d’onde, en l’occurrence de 254 nm. Il s’agit pour la plupart de lampes basse pression à vapeur de mercure, munies d’un manchon de quartz (Lykins, et al., 1992).

1.6.5 - Filtration sur membranes

La filtration membranes est divisée en 4 catégories selon la grosseur des pores : micro- (MF), ultra- (UF), nano-filtration (NF) et l'osmose inverse (OI). La NF et l'OI sont des procédés nécessitant de fortes pressions et permettent d'enlever les substances dissoutes de l'eau. La MF et UF fonctionnent à basse pression et permettent l'enlèvement des particules, des colloïdes et des contaminants microbiens comme les parasites et les bactéries. L'enlèvement des virus est plus variable selon les propriétés de la membrane. La filtration membranaire peut être sujette à des problèmes d'intégrité des membranes si des trous se forment dans la membrane ou encore si la membrane s'obstrue de façon irréversible (U.S. EPA, 2001b).

1.7 - Le choix d'un dispositif

Santé Canada (2000b) re recommande aucune marque de commerce particulière de dispositifs de traitement de l'eau. Toutefois, Santé Canada incite fortement les consommateurs qui désirent se procurer un dispositif de traitement de l'eau, à acheter un dispositif certifié, conforme à une des normes de rendement de la «National Sanitary Foundation» (NSF). NSF est une organisation non gouvernementale sans but lucratif. Chef de file mondial dans le développement de standards, la certification de produits, l'éducation et la gestion de risque en santé et sécurité publique et oeuvrant depuis 1968 dans le domaine de l'eau, NSF est devenue en 1996 un collaborateur de l'OMS, se positionnant ainsi au niveau mondial. Au Québec, les produits certifiés NSF sont reconnus comme efficaces envers divers critères de qualité (MENV, 2002a). Les critères pour la certification des dispositifs de traitement d'eau de consommation sont au nombre de six pour les POE et les POU. Pour qu'un dispositif soit certifié, il doit rencontrer avec succès les exigences stipulées dans la norme ou les normes qui s'appliquent. NSF rend disponible sur son site Web (Site Web : NSF) la liste des dispositifs qui sont certifiés pour chaque standard.
À titre d'exemple, la norme 55 s'applique à la désinfection par les systèmes à rayons ultraviolets. Ce standard pour les « systèmes de traitement microbiologique de l'eau par les UV » est divisé en deux catégories : la classe A, pour les systèmes pouvant être utilisés pour désinfecter des eaux contaminées, et la classe B qui regroupe les systèmes fournissant un traitement bactéricide d'appoint lorsque l'eau à traiter possède déjà une qualité microbiologique jugée acceptable. Aucun standard NSF n'a encore été émis pour la désinfection de l'eau par les membranes d'UF. Des représentants de Santé Canada, des universitaires et des experts de l'industrie travaillent présentement ensemble, sous l'égide de NSF International, à élaborer des normes pour pallier ces lacunes (Santé Canada, 2000b). L’U.S. EPA a récemment publié (2001b) un document qui résume les usages courants et le statut des technologies de filtration membranaire à basse pression appliquées à l'eau de consommation ainsi que les moyens de contrôle inhérents à ces technologies.

1.8 - Évaluation de l'efficacité microbiologique

Certains types de traitement pour la désinfection résidentielle ont la préférence des consommateurs car leur utilisation est simple, ils n'emploient pas de produits dangereux et ne laissent aucun résidu dans l'eau. C'est le cas des systèmes de désinfection par rayonnements ultraviolets qui sont très utilisés. Depuis quelques années, les systèmes de filtration membranaire ont fait l'objet de plusieurs recherches dans le but de les appliquer au traitement de l'eau potable. À cause de la nouveauté de cette technologie, les études de rendement du point de vue microbiologique sont rares. Il est donc important de vérifier l'efficacité de ces systèmes en termes microbiologiques dans diverses conditions d'utilisation. Ces deux types de traitement ont l'avantage d'être efficace contre les oocystes de Cryptosporidium, ce que la désinfection par chloration réussit difficilement. De plus, ils ne produisent aucun sous-produit de désinfection potentiellement nocif pour la santé.

1.8.1 - Les membranes d'ultrafiltration

Les membranes d'UF agissent comme barrière sélective permettant le passage de certaines substances seulement. Il s'agit donc d'un processus de séparation. Appliquées à la production d'eau potable, elles permettent l'enlèvement des kystes de Giardia, des oocystes de Cryptosporidium et des bactéries. De plus, les membranes d'UF réduisent considérablement la
turbidité et la quantité de virus présents dans l’eau. La filtration peut se faire en appliquant une pression positive (0,21 à 2,76 bar) ou négative (-0,21 à -0,83 bar). Le recouvrement, c’est-à-dire le ratio de l'eau brute par rapport au filtrat, est de 85-97%, ce qui confère aux membranes d’UF un net avantage sur les membranes de NF et d’IOI, caractérisées par des ratios plus faibles. La performance d’une membrane peut être influencée, entre autres, par la grosseur des pores, la configuration, le matériau de fabrication et par la présence d’un dépôt – la couche de gâteau – à la surface de la membrane qui se forme au cours d’un cycle de filtration (U.S. EPA, 2001b).

Le MWCO («molecular weight cut-off») est une spécification fournie par le fabricant et elle donne les caractéristiques d'exclusion de la membrane. Cette mesure, en daltons, réfère à la masse moléculaire d'une macromolécule qui est retenue à 90% par la membrane (Mallévalle et al., 1996). La grosseur nominale des pores est basée sur un pourcentage donné d'enlèvement de microsphères d'un diamètre déterminé alors que la grosseur absolue des pores est caractérisée par la grosseur du plus large pore à la surface de la membrane (U.S. EPA, 2001b).

L'industrie ne possède pas de méthode standard pour déterminer la grosseur des pores. De même, la distinction entre l’ultra- et la micro-filtration est assez variable selon les auteurs. Par exemple, Madaeni (1999) soutient que pour les membranes d’UF, les pores sont de 5 à 20 nm alors que Zhou et Smith (2001) affirment qu’elles vont de 3 à 100 nm. Par ailleurs, comme les pores d’une membrane ne sont pas toutes de même taille, il est souvent question d’une distribution de grosseurs de pores (Mallévalle et al., 1996). La taille des pores est un élément important à considérer lors du choix d’une membrane pour la production d’eau potable mais, le manque de standardisation ainsi que l’influence considérable d’autres facteurs sur la performance d’une membrane en diminue l’importance (U.S. EPA, 2001b).

Les membranes de filtration peuvent être de géométrie plane ou tubulaire (Mallévalle et al., 1996). Pour la géométrie tubulaire, la configuration la plus prisée pour les membranes d’UF est celle des fibres creuses où des milliers de fibres sont imbriquées dans une résine à chaque extrémité. Cette configuration est caractérisée par un ratio aire/volume élevé et a l’avantage de faciliter les rétro-lavages (Zhou et Smith, 2001). Deux modes d'opération des membranes en fibres creuses sont possibles : l’écoulement centrifuge (inside-out) où l’eau entre dans la lumière
de la membrane et passe au travers les fibres pour générer le filtrat ou l'écoulement centripète (outside-in) où l'eau passe au travers les fibres et le filtrat est collecté dans la lumière. Il existe aussi deux patrons d'aménée d'eau vers la membrane : la filtration avec écoulement tangentiel (cross-flow) où la source est parallèle aux fibres alors qu'une partie de l'eau passe à travers la membrane et la filtration frontale (dead-end) où le liquide est forcé de traverser la membrane dans un cul-de-sac. Une amenée d'eau parallèle diminue le colmatage mais nécessite la recirculation d'une partie de l'eau brute au moyen de pompes (U.S. EPA, 2001b). Les membranes contemporaines ont surtout une morphologie anisotropique, c'est-à-dire qu'une couche mince filtrante plus dense - la peau - est supportée par un matériau plus épais et plus poreux (Mallevialle et al., 1996). La membrane peut alors avoir une morphologie soit asymétrique où le matériau de la membrane est homogène mais la densité est plus grande du côté d'arrivée de l'eau, soit composite, quand un film dense recouvre la membrane du côté d'arrivée de l'eau (U.S. EPA, 2001b).

Les matériaux utilisés pour fabriquer les membranes sont organiques, c'est-à-dire qu'ils sont des polymères, ou inorganiques, c'est-à-dire faits de céramiques, de métaux, etc. Malgré leur grande résistance chimique et thermique, les membranes de matériaux inorganiques sont très fragiles et très coûteuses (Zhou et Smith, 2001). Les polymères organiques sont de loin plus utilisés et parmi ceux-ci, les esters de cellulose sont les plus courants. Malgré sa susceptibilité aux dégradations bactériennes, à l'hydrolyse et à la température, la cellulose a le grand avantage de résister au chlore (Mallevialle et al., 1996). D'autres matériaux utilisés pour les membranes d'UF sont le polyéthylène, le PVDF, le polysulphone, le polytetrafluoroéthylène et le polypropylène (Mallevialle et al., 1996; U.S. EPA, 2001b).

Tel que mentionné précédemment, une couche de gâteau se forme à la surface des membranes à mesure que la filtration progresse. Elle agit en quelque sorte comme un pré-filtre pour la membrane et peut potentiellement augmenter les capacités d'enlèvement de celle-ci (Hogan, 1998). Il est donc difficile de comparer les résultats entre différentes études de mise à l'épreuve de membranes car la couche de gâteau n'est généralement pas prise en compte par les chercheurs. D'un autre côté, la couche de gâteau augmente le colmatage de la membrane et crée une résistance additionnelle au passage de l'eau. Cela fait augmenter la pression transmembranaire
(PTM), c’est-à-dire la pression nécessaire pour pousser l'eau à travers la membrane, si cette dernière est opérée à débit de perméation constant. Si le système est opéré à PTM constante, c'est le débit de filtration qui s'en trouve réduit. La situation se rétablit partiellement lors des rétro-lavages et de façon plus significative lors des nettoyages chimiques (U.S. EPA, 2001b). La PTM typique d'une membrane d'UF se situe entre 0,5 et 7 bar (Mallévialle et al., 1996).

Les fréquents rétro-lavages des membranes d'UF nécessitent l'utilisation d'air ou d'eau ou les deux. Il s'agit de déloger les particules qui s'amassent sur la membrane avant qu'une trop grosse couche de gâteau se forme (Mallévialle et al., 1996). Par contre, seul un nettoyage chimique permet de retrouver la PTM d'une membrane neuve. Cette opération est assurée par la circulation d'acide, de caustique, de chlore ou de surfactants à travers la membrane pour dissoudre ou déloger les substances qui n'ont pas été enlevées pas les rétro-lavages. Malgré tout, les nettoyages chimiques n'empêchent pas l'obstruction irréversible qui se produit pour tous les types de membranes et se traduit par une baisse du flux, donc de la productivité. Le flux, à la conception, indique l'aire de membrane nécessaire pour traiter une quantité d'eau dans un temps donné. Il est influencé par la température de l'eau car à faible température l'eau est plus visqueuse. Enfin, l'obstruction irréversible requiert le remplacement de la membrane (U.S. EPA, 2001b).

Comme le tamisage est un mécanisme majeur d’enlèvement des micro-organismes, plusieurs efforts sont déployés pour contrôler l’intégrité physique des membranes. Pour s’assurer que les membranes d’UF ne contiennent ni trou ni brèche et que leur montage soit étanche, il est recommandé pour les usines de filtration de surveiller la qualité du filtrat par comptage de particules ou par mesure de turbidité. Une augmentation de ces paramètres peut indiquer qu’une brèche s’est formée dans une fibre. Pour repérer le module en cause, des tests dits « directs » peuvent alors être faits mais ils nécessitent l’arrêt des opérations. Ces tests non-destructifs comprennent le test de maintien de la pression et le test par diffusion d’air. Dans le premier cas, on applique de l’air sous pression sur la membrane et on évalue le taux de diminution de la pression sur une période de temps donnée. Dans le cas d’un test par diffusion d’air, on mesure directement l’air diffusé au travers une membrane mouillée ou encore le volume d’eau déplacé par l’air sous pression sur la membrane (U.S. EPA, 2001b). Finalement, le test de point de bulle (bubble point) peut ensuite servir pour identifier la fibre endommagée afin de la remplacer. Ce test est basé sur l’existence d’une pression de point de bulle, c’est-à-dire une pression d’air suffisamment élevée pour vaincre les forces de capillarité et permettre à des bulles d’air de passer au travers les fibres de la membrane (Mallévialle et al., 1996). En appliquant une pression
inférieure au point de bulle, seule la fibre endommagée laissera s'échapper de l'air, qu'on peut mettre en évidence par l'utilisation d’un surfactant (U.S. EPA, 2001b).

1.8.2 - Les lampes à rayons ultraviolets

Quant à la photoréactivation, elle ne s’observe que pour certains micro-organismes. Elle nécessite l’exposition du microbe à une lumière de 310 à 490 nm qui active une photolyase. Cette enzyme a la capacité de séparer les dimères de pyrimidines. Ce phénomène fait augmenter la dose UV nécessaire pour atteindre un nombre déterminé de log d’inactivation. Par exemple, il faut augmenter la dose UV de 1,2 à 3,5 fois pour obtenir 4 log d’inactivation pour 12 espèces de bactéries qui font de la photoréactivation par rapport à des bactéries qui en sont incapables (Hoyer, 1998 cité en U.S. EPA, 2003). Les études de Shin et al. (2001) n’ont montré aucune évidence de réparation de l’ADN, pour des dommages causés par les UV chez les oocystes de C. parvum. Par ailleurs, le potentiel de photoréactivation des cellules varie selon plusieurs facteurs...

La dose UV est donnée par le produit de l’intensité (mW/cm²) par le temps (s) (Tchobanoglous et al., 1999). Ses unités sont donc les mW*s/cm² ou les mJ/cm². La mesure de la lumière UV se fait habituellement avec un radiomètre calibré à 254 nm, un détecteur UV ou encore par actinométric. À cause d’une distribution de dosages non uniforme à l’intérieur d’un réacteur, tous les micro-organismes ne reçoivent pas la même dose. De plus, la dose reçue dépend du trajet du microbe dans le réacteur. Il est donc possible d’affirmer que tous les réacteurs et conditions d’écoulement donnent une gamme de doses qui produisent une inactivation quantifiable. Il est donc impossible de mesurer directement la dose UV ou encore de la déduire mathématiquement (Sommer et al., 1997). Pour cette raison, les chercheurs ont recours à la biodosimétrie afin de déterminer la dose équivalente d’un réacteur.

La biodosimétrie consiste d’abord à déterminer la courbe dose-réponse d’un micro-organisme ayant un patron d’inactivation suivant une équation linéaire (cinétique de 1er ordre) à l’aide d’un faisceau collimateur. Ensuite, ce même micro-organisme est injecté dans le réacteur UV réel dont on veut déterminer la dose. La réponse obtenue en log d’inactivation est mise en relation dans la courbe dose-réponse pour trouver la dose UV équivalente du réacteur (U.S. EPA, 2003).

Outre l’intensité de la lumière, le temps d’exposition et les propriétés hydraulique du réacteur, plusieurs facteurs peuvent influencer la performance de désinfection d’une lampe UV. La qualité de l’eau et la résistance des micro-organismes sont sans doute les plus importants (Parrotta et Bekdash, 1998). Une eau turbide ou qui contient plusieurs particules solides en suspension diminue la dose reçue par les micro-organismes (Tchobanoglous et al., 1999). Effectivement, la lumière peut être déviée par les particules ou encore, les particules peuvent servir d’abris pour les micro-organismes. Une eau peut aussi contenir des particules en solution (fer, sulfites, matière
organique). Ces conditions atténuent ou bloquent la lumière UV réduisant ainsi l'efficacité de la désinfection (Malley, 2001). L'eau doit aussi permettre le passage de la lumière UV, caractéristique appelée transmittance. Une transmittance minimum de 85% est recommandée lors de l'utilisation des UV pour fins de désinfection (Abboub, 2002). Finalement, certaines eaux encrassent le manchon de quartz qui entoure la lampe ce qui réduit l'irradiance de la lumière. Les facteurs d'influence pour cette condition sont le pH, la température et la présence de fer, de calcium ou de magnésium (Malley, 2001).

La majorité des études portant sur les UV vise à déterminer la dose nécessaire pour avoir 4 log d'inactivation pour un micro-organisme donné. Ainsi, pour la majorité des bactéries végétatives 5 à 10 mJ/cm² sont nécessaires (Hargy, 2001). Les bactéries sporulantes sont plus résistantes, par exemple les spores de Bacillus subtilis requièrent 60 mJ/cm² (Nicholson et al., 2001). Pour les virus, les doses nécessaires pour 4 log d'inactivation vont généralement de 25 à 50 mJ/cm² (Hargy, 2001). Par contre, certains virus se trouvent à l'extérieur de cette plage. Par exemple, Meng et Gerba (1996) ont démontré que poliovirus type 1 nécessitait 20.6 mJ/cm² et adénovirus type 40 121 mJ/cm² pour 4 log d'inactivation. Finalement, les protozoaires tels que Cryptosporidium parvum et Giardia lamblia nécessitent 2 à 10 mJ/cm², pour une réduction de 4 log (Hargy, 2001).

Les avantages de l'utilisation des rayons UV pour la désinfection sont multiples, notamment l'absence de sous-produits de désinfection (Bukhari et LeChevallier, 2003), l'absence de produits chimiques ajoutés, aucun goût ni odeur ajoutés. Mais, comme tout avantage peut aussi être un désavantage, l'irradiation UV ne laisse pas de désinfection résiduelle comme le fait le chlore (Hargy, 2001). Au niveau opérationnel, l'utilisation des lampes UV nécessite le maintien d'un voltage constant et de la température optimale des lampes à 40°C, sans quoi une diminution d'intensité peut se produire (Lykins et al., 1992). L'irradiation UV peut poser un problème lors du bris ou de l'entretien des lampes et avec la mise aux rebuts de ces dernières (Hargy, 2001). Effectivement, le vieillissement des lampes s'accompagne d'une diminution d'intensité. Il faut donc les remplacer selon les instructions du fabricant, généralement une fois par année (Lykins et al., 1992).
1.9 - Les indicateurs microbiens

Afin d’évaluer l’efficacité microbiologique d’appareils de désinfection de l’eau, des indicateurs microbiens sont utilisés. Ces derniers permettent de vérifier si un type ou un groupe de micro-organismes est efficacement enlevé ou inactivé par un traitement. En ce sens, les micro-organismes « indicateurs de traitement » diffèrent des « indicateurs de qualité de l’eau » qui servent à établir le degré de contamination d’une eau (AWWA Research Foundation (AWWARF), 1995).

Plusieurs micro-organismes sont utilisés pour évaluer l’efficacité de traitement de l’eau. Les qualités d’un bon indicateur sont sa capacité à être produit en grande quantité et à haut titre, sa simplicité de titrage à faibles coûts, sa non-pathogénicité pour l’humain et sa résistance égale ou supérieure à celle des micro-organismes pathogènes vis-à-vis du traitement à évaluer (U.S. EPA, 2003). Par exemple, les spores de B. subtilis (diamètre 1μm) sont largement utilisées pour assurer l’enlèvement des oocystes de Cryptosporidium (diamètre 4μm) par les usines de production d’eau potable (Rice et al., 1996).

Le choix d’un indicateur est tributaire du type traitement en évaluation. Par exemple, la majorité des études sur les membranes d’UF utilisent le coliphage MS2 comme substitut de virus (U.S. EPA, 2001b). Les virus étant les plus petites particules pathogènes, ils sont plus susceptibles de ne pas être arrêtés par la barrière physique que constituent les membranes. Dans le cas de l’évaluation d’appareils à rayons UV, quatre micro-organismes sont reconnus pour la biodosimétrie en eau potable : E. coli, Saccharomyces cerevisiae, les spores de Bacillus subtilis et les coliphages MS2 (Hargy, 2001). Ces microbes sont caractérisés par une cinétique d’inactivation linéaire de 1^{er} ordre, c’est-à-dire que les log de réduction sont fonction de la dose UV dans une relation linéaire.

Pour l’étude des membranes UF, le choix de coliphages mâles spécifiques MS2 est tout à fait approprié car ils représentent les virus entériques par leurs propriétés physiques, tout en étant moins dangereux à manipuler en laboratoire. Les MS2 (24-27 nm (Bitton, 1999)) sont morphologiquement semblables au poliovirus (25nm), une des plus petites unités infectieuses connues. Par ailleurs, les MS2 sont aussi un indicateur de choix dans l’évaluation d’appareils de désinfection aux UV à cause de leur cinétique d’inactivation UV de 1^{er} ordre. Leur résistance à la
désinfection est moyenne donc la courbe de biodosimétrie peut servir de base pour comparer avec des micro-organismes plus résistants ou moins résistants. Les MS2 peuvent être produits à hauts titres, soit 10^{11} unités formatrices de plages par millilitres (ufp/mL), et ils sont généralement très stables dans des conditions expérimentales. Finalement, ces bactériophages ont l’avantage d’être non pathogènes pour les humains tout comme leur bactérie hôte.

Les spores de la bactérie *Bacillus subtilis* ont aussi une cinétique d’inactivation UV de 1er ordre et elles sont plus résistantes aux UV que les autres bactéries. Tel que mentionné précédemment, elles sont largement employées comme indicateur de l’enlèvement des oocystes de *Cryptosporidium parvum* dans les processus de filtration. Au niveau des membranes UF, la présence de spores dans le filtrat (dimension ~ 1µm) indiquerait une brèche importante dans la membrane. La bactérie *Bacillus subtilis* sous forme végétative ainsi que ses spores ne sont pas pathogènes pour les humains en bonne santé. Les spores peuvent être produites à haut titre, soit 10^9 unités formatrices de colonies par millilitres (ufc/mL), et elles se conservent à 4°C pour plusieurs années.

1.10 - Hypothèse

Les membranes d’ultrafiltration et les lampes à rayons ultraviolets utilisées en POE ou en POU peuvent assurer une protection contre l’ingestion de micro-organismes pathogènes via l’eau potable, dans certaines conditions d’opération.
CHAPITRE 2
MATÉRIEL ET MÉTHODES

2.1 - Analyses virologiques

2.1.1 - Production de *E. coli* en phase logarithmique

Une culture stock de bactéries *E. coli* F+ [*E. coli* HS(pFamp)R (ATCC # 700 891)] hôte du coliphage mâle-spécifique MS2 (ATCC # 15 597-B1) est préparée dans 50 mL de «Trypticase Soy Broth» (TSB) stérile (Annexe A) contenant 1% v/v d’acide nalidixique 1% p/v (Sigma, St.Louis, MO, É.-U.) en ajoutant 0,5 mL de bactéries *E. coli* F+, rendues résistantes à l’acide nalidixique, en phase logarithmique. Le mélange est incubé à 37°C à 200rpm (Lab-Line Instruments Inc., Melrose Park, IL, É.-U.) jusqu’à croissance exponentielle puis, l’absorbance est vérifiée. La densité optique (DO) (Philips, PYE Unicam PU 8600 UV/VIS Spectrophotometer, Cambridge, Angleterre) à une longueur d’onde de 520nm doit se situer entre 0,2 et 0,5, le blanc étant ajusté avec du TSB.

Pour la conservation, la culture est additionnée de 20% de gycérol (Sigma, St.Louis, MO, É.-U.) stérile puis aliquotée en 1 mL. Les vials sont congelés à -70°C et décongelés un à la fois pour préparer les cultures fraîches de bactéries hôtes lors des titrages de phages.

La même procédure est suivie pour la préparation d’une culture stock de *E. coli* CN13 (ATCC # 700 609), hôte des coliphages T7 (Centre Félix d’Hérelle, Ste-Foy, Québec) et phi-X 174 (ATCC # 13 706-B1).

2.1.2 - Production des phages

Les coliphages MS2 sont cultivés tel que spécifié dans la méthode 1602 de l’U.S. EPA (2001a). Une culture de *E. coli* F+ est préparée tel que décrit dans la section 2.1.1. Lorsque 50 mL d’une culture de *E. coli* atteint la phase exponentielle, elle est additionnée de 0,1 mL de MS2 à une concentration de 1×10^6 phages/mL (1×10^5 phages par 50 mL de culture) et est incubée à 37°C à 150 rpm pendant 24 h. La culture est ensuite filtrée sur 5 épaisseurs de filtres 0,25 μm (Filterite, Timonium, Maryland, É.-U.) non stériles puis filtrée stérilement sur 1 filtre 0,45 μm stérile.
(Acrodisc® Syringe Filter, PALL Corporation, Ann Arbor, MI, É.-U.). Le filtrat contenant les phages est stable à 4°C plusieurs mois ou il peut être aliquoté et congelé à -70°C.

Les coliphages T7 et phi-X 174 sont cultivés de la même façon que les phages MS2 à la différence que leur bactérie hôte est *E. coli* CN13. Ces phages doivent être conservés à -70°C.

2.1.3 - Titrage des phages

2.1.3.1 - Principe

L’énumération des phages se fait par la méthode en double couche d’agar (U.S. EPA, 2001a). L’échantillon de phage et la bactérie hôte sont incorporés à de l’agar liquide «Trypticase Soy Agar» (TSA) 0,7% puis déposés uniformément sur une couche d’agar gélifié (TSA 1,5%) dans un plat de pétri. Suite à une incubation, le tapis bactérien arbre des plages de lyse là où des phages se multiplient. Pour l’énumération de coliphages MS2, la souche bactérienne utilisée est *E. coli* F+ et pour l’énumération de coliphages T7 et phi-X 174, la souche bactérienne est *E. coli* CN13.

2.1.3.2 - Souche bactérienne

La culture de *E. coli* est préparée le jour du titrage en ajoutant 0,5 mL de culture bactérienne décongelée préparée en 2.1.1 à 25 mL de TSB contenant 1% d’acide nalidixique 1% p/v. Le mélange est incubé à 37°C sous agitation jusqu’à croissance exponentielle démontrée par une DO d’absorbance entre 0,2 et 0,5 à λ=520 nm, le blanc étant ajusté avec du TSB. La culture est gardée à 4°C jusqu’au titrage.

2.1.3.3 - TSA 1,5%

Le TSA 1,5% ou «bottom agar» est préparé jusqu’à un mois avant le titrage en mélangeant de l’eau MilliQ à 3% de TSB et à 1,5% de Bacto Agar (Becton, Dickinson and Company, Sparks, MD, É.-U.) en poudre. Le mélange est dissous et autoclavé. Le TSA est refroidit dans un bain à 45°C et additionné de 1% d’acide nalidixique 1% p/v. Le «bottom agar» est ensuite versé stérilement dans des pétris 15 mm x 100 mm (Fisherbrand®, Whitby, Ontario) pour que l’agar ait une épaisseur d’environ 8 mm. Les pétris sont couverts et laissés à température de la pièce 10 minutes pour que l’agar se solidifie. Les pétris se gardent à 4°C pour une période maximale d’un mois.
2.1.3.4 - TSA 0,7%

Le TSA 0,7% ou «top agar» est préparé le jour du tritration en mélangeant de l’eau MilliQ à 3% de TSB et 0,7% de Bacto Agar. Le mélange est dissous et autoclavé. Suite au refroidissement du TSA dans un bain à 45°C, il est additionné de 1% d’acide nalidixique 1% p/v et aliquote en 3,5 mL dans des tubes sérologiques stériles gardés à 45°C jusqu’à utilisation.

2.1.3.5 - Titrage

La dilution des échantillons est effectuée de façon séquentielle (1 : 10) dans une solution saline (Annexe A) en prenant soin de vortexer les tubes après chaque dilution. Le tritration s’effectue dans un espace rendu stérile par une pierre chauffante (Electrothermal Engineering, Southend-on-Sea, Essex, Angleterre) en ajoutant à chaque tube de 3,5 mL «top agar» 0,5 mL de la dilution de phages et 0,2 mL de culture de E. coli en phase log. Le contenu du tube de «top agar» est immédiatement coulé sur le «bottom agar» de façon uniforme. Un temps de 10 minutes est alloué afin de laisser solidifier l’agar puis les pétris sont incubés inversés 19 h à 37°C (National Appliance Company, Portland, Oregon, É.-U.).

2.2 - Analyses bactériologiques

2.2.1 - Production des spores de Bacillus subtilis

2.2.1.1 - Mise en culture

La production de spores se fait sur milieu solide. Le milieu est préparé avec 3 L de gélose R2A (Annexe A) distribués à raison de 300 mL de milieu dans 10 erlenmeyers de 1 L. Une fois solidifiées, les géloses sont gardées à 4°C.

La préparation d’une suspension de cellules végétatives de B. subtilis en phase logarithmique tardive se fait en pasteurisant 500 μL de spores de B. subtilis (ATCC # 6633) par un chauffage au bain-marie de 10 minutes à 75°C. Les spores pasteurisées sont inoculées dans 100 mL de TSB et incubées 24 h à 35°C ± 2°C, sous agitation. Par la suite, une dilution 1 : 100 de la suspension stock de cellules végétatives est préparée dans du tampon phosphate ordinaire (Annexe A) additionné de 0,002% p/v de MnCl₂ (Sigma, St.Louis, MO, É.-U.).
La dilution de suspension cellulaire est séparée dans les 10 erlenmeyers de façon à recouvrir les géloses R2A de quelques millimètres de suspension de cellules végétatives. Les cultures sont incubées à 35±2°C jusqu’à ce que plus de 95% de spores soient détectées sur le milieu (9 à 10 spores pour une bactérie). Le pourcentage de spores est vérifié à partir de la 2e semaine. Pour la détection des spores par microscopie à contraste de phase, un échantillon est mis entre lame et lamelle.

2.2.1.2 - Procédure de récupération

Une première gélose R2A est immergée avec environ 12 mL tampon phosphate ordinaire. La couche de spores est décollée à l’aide de billes de verre d’un diamètre de 2 mm. Le tampon est récupéré à la pipette et mis dans un tube à centrifuger de 50 mL en polypropylène (Corning, N.Y., É.-U.). Les billes sont rincées avec du tampon phosphate ordinaire et transférées dans le 2e erlen. La procédure est reprise jusqu’au dernier erlenmeyer. Les tubes sont centrifugés à 3000xg pendant 5 minutes à 4°C (Beckman J-6-HC, Fullerton, CA, É.-U.). Le surnageant est aspiré à la pipette et jeté. À deux reprises, le culot est lavé avec du tampon phosphate ordinaire additionné de 0,1% Tween 80 (Fisher, Fair Lawn, N.J., É.-U.) et centrifugé à 3000xg pendant 5 minutes à 4°C. De nouveau, le surnageant est aspiré à la pipette et jeté. Finalement, le culot est lavé une dernière fois avec du tampon phosphate ordinaire et centrifugé à 3000xg pendant 5 minutes à 4°C. Le surnageant est aspiré à la pipette et jeté. Le culot est ensuite resuspendu dans du tampon phosphate ordinaire et gardé à 4°C à l’abri de la lumière. Les spores sont stables à 4°C plus de 3 ans.

2.2.2 - Titrage des spores

Les échantillons sont dilués dans du tampon phosphate ordinaire. Des pétris pads (Millipore, Bedford, MA, É.-U.) sont imbibés avec 1,5 mL de TSB additionné de 0,01% p/v chlorure de 2,3,5-triphényltérazolium (TTC) (Sigma, St.Louis, MO, É.-U.). Le titrage débute par l’échantillon le moins concentré. Une membrane de nitrocellulose 0,45 μm stérile (Millipore, Bedford, MA, É.-U.) est déposée sur chaque cône de la rampe de filtration (Millipore, Bedford, MA, É.-U.) et les entonnoirs en plastique (Millipore, Bedford, MA, É.-U.) sont vissés. La membrane est recouverte de quelques millilitres de tampon phosphate ordinaire puis 1 mL d’échantillon est rajouté. Après la filtration, l’entonnoir est rincé 3 fois avec du tampon phosphate ordinaire. La membrane est déposée dans le pétri approprié. Les pétris sont placés

2.3 - Bioessais microbiens

Le design des bioessais microbiens se base sur l’article de Abbaszadegan et al. (1997) où des systèmes de traitement d'eau sont testés en ligne pour leur efficacité de désinfection. La méthode de bioessai consiste à introduire une concentration (C) connue d’indicateurs microbiens dans le système et à mesurer l’enlèvement ou l’inactivation des micro-organismes par le système. L’efficacité de désinfection est déterminée par la formule suivante :

\[
\text{Log enlèvement/inactivation} = \log C_{\text{infectée}} - \log C_{\text{réduite après traitement}}
\]

Le principal micro-organisme indicateur utilisé est le coliphage MS2. De par sa petite taille (27 nm) et ses propriétés similaires à celles des entérovirus (22-30 nm) (Prescott et al., 1995), l’utilisation de MS2 représente un des tests les plus rigoureux pour la filtration par des membranes d’UF. Il est de plus très utilisé comme indicateur de performance des réacteurs UV. Pour la filtration membranaire, le recours aux coliphages T7 (45 nm) et aux spores de B. subtilis (1 μm) permet de vérifier l’effet de la taille des particules sur l’efficacité de la filtration. Les spores de B. subtilis sont aussi souvent utilisées pour évaluer la performance de réacteurs UV. Finalement, le coliphage phi-X 174 est utilisé à titre de comparaison avec MS2 puisqu’il arbore des caractéristiques différentes de stabilité et de croissance.

2.3.1 - Mini-modules d' ultrafiltration

2.3.1.1 - Caractéristiques des mini-modules

La compagnie Zenon Environmental (Oakville, Ontario) a fourni quatre types de membranes (tableau VI) en duplicata, pour un total de huit mini-modules. Chacun des mini-modules consistaient en dix fibres tubulaires de PVDF insérées dans un tube d’acier inoxydable d’environ 30 cm. Les fibres sont imbriquées dans une résine dépassant à une extrémité (figure 1) pour recueillir le filtrat. Une extension de plastique a été ajoutée à cette extrémité pour canaliser l’eau
lors des tests. Le tube d’acier comportait trois ouvertures : entrée d’eau, sortie d’eau et branchement d’une jauge à pression manomètre. La filtration se fait en mode centripète (outside-in) avec une entrée d’eau parallèle aux fibres.

Tableau VI : Caractéristiques des mini-modules d’UF fourni par Zenon Environmental.

<table>
<thead>
<tr>
<th>Modules</th>
<th>Longueur fibre (mm)</th>
<th>Diamètre extérieur fibre (mm)</th>
<th>Circconférence fibre (mm)</th>
<th>Aire fibre (cm²)</th>
<th>Aire de membrane par module (cm²)</th>
<th>Porosité moyenne estimée* (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1</td>
<td>225</td>
<td>0,8</td>
<td>2,5133</td>
<td>5,655</td>
<td>56,55</td>
<td>0,07</td>
</tr>
<tr>
<td>VR2</td>
<td>225</td>
<td>0,8</td>
<td>2,5133</td>
<td>5,655</td>
<td>56,55</td>
<td>0,05</td>
</tr>
<tr>
<td>VR3</td>
<td>225</td>
<td>0,8</td>
<td>2,5133</td>
<td>5,655</td>
<td>56,55</td>
<td>0,035</td>
</tr>
<tr>
<td>VR4</td>
<td>260</td>
<td>0,98</td>
<td>3,0788</td>
<td>8,005</td>
<td>80,05</td>
<td>0,035</td>
</tr>
</tbody>
</table>

* Communication personnelle de L. Fabricino, Zenon Environmental.

Figure 1 : Photo d’un mini-module d’UF fourni par Zenon Environmental.

Afin de tester les modules dans les mêmes conditions, il a été décidé de garder les débits de filtration et de circulation constants et de faire varier la pression. Pour toutes les expériences, le débit de circulation est ajusté arbitrairement à 140 mL/min. Le débit de filtration utilisé (20 mL/min) est celui du module générant le plus faible débit lorsque de l’eau MilliQ a été filtrée à un débit de circulation de 265 mL/min et à une pression constante de 1,03 bar (15 psi). Tous les essais sont faits à la température de la pièce, soit 20°C.
2.3.1.2 - Description du banc d’essai à petite échelle

Un réservoir de 20 L en polycarbonate (Nalge Company, Rochester, N.Y., É.-U.) sous agitation (Fisher Thermix® stirring hot plate model 610T, Fair Lawn, N.J., É.-U.) est mis sous pression d’air afin de pousser son contenu, l’affluent, via tour à tour : un débitmètre à bille gradué de 0 à 100% (Gilmont, Barrington, IL. É.-U.), un mini-module d’UF et une valve d’étranglement, vers un récipient de collection du circulat, le tout relié avec du boyau noir Masterflex 6404-15 (Barrington, IL. É.-U.) (figure 2). Un port d’échantillonnage est situé avant l’entrée de l’eau dans le débitmètre. Un tuyau recueille le filtrat à l’extrémité des modules et, par gravité, l’envoie dans un erlenmeyer de 1 L via un débitmètre à bille gradué de 0 à 40 mL/min (Gilmont, Barrington, IL. É.-U.).
Figure 2 : Schéma du banc d’essai à petite échelle pour les mini-modules d’UF.

2.3.1.3 - Conservation et désinfection des membranes et équipements

Les mini-modules sont conservés en tout temps dans un bac en plastique contenant de l'eau MilliQ et recouvert d'une pellicule de plastique pour prévenir l'évaporation. L'eau de trempage est vidangée au moins tous les deux jours. Après chaque bioessai microbien, les membranes sont plongées dans de l'eau MilliQ chlorée à 5 mg/L avec de l'hypochlorite de sodium (Lavo «12» : Lavo Inc., Montréal) pour 30 minutes. Elles sont ensuite rincées environ 30 minutes dans un bain d'eau MilliQ et remises dans leur bac de trempage. Après chaque série de tests microbiens, le banc d'essai (réservoir, débitmètres, tuyaux, etc.) est désinfecté avec une solution de chlore 5 mg/L pendant un minimum de 30 minutes. Par la suite, il est rincé trois fois avec de l'eau MilliQ et purgé de son eau lorsque non-utilisé.

Comme l'utilisation de chlore pour désinfecter les mini-modules d'UF était prévue à la suite de chaque bioessai, il fallait vérifier que le désinfectant ne reste pas incrusté dans les pores des membranes, ce qui aurait pu influencer les résultats. Ces dosages ont été faits à plusieurs reprises et jusqu'à 18 jours suivant un bioessai microbien afin de démontrer qu'il n'y avait pas de relargage à long terme du désinfectant par les membranes. L'eau de trempage a été investiguée pour un résiduel de chlore total après 24 h, 48 h et 72 h sans changer l'eau. La méthode utilisée est celle où 25 mL d'eau est testé par colorimétrie avec les pochettes de N,N-diéthyl-p-phénylène diamine (DPD) (HACH, Loveland, Co, É.-U.). Pour vérifier que le chlore ne restait pas pris dans les pores, le filtrat de ceux mini-modules ainsi que leur eau de circulation ont été investigués pour la présence de chlore total par la même méthode, après un temps d'entreposage de 18 jours suivant une désinfection.
2.3.1.4 - Conditions des bioessais

Afin de déterminer quelle membrane est la plus performante pour l’enlèvement de micro-organismes, chacun des 8 mini-modules est testé deux fois (sauf VR4B une seule fois) avec une suspension de MS2 1×10^6 ufp/mL dans du tampon phosphate à essai. Pour tous les essais, les débits de filtration et de circulation sont tenus constants à 20 mL/min et 140 mL/min, respectivement. C’est la pression qui est ajustée en conséquence tel que décrit par la séquence des tâches suivies pour tous les essais :

- Ouverture de la pression d’air jusqu’à 0,69 bar (10 psi)
- Fermeture de la valve d’étranglement jusqu’à 50% du débitmètre, soit 140 mL/min
- Ajustement de la pression pour obtenir un débit de filtration de 20 mL/min
- Attente de 3 minutes
- Échantillonnage du filtrat et de l’affluent

Par la suite, chaque module est évalué dans les mêmes conditions pour leur capacité à enlever les coliphages T7 ainsi que les spores de B. subtilis. Les pressions utilisées pour ces tests ont été utilisées pour déterminer la perméabilité de chaque membrane dans le but de choisir le couple de mini-modules le plus performant pour la suite des tests. L’équation utilisée (U.S. EPA/NSF, 2002) pour le calcul de la perméabilité ou «flux spécifique» est :

$$J_s = \frac{J}{PTM}$$

Où :

- J_s = perméabilité en L/h/m²/bar
- J = flux du filtrat à 20°C en L/h/m²
- PTM = pression transmembranaire en bar

Bilan des bactériophages MS2

Cet essai est mené dans le but de voir si tous les micro-organismes injectés, en l’occurrence des MS2, sont récupérés dans l’eau de circulation et le filtrat ou si une quantité appreciable reste accrochée sur les fibres ou dans leurs pores. Il s’agit de faire un bioessai comme précédemment
mais de mesurer les volumes de filtrat et de circulat recueillis. Le volume de l’afluent est déduit par l’addition des deux volumes précédents. La quantité total de MS2 dans chaque fraction est trouvée en multipliant les volumes par la concentration de MS2 qu’ils contiennent. Les MS2 collés à la membrane correspondent à la différence entre ceux de l’afluent et ceux des filtrats et circulats combinés. Cette expérience est menée trois fois pour chacun des modules VR3.

Élution

Pour tenter de récupérer les MS2 pris sur ou dans les membranes, une élution a été tentée. L’éluant consistait en du tampon d’élution (Annexe A). L’effet de ce tampon sur la détection des micro-organismes indicateurs a d’abord été testé. Les MS2 ont été incubés dans le tampon d’élution pendant 30 minutes avec des aliquote prélevées aux dix minutes.

L’éluant se fait après qu’une quantité donnée de phages ait été filtrée sur la membrane VR3A. Pour ce faire, 759 mL d’afluent à 7,7x10^6 ufp/mL sont filtrés, générant 94 mL de filtrat. Le mini-module VR3A est ensuite rincé sous pression avec 466 mL de tampon phosphate à essai pour enlever les phages non accrochés au mini-module. Puis, l’extérieur des fibres est rincé avec 14 mL de tampon d’élution déposé à la pipette dans le tube d’acier inoxydable dont les embouchures sont bloquées. Ensuite, 142 mL de tampon d’élution est passé sous pression dans la membrane. Les fractions recueillies pour être titrées comprennent le filtrat et le circulat et le 14 mL de rinçage manuel. Pour neutraliser le pH basique du tampon d’élution le plus rapidement possible après l’essai, les aliquote sont déposés directement dans du TBS dans une proportion 1 pour 10.

Élution en fonction du temps

Pour voir si au-delà de 142 mL il est possible de récupérer plus de phages, l’éluition de VR3A a été reprise avec cette fois 484 mL de tampon d’éluition sur une période de 5 minutes. Tout d’abord, 696 mL d’une suspension de MS2 à une concentration de 7,1x10^6 ufp/mL dans du tampon phosphate à essai est filtrée sous pression dans le module VR3A. Les volumes sont pris en note et la quantité de phages dans l’afluent est calculée. La membrane rincée avec environ
500 mL de tampon phosphate à essai à 0,34 bar (5 psi) et est éluée avec 484 mL de tampon d’éluion. Le filtrat et le circulat sont recueillis en 5 fractions correspondant à une minute d’éluion chacune, pour un temps d’éluion total de 5 minutes. Le volume de chaque fraction est noté et leur titre déterminé afin d’établir la cinétique d’éluion des MS2. Le pH des alicuotes est neutralisé par une dilution 1 : 10 dans du TBS, comme précédemment.

Nettoyage chimique

Les modules VR3A et VR3B ont été soumis à des conditions rigoureuses de nettoyage chimique dans du chlore 500 mg/L pour vérifier l’effet sur l’efficacité d’enlèvement des membranes. L’essai se déroule sur une période de cent heures (tableau VII) où les modules sont soumis successivement à 20 heures de trempage dans le chlore, 2 heures de rinçage au thiosulfate de sodium 10 mg/L (Anachemia, Montréal) et 2 heures de rinçage à l’eau MilliQ, pendant 5 jours consécutifs. Des bioessais standards avec MS2 ont été effectués avant et après le nettoyage chimique pour voir l’impact de cette exposition à du chlore concentré.

Tableau VII : Calendrier des tâches effectuées pour l’expérience de nettoyage chimique des mini-modules VR3A et VR3B.

<table>
<thead>
<tr>
<th>Jour</th>
<th>Modules rincés au thiosulfate de Na</th>
<th>Modules rincés à l’eau</th>
<th>Modules mis dans chlore 500 mg/L</th>
<th>Nombre d’heures dans chlore</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>10h45</td>
<td>12h45</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>8h45</td>
<td>10h45</td>
<td>12h45</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>8h45</td>
<td>10h45</td>
<td>12h45</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>8h45</td>
<td>10h45</td>
<td>13h15</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>9h15</td>
<td>10h45</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

2.3.2 - Unité d’ultrafiltration HomeSpring™

2.3.2.1 - Caractéristiques du HomeSpring™

Le système de filtration d’eau HomeSpring™ est muni d’une membrane d’UF en fibre creuse qui est brevetée et fabriquée par Zenon Environmental (Oakville, Ontario). Ce système est conçu
pour être utilisé en ligne, branché à l’entrée d’eau d’une résidence. La pression pousse l’eau à travers les fibres en mode centripète (outside-in). Les particules se concentrent à l’extérieur de la membrane jusqu’à ce qu’elles soient évacuées par un rétro-lavage quotidien. Selon les options de pré-filtration choisies, le système peut être utilisé avec l’eau d’un réseau municipal, d’un puits ou une eau de surface. Dans le cas présent, les fibres utilisées sont identiques à celles des mini-modules VR3 et l’appareil n’est muni d’aucun pré-filtre ni système de rétro-lavage.

2.3.2.2 - Description du banc d’essai pour le système de filtration Homespring™

Figure 3a: Photo du banc d’essai à grande échelle pour le système de filtration d’eau HomeSpring™.
Figure 3b : Schéma du banc d’essai à grande échelle pour le système de filtration d’eau HomeSpring™.
Le chlore résiduel de l’eau du robinet (Ville de Laval, Laval : eau de surface, traitement complet, post-ozonation, chloration) est d’abord neutralisé par l’injection en ligne de thiosulfate de sodium à une concentration finale de 10 mg/L. Le débit de l’eau du robinet est maintenu à 15 L/min et le thiosulfate 5 000 mg/L est injecté à 300 mL/min. Le mélange est ensuite dirigé vers un compteur d’eau (Lecompte, St-Hyacinthe) puis une suspension de coliphages MS2 à une concentration de 1×10^8 ufp/mL est injectée à 15 mL/min pour avoir une concentration finale de 1×10^5 ufp/mL. L’eau passe ensuite dans un débitmètre à bille gradué de 8 à 38 L/min (Filter Chem, Alhambra, CA, É.-U.) avant d’entrer dans le système de filtration (figures 3 a et b). L’eau filtrée est rejetée à l’égout. Les échantillons sont pris avant le débitmètre pour l’affluent, à un port d’échantillonnage à la sortie de l’appareil pour le filtrat et au robinet du drain pour le concentré de micro-organismes.

2.3.2.3 - Conditions des bioessais microbiens
Quatre essais avec MS2 ont eu lieu avec le HomeSpring™ sur une période de 3 semaines. Pour chaque essai, l’injection se faisait sur 12 minutes et la période d’échantillonnage augmentait pour chaque essai. Ainsi, le dernier échantillon est recueilli à 7 minutes pour le 1er essai, à 11 minutes pour le 2e, à 31 minutes pour le 3e et à 361 minutes pour le 4e essai. Autant que possible, le débit d’injection des MS2 était gardé constant. Les échantillonnages pour l’affluent, le filtrat et l’eau du drain se faisaient à différents temps dans des bouteilles stériles. Après chaque bioessai, l’appareil a été désinfecté avec 2 L de chlore 500 mg/L injecté à 150 mL/min, retenu 30 minutes puis rincé avec au moins 150 L d’eau du robinet. Le système est conservé immergé lorsque non utilisé pour prévenir l’assèchement des fibres.

2.3.3 - Purificateur Sterilight Water Machine
2.3.3.1 - Caractéristiques du Sterilight Water Machine
Le Sterilight Water Machine (SWM) (R-Can, Guelph, Ontario) est un appareil de traitement d’eau utilisé en POU (figure 4). Il nécessite 100-130V et 50-60MHz et peut filtrer jusqu’à 2 L/min. La dose UV émise serait de 40 mJ/cm², selon les spécifications du fabricant. La lampe UV utilisée est bichromatique, émettant à 185 nm pour la génération d’ozone et à 254 nm pour l’irradiation UV des micro-organismes. L’appareil fonctionne en 4 étapes : 1) ozonation, 2) inactivation des microbes et photo-oxydation de la matière organique par la lampe UV, 3) filtration sur charbon activé et 4) désinfection UV post-filtration. L’appareil est conçu pour être
rélié à un robinet domestique. Pour l'activer, il faut tirer une valve qui dévie l'eau vers la chambre de purification. Une valve à pression est ensuite activée au-delà de 2,07 bar (30 psi) pour mettre en marche la lampe UV. Pour les fins de l'étude, cette valve à pression a été remplacée par un interrupteur sur le cordon d'alimentation électrique de l'appareil.

Photo tirée de : http://www.r-can.com/home.asp

Figure 4 : Photo d’un purificateur d’eau Sterilight Water Machine.

2.3.3.2 - Description du banc d’essai pour le Sterilight Water Machine
Le même banc d’essai à petite échelle que pour les mini-modules d’UF a été utilisé (figure 2). Ainsi, un réservoir de polycarbonate sous agitation est mis sous pression d’air afin de pousser son contenu via un débitmètre à bille. L’eau passe directement dans le récipient de collection des déchets tant que la valve de déviation de l’eau n’est pas activée. Si cette dernière est enclenchée,
l’eau passe dans le SWM, le tout relié avec du boyau noir Masterflex 6404-15 (Barrington, IL. É.-U.). Pour mettre en fonction la lampe, l'interrupteur doit être actionné. Un port d’échantillonnage est situé avant l’entrée de l’eau dans le débitmètre et l’eau traitée est recueillie dans un erlenmeyer de 1 L.

2.3.3.3 - Conditions des bioessais microbiens
Trois éléments ont été investigués pour le SWM. Tout d’abord, le comportement global de l’appareil utilisé dans des conditions se rapprochant de la normale avec une eau contaminée. Ensuite, les performances de l’appareil ont été évaluées pour la filtration uniquement. Finalement, un dosage d’ozone résiduel dans l’eau traitée a été effectué. Pour ce faire, deux séries de tests ont été menées avec le SWM. D’abord, l’appareil neuf a été testé pour sa performance d’enlèvement/inactivation de MS2, T7 et des spores de B. subtilis simultanément. L’appareil a été rincé à grande eau du robinet et gardé plein d’eau du robinet un mois et demi avant d’entreprendre la 2e série de tests. Lors de la reprise intégrale de l’essai, l’appareil avait été rincé à plusieurs reprises à grande eau du robinet pour simuler une utilisation normale de l’appareil. L’appareil a d’abord été testé avec la lampe éteinte pour vérifier l’ampleur de l’enlèvement dû au filtre au charbon activé. Ensuite, l’appareil a été testé avec la lampe allumée. L’ozone résiduel dans l’eau a été dosé par colorimétrie à l’aide de la trousse «Ozone High Range 0-1.6 mg/L Model AV» (HACH, Loveland, Co, É.-U.). Pour décontaminer le SWM après les bioessais, il est rincé à grande eau du robinet pendant 15 minutes.

2.3.4 - Réacteur UV Sterilight Platinum SPV6
2.3.4.1 - Courbe dose-réponse
L’étude des réacteurs UV demande de déterminer la courbe dose-réponse pour les micro-organismes indicateurs. Il s’agit de tracer un graphique de l’inactivation en log en fonction de la dose UV calculée. Pour ce faire, une expérience en triplicata a été menée dans des faisceaux collimateurs (figures 5 a et b). L’appareil de fabrication artisanale est équipé de 2 lampes UV basse pression de 122 cm de longueur (Trojan, London, Ont.) et la distance entre les lampes et la surface de l’échantillon est ajustée à 1,2 m. Un dispositif à bras pneumatiques contrôle l’ouverture d’une trappe qui permet l’exposition des pétris aux rayons UV. Une suspension de MS2 est exposée aux rayons UV durant 30 minutes et 0,5 mL d’échantillon est prélevé aux temps
356, 756, 1156, 1578, 1778 secondes pour être titré tel que décrit précédemment. Il est ensuite possible de calculer la dose UV par la formule suivante (Danielson et al., 2001):

\[D = I \times f \times t \times \frac{(1-R)(1-e^{-kp})}{kp} \]

Où :
- \(D \) = Dose UV appliquée en en mJ/cm\(^2\)
- \(I \) = Intensité incidente à la surface de l’échantillon en mJ/cm
- \(f \) = Facteur de Pétri
- \(t \) = Temps d’exposition en secondes
- \(R \) = Constante de réflexion
- \(k \) = Coefficient d’absorption en cm\(^{-1}\)
- \(p \) = Profondeur de l’échantillon en cm

Dans le cas présent, l’intensité est mesurée avec un radiomètre IL1400A (International Light Inc., Newburyport, MA, É.-U.) calibré à 254 nm. La constante de réflexion à l’interface air-eau est posée à 0,975 pour prendre en compte 2,5% de réflexion à la surface de l’échantillon (Danielson et al., 2001). L’intensité à la surface est corrigée par un facteur Pétri différent pour chacun des trois tubes collimateurs (Annexe B).
Figure 5a : Photo de l’appareil à faisceaux collimateurs.
Figure 5b : Schéma de l'appareil à faisceaux collimateurs vu de face (A) et vu de côté (B).
2.3.4.2.- Caractéristiques du réacteur UV SPV6
Le «Sterilight Platinum SPV6» (R-Can, Guelph, Ont.) est certifié NSF 55A et s’utilise en POE car il est conçu pour un débit maximal de 22,7 L/min. Ce système offre une dose UV de 40 mJ/cm². Son réacteur est fait d’acier inoxydable 316-L électropolli et l’appareil est muni d’un contrôleur électronique donnant, de façon visuelle, l’intensité UV en pourcentage et procédant à un diagnostic complet de l’appareil lorsque mis sous tension. De plus, la lampe est exposée à un capteur UV à 254 nm. Le fabricant, affirme que le SPV6 peut détruire plus de 99,99% (4 log) des bactéries, virus et kystes ou oocystes de protozoaires (Giardia lamblia et Cryptosporidium parvum) aux débits prescrits.

2.3.4.3 - Description du banc d’essai du réacteur UV SPV6
Comme dans le cas du système de filtration HomeSpring™, le chlore résiduel de l’eau du robinet est neutralisé avec du thiosulfate de sodium à une concentration finale de 10 mg/L. Le débit de l’eau du robinet est maintenu à 15 L/min et le thiosulfate 5 000 mg/L est injecté à 300 mL/min. Le mélange est dirigé vers le compteur d’eau (Lecompte, St-Hyacinthe) puis la suspension de coliphages MS2 à une concentration de 1×10^8 ufp/mL est injectée à 15 mL/min pour avoir une concentration finale de 1×10^5 ufp/mL. L’eau passe ensuite via un débitmètre à bille gradué de 8 à 38 L/min (Filter Chem, Alhambra, CA, É.-U.) avant d’entrer dans le réacteur UV par le bas (figures 6 a et b). L’eau traitée est rejetée à l’égout. Les échantillons sont pris avant le débitmètre pour l’affluent et à la sortie de l’appareil pour l’effluent (eau désinfectée).
Figure 6a : Photo du banc d'essai d'un réacteur UV Sterillight Platinum SPV6.
Légende :

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve</td>
<td>Valve</td>
</tr>
<tr>
<td>-----</td>
<td>Trajet eau du robinet</td>
</tr>
<tr>
<td>CE</td>
<td>Compteur d’eau</td>
</tr>
<tr>
<td>E1</td>
<td>Point d’échantillonnage affluent</td>
</tr>
<tr>
<td>E2</td>
<td>Point d’échantillonnage eau traitée</td>
</tr>
<tr>
<td>DM</td>
<td>Débitmètre</td>
</tr>
<tr>
<td></td>
<td>Voie de contournement</td>
</tr>
<tr>
<td>T</td>
<td>Réservoir de thiosulfate de sodium</td>
</tr>
<tr>
<td>P</td>
<td>Réservoir de particules biologiques</td>
</tr>
<tr>
<td>D</td>
<td>Drain</td>
</tr>
<tr>
<td>V</td>
<td>Venturi</td>
</tr>
</tbody>
</table>

Figure 6b : Schéma du banc d’essai d’un réacteur UV Sterilight Platinum SPV6.
2.3.4.4 - Conditions des bioessais microbiens

Les SPV6 a été soumis à 3 essais avec MS2 dont les deux derniers comprenaient aussi des spores de *B. subtilis* à une concentration finale de 10^4 ufc/mL. Le premier test a servi à établir le comportement de l'appareil avec MS2 sur 27 minutes avec une injection constante de la 5e minute à la 20e minute. Les échantillonnages ont été faits aux 5 minutes, tant pour l'affluent que l'eau désinfectée. Le deuxième essai, d'une durée de 33 minutes, consistait en une injection simultanée de MS2 et de spores de *B. subtilis* sur 15 minutes (de la 2e à la 17e minute) avec échantillonnages aux 5 minutes jusqu'à la 33e minute. Au cours de cet essai, le pourcentage de transmittance de l'appareil est tombé sous 65% au moins cinq fois. Le 3e essai est la reprise intégrale du 2e sauf en ce qui concerne la neutralisation du chlore résiduel. La neutralisation au thiosulfate est remplacée par un enlèvement avec une cartouche au charbon activé «Big Blue» (Filtration Equipment & Supply Co, Channelview, Texas, É.-U.) de 25 cm par 11 cm. Après chaque bioessai, l'appareil et le système de filtration sont désinfectés avec 2 L de chlore 500 mg/L injecté à 150 mL/min et retenu 30 minutes, puis rincés avec de l'eau du robinet.
CHAPITRE 3
RÉSULTATS

3.1 - *Mini-modules d’ultrafiltration*

3.1.1 - Tests préliminaires

Afin d’uniformiser les essais avec les mini-modules d’UF, la pression appliquée pour déplacer le liquide a été ajustée pour que le débit du filtrat soit égal et gardé constant pour tous les mini-modules. Le débit de filtration choisi est celui du module le moins productif, à pression et débit de circulation constants. Ainsi, les débits de filtration (ou production) ont été déterminés pour chaque mini-module. Le plus petit débit de filtration obtenu est celui du module VR2B à environ 18 mL/min (tableau VIII). Son duplicate, VR2A, a par contre un débit de 27 mL/min. Les autres paires de modules ont des débits similaires de 29 mL/min pour les VR1, 33 mL/min pour les VR3 et >40 mL/min pour les VR4.

Au cours d’un essai avec MS2 tentant de démontrer sa sensibilité à divers matériaux, il a été trouvé que le récipient pressurisé en acier inoxydable avait une influence sur la détection de ces coliphages (figure 7a). Ce récipient a fait diminuer le titre des MS2 de plus de 2 log en une heure. Une telle diminution n’a pas été démontrée pour les MS2 dans des conteneurs de verre, type Pyrex, ou de plastique, type polypropylène. L’essai a été repris avec des phages phi-X 174 (figure 7b). Ceux-ci se sont montrés insensibles aux trois matériaux.

La concentration résiduelle de chlore dans l’eau d’entreposage des membranes a été vérifiée à plusieurs reprises (résultats non montrés). Elle s’est avérée nulle après 24 h, 48 h et 72 h de trempage dans la même eau (tableau IX) et ce, jusqu’à 18 jours après une désinfection. Pour s’assurer de l’absence chlore dans le matériau des fibres, les mini-modules ont été rincés avec 360 mL d’eau MilliQ sous une pression de 0,86 bar. Aucune trace de chlore n’a été trouvée, tant dans le filtrat que dans l’eau de circulation (tableau X).
Tableau VIII : Débit de production des mini-modules mesuré avec un débitmètre gradué de 0 à 40 mL/min raccordé en ligne.

<table>
<thead>
<tr>
<th>Module</th>
<th>Débit du filtrat (mL/min)</th>
<th>Grosseur moyenne estimée des pores (nm)</th>
<th>Aire de membrane/module (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1A</td>
<td>29</td>
<td>70</td>
<td>57</td>
</tr>
<tr>
<td>VR1B</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR2A</td>
<td>27</td>
<td>50</td>
<td>57</td>
</tr>
<tr>
<td>VR2B</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR3A</td>
<td>33</td>
<td>35</td>
<td>57</td>
</tr>
<tr>
<td>VR3B</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR4A</td>
<td>> 40</td>
<td>35</td>
<td>80</td>
</tr>
<tr>
<td>VR4B</td>
<td>> 40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pression : 1,03 bar (15 psi)
Débit de circulation : 265 mL/min

Information communiquée par L. Fabbricino, Zenon Environmental
Figure 7 : Détection des coliphages MS2 (A) et phi-X 174 (B) lorsqu’ils sont incubés dans des récipients en matériaux différents, en fonction du temps.
Tableau IX : Concentration résiduelle de chlore dans l’eau de trempage des membranes.

<table>
<thead>
<tr>
<th>Temps sans changer l’eau de trempage (heures)</th>
<th>Temps depuis la dernière désinfection (jours)</th>
<th>Chlore total (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>48</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>72</td>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>

Tableau X : Concentration résiduelle de chlore dans les mini-modules rincés avec de l’eau MilliQ sous une pression de 0,86 bar, 18 jours après une désinfection de 30 minutes dans une solution aqueuse de chlore 5 mg/L.

<table>
<thead>
<tr>
<th>Module</th>
<th>Filtrat</th>
<th>Eau de circulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Débit (mL/min)</td>
<td>Volume testé (mL)</td>
</tr>
<tr>
<td>VR3A</td>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>VR3B</td>
<td>25</td>
<td>60</td>
</tr>
</tbody>
</table>
3.1.2 - Bioessais avec MS2

Lors de l’évaluation de l’efficacité d’enlèvement des 8 mini-modules avec MS2, les meilleures performances ont été obtenues par les modules VR4, avec des enlèvements de 3,69 log pour VR4A et de 4,04 log pour VR4B (tableau XI). Par contre, ces modules ont une aire de membranes de 80 cm² par rapport à 57 cm² pour les autres. Les mini-modules VR3 montrent aussi un enlèvement supérieur à 3 log, soit de 3,03 pour A et 3,43 pour B. Les modules VR1 et VR2 donnent un enlèvement inférieur ou égal à 3 log. En général, les paires de modules donnent des résultats semblables, le plus grand écart étant de 0,4 log pour les VR3 et le plus faible de 0,07 log pour les VR1.

Tableau XI : Efficacité d’enlèvement de MS2 par les 8 mini-modules d’UF.

<table>
<thead>
<tr>
<th>Module</th>
<th>Concentration de MS2</th>
<th>Enlèvement</th>
<th>Pression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ufp/mL)</td>
<td>(ufp/mL)</td>
<td>moyenné (%)</td>
</tr>
<tr>
<td>VR1A</td>
<td>1,91E+06</td>
<td>3,70E+03</td>
<td>99,807</td>
</tr>
<tr>
<td></td>
<td>6,10E+06</td>
<td>3,33E+04</td>
<td>99,454</td>
</tr>
<tr>
<td>VR1B</td>
<td>3,69E+06</td>
<td>1,18E+04</td>
<td>99,680</td>
</tr>
<tr>
<td></td>
<td>5,59E+06</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>VR2A</td>
<td>1,83E+06</td>
<td>1,81E+01</td>
<td>99,999</td>
</tr>
<tr>
<td></td>
<td>7,70E+06</td>
<td>3,05E+04</td>
<td>99,604</td>
</tr>
<tr>
<td>VR2B</td>
<td>3,15E+06</td>
<td>8,70E+02</td>
<td>99,972</td>
</tr>
<tr>
<td></td>
<td>7,94E+06</td>
<td>1,38E+04</td>
<td>99,826</td>
</tr>
<tr>
<td>VR3A</td>
<td>3,04E+06</td>
<td>6,85E+02</td>
<td>99,977</td>
</tr>
<tr>
<td></td>
<td>6,21E+06</td>
<td>1,03E+04</td>
<td>99,834</td>
</tr>
<tr>
<td>VR3B</td>
<td>3,86E+06</td>
<td>7,50E+02</td>
<td>99,981</td>
</tr>
<tr>
<td></td>
<td>7,50E+06</td>
<td>4,09E+03</td>
<td>99,945</td>
</tr>
<tr>
<td>VR4A</td>
<td>3,70E+06</td>
<td>8,60E+02</td>
<td>99,977</td>
</tr>
<tr>
<td></td>
<td>5,67E+06</td>
<td>1,02E+03</td>
<td>99,982</td>
</tr>
<tr>
<td>VR4B</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

Débit filtrat : 20 mL/min
Débit eau de circulation : 140 mL/min
nd : non déterminé
3.1.3 - Bioessais avec T7 et spores

Pour tous les bioessais, les membranes d’UF ont empêché le passage des spores de *Bacillus subtilis* (1µm), ce qui correspond à un enlèvement supérieur à 5 log (tableau XII). Quant à l’enlèvement des coliphages T7 (45 nm), tous les mini-modules, sauf les VR1, ont réussi à les enlever à plus de 6 log. Des enlèvements de 4,73 log et de 3,28 log ont été observés pour VR1A et VR1B, respectivement.

Les flux spécifiques des mini-modules varient de 176 à 363 L/h/m²/bar (tableau XIII). La membrane VR2B donne la plus faible perméabilité avec 176 L/h/m²/bar. Cette valeur diffère grandement de son duplicata VR2A qui est de 246 L/h/m²/bar, pour une variation de 70 L/h/m²/bar. Les autres paires de membranes donnent des flux spécifiques semblables, avec au plus 15 L/h/m²/bar de différence. La plus grande perméabilité revient aux modules VR4 avec chacun 363 L/h/m²/bar et ce malgré un flux de filtrat réduit (150 L/h/m²) par rapport aux autres modules (212 L/h/m²). Cela tient au fait que la PTM des VR4 est de seulement 0,41 bar et qu’elle varie de 0,69 à 1,21 bar pour les autres modules.
Tableau XII : Efficacité d’enlèvement des coliphages T7 et des spores de *B. subtilis* par les 8 mini-modules d’UF.

<table>
<thead>
<tr>
<th>Module</th>
<th>Micro-organisme</th>
<th>Concentration</th>
<th>Enlèvement</th>
<th>Pression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(ufp/mL)</td>
<td>(%)</td>
<td>(log)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ufp/mL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR1A</td>
<td>T7</td>
<td>5,60E+05</td>
<td>99,9981</td>
<td>4,73</td>
</tr>
<tr>
<td></td>
<td>Spores</td>
<td>4,90E+04</td>
<td>>99,998</td>
<td>>5</td>
</tr>
<tr>
<td>VR1B</td>
<td>T7</td>
<td>6,70E+05</td>
<td>99,9478</td>
<td>3,28</td>
</tr>
<tr>
<td></td>
<td>Spores</td>
<td>5,05E+04</td>
<td>>99,998</td>
<td>>5</td>
</tr>
<tr>
<td>VR2A</td>
<td>T7</td>
<td>6,90E+05</td>
<td>>99,9999</td>
<td>>6</td>
</tr>
<tr>
<td></td>
<td>Spores</td>
<td>8,38E+04</td>
<td>>99,9988</td>
<td>>5</td>
</tr>
<tr>
<td>VR2B</td>
<td>T7</td>
<td>6,30E+05</td>
<td>>99,9998</td>
<td>>6</td>
</tr>
<tr>
<td></td>
<td>Spores</td>
<td>8,00E+04</td>
<td>>99,9988</td>
<td>>5</td>
</tr>
<tr>
<td>VR3A</td>
<td>T7</td>
<td>4,10E+05</td>
<td>>99,9998</td>
<td>>6</td>
</tr>
<tr>
<td></td>
<td>Spores</td>
<td>9,00E+04</td>
<td>>99,9989</td>
<td>>5</td>
</tr>
<tr>
<td>VR3B</td>
<td>T7</td>
<td>4,90E+05</td>
<td>>99,9998</td>
<td>>6</td>
</tr>
<tr>
<td></td>
<td>Spores</td>
<td>8,50E+04</td>
<td>>99,9988</td>
<td>>5</td>
</tr>
<tr>
<td>VR4A</td>
<td>T7</td>
<td>5,50E+05</td>
<td>>99,9988</td>
<td>>6</td>
</tr>
<tr>
<td></td>
<td>Spores</td>
<td>8,75E+04</td>
<td>>99,9999</td>
<td>>5</td>
</tr>
<tr>
<td>VR4B</td>
<td>T7</td>
<td>4,00E+05</td>
<td>>99,9987</td>
<td>>5</td>
</tr>
<tr>
<td></td>
<td>Spores</td>
<td>7,50E+04</td>
<td>>99,9998</td>
<td>>6</td>
</tr>
</tbody>
</table>

Débit filtrat : 20 mL/min
Débit eau de circulation : 140 mL/min
Tableau XIII : Flux spécifique (perméabilité) des mini-modules calculé à 20°C et caractéristiques physiques impliquées dans son calcul.

<table>
<thead>
<tr>
<th>Module</th>
<th>Aire de membrane par module</th>
<th>Débit filtrat</th>
<th>Flux du filtrat</th>
<th>Pression appliquée</th>
<th>Pression filtrat</th>
<th>PTM</th>
<th>Flux spécifique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(m²)</td>
<td>(L/hr)</td>
<td>(L/hr/m²)</td>
<td>(bar)</td>
<td>(bar)</td>
<td></td>
<td>(L/hr/m²/bar)</td>
</tr>
<tr>
<td>VR1A</td>
<td>0,0057</td>
<td>1,2</td>
<td>212</td>
<td>0,79</td>
<td>0</td>
<td>0,79</td>
<td>268</td>
</tr>
<tr>
<td>VR1B</td>
<td>0,0057</td>
<td>1,2</td>
<td>212</td>
<td>0,83</td>
<td>0</td>
<td>0,83</td>
<td>256</td>
</tr>
<tr>
<td>VR2A</td>
<td>0,0057</td>
<td>1,2</td>
<td>212</td>
<td>0,86</td>
<td>0</td>
<td>0,86</td>
<td>246</td>
</tr>
<tr>
<td>VR2B</td>
<td>0,0057</td>
<td>1,2</td>
<td>212</td>
<td>1,21</td>
<td>0</td>
<td>1,21</td>
<td>176</td>
</tr>
<tr>
<td>VR3A</td>
<td>0,0057</td>
<td>1,2</td>
<td>212</td>
<td>0,72</td>
<td>0</td>
<td>0,72</td>
<td>293</td>
</tr>
<tr>
<td>VR3B</td>
<td>0,0057</td>
<td>1,2</td>
<td>212</td>
<td>0,69</td>
<td>0</td>
<td>0,69</td>
<td>308</td>
</tr>
<tr>
<td>VR4A</td>
<td>0,0080</td>
<td>1,2</td>
<td>150</td>
<td>0,41</td>
<td>0</td>
<td>0,41</td>
<td>363</td>
</tr>
<tr>
<td>VR4B</td>
<td>0,0080</td>
<td>1,2</td>
<td>150</td>
<td>0,41</td>
<td>0</td>
<td>0,41</td>
<td>363</td>
</tr>
</tbody>
</table>
3.1.4 - Tests complémentaires avec les VR3

3.1.4.1 - Bilan des bactériophages MS2

Pour le module VR3A, un bilan de MS2 positif est trouvé pour les 3 essais. De 14% à 22% des MS2 utilisés pour le bioessai restent introuvables (tableau XIV). Ils ne sont ni dans le filtrat, ni dans l’effluent. Pour VR3B, le 3ᵉ essai donne un bilan de MS2 négatif à -7,91x10⁸ ufp. De plus, les pertes sont de 29% pour l’essai 1 et de 12% pour l’essai 2.

3.1.4.2 - Élution

Afin de démontrer que le tampon d’élution n’affecte pas les micro-organismes indicateurs, ces derniers ont été incubés dans ce tampon pendant 30 minutes avec des aliquotes prélevées aux dix minutes. La plus haute concentration de MS2 est obtenue à 10 minutes (1,34x10⁷ ufp/mL) et la plus faible à 20 minutes (8,70x10⁶ ufp/mL) pour une moyenne de 1,13x10⁷ ufp/mL (figure 8).

La récupération des phages potentiellement adsorbés sur les membranes a été tentée sur le module VR3A. Pour une élution avec 142 mL un tampon d’élution, la récupération n’est que de 1,4%, soit de 1,12x10⁷ ufp retrouvée sur 7,90x10⁸ ufp recherchées (tableau XV). Les MS2 récupérés par élution comprennent ceux dans un 14 mL de rinçage avec le tampon d’élution préalable à l’élution sous pression, ceux du 17,5 mL de filtrat et ceux du 124 mL de circulat.

3.1.4.3 - Élution en fonction du temps

Pour voir si au-delà de 142 mL d’éluant il est possible de récupérer plus de phages que 1,4%, l’éluion de VR3A a été reprise avec cette fois 484 mL de tampon d’élution sur une période de 5 minutes avec des aliquotes à chaque minute. Le filtrat et le circulat ont été analysés séparément. Pour le filtrat, 8,58x10⁵ ufp ont été trouvées dans un volume total de 45 mL. Pour le circulat, 1,15x10⁷ ufp ont été récupérées dans un volume total de 439 mL. Donc, au total, 1,24x10⁷ ufp sont récupérées (tableau XVI). Il est intéressant de constater que la concentration des phages dans le filtrat tend à rester stable au cours des 5 minutes d’élution (figure 9). Inversement, la concentration des MS2 dans l’effluent diminue de façon plus prononcée et régulière pendant le 5 minutes.
3.1.4.4 - Nettoyage chimique
Avant le nettoyage chimique des mini-modules VR3A et VR3B, un essai d'enlèvement a été fait avec MS2 et 3,58 log (99,974%) ont été obtenus pour VR3A et 4,38 log (99,996%) pour VR3B. Ces valeurs sont comparables aux trois bioessais précédents pour une moyenne d'enlèvement, incluant le présent essai, de 99,904% pour VR3A et 99,974% pour VR3B. La reprise du bioessai microbien après le nettoyage chimique donne des enlèvements inférieurs à ceux obtenus auparavant. Il s'agit même des plus faibles de tous les bioessais avec MS2 avec 2,62 log et 2,93 log pour VR3A et VR3B, respectivement (tableau XVII).
Tableau XIV : Bilan des bactériophages MS2 trouvé à 3 reprises pour les mini-modules VR3A et VR3B.

<table>
<thead>
<tr>
<th></th>
<th>VR3A</th>
<th>VR3B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Essai 1</td>
<td>Essai 2</td>
</tr>
<tr>
<td>Volume filtrat</td>
<td>mL</td>
<td>98</td>
</tr>
<tr>
<td>Volume effluent</td>
<td>mL</td>
<td>720</td>
</tr>
<tr>
<td>Volume affluent</td>
<td>mL</td>
<td>818</td>
</tr>
<tr>
<td>MS2 total dans affluent</td>
<td>ufp</td>
<td>3,86E+09</td>
</tr>
<tr>
<td>MS2 total dans filtrat</td>
<td>ufp</td>
<td>5,15E+04</td>
</tr>
<tr>
<td>MS2 total dans effluent</td>
<td>ufp</td>
<td>3,20E+09</td>
</tr>
<tr>
<td>Bilan</td>
<td>ufp</td>
<td>6,64E+08</td>
</tr>
<tr>
<td>Perte</td>
<td>%</td>
<td>17</td>
</tr>
</tbody>
</table>
Figure 8 : Stabilité des coliphages MS2 dans le tampon d’élution sur une période de 30 minutes.

Tableau XV : Proportion des coliphages MS2 perdus qui ont été récupérés par une élution du module VR3A avec 142 mL de tampon d’élution, suite à une expérience de bilan de MS2.

<table>
<thead>
<tr>
<th>Fraction de MS2</th>
<th>Quantité (ufp)</th>
<th>Proportion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS2 à récupérer</td>
<td>7,90E+08</td>
<td>100</td>
</tr>
<tr>
<td>MS2 récupérés par élution</td>
<td>1,12E+07</td>
<td>1,4</td>
</tr>
<tr>
<td>MS2 perdus/inactivés</td>
<td>7,79E+08</td>
<td>98,6</td>
</tr>
</tbody>
</table>
Tableau XVI : Quantité de coliphages MS2 récupérée dans le filtrat et le circulat lors de l’élution du mini-module VR3A avec 484 mL de tampon d’élution sur 5 minutes.

<table>
<thead>
<tr>
<th></th>
<th>Quantité de MS2 (ufp)</th>
<th>Volume (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtrat</td>
<td>8,58E+05</td>
<td>45</td>
</tr>
<tr>
<td>Circulat</td>
<td>1,15E+07</td>
<td>439</td>
</tr>
<tr>
<td>Total</td>
<td>1,24E+07</td>
<td>484</td>
</tr>
</tbody>
</table>

Figure 9 : Concentration des coliphages MS2 dans le filtrat et le circulat du module VR3A en fonction du temps d’élution avec un tampon d’élution.
Tableau XVII : Enlèvement des coliphages MS2 par les mini-modules d’UF avant et après une épreuve de nettoyage chimique à haute concentration en chlore.

<table>
<thead>
<tr>
<th>Module</th>
<th>Nettoyage chimique</th>
<th>Concentration</th>
<th>Enlèvement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Concentré (ufp/mL)</td>
<td>Filtrat (ufp/mL)</td>
</tr>
<tr>
<td>VR3A</td>
<td>avant</td>
<td>7,10E+06</td>
<td>1,88E+03</td>
</tr>
<tr>
<td></td>
<td>après</td>
<td>6,10E+06</td>
<td>1,47E+04</td>
</tr>
<tr>
<td>VR3B</td>
<td>avant</td>
<td>7,60E+06</td>
<td>3,18E+02</td>
</tr>
<tr>
<td></td>
<td>après</td>
<td>6,40E+06</td>
<td>7,60E+03</td>
</tr>
</tbody>
</table>
3.2 - Unité d’ultrafiltration HomeSpring™

La moyenne des résultats de quatre bioessais avec MS2 sur 12 minutes est présentée au tableau XVIII. Les coliphages MS2 sont détectés dans l’affluent à partir de la 4e minute d’injection. Un temps de 4 minutes est donc nécessaire aux micro-organismes pour être pompés par le venturi et mélangés à l’eau du robinet déchlorée. De la même façon, les phages restent présents dans l’affluent à forte concentration quelques minutes après la fin de l’injection. Des phages sont aussi détectés dans l’affluent 360 minutes (6 h) après la fin de l’injection mais à faible concentration. La concentration maximale de MS2 dans l’affluent se trouve entre 5 et 15 minutes et a pour valeur 7,45x10^3 ufp/mL à 15 minutes. Par la suite, la concentration diminue de façon progressive.

Un temps de 5 minutes est nécessaire aux micro-organismes pour être filtrés par l’appareil puisque les MS2 ne sont détectés dans le filtrat qu’à partir de la 5e minute. Les phages restent présents dans le filtrat après la fin de l’injection pour au moins 360 minutes. La concentration maximale de MS2 dans le filtrat est trouvée à 21 minutes à une valeur de 6,30x10^2 ufp/mL. Par la suite, la concentration diminue quelque peu mais stagne autour de 1,0x10^2 ufp/mL même après 6 heures (figure 10).

L’enlèvement des bactériophages par le système de filtration atteint son maximum à environ 6 minutes avec 4,21 log. Il devient négatif après une heure de filtration (60 min) puisque la concentration des MS2 dans le filtrat surpasse celle de l’affluent. L’eau du drain correspond à la fraction d’eau non filtrée qui s’amasse en amont des membranes. En théorie, sa concentration en micro-organismes devrait augmenter en fonction du temps de filtration jusqu’à ce qu’un rétro-lavage soit entrepris, généralement une fois par jour, la nuit. La figure 10 montre clairement que la concentration de MS2 dans l’eau du drain décroît après la fin de l’injection. La courbe est en fait parallèle à celle de l’affluent mais légèrement supérieure.
Tableau XVIII : Moyenne d’enlèvement des MS2 par le système de filtration d’eau HomeSpring™ pour quatre essais dont l’injection se fait de 0 à 12 minutes.

<table>
<thead>
<tr>
<th>Affluent</th>
<th>Filtrat</th>
<th>Enlèvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temps (min)</td>
<td>Concentration (ufp/mL)</td>
<td>Temps (min)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3,10E+04</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5,49E+05</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>2,94E+05</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>2,67E+05</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td>7,45E+05</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>3,45E+04</td>
<td>21</td>
</tr>
<tr>
<td>30</td>
<td>4,42E+03</td>
<td>31</td>
</tr>
<tr>
<td>60</td>
<td>2,52E+02</td>
<td>61</td>
</tr>
<tr>
<td>120</td>
<td>5,00E+00</td>
<td>121</td>
</tr>
<tr>
<td>240</td>
<td>2,00E+00</td>
<td>241</td>
</tr>
<tr>
<td>360</td>
<td>1,00E+00</td>
<td>361</td>
</tr>
</tbody>
</table>

nd : non déterminé
: période d'injection
Figure 10 : Concentration des coliphages MS2 trouvée dans les trois fractions d’eau du HomeSpring™ en fonction du temps lorsque l’injection se fait de 0 à 12 minutes. (Moyenne sur 2 essais à 5, 15 et 30 minutes).
3.3 - Purificateur Sterilight Water Machine

Le comportement global de l’appareil est testé avec une eau contaminée avec 500 000 phages et 500 000 spores par millilitre. Au cours de la première minute de traitement (résultats non montrés), presque aucun micro-organisme n’est trouvé dans le filtrat, ce qui donne des enlèvements aux limites de détection de la méthode. Pour les MS2, un enlèvement de 3,42 log a été observé à 2 minutes et de 4,12 log à 3 minutes (tableau XIX). Pour les spores de *B. subtilis*, un enlèvement de 2,26 log a été observé à 2 minutes et de 2,83 log à 3 minutes (tableau XIX).

Les performances de l’appareil ont été évaluées pour la filtration uniquement au cours de 2 essais indépendants. Il a été montré que le filtre au charbon activé inclus dans le SWM pouvait enlever de 0,18 à 0,21 log de phages MS2 et ce après 2 minutes de filtration par l’appareil (tableau XX). De la même façon, après 2 minutes de filtration, le SWM peut enlever de 2,31 à 2,40 log de spores de *B. subtilis* (tableau XX). Le dosage d’ozone résiduel dans l’eau traitée s’est avéré négatif après tous les essais menés avec le SWM.
Tableau XIX : Moyenne de 2 essais pour la réduction des coliphages MS2 et des spores de *B. subtilis* par le SWM lorsque la lampe est mise en marche après 2,5 minutes de filtration.

<table>
<thead>
<tr>
<th>Micro-organisme</th>
<th>Affluent (Écart-type) (ufp/mL)</th>
<th>Eau traitée UV/O3 (Écart-type) (ufp/mL)</th>
<th>Enlèvement (%</th>
<th>(log)</th>
<th>Temps de fonction de la lampe (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS2</td>
<td>5,00E+05 (9,90E+04)</td>
<td>1,90E+02 (3,75E+01)</td>
<td>99,9621</td>
<td>3,42</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>5,20E+05 (9,90E+04)</td>
<td>3,90E+01 (4,67E+01)</td>
<td>99,9925</td>
<td>4,12</td>
<td>3</td>
</tr>
<tr>
<td>Spores</td>
<td>5,63E+05 (1,17E+05)</td>
<td>3,11E+03 (3,93E+03)</td>
<td>99,4472</td>
<td>2,26</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>5,10E+05 (2,12E+04)</td>
<td>7,50E+02 (4,17E+02)</td>
<td>99,8529</td>
<td>2,83</td>
<td>3</td>
</tr>
</tbody>
</table>

Débit : 590 mL/min
Pression : 0,83 bar (12 psi)

Tableau XX : Enlèvement des coliphages MS2 et des spores de *B. subtilis* par le SWM lors de 2 essais indépendants où la lampe UV/O3 est éteinte et qu’un temps de 2 minutes de filtration est alloué avant la prise d’échantillon.

<table>
<thead>
<tr>
<th>Micro-organisme</th>
<th>Essai</th>
<th>Affluent (ufp/mL)</th>
<th>Eau filtrée seulement (ufc/mL)</th>
<th>Enlèvement (pourcentage)</th>
<th>(log)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS2</td>
<td>1</td>
<td>6,10E+05</td>
<td>4,01E+05</td>
<td>34,2623</td>
<td>0,18</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4,40E+05</td>
<td>2,74E+05</td>
<td>37,8409</td>
<td>0,21</td>
</tr>
<tr>
<td>Spores</td>
<td>1</td>
<td>7,25E+05</td>
<td>2,90E+03</td>
<td>99,6000</td>
<td>2,40</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4,95E+05</td>
<td>2,45E+03</td>
<td>99,5051</td>
<td>2,31</td>
</tr>
</tbody>
</table>

Débit : 590 mL/min
Pression : 0,83 bar (12 psi)
3.4 - Réacteur UV SPV6

3.4.1 - Courbe dose-réponse

Utilisant les trois premiers tubes de l’appareil à faisceaux collimateurs maison décrit dans la section précédente, il a été possible de calculer la dose UV reçue par une suspension de bactériophages MS2. Les mesures d’intensité incidente sont de 0,045 mW/cm² pour le tube 1, de 0,047 mW/cm² pour le tube 2 et de 0,046 mW/cm² pour le tube 3, lorsque les lampes étaient à 30°C. Le facteur pétri, évalué lorsque les lampes étaient à 29,8°C, est de 0,987, 0,968 et 0,946, pour les tubes 1, 2 et 3, respectivement (Annexe B). Les temps d’exposition des MS2 aux rayons UV sont de 0 s, 356 s, 756 s, 19 min 16 s, 26 min 18 s et 29 min 38 s. La profondeur de la suspension de phages est ajustée à 0,5 cm et le coefficient d’absorption à 254 nm de la suspension trouvé est de 0,01. Le titrage des aliquote prélevées à chaque temps a permis de trouver la mesure d’inactivation afin de tracer la courbe dose-réponse ci après. L’équation de la droite passant à (0,0) est de $y = 0,0514x + 0,1264$ et le coefficient de régression linéaire est: de 0,9952 (figure 11). Cette équation permet de déterminer que pour 1 log d’inactivation de MS2, une dose de 17 mJ/cm² doit être appliquée et, 36 mJ/cm² pour 2 log, 56 mJ/cm² pour 3 log et 75 mJ/cm² pour 4 log.
Figure 11 : Courbe dose-réponse des coliphages MS2 tracée à partir de la moyenne sur trois essais.
3.4.2 - Biodosimétrie

Le SPV6 a été soumis à 3 essais avec MS2 dont les deux derniers comprenaient aussi des spores de *B. subtilis*. À cause des problèmes sévères d’instabilité de l’appareil vécus lors du troisième essai, les résultats ne sont pas présentés. Effectivement, le contrôleur affichait de façon presque permanente un pourcentage UV inférieur à 85%. Cette situation s’est aussi présentée au 2° essai à au moins cinq reprises. Comme ces épisodes étaient de courte durée, les résultats du 2° essai ont tout de même été analysés. La piste de l’interférence du thiosulfate de sodium a été investiguée. C’est pourquoi le banc d’essai a été modifié pour déchlorer l’eau du robinet avec une cartouche au charbon activé «Big Blue». Même de cette façon, l’appareil restait instable.

Le tableau XXI montre que les essais avec MS2 ne sont pas reproductibles. Un enlèvement moyen de 99,967% (3,48 log) est obtenu pour le 1er essai alors qu’un enlèvement de 99,826% (2,76 log) est obtenu pour le 2e essai. Pour les spores de *B. subtilis*, un enlèvement moyen de 99,983% (3,77 log) est obtenu lors du 2e essai.

La figure 12 illustre bien que le problème d’instabilité croît avec les essais. La courbe des MS2 au premier essai est presque linéaire alors que la courbe du deuxième essai est assez irrégulière. Quant aux spores, leur inactivation décroît radicalement après 10 minutes.
Tableau XXI : Enlèvement des coliphages MS2 et des spores de *B. subtilis* par le réacteur à rayons UV SPV6 pour deux essais dont l’injection débute à 0 minute et se termine à 15 minutes.

<table>
<thead>
<tr>
<th>Micro-organisme</th>
<th>Temps d’échantillonnage (min)</th>
<th>Concentration</th>
<th>Enlèvement</th>
<th>Enlèvement moyen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Eau brute (ufp/mL)</td>
<td>Eau désinfectée (ufp/mL)</td>
<td>(%)</td>
</tr>
<tr>
<td>MS2</td>
<td>7</td>
<td>1,84E+05</td>
<td>4,20E+01</td>
<td>99,9772</td>
</tr>
<tr>
<td>MS2</td>
<td>12</td>
<td>5,40E+05</td>
<td>1,28E+02</td>
<td>99,9763</td>
</tr>
<tr>
<td>MS2</td>
<td>17</td>
<td>5,60E+05</td>
<td>2,42E+02</td>
<td>99,9568</td>
</tr>
<tr>
<td>MS2</td>
<td>22</td>
<td>8,20E+05</td>
<td>3,20E+02</td>
<td>99,9610</td>
</tr>
<tr>
<td>MS2</td>
<td>27</td>
<td>1,14E+05</td>
<td>4,00E+01</td>
<td>99,9649</td>
</tr>
<tr>
<td>MS2</td>
<td>5</td>
<td>4,51E+05</td>
<td>4,83E+02</td>
<td>99,8929</td>
</tr>
<tr>
<td>MS2</td>
<td>10</td>
<td>5,14E+05</td>
<td>9,30E+02</td>
<td>99,8189</td>
</tr>
<tr>
<td>MS2</td>
<td>15</td>
<td>4,20E+05</td>
<td>4,94E+02</td>
<td>99,8324</td>
</tr>
<tr>
<td>MS2</td>
<td>20</td>
<td>3,63E+05</td>
<td>1,07E+02</td>
<td>99,9705</td>
</tr>
<tr>
<td>MS2</td>
<td>25</td>
<td>5,50E+03</td>
<td>2,40E+01</td>
<td>99,5636</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>5</td>
<td>6,70E+04</td>
<td>0,5</td>
<td>99,9993</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>10</td>
<td>6,75E+04</td>
<td>0,05</td>
<td>99,9999</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>15</td>
<td>4,50E+04</td>
<td>0,5</td>
<td>99,9989</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>25</td>
<td>7,40E+02</td>
<td>0,5</td>
<td>99,9324</td>
</tr>
</tbody>
</table>
Figure 12 : Inactivation des coliphages MS2 (2 essais) et des spores de *B. subtilis* par le réacteur UV SPV6 pour une injection de micro-organismes débutant à 0 minute et se terminant à 15 minutes.
CHAPITRE 4
DISCUSSION

4.1 - Mini-modules d'ultrafiltration

4.1.1 - Tests préliminaires

Théoriquement, les duplicata de modules devraient se comporter de façon similaire. Le débit de filtration du mini-module VR2B de 18 mL/min est très inférieur à celui de son duplicata VR2A, qui est de 27 mL/min. Plusieurs situations peuvent expliquer cet écart dont le colmatage de la membrane du module VR2B ou la perte d'intégrité du module VR2A soit à cause d'un trou au niveau d'une fibre ou encore à cause d'un problème structurel du module VR2A lui-même. Le colmatage du module VR2B semble plus plausible car VR2A réussi à retenir les spores de B. subtilis à plus de 5 log, ce qui semble indiquer que ce module soit intact. Des tests directs d'intégrité tels que le test de maintien de la pression et le test par diffusion d'air auraient tout de même pu être pratiqués sur le module VR2A pour vérifier son étanchéité (U.S. EPA, 2001b).

La logique voudrait que le débit d'une membrane soit proportionnel à la grosseur de ses pores. Ainsi, plus les pores sont gros, plus une même quantité de liquide s'écoule rapidement à travers la membrane. Dans le cas présent, cette assertion n'est pas très marquée. Par exemple, VR1 ont un débit légèrement inférieur à celui des VR3 bien que leurs pores soient deux fois plus gros. C'est que d'autres facteurs peuvent influencer la productivité des membranes notamment le matériau et l'âge de la membrane ainsi que la présence d'une couche de gâteau (Mallevalle et al., 1996). Quant aux VR4, leur flux est plus élevé que celui des VR3 pour des pores de même dimension. Les VR4 sont donc plus productifs que les VR3.

Au début des bioessais avec MS2, l'obtention de résultats erratiques (non montrés) a laissé croire que le récipient pressurisé en acier inoxydable, alors utilisé, pouvait avoir une influence sur la détection des coliphages MS2. La diminution de titre observée lorsque les MS2 sont incubés dans le récipient d'acier inoxydable ne permet pas de dire s'il s'agit d'une adsorption au matériau, d'une agrégation ou d'une inactivation des bactériophages. L'adsorption des particules virales sur divers matériau en présence de cations divalent et trivalent est bien documentée (Grabow, 2001). Mais, dans le cas présent, ces ions sont absents de la solution
filtrée. De plus, le titre des phages phi-X 174 reste stable dans le récipient d’acier inoxydable donc il ne s’agit pas d’un effet intrinsèquement toxique du matériau pour les micro-organismes. Il pourrait peut-être s’agir d’agrégation des coliphages entre eux, qui résulte en une sous-estimation de leur nombre lors des titrages.

Une concentration résiduelle de chlore nulle dans l’eau de trempage des mini-modules laisse croire qu’il n’y aurait pas d’absorption du désinfectant par le matériel des membranes lors de la désinfection. Ce fait est corroboré par les dosages réguliers de chlore dans l’eau d’entreposage qui ne démontrent aucun relargage de désinfectant par les membranes. Ainsi, le chlore aurait un effet superficiel seulement. Il se pourrait donc que des micro-organismes emprisonnés dans les pores survivent à la désinfection. La concentration résiduelle de chlore dans les mini-modules rincés sous pression s’est aussi avérée nulle. Peut-être que les volumes d’eau de rinçage, 60 mL pour le filtrat et 300 mL pour l’eau de circulation, ont dilué le chlore au point de le rendre indéetectable avec la méthode de dosage peu sensible utilisée. Malgré cela, il aurait été surprenant de trouver du chlore dans l’eau 18 jours après une désinfection à 5 mg/L car le chlore a une demi-vie courte dans ces conditions. Finalement, notons que la limite de détection de la technique colorimétrique est de la moitié de la plus petite unité, soit de 0,05 mg/L donc qu’elle ne permet pas de révéler la présence de chlore en deçà de cette valeur. Par ailleurs, il existe toujours un certain degré de subjectivité avec ce genre de dosage à cause des différences de perception de l’œil humain.

4.1.2 - Bioessais avec MS2

La piètre efficacité d’enlèvement des MS2 par les mini-modules VR1 et VR2 était à prévoir à cause de la porosité élevée de leurs membranes de 0,07 µm et 0,05 µm, respectivement. Les modules VR3 et VR4 ont la même porosité de 0,035 µm. Les bonnes performances des modules VR4 pourraient être expliquées par le fait qu’elles sont opérées à plus basse pression, près de 0,4 bar (6 psi) par rapport à 0,7 à 0,8 bar (10-12 psi) pour les autres modules. Effectivement, la principale force en jeu pour le passage des particules au travers d’une membrane est la pression transmembranaire (U.S. EPA, 2001b). Ici, les phages reçoivent moins de pression pour traverser les pores des VR4 que des autres modules. Il est possible de croire qu’à pression égale, la performance des VR4 serait similaire à celle des VR3 puisque ces modules ont la même grosseur
de pores. Mais, comme le débit de filtration est gardé constant pour tous les mini-modules, les VR4, avec leur plus grande surface, doivent être opérés à pression inférieure. Enfin, les bonnes performances des modules VR4 pourraient aussi s'expliquer par une distribution de taille de pores plus étroite.

4.1.3 - Bioessais avec T7 et spores

Toutes les membranes d’UF ont empêché le passage des spores de Bacillus subtilis (1 μm) ce qui démontre qu’aucune d’entre elles n’est affectée de sévère brèche. Par extrapolation, il est aussi possible de dire que ces mini-modules sont capables d’enlever plus de 5 log de parasites protozoaires car ces derniers sont plus gros que les spores utilisées. Les membranes VR1 ont une porosité moyenne estimée de 0,07 μm, soit de 70 nm. Comme il s’agit d’une moyenne, certaines pores sont plus grosses et d’autres plus petites, ce qui pourrait expliquer le passage d’une partie des coliphages T7 (45 nm). Par ailleurs, l’utilisation d’affluent plus concentré en T7 aurait pu permettre une discrimination entre les autres membranes mais, comme l’utilisation des coliphages MS2 permet cette discrimination, il n’a pas été jugé nécessaire de le faire.

Les coûts de capital et d’opération d’un système membranaire augmentent directement en fonction du flux spécifique d’une membrane (Mallevalle et al., 1996). Le flux du filtrat est donné par le volume d’eau transféré au travers la membrane par unité d’aire pour un temps donné, ici une heure ($J = L/h/m^2$). Le flux du filtrat est ensuite normalisé en le divisant par la force appliquée ou pression transmembranaire (PTM) pour donner le flux spécifique. Cette mesure est très utile pour évaluer les capacités hydrauliques d’une membrane et ainsi comparer différentes conditions d’opérations. Malgré les bonnes performances des mini-modules VR4, ce sont les VR3 qui sont retenus pour la suite des tests car, d’un point de vue économique, les VR4, avec leur surface plus élevée (80 cm2 versus 57 cm2), nécessitent 40% plus de matériel que les autres modules alors que leur flux spécifique n’est supérieur que de 21% par rapport à la moyenne de perméabilité des VR3.

4.1.4 - Tests complémentaires avec les VR3

4.1.4.1 - Bilan des bactériophages

Il fallait s’attendre à une certaine perte des MS2 lors des bioessais. Les pertes peuvent être dues à de l’agrégation, de l’inactivation, de l’adsorption sur les parois des boyaux, débitmètres et autre
matériel. Le fait qu’un résultat négatif de bilan de MS2 soit obtenu pour VR3B n’est pas alarmant. En fait, plus la concentration initiale de micro-organismes est importante, plus l’erreur est importante. Ainsi, une erreur de 5% sur une quantité de 8×10^9 ufp correspond à 4×10^8 ufp, ce qui n’est pas négligeable. Il aurait fallu refaire l’expérience avec des concentrations initiales de l’ordre de 10^3 ufp pour avoir des résultats plus significatifs.

4.1.4.2 - Élution
Des tampons très alcalins sont utilisés de routine pour la désorption des phages dans les techniques de concentration sur membranes (Grabow, 2001). Dans la présente étude, le tampon d’élution n’a pas affecté la détection des bactériophages MS2, du moins sur une période de 30 minutes. La plus haute concentration de MS2 est obtenue à 10 minutes ($1,34 \times 10^7$ ufp/mL) et la plus faible à 20 minutes ($8,70 \times 10^6$ ufp/mL) pour une moyenne de $1,13 \times 10^7$ ufp/mL. Une variation de 5% sur cette moyenne correspond à $5,65 \times 10^5$ ufp/mL et son intervalle n’englobe pas les valeurs maximum et minimum. Les pourcentages d’écart à la moyenne sur les valeurs présentées ici sont de 19% pour le maximum et de 23% pour le minimum. Ces variations pourraient être dues aux différentes étapes de manipulation des phages associées au titrage.

L’élution en soit permet une faible récupération de 1,4% ($1,12 \times 10^7$ ufp) de tous les MS2 recherchés ($7,90 \times 10^8$ ufp). Cette proportion est certes faible mais, comme mentionné précédemment, la perte des MS2 peut aussi être attribuée à de l’agrégation et de l’inactivation, les rendant ainsi irrécupérables.

4.1.4.3 - Élution dans le temps
La faible récupération obtenue lors de l’élution avec 142 mL de tampon d’élution motive un second essai avec un plus grand volume d’éluant. La récupération totale de $1,24 \times 10^7$ ufp est comparable à celle obtenue avec le petit volume ($1,12 \times 10^7$ ufp) donc, il est possible de croire que les MS2 perdus sont agrégés ou inactivés plutôt qu’adsorbés sur les membranes. Par ailleurs, puisque la concentration des phages dans le filtrat tend à rester stable tout au cours de l’élution, il semble qu’une certaine fraction de phages reste emprisonnée dans les pores des membranes et qu’ils se libèrent de façon graduelle au cours de l’élution. Une élution au-delà de 5 minutes aurait permis la récupération de plus de MS2 mais, les quantités récupérées de l’ordre du 10^7 ufp n’affectent pas vraiment la quantité totale de 10^7 ufp.
4.1.4.4 - Nettoyage chimique
Il semble que les fortes concentrations de chlore à répétition réduisent la capacité des membranes à retenir les bactériophages. Le bioessai avec MS2 après le nettoyage chimique donne des enlèvements inférieurs à tous les bioessais effectués avec ce micro-organisme. Pourtant le PVDF, comme les autres polymères hydrophobes, est réputé pour son excellente stabilité chimique (Mallevialle et al., 1996) Il serait intéressant de vérifier si les enlèvements obtenus avant et après ce nettoyage chimique sont significativement différents.

4.2 - Unité d’ultrafiltration Homespring™
Le but premier des essais avec le HomeSpring™ était de faire le portrait du taux de contamination des diverses fractions d’eau – affluent, filtrat et drain – lors d’un bref épisode de contamination de l’affluent. Lors d’une injection de micro-organismes de 12 minutes, il a été surprenant de devoir sans cesse allonger la période d’échantillonnage, jusqu’à 6 heures, pour se rendre compte que le relargage de phages dans le filtrat était stable et continu. Une concentration résiduelle de 1×10^2 ufp/mL même après 6 heures est fort peu réconfortante. Rappelons qu’une concentration de 100 ufp/mL correspond à 100 000 ufp/L. Cette quantité est supérieure à la dose minimale infectieuse de la majorité des virus – si l’on suppose une consommation journalière d’un litre d’eau par personne (Cotruvo et Cotruvo Jr., 2003).

Dans un système de filtration idéal, les bactériophages devraient se concentrer dans l’eau du drain, correspondant à la fraction d’eau non filtrée qui s’accumule en amont des membranes. Mais, à cause d’une brèche, d’un trou, d’une fuite ou de la déformation des pores et/ou des bactériophages, ces derniers réussissent à s’échapper pour se retrouver dans le filtrat. Cela expliquerait pourquoi la concentration de micro-organismes dans l’eau du drain diminue après la fin de l’injection. Elle devrait plutôt se maintenir jusqu’au rétro-lavage.
4.3 - Purificateur Sterilight Water Machine

Des enlèvements de 3,42 log et de 4,12 log à 2 et 3 minutes de fonctionnement de la lampe pour les MS2 sont des résultats acceptables. Ainsi, pour 500 000 ufp/mL dans l’afluent, environ 200 ufp/mL et 40 ufp/mL seraient présents après 2 et 3 minutes de purification de l’eau par le SWM, respectivement. Cette réduction serait majoritairement due à l’effet de la lampe bichromatique puisque le filtre au charbon activé utilisé seul enlève une quantité peu significative de phages présents dans l’eau (0,2 log).

Pour les spores de *B. subtilis*, les enlèvements observés sont plus faibles avec 2,26 log à 2 minutes et 2,83 log à 3 minutes. Ainsi, pour 500 000 spores/mL dans l’afluent, environ 2 800 ufc/mL et 740 ufc/mL seraient présents après 2 et 3 minutes de purification de l’eau par le SWM, respectivement. Cela pourrait s’expliquer par une plus grande résistance des spores face au rayonnement UV à faible dose (U.S. EPA, 2003). De plus, l’appareil évalué pour la filtration uniquement permet d’enlever 2,31 à 2,40 log de spores de *B. subtilis*. C’est donc dire que la réduction majeure de la concentration des spores dans l’eau est due à l’enlèvement mécanique fait par le filtre au charbon activé. Il faut être prudent avec ce genre de filtres car des études ont démontré la colonisation de ce matériau entre autres par des bactéries du genre *Bacillus* (Wilcox *et al*., 1983). De plus, la croissance des bactéries dans les interstices des filtres au charbon activé est accélérée par la présence d’oxygène qui rend la matière organique plus biodégradable (Bitton, 1999). Finalement, lorsqu’ils sont saturés en matière organique, les filtres au charbon activé relarguent cette matière à forte dose dans l’eau (Lykins *et al*., 1992).

Il aurait été surprenant de trouver de l’oxygène dans l’eau purifiée puisque cette molécule a une demi-vie dans l’eau qui varie selon la qualité de l’eau mais qui dépasse rarement quelques minutes (Lykins *et al*., 1992). De plus, l’eau subit la filtration sur charbon activé après l’ozonation donc les molécules d’oxygène libres sont très susceptibles de réagir à cet endroit et ainsi se dégrader. Finalement, la trousse de dosage permet une détection de 0,05 à 1,6 mg/L avec une erreur de 0,025 mg/L qui se base sur la perception visuelle de l’analyste, ce qui peut amener une certaine dose de subjectivité.
4.4 - Réacteur UV SPV6

4.4.1 - Courbe dose-réponse de MS2

Lorsque la coordonnée (0,0) est incluse dans le tracé de la droite, l'équation de la courbe de tendance donne une ordonnée à l'origine faible de 0,1264. De plus, le coefficient de régression de 0,9952 augmente d'à peine 0,0007 à 0,9959 si la coordonnée (0,0) est enlevée du calcul. Cela indique que la droite passe réellement par zéro ou du moins, tout près. De plus, le coefficient de régression près de 1 montre que la courbe est vraiment linéaire de 1er ordre. L'allure de la courbe s'apparente beaucoup à celles trouvées dans la littérature, notamment à celle de Wilson et al. (1992) comme cela peut être constaté à la figure 13.

![Courbe dose-réponse de MS2](image)

\[y = 0.0514x + 0.1264 \]

\[R^2 = 0.9952 \]

Figure 13 : Comparaison des courbes dose-réponse pour les coliphages MS2 lors de la présente étude et de celle de Wilson et al. (1992).
4.4.2 - Biodosimétrie

Les problèmes d’instabilité du réacteur UV SPV6 n’ont pu être expliqués. Le plus étonnant est que l’auto-diagnostic de l’appareil par le contrôleur électronique a été complété avec succès à chaque mise sous tension. L’instabilité pourrait peut-être venir d’un disfonctionnement du capteur UV puisque le contrôleur affichait des pourcentages d’UV variables pour une même eau. L’hypothèse d’un bris ou mauvais fonctionnement du contrôleur pourrait aussi être investiguée plus à fond car un encrassement de la lampe entre le 1er et le 3e essai est fort peu probable puisque l’appareil est utilisé uniquement avec de l’eau froide du robinet provenant d’une source municipale. Cette eau ne présente donc aucun caractère de dureté ou de couleur. Il ne semble pas que l’interférence due à l’utilisation de thiosulfate de sodium soit en cause car le 3e essai a été réalisé avec une cartouche au charbon activé «Big Blue» et le problème d’instabilité était plus sévère que jamais.

Cette instabilité pourrait être la cause du manque de reproductibilité des essais avec MS2. Malgré tout, des entèvements de phages de plus de 2,75 log et de spores bactériennes de plus de 3,75 log sont non négligeables. Avec l’équation de la droite du graphique dose-réponse de MS2, il est possible de trouver la dose UV appliquée par l’appareil. Posons que l’appareil permet une réduction moyenne de 2,98 log (99,896%) de MS2 dans les conditions testées. Alors, la dose reçue par les micro-organismes est de 56 mJ/cm². Cette dose est conforme aux affirmations du fabricant qui soutient qu’une dose UV d’au moins 40 mJ/cm² est fournie par l’appareil, dans des conditions normales d’utilisation. Reste que les bonnes performances de désinfection du réacteur ne réglent pas les problèmes d’alarme et dans une utilisation réelle du réacteur, cette situation est inacceptable.
4.5 - Application de l'UF aux puits domestiques

L’application de l’UF pour la désinfection de l’eau au niveau résidentiel fait face à trois problèmes majeurs. Premièrement, il est très difficile de s’assurer de l’intégrité des membranes à ce niveau d’utilisation. Les tests d’intégrité pourraient être automatisés ou pratiqués de façon ponctuelle par le propriétaire. L’automatisation serait certes avantageuse mais encore faut-il que le système fonctionne sans faillie, ce qui n’est pas toujours le cas. Pour les tests faits par le propriétaire, leur fréquence serait probablement trop faible pour assurer une réelle protection contre un épisode de contamination en cas de perte d’intégrité. Finalement, la surveillance en continu de la qualité du filtrat s’avérerait probablement trop onéreuse.

Le deuxième problème auquel fait face cette technologie découle des connaissances acquises au cours de la présente étude. Malgré un nombre d’essais relativement faible, il semble qu’un possible problème de relargage en continu de particules suite à la rétention des contaminants par les membranes d’UF soit possible. Ce phénomène a été observé directement avec le HomeSpring™ mais aussi lors de l’élation dans le temps du mini-module VR3A. Dans ce dernier cas, c’est le pH du tampon d’élution qui provoquait le relargage. Puisque le fabricant affirme que l’appareil peut être utilisé avec différentes sources d’eau (municipale, citerne, puits, lacs et rivières) avec un pré-filtre approprié, il est possible qu’une variation naturelle de pH se produise et provoque le relargage de micro-organismes dans le filtrat. Même si l’intégrité membranaire est maintenue, l’appareil pourrait relâcher des contaminants potentiellement dangereux pour la santé.

Troisièmement, les filtres et membranes sont sujets à des problèmes de colonisation bactérienne dus à la stagnation de l’eau dans leurs compartiments. Payment (1989) rapporte la présence de bactéries dans des réservoirs domestiques d’Of avec des concentrations de beaucoup supérieures à celles d’une eau potable municipale. Le même phénomène pourrait se produire avec le HomeSpring™ malgré les rétro-lavages quotidiens. Le problème devient sérieux pour des eaux de sources naturelles qui peuvent contenir des pseudomonas causant des infections nosocomiales (Rosenberg, 2003). Il pourrait y avoir danger d’infection pour la population immunocompromise, surtout si l’on considère la concentration des micro-organismes dans l’eau du drain comme un danger possible en cas de déversement.
4.6 - Application des UV aux puits domestiques

La technologie des UV est déjà largement utilisée pour la désinfection d'eau résidentielle. Les réacteurs UV sont généralement efficaces et demandent peu d'entretien. Comparativement à une unité de filtration comme le HomeSpring™, ils sont compacts mais, nécessitent presque toujours un pré-traitement qui doit être ajouté à part. Le SPV6 s'est montré très performant contre MS2 et les spores de B. subtilis, grâce à une dose UV élevée fourni par le réacteur. Il faut par contre savoir que certains virus sont plus résistants aux UV que ces deux indicateurs. De plus, ce type d'appareil est totalement dépendant d'une source de courant. Il pourrait être difficile à utiliser dans certaines conditions, par exemple pour des pourvoiries où l'accès à l'électricité est limité. Même où l'électricité n'est pas un problème, il faudrait prévoir un système d'appoint en cas de panne électrique. Mais, l'avantage des rayons UV sur la technologie d'UF est qu'au lieu d'exclure les micro-organismes, ils les inactivent. Il n'y a donc aucun danger de relargage ou déversement. Finalement, l'appareil testé au cours de cette étude avait un très gros problème de fiabilité dû à l'alarme qui sonnait sans arrêt. Impossible de dire s'il s'agissait d'un cas isolé. Si oui, le contrôles de qualité sur ce type d'équipement devrait être resserré. Si non, il faudrait revoir la conception des composantes électroniques de l'appareil afin de régler ce problème de façon définitive.

Nul ne peut affirmer que le SWM fait strictement appel à la technologie des UV. Il s'agit plutôt d'un mélange de 3 technologies : ozonation, irradiation UV et filtration sur charbon activé. Cette «tri-technologie» a l'avantage de protéger contre un large spectre de micro-organismes. En effet, la résistance des micro-organismes pour chacun de ces traitements est variable; un peut être plus affecté par l'ozonation et l'autre par les UV. Rappelons que le filtre au charbon n'a aucun pouvoir de désinfection. Au contraire, tout comme les membranes d'UF, il pourrait promouvoir la colonisation bactérienne. Ce dispositif en POU ne traite pas l'eau partout dans la résidence mais, il serait idéal comme appareil d'appoint utilisé conjointement avec un appareil en POE. Sur une eau déjà traitée, il pourrait servir au cas où l'appareil en POE serait défaillant. Son emploi peut être limité dans les cas de faible quantité d'eau puisqu'il fonctionne avec une valve activée à une pression de 2,07 bar (30 psi) ou plus.
4.7 - Avenir des purificateurs d'eau

Au Québec, le marché des purificateurs d'eau est en pleine croissance. La tragédie de Walkerton, le retour à la campagne, l'augmentation de la pollution due à l'augmentation de la population et la plus grande sensibilité de la population à la qualité de l'eau sont des facteurs qui peuvent expliquer cette augmentation. Dans cette optique, l'avenir des purificateurs d'eau devrait être assuré. Par contre, plusieurs questions peuvent être soulevées sur les enjeux qui touchent cette industrie.

4.7.1 - Fabricants

Les manufacturiers font preuve d'une implication soutenue dans le processus de validation de leurs appareils au niveau technique. Parmi les organismes qui apposent leur sceau de qualité sur les appareils qui se conforment à leur norme, la NSF domine largement. La certification NSF est reconnue et bien implantée dans l'industrie mais, le coût élevé de cette certification exclut les petits fabricants du marché et fait grimper considérablement le coût des appareils certifiés. Sans compter que pour certaines technologies innovatrices il n'existe pas de normes et le processus qui permet d'en élaborer est à la fois long et coûteux. Les fabricants pourraient améliorer les outils de contrôle des appareils (p. ex. les alarmes) et tenter d'uniformiser les guides à l'intention de l'usager, domaines pour lesquels aucune certification n'est applicable.

4.7.2 - Vendeurs, installateurs, opérateurs et entretien

Le visage de la vente, de l'installation, de l'opération et de l'entretien des purificateurs d'eau au Québec est en pleine mutation. Ce domaine, autrefois l'affaire de quelques entreprises spécialisées, s'est élargi au point où les appareils sont maintenant vendus dans les magasins à rayons. Depuis l'entrée en vigueur du nouveau RQEP, le propriétaire de puits individuel est responsable de la qualité de l'eau qu'il offre pour consommation et cette eau doit respecter les normes édictées dans le règlement (MENV, 2002a). En vertu du RQEP, le propriétaire a l'obligation de faire analyser son eau et de la traiter, si nécessaire. Dans ce dernier cas, la tâche ne se limite pas seulement à l'achat et l'installation d'un appareil de traitement, il faut aussi l'opérer et l'entretenir convenablement. Pour le propriétaire d'un puits individuel consciencieux, la tâche est réalisable. De plus, la nouveauté apportée par le RQEP touche les exploitants de commerces, campings, colonies de vacances, pourvoiries et autres entreprises de services non

4.7.3 - Gouvernements

Au Québec, un «Guide de conception des installations de production d’eau potable» décrit les critères de conception approuvés par le RQEP pour les technologies de traitement d’eau potable reconnues et utilisées à grande échelle. Pour les petits systèmes, ces technologies sont inadéquates et trop coûteuses. Pour pallier cette lacune, un comité évalue au cas par cas les nouvelles technologies de traitement d’eau potable afin de statuer sur leur efficacité pour satisfaire les exigences du RQEP. Cela implique que les appareils utilisés pour le traitement de l’eau potable doivent être préalablement validés à l’échelle réelle. Les sommes à investir pour ces tests de validation sont importantes et par conséquent, seulement 3 filières de traitement (2 lampes UV et un système de NF) bénéficient de la mention «éprouvée» et peuvent être utilisées pour les petits approvisionnements.

Comme dernier élément concernant l’avenir des purificateurs d’eau, je me permets d’ajouter une observation personnelle. En général, les normes et certifications sont bénéfiques pour protéger la population. Par contre, si le domaine du traitement d’eau résidentiel devient trop policé, cela pourrait diminuer l’accessibilité des traitements et des appareils. Il faut donc tenter de trouver un équilibre entre la reconnaissance de qualité des appareils de traitement et leur accessibilité.
CONCLUSION

Approximativement 10% de la population québécoise n’est pas reliée à un réseau public d’eau potable pour leur approvisionnement résidentiel. De plus, les régions rurales comptent plusieurs entreprises, commerces et institutions qui sont responsables de leur propre approvisionnement en eau potable. À cause du risque à la santé causé par les micro-organismes pathogènes potentiellement présents dans l’eau, le traitement adéquat d’une eau contaminée est nécessaire.

Afin d’apporter des pistes de solution aux problèmes d’eau contaminée des puits résidentiels ou d’eau de surface, le but du projet était de comparer l’efficacité microbiologique d’une technologie éprouvée, l’irradiation UV, à une nouvelle technologie, l’UF par l’utilisation de micro-organismes indicateurs.

Des prototypes de membranes d’UF appelés mini-modules ont données des enlèvements de 3 log et plus de MS2, > 5 log de spores de B. subtilis et > 6 log de coliphages T7 lorsque le largeur des pores était de 50 nm et moins et que les fibres semblaient intactes. Mais, certaines observations semblent indiquer un phénomène d’adsorption des particules biologiques à la membrane suivie d’un relargage continu. De plus, le matériau des membranes utilisées, le PVDF perd de son efficacité lors qu’il est trempé plusieurs heures dans du chlore concentré. Les bioessais avec un appareil d’UF commercialisé pour une utilisation en POE s’est comporté sensiblement de la même façon que les mini-modules au niveau de l’enlèvement microbien et du relargage. Il a permis de réduire les MS2 d’une eau d’au moins 3 log lors d’une épisode de contamination de l’eau mais a relargué des particules dans le filtrat jusqu’à 6 heures après la fin de l’épisode de contamination.

Le SWM est un amalgame de trois technologies de traitement d’eau qui s’utilise en POU. Il donne des résultats d’enlèvement remarquables mais variables selon le patron d’utilisation de l’appareil. Il permet néanmoins une réduction de > 3 log de MS2 mais de < 3 log de spores. Quant au SPV6, un réacteur UV s’utilisant en POE certifié NSF, il a été le moins performant des appareils à cause d’une instabilité non expliquée affichée par le contrôleur. Le SPV6 a tout de même permis une réduction moyenne de 2,98 log de MS2 ce qui correspond à une dose reçue par les micro-organismes de 56 mJ/cm². Cette dose est conforme aux affirmations du fabricant qui
soutient qu’une dose UV d’au moins 40 mJ/cm² est fournie par l’appareil, dans des conditions normales d’utilisation.

Les résultats font état du comportement général des membranes d’UF avec une eau « propre » contaminée microbiologiquement. Les principaux obstacles à la commercialisation de cette technologie semblent avoir trait au contrôle de l’intégrité des fibres, au problème de relargage des contaminants suite à une contamination, à la sensibilité au chlore et à la grosseur de l’appareil (HomeSpring™) en tant que tel. De la même façon que pour la technologie des UV, une eau naturelle, contenant des sels et de la matière organique, pourrait changer complètement le patron d’enlèvement des appareils. En situation réelle, une technologie sera plus efficace là où l’autre le sera moins et vice versa. Le concept multi-barrière appliqué au traitement de l’eau trouve alors tout son sens. C’est d’ailleurs ce que le SWM cherche à faire avec sa tri-technologie insérée dans un même appareil. Par contre, l’utilisation de POU à un seul robinet pose le problème de la contamination aux autres points d’utilisation de l’eau d’une résidence.

Finalement, il a été très surprenant, voire même inquiétant, de constater que le seul appareil certifié NSF testé s’est avéré le moins fiable. L’efficacité de la lampe peut être remis en cause mais aussi la fiabilité du système de contrôle automatique et des capteurs UV. S’agit-il d’un cas isolé? Nul ne peut répondre mais, il est certain que les appareils soumis pour examen à la NSF ne présentaient pas ces problèmes. À quoi bon payer pour une certification si la garantie de fonctionnement n’est pas assurée. Afin de protéger les consommateurs, les fabricants d’appareil devraient resserrer les contrôles de qualité à la fabrication.
Références

ELLIS, D. 2003 «Problématique québécoise d'approvisionnement et de production d'eau potable pour les petites installations». In «Résumés des présentations au 26e Symposium sur les eaux usées et au 15e Atelier sur l'eau potable (Laval, 17-18 septembre, 2003)». *Vecteur environnement*, vol. 37, no 1, p. 72.

SITE WEB CONSULTÉS

NSF International : www.nsf.org
R-Can : http://www.r-can.com/home.asp
Techn’eu conseil : http://www.techn'eau.qc.ca/
U.S. Census Bureau : http://www.census.gov
ANNEXE A - SOLUTIONS ET TAMPONS

Par ordre d’apparition dans le texte :

TSB stérile : 30 g BBL Trypticase Soy Broth (Becton, Dickinson and Company, Sparks, MD, É.-U.) en poudre par litre d’eau MilliQ, autoclavé et conservé à 4°C.

Solution saline : 0,85% NaCl (BDH, Toronto, Ontario) dans H₂O MilliQ, autoclavé et conservé à température de la pièce.

Gélose R2A : 1,82 g R2A Agar (Becton, Dickinson and Company, Sparks, MD, É.-U.) par 100 mL d’eau MilliQ, pH 7,2 ± 0,2, le milieu est chauffé jusqu’à dissolution puis autoclavé. Gardée à 4°C.

Tampon phosphate ordinaire :

[SM 9050C-1] 0,625 mM KH₂PO₄ (J.T. Baker Chemical Co., Phillipsburg, N.J., É.-U.) et 2 M MgCl₂•6H₂O (EM Science, Merck kGaA, Darmstadt, Allemagne) dans H₂O MilliQ, autoclavé (APHA, 1992). Gardé à 4°C.

Tampon phosphate à essai :

0,1 mM KH₂PO₄ (J.T. Baker Chemical Co., Phillipsburg, N.J., É.-U.) dans H₂O MilliQ, pH ajusté à 7. Non stérile et conservé à température de la pièce.

Tampon d’élution :

0,1 M hydrochlorure de glycine (Sigma, St.Louis, MO, É.-U.) dans H₂O MilliQ, pH ajusté à 9,75 et filtré sur 0,45 μm stérile (Acrodisc® Syringe Filter, PALL Corporation, Ann Arbor, MI, É.-U.). Gardé à 4°C.
ANNEXE B - CALCUL DU FACTEUR PÉTRI

Le facteur pétri correspond au ratio des intensités moyennes à la surface du pétri sur l’intensité au centre du pétri. Les intensités sont mesurées à chaque centimètre en mW/cm².

Tableau XXII : Données brutes relatives au calcul du facteur Pétri pour les tubes 1, 2 et 3 de l’appareil à faisceaux collimateurs.

<table>
<thead>
<tr>
<th>Tube #1</th>
<th>cm</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.047</td>
<td>0.046</td>
<td>0.047</td>
<td>0.044</td>
<td>0</td>
<td>0.046</td>
<td>0.049</td>
<td>0.048</td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td>-3</td>
<td>0.046</td>
<td>0.047</td>
<td>0.045</td>
<td>0.045</td>
<td>0.049</td>
<td>0.048</td>
<td>0.045</td>
<td>0.047</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>0.046</td>
<td>0.047</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.049</td>
<td>0.048</td>
<td>0.045</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>0.045</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0.047</td>
<td>0.046</td>
<td>0.045</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.045</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0.047</td>
<td>0.046</td>
<td>0.045</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.044</td>
<td>0.048</td>
<td>0.046</td>
<td>0.048</td>
<td>0.048</td>
<td>0.047</td>
<td>0.046</td>
<td>0.045</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.044</td>
<td>0.048</td>
<td>0.046</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
<td>0.046</td>
<td>0.045</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.047</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.046</td>
<td>0.047</td>
<td>0.048</td>
<td>0.044</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.044</td>
<td>0.045</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0.047</td>
<td>0.048</td>
<td>0.044</td>
<td>0.044</td>
</tr>
</tbody>
</table>

Facteur Pétri : 0,987

<table>
<thead>
<tr>
<th>Tube #2</th>
<th>cm</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.047</td>
<td>0.047</td>
<td>0.048</td>
<td>0.048</td>
<td>0</td>
<td>0.046</td>
<td>0.049</td>
<td>0.049</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>-3</td>
<td>0.046</td>
<td>0.047</td>
<td>0.047</td>
<td>0.047</td>
<td>0.047</td>
<td>0.046</td>
<td>0.046</td>
<td>0.047</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>0.044</td>
<td>0.044</td>
<td>0.045</td>
<td>0.045</td>
<td>0.048</td>
<td>0.047</td>
<td>0.045</td>
<td>0.043</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>0.043</td>
<td>0.045</td>
<td>0.046</td>
<td>0.046</td>
<td>0.047</td>
<td>0.046</td>
<td>0.045</td>
<td>0.046</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.043</td>
<td>0.045</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0.047</td>
<td>0.046</td>
<td>0.045</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.045</td>
<td>0.045</td>
<td>0.046</td>
<td>0.047</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0.045</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.047</td>
<td>0.047</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.046</td>
<td>0.046</td>
<td>0.047</td>
<td>0.047</td>
<td>0.047</td>
<td>0.047</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
</tr>
</tbody>
</table>

Facteur Pétri : 0,968

<table>
<thead>
<tr>
<th>Tube #3</th>
<th>cm</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.044</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0</td>
<td>0.046</td>
<td>0.047</td>
<td>0.047</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>-3</td>
<td>0.044</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.044</td>
<td>0.046</td>
<td>0.046</td>
<td>0.047</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>0.045</td>
<td>0.046</td>
<td>0.047</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0.047</td>
<td>0.045</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>0.045</td>
<td>0.045</td>
<td>0.047</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0.047</td>
<td>0.045</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.045</td>
<td>0.045</td>
<td>0.047</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0.047</td>
<td>0.045</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.042</td>
<td>0.049</td>
<td>0.044</td>
<td>0.044</td>
<td>0.046</td>
<td>0.045</td>
<td>0.046</td>
<td>0.045</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.043</td>
<td>0.044</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
<td>0.046</td>
<td>0.044</td>
<td>0.044</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.043</td>
<td>0.044</td>
<td>0.044</td>
<td>0.044</td>
<td>0.044</td>
<td>0.044</td>
<td>0.044</td>
<td>0.044</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.043</td>
<td>0.044</td>
<td>0.044</td>
<td>0.044</td>
<td>0.044</td>
<td>0.044</td>
<td>0.044</td>
<td>0.044</td>
<td>0.044</td>
</tr>
</tbody>
</table>

Facteur Pétri : 0,946

(Température des lampes = 29,8°C)