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Abstract

This study addresses the assessment and redesign of surface water quality monitoring (WQM)
networks. The design of WQM networks depends primarily upon the objectives of the
monitoring program and the characteristics of the monitored region. Despite several statistical
approaches that have been proposed for the assessment and redesign of long-term WQM

networks, several deficiencies in these approaches exist.

The main goal of this study is to propose statistical approaches for the assessment and redesign
of WQM networks that overcome existent deficiencies in the currently applied approaches. In
addition, this study intends to introduce an innovative approach for the estimation of the water
quality characteristics at ungauged sites. Four objectives are specified: (i) to review the current
applied statistical approaches for the assessment and redesign of surface WQM networks; (ii) to
develop a new statistical approach for the rationalization of water quality variables; (iii) to
develop a new statistical approach for the assessment and redesign of WQM locations; and (iv)
to introduce a statistical methodology for the estimation of water quality characteristics at

ungauged sites.

In this study, statistical approaches used for the assessment and redesign of surface water quality
monitoring networks are first reviewed. In this review, various monitoring objectives and related
procedures used for the assessment and redesign of surface WQM networks are discussed. For

each approach, advantages and disadvantages are examined from a network design perspective.



The literature review reveals that correlation-regression is the most common approach used to
assess and eventually reduce the number of water quality variables in WQM networks. However,
several deficiencies in this approach are identified. Based upon these identified deficiencies, a
new statistical approach is proposed for the rationalization of water quality variables. The
proposed approach overcomes deficiencies in the conventional correlation-regression approach
and represents a useful decision support tool for the optimized selection of water quality
variables. It allows for the identification of optimal combinations of water quality variables to be

continuously measured and those to be discontinued.

To reconstitute information about discontinued water quality variables, four record extension
techniques are examined. Ordinary least squares regression (OLS), the line of organic correlation
(LOC), the Kendall-Theil robust line (KTRL) and KTRL2, which is a modified version of the
KTRL proposed in this study. The advantage of the KTRL2 is that it includes the advantage of
LOC in maintaining variability in the extended records and the advantage of KTRL in being
robust in the presence of extreme values. Monte-Carlo and empirical studies are conducted to
examine these four techniques for bias, standard error of moment estimates and a full range of
percentiles. The Monte-Carlo study showed serious deficiencies in the OLS and KTRL
techniques, while the LOC and KTRL2 techniques have results that are nearly similar. Using real

water quality records, the KTRL2 is shown to lead to better results than the other techniques.

The literature review also reveals that several deficiencies in the approaches proposed for the
assessment of monitoring locations exist. The deficiencies vary from one approach to another,

but generally include: (i) ignoring the characteristics of the basin being monitored in the design
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approach; (i1) handling multivariate water quality data sequentially rather than simultaneously;
(ii1) focusing mainly on locations to be discontinued; and (iv) ignoring reconstitution of
information at discontinued locations. A methodology that overcomes these deficiencies is
proposed. In the proposed methodology, hybrid-cluster analysis is employed to identify groups
of sub-basins with similar characteristics. A stratified optimum sampling strategy is then
employed to identify the optimum number of monitoring locations in each of the sub-basin
groups. An aggregate information index is employed to identify the optimal combination of
locations to be discontinued. Results indicate that the proposed methodology allows the
identification of optimal combinations of locations to be discontinued, locations to be

continuously measured and sub-basins where monitoring locations should be added.

To fulfill the last objective, two models are developed for the estimation of water quality mean
values at ungauged sites. An ensemble artificial neural network (EANN) model is developed to
establish the functional relationship between water quality mean values and basin attributes. The
second model is based on canonical correlation analysis (CCA) and EANN. CCA is used to form
canonical attributes space using data from gauged sites. Then, an EANN is applied to identify the
functional relationships between water quality mean values and the attributes in the CCA space.
A jackknife validation procedure is used to evaluate the performance of the two models. The
results show that the developed models are useful for estimating the water quality status at
ungauged sites. However, the CCA-based EANN model performed better than the EANN model

in terms of prediction accuracy.
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Foreword

This thesis presents the research conducted during my doctoral studies. The structure of this
thesis follows the standard structure of INRS-ETE theses. The first part of the thesis includes a
general summary of the work performed. The summary aims to review succinctly the main
results obtained and discuss their significance. The second part of the thesis contains five

articles, published (2) or submitted (3).
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PART A: THESIS SUMMARY






1. Introduction

1.1 Contexte
L’eau douce est une ressource essentielle pour 1’agriculture, I’industrie et 1’existence humaine
(Bartram et de la Balance, 1996). En effet, la demande en eau destinée a 1’industrie, I’irrigation
et la production hydroélectrique ne cesse de s’accroitre avec le développement mondial. Une
bonne qualité d’eau ainsi qu’une quantité suffisante sont essentielles pour le développement
durable. La qualit¢ de 1’eau est une expression utilisée pour décrire les caractéristiques

chimiques, physiques et biologiques de I’eau par rapport a un usage particulier.

La qualité de I’eau est influencée par un large éventail de phénomenes naturels et anthropiques.
Différents processus naturels (hydrologiques, physiques, chimiques et biologiques) peuvent nuire
aux caractéristiques des ¢léments et des composés chimiques de I’eau douce. De plus, plusieurs
impacts anthropiques peuvent dégrader la qualité de I’eau comme 1’activité industrielle, 1’'usage

agricole ou des chantiers d’ingénierie fluviale (Chapman, 1996).

L’évaluation des ressources en eau exige une connaissance et une compréhension compléte des
processus affectant a la fois la quantité et la qualité de ’eau (Harmancioglu et al., 1999). Afin de
comprendre la dynamique des processus pouvant altérer la qualité de I’eau d’un bassin versant,
un programme bien congu de suivi est requis. En effet, les programmes de suivi aident a
appréhender les différents processus qui peuvent détériorer la qualité de I’eau et peuvent ainsi

fournir les informations nécessaires a la gestion de cette qualité.



Les programmes de suivi de la qualité de I’eau englobent une variété d’activités qui comprennent
les éléments suivants: une définition des objectifs de suivi et d’information souhaités, la
conception du réseau de suivi, la conception de protocoles d’échantillonnage, le choix des
équipements d’échantillonnage, 1’analyse en laboratoire selon les méthodes standard, la

vérification, le stockage et I’analyse des données.

Les activités d’'un programme de suivi, telles que les procédures d’échantillonnage, la
manipulation des échantillons, le stockage et I’analyse en laboratoire, doivent étre effectuées par
un personnel diiment formé pour assurer la qualité et 1'utilit¢ des données produites. Au cours
des dernicres décennies, les chercheurs se sont concentrés sur la conception de réseaux de suivi.
La premiére étape de la conception d’un réseau de suivi est la définition des objectifs. La
conception passe par la mutation des objectifs en un protocole qui décrit les variables a mesurer,

ainsi que leur localisation spatiale et leur fréquence d’échantillonnage.

Historiquement, la localisation des sites d’échantillonnage de la qualit¢ de [’eau était
principalement basée sur I’accessibilité des sites, mais sans appliquer une approche systématique
pour le choix de ces derniers (Sanders et al., 1983, Ward et al., 1990). Récemment, le nombre de
sites a augmenté afin d’inclure des sites d’intérét tels que celles situées en amont et en aval des
zones hautement industrialisées ou trés peuplées, des zones avec des sources de pollution
connues et des zones d’utilisations intensives des terres (Tirsch et Male, 1984, Dixon et
Chiswell, 1996). Toutefois, dans bien des cas, les visites des sites et 1’échantillonnage ne sont
effectués que lorsque le temps et le budget le permettent, sans qu’un véritable protocole soit

établi sur la fréquence de la prise de mesures.



A la fin des années soixante, les critéres de fréquence d’échantillonnage pour le suivi de la
qualité des eaux établis dans 1’état de Californie aux Etats-Unis ont été basés sur le débit de la
riviere d’intérét et sur les caractéristiques des bassins hydrographiques environnants (Sanders et
al., 1983). C’¢était I’époque de I’expansion des réseaux de suivi des projets axés sur la création de
réseaux régionaux ou nationaux. Par exemple, le suivi de la qualité¢ de 1’eau aux Pays-Bas avait
commenceé en 1950 sur quatre sites d’échantillonnage avec un nombre limité de variables dans la
riviere Meuse. Ce réseau de suivi a ensuite été ¢largi sur environ 400 sites d’échantillonnage en
1981 dans tous les Pays-Bas. Sur certains de ces sites, environ 100 variables de la qualité de
I’eau ont été suivies (Wetering et Groot, 1986). En Australie, un projet de suivi de la qualité de
I’eau a été implanté dans certaines régions a partir des 1960. Par la suite, le programme de suivi
de la qualité de I’eau a été établi au niveau du pays. Le réseau de 1’état du Queensland incluait
environ 700 sites d’échantillonnage (McNeil et al., 1989). Depuis lors, les gestionnaires de 1’eau
et les décideurs s’attendent a des informations de qualité propre a les aider dans la gestion de la

qualité de I’eau.

Pendant les années 1980, différentes approches ont été proposées pour I’évaluation de la
performance des réseaux de suivi et leur capacité¢ a fournir les informations souhaitées. Par
exemple, il a été conclu en 1981 que la révision du programme de suivi devrait avoir lieu aux
Pays-Bas. En 1983, le nombre de points d’échantillonnage a été ramené de 400 a 260 (Wetering
et Groot, 1986). Quant au programme de suivi de la qualité¢ de I’eau du Queensland, aprés une
enquéte approfondie, le nombre de sites a été ramené de 700 a 400 (McNeil et al., 1989). En

1984, a la suite d’une évaluation effectuée par Lettenmaier et al. (1984) pour la municipalité de



la région métropolitaine de Seattle, le réseau de suivi de qualité de 1’eau des rivieres a été réduit
et le nombre de sites a passé de 81 a 47. Au Mexique, aprés une évaluation et une
reconfiguration effectuées en 1997, le nombre de sites de suivi de la qualité de 1’eau a été ramené

de 564 a 200 (Ongley et Ordonez, 1997).

Ainsi, le probleme de conception dans le suivi de la qualité de I’eau est devenu un probléme
d’évaluation et de reconfiguration du réseau (Harmancioglu et al., 1999). Toutefois, dans la
plupart des cas récents et actuels, il y a une absence nette de stratégie ou de méthodologie pour la
reconfiguration des réseaux de suivi. Une revue de littérature révele que les anciennes approches
de reconfiguration ont souvent été arbitraires, sans stratégie logique ou cohérente de conception
(Strobl et al., 2006). Une méthodologie de reconfiguration de réseau de suivi inadéquate se

traduit souvent par des données avec des informations limitées (GAO, 2000, 2004).

1.2 Problématique
Etant donné que la qualité des eaux est un sujet complexe, les approches statistiques peuvent
apporter une contribution significative. Plusieurs méthodes statistiques sont utilisées pour
¢valuer la performance des réseaux de suivi de la qualité de I’eau. Dans cette optique, de
nombreuses recherches ont été orientées vers I’évaluation des procédures de conception
existantes et 1’étude des moyens appropriés pour améliorer ’efficacité des réseaux existants
(Harmancioglu et al., 1999). Toutefois, une revue de la littérature révele plusieurs lacunes dans
ces approches. En outre, il n’existe actuellement aucune stratégie établie ni aucune méthodologie
pour la reconfiguration de réseaux de suivi, en particulier en ce qui concerne I’emplacement des

sites d’échantillonnage (Strobl et al., 2006). Une méthodologie de reconfiguration logique et



cohérente qui permet la collecte de données plus efficace et, par conséquent, des résultats plus
utiles, est donc nécessaire. Une telle approche permettrait non seulement de meilleures
recommandations pour lutter contre la pollution, mais aussi une meilleure allocation des
ressources financieres ainsi qu’une meilleure compréhension de 1’écosysteme étudié (Strobl et

Billard, 2008).

1.3 Objectifs
L’objectif principal de cette étude est de présenter des méthodes objectives et systématiques pour
I’évaluation et la reconfiguration des réseaux de suivi de la qualit¢ des eaux de surface. Ces
méthodes devraient pouvoir surmonter les limites des approches actuellement appliquées. En
outre, cette étude vise a introduire une approche novatrice pour ’estimation des caractéristiques
de la qualité de I’eau sur des sites non jaugés. Plus précisément, quatre objectifs spécifiques ont
été choisis afin d’optimiser les informations tirées de cette étude pour une application directe

dans le processus de conception des réseaux de suivi de la qualité de 1’eau:

e Revoir les méthodes statistiques appliquées actuellement pour I’évaluation et la
reconfiguration des réseaux de suivi de la qualité des eaux de surface;

e Développer une approche statistique pour la rationalisation des variables de la qualité de
I’eau;

e Développer une approche statistique pour 1’évaluation et la refonte des sites
d’échantillonnage de la qualité des eaux de surface;

e Introduire une méthodologie statistique pour I’estimation des caractéristiques de la

qualité de I’eau sur des sites non jaugés.



1.4 Organisation de la synthése
Ce résumé est divisé en sept sections principales. La section 1 traite de la définition du probléme
et des objectifs des travaux. La section 2 présente une revue de littérature des approches
statistiques proposées pour 1’évaluation et la reconfiguration des réseaux de suivi de la qualité
des eaux de surface. La section 3 introduit la zone d’étude. La section 4 résume les
méthodologies proposées. La section 5 détaille les principaux résultats obtenus. Les conclusions
du travail sont données dans la section 6. Finalement, les recommandations pour les travaux

futurs sont présentées dans la section 7.

2. Revue de littérature

Cette section présente une revue de littérature des méthodes statistiques utilisées pour
I’évaluation et la reconfiguration des réseaux de suivi de la qualit¢ de I’eau de surface. Les
principaux aspects techniques de la conception du réseau sont répartis en quatre sous-sections: (i)
les objectifs de suivi, (ii) les variables de la qualité de 1’eau, (iii) la fréquence d’échantillonnage

et (iv) la distribution spatiale des sites d’échantillonnage.

Dans cette section, les objectifs de suivi et les procédures connexes utilisées pour 1’évaluation et
la reconfiguration a long terme des réseaux de suivi de la qualit¢ des eaux de surface sont
discutés. La pertinence de chaque approche pour la conception, la réduction ou I’expansion des
réseaux de suivi est aussi discutée. Pour chaque approche statistique, les avantages et les

inconvénients sont examinés dans une perspective de reconfiguration de réseau. Finalement, des



méthodes pour pallier aux lacunes des approches statistiques actuellement utilisées sont

recommandées.

Un résumé de la revue de littérature est présenté en cinq sous-sections. La premiére section
présente les objectifs du suivi. La deuxiéme section décrit les méthodes statistiques utilisées pour
la sélection des variables de la qualit¢ de 1’eau. La troisieme section traite des méthodes
statistiques utilisées pour [’évaluation des fréquences d’échantillonnage. Les approches
statistiques utilisées pour I’évaluation et la reconfiguration des sites de suivi sont présentées dans
la quatriéme section. Enfin, la cinquiéme section présente les conclusions. La revue de littérature

détaillée est présentée dans I’article I de la partie B.

2.1 Objectifs de suivi
Les objectifs de suivi devraient définir I’information attendue a la sortie du réseau. Mal préciser
I’information désirée conduit a 1’échec du réseau lui-méme (Harmancioglu et al., 1992). Les
objectifs de suivi constituent le fondement sur lequel un programme est construit. Un obstacle
majeur est que les objectifs sont souvent décrits en termes globaux plutoét que spécifiques et
précis (Harmancioglu et al., 1999). Trois principaux défis peuvent survenir lors de
I’identification des objectifs de suivi: (i) sélectionner les méthodes d’analyse a partir de plusieurs
objectifs potentiels; (ii) préciser 1’objectif; et (iii) transformer les objectifs dans les questions de

statistiques.

La définition des objectifs de suivi est essentielle pour la conception et le fonctionnement du

réseau. Plusieurs objectifs pour la surveillance de la qualité de I’eau sont publiés dans la



littérature (Ward et al., 1979; Sanders et al., 1983; Whitfield, 1988; Zhou, 1996; et Harmancioglu
et al.,, 1999). Les objectifs les plus courants se présentent comme suit: I’identification des
tendances spatiales et temporelles, 1’évaluation de la conformité avec les normes et les régles, la
simplification des études et des évaluations d’impact, la détermination de la pertinence des divers
usages de I’eau, I’exécution générale de la surveillance, I’évaluation de différentes stratégies de
controle, 1’estimation du transport des particules dans les rivicres et la simplification de la

modélisation de la qualité de 1’eau ou d’autres activités de recherches spécifiques.

2.2 Variables de la qualité de I’eau
La qualité de I’eau est généralement décrite par un ensemble de variables physiques, biologiques
et chimiques. Elle peut étre définie par une seule variable, ou par des centaines de composés
chimiques. Donc, le choix des variables appropriées pour la caractérisation de la qualité de 1’eau
est un probléme trés complexe (Sanders et al., 1983). La plupart des chercheurs reconnaissent
qu’il n’est pas possible de mesurer toutes les variables environnementales et qu’il faut les choisir
d’une maniére objective et logique, ce choix étant une étape intégrale et cruciale dans

I’établissement d’un systéme de suivi de la qualité de ’eau (Ward et al., 1990).

Le choix des variables a mesurer (la conception) et I’ajout de nouvelles variables a celles déja
mesurées (extension) suscitent plusieurs questions, comme le type et les objectifs du suivi, les
caractéristiques du bassin et le budget disponible. Les méthodes proposées pour 1’évaluation et la
sélection des variables entrent dans la catégorie de la réduction. Deux approches principales
fréquemment décrites dans la littérature pour choisir les variables sont: la méthode de

corrélation-régression (CR) et I’analyse en composantes principales (ACP).
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La méthode CR est composée de trois étapes: la premicére étape est 1’évaluation du degré
d’association entre les variables mesurées par I’analyse de corrélation. Un degré élevé de
corrélation entre les variables indique que certaines informations peuvent étre redondantes. La
deuxieme étape est le choix des variables de la qualité de 1’eau qui seront mesurées ou qui
cesseront d’étre mesurées. Cette étape est fondée sur des paramétres subjectifs, comme
I’importance de la variable, I’inclusion de la variable dans les lois et réglements locaux ou
internationaux, etc. Ces paramétres peuvent inclure le colt de I’analyse en laboratoire.
Finalement, la troisiéme étape est la reconstruction de I’information & partir des variables non

mesurées en utilisant d’autres variables qui sont mesurées en continu.

L’ ACP peut étre appliquée a un ensemble de variables de la qualité de I’eau afin de découvrir les
variables qui forment des sous-ensembles cohérents qui sont relativement indépendants les uns
des autres. Les variables qui sont corrélées les unes aux autres, mais indépendantes des autres
sous-ensembles de variables sont combinées en une seule composante. Les composantes sont
censées refléter les processus sous-jacents qui ont créé les corrélations entre les variables.
Mathématiquement, I’ACP produit plusieurs combinaisons linéaires des variables observées, et
chaque combinaison linéaire est constituée d’une composante. Les composantes résument les
modeles de corrélation dans une matrice de corrélations observées. La matrice de saturation des
composantes, obtenue par I’ACP, refléte les caractéristiques de cette procédure d’extraction qui
maximise la variance expliquée successivement dans chaque composante qui sont orthogonales

entre elles.
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2.3 Fréquence d’échantillonnage

La fréquence d’échantillonnage est un aspect trés important de la conception du réseau du suivi
de qualit¢ de I’eau. Elle influence 1’utilité des données, ainsi que le colt de I’opération. Les
informations obtenues par des échantillonnages fréquents peuvent étre redondantes et trop
couteuses; cependant, 1’échantillonnage rare peut limiter la précision et I’interprétation des
observations. Les méthodes statistiques proposées pour 1’évaluation et le calcul des fréquences
d’échantillonnage sont directement liées aux objectifs de suivi et aux méthodes d’analyse de
données.

Lettenmaier (1976) a proposé une méthode pour déterminer les intervalles d’échantillonnage
optimaux basés sur un test paramétrique de tendance, ou la fréquence d’échantillonnage
nécessaire correspond a une puissance spécifiée du test de tendance. Cette méthode est plus
connue sous ’appellation « efficacité de I’échantillon » (‘‘effective sample’’, ES). L approche
est composée de deux étapes. La premicre étape définit le nombre maximal d’échantillons qui
peuvent étre collectés par an afin d’éviter les auto-corrélations, ou au moins, de réduire leurs
effets. Quant a la deuxiéme étape, elle estime la durée requise pour détecter les tendances au
niveau de confiance et aux puissances spécifiées. Sanders et Adrian (1978) et Sanders et al.
(1983) avait recommandé¢ 1’utilisation d’intervalles de confiance basés sur la moyenne comme
principal critére de sélection des fréquences d’échantillonnage. Le but principal est de choisir la
fréquence d’échantillonnage qui donne une estimation de la moyenne avec un degré prescrit de
précision a D’intérieur des limites de confiance. Zhou (1996) a proposé une approche visant a
définir la fréquence d’échantillonnage en fonction de la périodicité, fondée sur 1’analyse

harmonique.
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Quand I’objectif est de déterminer la conformité avec les normes ou les régles, on peut utiliser le
test binomial pour évaluer la fréquence d’échantillonnage. Dans ce cas, les données aberrantes
ou extrémes sont définies comme les échantillons qui dépassent d’une maniere quelconque les
limites prédéfinies, telles que la norme pour 1’eau potable, et une limite de conformité ou
d’action (Ward et al., 1990). Mace (1964) et Ward et al. (1990) ont décrit une approche pour
estimer la taille de 1’échantillon nécessaire pour contrdler le risque d’erreurs de type I et II lors
de I’évaluation de la proportion de temps au cours de laquelle un critére est dépassé. Cette
approche est valide quand les échantillons individuels sont évalués comme étant «au-dessus» ou
«en-dessous» d’un critere (échelle nominale). Le nombre de dépassements d’une limite suit

toujours la loi binomiale indépendamment de la distribution de données (Ellis et Lacey, 1980).

Tirsch et Male (1984) ont abord¢ la reconfiguration de la fréquence d’échantillonnage a I’aide de
modeles de régression linéaire multivariée. La précision de suivi, décrite par le coefficient
correcteur de détermination de régression, est exprimée en fonction de la fréquence
d’échantillonnage. La notion d’entropie a été introduite pour déterminer les intervalles
d’échantillonnage optimaux pour le suivi de la qualité de I’eau par Harmancioglu (1984). Le
principe d’entropie est appliqué pour déterminer l’information contenue dans les variables
stochastiques dépendantes afin de définir les intervalles d’échantillonnage optimaux en fonction

du temps.

La méthode du semi-variogramme est fondée sur les travaux de Krige (1951) et Matheron (1963)
et constitue la premiere étape d’une analyse géostatistique. Le semi-variogramme est une

représentation graphique qui illustre comment la similitude entre les valeurs varie en fonction de
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la distance, de la direction ou du temps qui les séparent. Khalil et al. (2004) ont introduit le semi-
variogramme pour définir la portée effective de corrélation et, conséquemment, évaluer la
fréquence d’échantillonnage. L’objectif est de définir la fréquence d’échantillonnage afin
d’obtenir une série de données indépendantes. La fréquence d’échantillonnage dans cette

approche est basée sur la portée effective de corrélation.

2.4 Sites d’échantillonnages
Le choix des sites d’échantillonnage est un aspect important dans la conception d’un réseau de
suivi. Les pratiques au début de 1’échantillonnage de la qualité de I’eau étaient axées sur les sites
accessibles, mais sans appliquer une approche objective et systématique du choix des sites
(Harmancioglu et al., 1999). Par la suite, le nombre de sites a augmenté pour inclure des stations
de points d’intérét telles que celles situées en amont et en aval des zones hautement
industrialisées ou trés peuplées, des zones avec des sources de pollution et des zones d’utilisation
intensives des terres (Tirsch et Male, 1984). Ensuite, diverses approches ont été proposées pour

la sélection du nombre et de I’emplacement des stations d’échantillonnage.

L’approche de la classification hiérarchique des cours d’eau, proposée par Sanders et al. (1983)
est basée sur ’ordre des cours d’eau pour décrire un réseau de suivi. Dans la procédure de
classification des cours d’eau, un trongon source est du premier ordre. Un cours d’eau qui n’est
composé que de tributaires du premier ordre est désigné avec ’ordre deux, et ainsi de suite
(Horton, 1945). Cette approche systématique localise les sites d’échantillonnage afin de diviser
le réseau fluvial en sections qui sont similaires en contribution des affluents, de débit ou de

charges en polluantes.
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Une autre approche basée sur une régression linéaire multivariée a été proposée par Tirsch et
Male (1984). Dans cette approche, chaque site de suivi est considéré comme la variable
dépendante, et le modele de régression considere les combinaisons des autres sites comme des
variables indépendantes. Un coefficient de détermination ajusté est alors calculé pour chaque
modele et la précision du suivi change avec ’ajout ou 1’élimination de certains sites au sein du
réseau. Un coefficient de détermination élevé indique qu’il existe un degré élevé de redondance

et que le site sélectionné comme variable dépendante pourrait ne pas étre nécessaire.

Harmancioglu et Alpaslan (1992) ont proposé une approche basée sur la notion d’entropie dans
laquelle la quantité d’information mutuelle entre les sites d’échantillonnage est déterminée selon
le degré d’incertitude (Harmancioglu et al.,, 1999). La dépendance entre les sites
d’échantillonnage se traduit par moins d’entropie entre ces derniers. Si la dépendance est
cohérente avec le temps, un ou plusieurs sites peuvent étre abandonnés avec une perte minimale

d’informations.

Différentes méthodes multivariées ont été employées pour le remaniement des sites de suivi de la
qualité de I’eau. Celles-ci incluent 1’analyse en composantes principales (ACP), la classification

ascendante hiérarchique et I’analyse discriminante.

2.5 Conclusions de la revue de littérature
Afin que les objectifs de suivi puissent aider a la conception du réseau et produire I’information

souhaitée, ceux-ci doivent étre définis clairement et spécifiquement. De plus, il y aurait des
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objectifs spécifiques pour chaque site. L’énoncé des objectifs devrait inclure le but du suivi a cet
endroit, les variables a surveiller, le type d’information souhaitée et 1’outil d’analyse a utiliser
pour obtenir les informations souhaitées. La revue de littérature révele que, bien que plusieurs
recherches ont été entreprises pour évaluer les performances des réseaux de suivi, plusieurs

lacunes dans les approches proposées persistent.

Les deux approches principales proposées dans la littérature pour la rationalisation des variables
de la qualité de 1’eau sont les méthodes CR et ACP. La méthode CR a I’avantage de permettre la
reconstruction de 1’information concernant les variables abandonnées. Toutefois, les deux
approches sont basées sur 1’hypotheése d’une relation linéaire entre les variables de la qualité de
I’eau. Cependant les relations entre les variables physiques, biologiques et chimiques peuvent
étre non lin¢aires. De ce fait, la mesure de 1’information mutuelle et les réseaux de neurones
artificiels (RNA) peuvent étre utilisés au lieu des analyses de corrélation et de régression
linéaires. L’information mutuelle est une mesure de la dépendance non linéaire ou de la quantité
d’informations redondantes entre deux variables. La méthode des RNA est plus souple que les
modeles régressifs pour capturer les relations entre les variables de la qualité de 1’eau et nécessite
moins de connaissances préalables du systéme. Cependant, une lacune de cette méthode est
I’absence d’un critére pour identifier les variables a mesurer en permanence et celles qui peuvent
étre abandonnées. Un indice de performance, qui se base sur un critére d’information, peut aider

a surmonter ce probléme.

Les approches proposées pour I’évaluation de la fréquence d’échantillonnage consideérent une

variable spécifique pour un site spécifique et cela conduit souvent a 1’optimisation d’un seul
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objectif. Le suivi de la qualité de I’eau ne peut pas traiter chaque besoin d’information avec une
seule procédure de collecte des données; mais le systéme doit tenter de répondre simultanément a
plusieurs objectifs d’information. Plusieurs suggestions peuvent aider a évaluer la fréquence
d’échantillonnage pour un réseau avec plusieurs d’objectifs. Par exemple, les différentes
fréquences d’échantillonnage peuvent étre utilisées pour différents objectifs de suivi afin
d’optimiser  I’obtention  d’informations.  L’évaluation des différentes fréquences
d’échantillonnage peut étre faite en fonction de leur aptitude a satisfaire des objectifs multiples,

plutot que d’optimiser en fonction d’un seul objectif.

Pour I’évaluation des sites, 1’approche de classification hiérarchique des cours d’eau est
I’approche la plus fréquemment utilisée pour la conception d’un réseau de suivi, quand les
données sur la qualité de I’eau ne sont pas disponibles. Le principal inconvénient des méthodes
d’entropie et de régression est que ces deux approches ne considérent qu’une seule variable de la
qualité de 1’eau. Toutefois, 1’évaluation et le remaniement des sites d’un réseau de suivi de la
qualité de I’eau sont plus fiables lorsqu’ils se fondent sur plusieurs indicateurs de la qualité de
I’eau. Les données multidimensionnelles doivent étre traitées simultanément et non pas de
manicre séquentielle. Les approches basées sur I’analyse de données multivariées remédient a cet
inconvénient en utilisant simultanément plusieurs variables de la qualité de ’eau. Mais les
approches basées sur 1’analyse de données multivariées ne considerent pas la reconstruction de

I’information sur des sites abandonnés.

Les approches proposées ont I’inconvénient commun de se concentrer uniquement sur

I’identification des sites déja suivis et qui seront finalement abandonnés. Cependant, la
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reconfiguration spatiale optimale peut comprendre 1I’¢limination de sites existants et 1’ajout de
nouveaux sites non jaugés. Cet inconvénient résulte de 1’habitude de se concentrer plus sur
I’évaluation en utilisant les données sur la qualit¢ de 1’eau déja obtenues, et ignorer les
caractéristiques des bassins surveillés. L’intégration des caractéristiques du bassin dans

I’évaluation des sites de suivi est censée remédier, au moins en partie, a cette lacune.

3. Réseau national Egyptien du suivi de la qualité de I’eau

L’Egypte est un pays semi-aride avec une pluviométrie qui dépasse rarement 200 mm/an le long
de la cote nord. L’intensité de la pluie diminue rapidement quand on s’¢éloigne des zones cotiéres
et les averses éparses ne sont guere utiles pour la production agricole (Abu-Salama, 2007). Selon
une entente entre I’'Egypte et le Soudan (1959), la répartition de 1’eau du Nil est de 18,5 milliards
de m® au Soudan et 55,5 milliards de m’ pour I’Egypte (Dijkman, 1993). Environ 97 % des

ressources en eau de I’Egypte proviennent du Nil.

Dans une étude mondiale axée sur 1’eau douce, on a annoncé que I’Egypte faisait partie des dix
pays qui seront aux prises avec des problémes liés aux ressources en eau d’ici 2025 en raison de
la croissance démographique (Engelman et Le Roy, 1993). La distribution de la portion
égyptienne de 1’eau du Nil par rapport a sa population tend vers le seuil de pauvreté en eau et
chutera bien en-dessous de ce dernier dans les prochaines années (MWRI, 1997; Wolf, 2000).
Les ressources en eau douce en Egypte sont maintenant de presque 800 m’ par personne par an
(Abdel-Gawad et al., 2004; Frenken, 2005). Une des solutions appliquées pour remédier aux
limites des ressources en eau en Egypte est la réutilisation des eaux de drainage agricole dans les

processus de production agricole. Notons que 1’eau de drainage avec une faible salinité est
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utilisée directement ou apres un mélange avec 1’eau du Nil, tandis que les eaux avec une haute
salinité ou contaminées par les déchets municipaux ou industriels ne peuvent pas étre utilisées

pour I’irrigation.

Le systeme de drainage dans le Delta du Nil est composé de vingt-deux bassins versants. En
fonction de leur qualité, les effluents sont déchargés dans les lacs du nord ou pompés dans des
canaux d’irrigation de vingt et un sites le long des principaux drains pour augmenter la provision
d’eau douce (DRI-MADWQ, 1998). Plusieurs programmes ont été¢ développés dans I’objectif
d’assurer le suivi de la qualité de I’eau du Nil et des eaux de drainage agricole en Egypte. En
1977, le Centre National de Recherches sur I’Eau (The National Water Research Center, NWRC)
a continuellement étendu ses activités de suivi pour couvrir le nombre croissant de sites
d’échantillonnage et de variables de qualité¢ de 1’eau. Le programme de suivi du systeme de
drainage du Delta du Nil vise a évaluer la conformité avec les normes nationales, estimer le

transport des charges, et identifier les tendances temporelles et spatiales (NAWQAM, 2001). .

Le réseau de suivi du systeme de drainage du Delta du Nil est assuré par quatre-vingt-quatorze
sites d’échantillonnage a travers lesquels trente-trois variables de la qualité d’eau sont mesurées
sur une base mensuelle (Figure 1 et Tableau 1). Toutes les analyses de laboratoire sont effectuées

par le « Central Laboratory for Environmental Quality Monitoring ».

Les sites d’échantillonnage sont distribués comme suit: vingt et un sont localisés aux sites de
réutilisation des eaux de drainage; dix sont sur le systtme de drainage (localisés sur les

principaux cours d’eau, servent de points de controle pour évaluer la charge polluante et la
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quantité de sels); treize sites de contrdle placés sur les tributaires de petits bassins versants dont
les eaux coulent vers les systémes principaux de drainage; cinquante sites de contrdle sont placés
sur des affluents qui fournissent de 1’eau aux systémes de drainage principal. L’annexe montre

un exemple typique de 1’analyse préliminaire effectuée pour chacun des sites de surveillance.

Tableau 1. Variables de la qualité de I’eau mesurées par le réseau national égyptien de suivi de la
qualité de 1’eau.

X:;ilz::lliié Symbole | Unités X:Zi:::lliié Symbole Unités
afgiilngien:iochimique BOD mg/l | Débit 0 m’/sec
](?’Zr)?;gsr?echimique COD mg/l | Température T °C
Oxygene dissous DO mg/l | Acidité pH -
e re |om [SHem s | e
Solides dissous DS mg/l S,'[ggiis volatiles Vs mg/1
Calcium Ca mg/l | Turbidité Turb NTU
Magnésium Mg mg/1 ;ilssci?lgléeefjﬁl Vis cm
Sodium Na mg/l | Coliformes totaux TColi MPN/100ml
Potassium K mg/l | Coliformes fécaux FColi MPN/100ml
Bicarbonate HCO; mg/l | Cadmium Cd mg/1
Sulphate N oy mg/l | Manganése Mn mg/1
Chlore Cl mg/l | Cuivre Cu mg/1
Nitrate NO; mg/l | Fer Fe mg/1
Ammonium NH, mg/l | Zinc Zn mg/1
Phosphore total TP mg/l [ Nickel Ni mg/1
Azote total TN mg/l | Bore B mg/1
Plomb Pb mg/1
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4. Méthodologie

Dans cette étude, quatre nouvelles méthodes principales sont proposées. (i) la rationalisation des
variables de la qualit¢ de I’eau; (ii) I’extension des séries chronologiques existantes; (iii)
I’évaluation et la reconfiguration des sites d’échantillonnage; et (iv) [’estimation des

caractéristiques de la qualité de 1’eau sur des sites non jaugés.

4.1 La rationalisation des variables de la qualité de I’eau
Peu de travaux ont porté sur la rationalisation des variables de la qualité de I’eau. L approche de
corrélation-régression (CR) a le principal avantage de permettre la reconstitution des

informations sur les variables abandonnées a 1’aide de ’analyse de régression.

Cependant, trois défauts principaux existent dans 1’approche CR tel qu’utilisée en pratique de
nos jours pour la réduction de variables de la qualité de I’eau. La premicre est la méthode utilisée
pour identifier les variables hautement associées. Le coefficient de corrélation est couramment
utilisé comme un critére pour évaluer le degré de I’association, mais la sélection du bon seuil au-
dessus duquel un coefficient de corrélation peut étre considéré comme suffisant pour associer
deux variables peut étre problématique. L’évaluation du coefficient de corrélation est toujours
subjective et demeure un choix pour le concepteur. Ainsi, différents chercheurs peuvent arriver a
différents résultats en utilisant le méme ensemble de variables. La deuxiéme insuffisance de la
méthode CR est I’absence d’un critére pour identifier la combinaison de variables a mesurer en
permanence et celles a abandonner. La derniere insuffisance est I’utilisation de 1’analyse de
régression pour reconstituer les informations sur les variables abandonnées, qui entraine souvent

une sous-estimation de la variance dans les données estimées (Alley et Burns, 1983; Hirsch,
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1982). L’objectif principal de cette étude est de modifier I’approche traditionnelle de la méthode

CR pour surmonter ces lacunes.

L’approche proposée se compose de trois étapes. La premiére étape est 1’évaluation du degré
d’association entre les variables et la définition des ensembles de variables qui sont hautement
associés. Des critéres sont élaborés pour déterminer un seuil de coefficient de corrélation au-
dessus duquel les variables peuvent étre considérées comme hautement associées. Ces critéres
sont basés sur les procédures d’augmentation d’enregistrements. Un seuil de corrélation est
déterminé selon les conditions d’estimateurs améliorés (avec une faible variance) de la moyenne
(dn) et de la variance (d,) pour une variable abandonnée a 1’aide des formules fournies par
Matalas et Jacobs (1964). Le regroupement hiérarchique est effectué pour les variables, tout en
utilisant le coefficient de corrélation comme mesure de proximité. On emploie le seuil du
coefficient de corrélation pour définir le degré de différence afin d’identifier les meilleurs

groupements.

Apres D'identification des groupements de variables hautement associées, la deuxiéme étape
consiste a étudier chaque groupe multi-variable séparément. L’approche suppose que chaque
variable au sein du groupement sera abandonnée. Pour chaque variable abandonnée, la meilleure
variable auxiliaire pour I’extension des enregistrements est sélectionnée a partir d’autres
variables dans le méme groupe. La meilleure variable auxiliaire est celle qui réduit la variance de

la moyenne estimée de la variable abandonnée.
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La troisitme étape est d’évaluer les différentes combinaisons de variables qui seront
abandonnées et les variables & mesurer en permanence. Par exemple, nous prenons le cas ou les
réductions budgétaires nécessitent que k des variables soient abandonnées. Quelles & variables
entre les w variables dans la liste des variables a mesurer doivent étre choisis? Le nombre de

combinaisons possibles a abandonner est obtenu par le coefficient binomial, C(w,k). Nous

proposons un indice de performance globale pour évaluer les combinaisons diverses, et par
conséquent, pour classer les différentes combinaisons. Cette procédure permet I’identification de
la combinaison optimale des variables a abandonner et fournit le rang des meilleures
combinaisons a abandonner pour le décideur. La Figure 2 illustre le flux des analyses telles que
résumées ci-dessus. La méthodologie détaillée et les résultats sont présentés dans 1’article II de la

partie B.

4.2 La reconstitution des informations sur les variables abandonnées
L’extension mensuelle, hebdomadaire ou quotidienne d’enregistrements dans un site a court
enregistrement a partir d’un autre site avec des mesures en continu est appelée extension des
séries chronologiques («record extension»). La régression (« ordinary least squares regression »
OLS) est une technique couramment utilisée pour 1’extension d’enregistrements. Toutefois, son
objectif est de générer des estimations optimales pour chaque enregistrement par jour (ou par
mois), plutot que les caractéristiques de la population. En général, I’OLS a tendance a sous-
estimer la variance. La ligne de corrélation organique (« line of organic correlation » LOC) a été
développée pour corriger ce biais. D’autre part, la méthode de la ligne robuste de Kendall-Theil
(« Kendall-Theil robust line » KTRL) a été proposée en tant qu’analogue de I’OLS, mais a

I’avantage d’étre robuste en présence des valeurs extrémes.
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Figure 2. Schéma de I’approche de rationalisation proposée

Dans cette étude, quatre méthodes d’extension d’enregistrements sont décrites et leurs propriétés
sont explorées. Ces méthodes sont notamment : OLS, LOC, KTRL et une nouvelle méthode
proposée dans cette thése (KTRL2) qui combine I’avantage de LOC en réduisant le biais dans

I’estimation de la variance et la robustesse de KTRL en présence des valeurs extrémes.
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Afin d’évaluer les quatre techniques d’extension des séries chronologiques, un essai Monte-
Carlo et une expérience empirique sont menés. Les essais Monte-Carlo permettent la
comparaison et 1’évaluation des différentes méthodes d’extension des séries chronologiques a
I’aide d’enregistrements avec des propriétés distributives et statistiques prédéfinies. L expérience
empirique permet 1’évaluation des quatre méthodes d’extension des séries chronologiques a
I’aide de données fiables. Dans les deux expériences Monte-Carlo et empiriques, les quatre
techniques d’extension des séries chronologiques sont évaluées pour différents degrés de
corrélation entre les variables dépendantes et indépendantes, ainsi que pour différentes tailles
d’enregistrements. Les deux expériences, de Monte-Carlo et empiriques, sont menées pour
évaluer ces quatre techniques, le biais et 1’erreur standard du moment des estimations et la

gamme compléte des percentiles.

Pour I’essai Monte-Carlo, les séquences de variables dépendantes et indépendantes sont générées
pour 120 cas a partir d’une distribution normale bivariée, avec une moyenne de 0 et des écarts-
types de 1. Nous considérons trois coefficients de corrélation croisée et différentes combinaisons
du nombre d’enregistrements au cours de la période simultanée (n;) et la période d’estimation
(n2). Les expériences Monte-Carlo sont effectuées pour les valeurs (#n,, n,), de (96, 24), (72, 48),

(48, 72), et (24,96), et pour un coefficient de corrélation ( p ) de 0.5, 0.7, et 0.9. Les essais sont
effectués avec chacune des douze combinaisons de p et (n,,n,)pour évaluer la capacité des

quatre méthodes d’extension des séries chronologiques a reproduire les différentes propriétés
statistiques de la population dans la série. La série étendue est évaluée selon 1’estimation de la
moyenne, et de I’écart-type, puis sur la gamme compléte des percentiles (du 5° jusqu’au 95°

percentile).
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Une expérience empirique vise a examiner 1’utilité des quatre techniques pour la reproduction
d’enregistrements qui préservent les caractéristiques statistiques des solides dissous totaux (TDS)
et du chlore (Cl). Trois combinaisons de tailles d’enregistrements au cours de la période
simultanée (n;) et de la période d’extension (n,) sont considérées pour chacun des deux modeles
d’estimation (TDS et CL). Les expériences empiriques sont effectuées pour les valeurs (n;, n,) de
(108, 12), (84, 36) et (60, 60). Afin d’évaluer la performance des quatre méthodes d’extension
des séries chronologiques, une méthode de validation croisée (méthode de rééchantillonnage
« jackknife ») est appliquée. Pour la validation croisée, lorsque (n;, ny) est égal a (108, 12), un an
d’enregistrements mensuels est supprimé des dix années de données disponibles. Les valeurs
mensuelles pour I’année supprimée sont estimées en utilisant les quatre techniques d’extension
des séries chronologiques calibrées avec les neuf années restantes. De méme, quand (n;, n,) est
¢égal a (84, 36) ou (60, 60), la validation croisée est appliquée pour estimer trois et cinq ans de

données mensuelles respectivement.

Pour chacun des 94 emplacements de mesure, les quatre méthodes d’extension des séries
chronologiques sont appliquées pour estimer les TDS et le CI en utilisant la conductivité
¢lectrique (EC) comme variable explicative. Ainsi, pour chacun des deux mode¢les d’estimation
considérés, lorsque (n;, ny) est égal a (108, 12), 940 (94 emplacements x 10 différentes
combinaisons d’échantillons) réalisations différentes sont considérées pour 1’enregistrement
¢tendu de la qualité de I’eau. Mais, quand (n;, n,) est égal a (84, 36) et (60, 60), des
combinaisons successives ou non successives de trois et cinq années sont considérées. Par

conséquent, avec les dix années d’enregistrements mensuels disponibles, C(10,3) = 120 et
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C(10,5) = 252 combinaisons possibles sont considérées. Ainsi, 11280 (94 sites x 120
combinaisons d’échantillons différentes) réalisations différentes pour 1’enregistrement étendu de
la qualité de 1’eau sont considérées lorsque (n;, n,) est égal a (84, 36) et 23688 (94 sites x 252
combinaisons d’échantillons différentes) sont considérées lorsque (n;, n,) est égal a (60, 60). Les
détails des simulations Monte-Carlo et des études empiriques, ainsi que les résultats obtenus sont

présentés dans I’article 111 de la partie B.

4.3 L’évaluation et le remaniement des sites d’échantillonnages
Malgré les différentes approches statistiques proposées dans la littérature pour 1’évaluation et le
remaniement des sites de suivi de la qualité des eaux de surface, plusieurs déficiences persistent
toujours. Ces lacunes varient d’une approche a [’autre, et comprennent généralement: (i)
I’ignorance des attributs du bassin surveillé; (ii) le traitement séquentiel des données de la qualité
de I’eau multivariée plutét que de manicre simultanée; (iii) ’accent porté principalement sur les
sites qui seront suspendus; et (iv) I’ignorance des informations de reconstitution sur les sites

abandonnés.

Dans cette étude, une méthodologie qui surmonte ces lacunes est proposée. Pour ce faire, le
bassin surveillé est divisé en sous-bassins et une analyse des groupements hybride est utilisée
pour identifier les groupes de sous-bassins avec des attributs similaires. Une stratégie
d’échantillonnage optimal stratifi¢ est ensuite employée pour identifier le nombre optimal de
sites a mesurer pour chacun des groupes de sous-bassins. Un indice des informations agrégées

est utilisé pour déterminer la combinaison optimale des sites qui seront abandonnés.
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Afin d’intégrer les attributs de la région surveillée dans 1’évaluation et le remaniement des sites
de suivi, le Delta du Nil est divisé en unités spatiales (USs). Chaque unité spatiale est un
domaine drainé par un seul point sur le systtme de drainage. Mesurer la qualité de 1’eau a ce
point décrit 1’effet des attributs de I’US sur 1’état de la qualité de 1’eau. Ainsi, pour chaque unité
spatiale neuf des attributs qui expliquent les différents effets naturels et anthropiques sont
identifiés. On suppose que les attributs d’une US sont les principales sources de pollution dans
les systémes de drainage. Comme pour les variables de qualité de I’eau mesurées, les variables
qui expliquent la variabilité¢ de la qualité¢ de I’eau dans le systeme de drainage du Delta du Nil
sont sélectionnées selon ’analyse en composantes principales (ACP). Basées sur I’ACP, les
quatre variables de qualité d’eau sont la demande biochimique en oxygene (BOD), les solides
volatiles totaux (TVS), I’azote total (TN) et les solides dissous totaux (TDS). Pour reconstruire
I’information concernant les variables aux sites abandonnés, trois méthodes sont employées pour
étendre les séries chronologiques : la régression, la maintenance de variance type 3 (MOVE3), et
le réseau de neurones artificiels (RNA). Une expérience empirique est congue pour comparer ces
trois techniques selon leur capacité a estimer les mesures qui préservent les principales

caractéristiques des séries de la qualité de ’eau.

L’évaluation et le remaniement des sites de suivi se composent de deux étapes principales. La
premiere étape consiste a grouper les USs similaires selon leurs attributs. Dans la seconde étape,
I’échantillonnage stratifi¢ optimal est appliqué pour déterminer le nombre optimal des USs a

jauger dans chacun des groupes identifiés.
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Un algorithme de groupement hybride est utilis€ pour grouper les USs selon leurs attributs.
Chacun des attributs est normalisé¢ avant I’analyse afin d’éliminer la dimensionnalité et les effets
d’échelle. La distance euclidienne est utilisée comme mesure de proximité pour définir la
distance entre les USs et 1’algorithme de Ward est utilisé pour définir les différents groupes dans
un algorithme hiérarchique aggloméré. Avec I’algorithme des groupes hiérarchiques, nous
considérons différents nombres de groupes et les centres de chaque groupe sont calculés et

ensuite utilisés comme données pour I’algorithme de la méthode des K-moyennes « K-means ».

Dans la premiere étape, nous déterminons le nombre des groupes, le nombre des USs dans
chaque groupe, le centre du groupe et la distance entre chaque US et son centre de groupe. Si
I’objectif est d’établir un nouveau réseau de suivi, nous utilisons la stratégie optimale
d’échantillonnage stratifi¢ pour distribuer les M sites de suivi parmi les groupes identifiés.
L’allocation optimale pour chaque groupe des USs est proportionnelle a 1’écart-type de la

distribution des USs au sein du groupe et au nombre de membres (USs).

Si I’objectif est d’évaluer et de redistribuer les sites de suivi de la qualité de 1’eau, il est possible
d’identifier le nombre optimal de sites pour chaque groupe. En comparant le nombre optimal des
USs jaugées pour chaque groupe au nombre des USs déja jaugées, trois scénarios sont possibles
si le nombre des USs déja jaugées de chaque groupe est: égal, inférieur ou supérieur au nombre
optimal des USs jaugées. Si la situation suit le premier scénario, aucune mesure additionnelle ne
doit étre prise. Dans la situation du deuxiéme scénario, il est possible d’ajouter des sites, tandis
que dans le troisieme scénario, certains des USs déja jaugées pourraient étre abandonnées. Il est

donc possible d’ajouter des sites de suivi a des USs non jaugées dans des groupes a faible suivi
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ou de supprimer des sites de suivi qui font partie des groupes a fort suivi. S’il est nécessaire
d’ajouter des sites & des groupes qui n’ont pas suffisamment de sites de suivi, les USs non
jaugées les plus éloignées du centre du groupe ont la priorité. S’il est nécessaire de supprimer des
sites de groupes a trop fort suivi, on utilise un indice d’information agrégé pour déterminer les
combinaisons optimales de sites a supprimer. La Figure 3 montre le flux des analyses résumées
ci-dessus. La méthodologie détaillée et les résultats sont présentés dans ’article IV de la partie

B.

4.4 L’estimation des caractéristiques de la qualité de I’eau aux sites non jaugés
A notre connaissance, aucun travail n’a été fait auparavant pour I’estimation des caractéristiques
de la qualité de I’eau des sites non jaugés. Nous présentons deux modeles pour 1’estimation des
valeurs moyennes de la qualité de 1’eau aux sites non jaugés. Le premier modele est fondé sur les
réseaux de neurones artificiels (RNAs) et le deuxiéme modéle est basé sur I’analyse de
corrélation canonique (ACC) et les RNAs. Un modéle d’ensemble de RNAs est développé pour
¢tablir la relation fonctionnelle entre la valeur moyenne de la qualité d’eau et les attributs du
bassin. Dans le modéle basé sur I’ACC et les RNA, ’ACC forme un espace d’attributs
canonique avec des données de sites jaugés. Ensuite, une analyse de RNA est appliquée pour
identifier les relations fonctionnelles entre les valeurs moyennes de qualit¢ de I’eau et les
attributs dans 1’espace de I’ACC. Les deux mod¢les sont appliqués a 50 sous-bassins versants
dans le delta du Nil en Egypte. Une procédure de validation par ré-échantillonnage « jackknife »

est utilisée pour évaluer la performance des deux mode¢les.
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Figure 3. Schéma de I’approche proposée pour la reconfiguration des sites d’échantillonnage

D’abord, on divise le delta du Nil en sous-bassins versants qui sont des zones représentant des
USs; ces zones sont chacune drainées par un seul point sur le systéme de drainage. La qualité de
I’eau a chacun de ces points décrit 1’effet des attributs naturels et anthropiques de 1I’US sur 1’état
de la qualité de I’eau. La préparation des données se compose de deux étapes principales. Dans la
premicére étape, neuf des attributs qui expliquent les différents effets naturels et anthropiques sont

identifiés pour chaque US. Dans la seconde étape, I’ACP est utilisée pour choisir quatre
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indicateurs de la qualité de 1’eau a partir des 33 variables mesurées. Les quatre variables de
qualité de I’eau sélectionnées sont la demande biochimique en oxygéne (BOD), les solides

volatiles totaux (TVS), I’azote total (TN) et les solides dissous totaux (TDS).

Les modéles proposés dans cette étude sont basés sur la relation fonctionnelle entre les attributs
de I’US et les variables choisies pour la qualité de 1’eau a chaque US jaugée. Le premier modele
est basé principalement sur les réseaux de neurones artificiels, tandis que le second modele
utilise ACC et les RNA. Dans le premier modeéle, on emploie un ensemble de RNAs
(« ERNA ») avec une couche d’entrée, une couche cachée et une couche de sortie pour chacune
des composantes de ’ERNA. Les entrées sont les attributs de I’'US et les sorties sont les valeurs
moyennes des indicateurs sélectionnés pour la qualité de I’eau. Une fonction de transfert de type
tangente-sigmoide est utilisée pour les nceuds de la couche cachée, tandis que pour les noeuds de
sortie, la fonction de transfert est linéaire. Dans cette étude, une analyse de sensibilité est
effectuée afin de déterminer le nombre optimal de nceuds cachés. En faisant varier le nombre de
neurones cachés de trois a quinze, on remarque que les RNA avec sept neurones cachés
fournissent 1’estimation la plus précise quand ils sont appliqués pour estimer les valeurs
moyennes pour les indicateurs sélectionnés pour la qualit¢ de I’eau. Différentes tailles
d’ensemble, variant de 5 a 20, ont été appliquées dans cette étude. Les résultats indiquent que
I’erreur d’estimation diminue progressivement lorsque la taille d’ensemble augmente jusqu’a 15.
Au-dela d’une taille de 15, il n’y a aucune amélioration de I’erreur d’estimation. Ainsi, un
ensemble de taille 15 est utilisé dans le présent document. La procédure « bagging » est choisie
pour générer des réseaux individuels qui comprennent les RNA et la moyenne simple est utilisée

pour combiner les résultats de chaque RNA.
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Dans le second modele, le modele ERNA dans I’espace ACC est utilisé pour établir la relation
fonctionnelle entre les valeurs moyennes de la qualité de 1’eau et les attributs des USs. L’ACC
est utilisée pour former un espace canonique des attributs en utilisant les attributs aux les USs
jaugées. Les modeles d’ensemble de RNA sont ensuite utilisés pour identifier les relations
fonctionnelles entre les valeurs moyennes de la qualité de 1’eau et les attributs de I’'US dans
I’espace d’ACC. Les modeles ERNA dans I’espace ACC ont la méme structure, la méme
fonction de transfert, le méme nombre de neurones dans la couche cachée et le méme nombre de
composants RNA que ceux définis pour le modele ERNA. Les réseaux des composants dans les
modeles ERNA-ACC sont produits avec I’approche « bagging », et les réseaux qui en résultent

sont combinés par moyenne simple.

Une procédure de ré-échantillonnage « jackknife » est utilisée pour comparer les performances
relatives des modéles ERNA et ERNA-ACC. Dans cette procédure, les valeurs moyennes de la
qualité de 1’eau a chaque US jaugée sont temporairement supprimées; ainsi I’'US est considérée
comme étant non jaugée. Ensuite, chaque modele est calibré avec les données mesurées des
autres USs. Une estimation de la moyenne de chaque variable de la qualité de 1’eau est obtenue
pour I’US temporairement supprimée en utilisant des modeles calibrés, puis les estimations sont
comparées par rapport aux valeurs moyennes calculées a partir des enregistrements observés. Les
¢valuations sont réalisées en utilisant les cinq indices suivants: le critére de Nash (NASH), la
racine carrée de I’erreur (RMSE), la racine carrée de 1’erreur relative (RMSEr), le biais moyen
(BIAS) et le biais relatif moyen (BIASr). Les détails concernant les deux modeles et les résultats

obtenus sont présentés dans I’article V de la partie B.
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5. Reésultats

Les résultats de ce travail sont résumés dans les quatre sous-sections. La premiére sous-section
résume les principaux résultats obtenus en appliquant 1’approche proposée pour la rationalisation
des variables de la qualité de ’eau. La deuxiéme sous-section résume les résultats obtenus a
partir des analyses Monte-Carlo et des expériences empiriques menées pour comparer les
techniques d’extension des séries chronologiques. La troisiéme sous-section résume les résultats
obtenus en appliquant 1’approche statistique proposée pour I’évaluation et la redistribution des
emplacements des sites d’échantillonnage. Finalement, la quatrieme sous-section présente les
résultats obtenus pour I’estimation des caractéristiques de qualité de I’eau sur des sites non

jaugés.

5.1 Rationalisation des variables de la qualité de I’eau
Nous identifions les groupements de variables de la qualité de I’eau hautement associées en
utilisant le regroupement hiérarchique et les critéres développés pour déterminer le seuil du
coefficient de corrélation. En utilisant des groupes hiérarchiques et de critéres mis au point pour
déterminer le seuil du coefficient de corrélation, des groupes de variables fortement corrélées

sont identifiés.

Les variables de la qualit¢ de I’eau sont divisées en 24 groupes (Figure 4). Dix-huit des
regroupements sont composé€s d’une variable unique. Ces 18 variables doivent étre suivies en
continu, car elles fournissent I’information qu’on ne peut pas estimer a partir d’autres variables.
Les six autres groupes sont sélectionnés pour des analyses supplémentaires. Au sein de chaque

groupe multivariable, chaque variable est sensée étre abandonnée et sa meilleure variable
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auxiliaire est identifiée. Quatre groupes se composent de seulement deux variables. Dans ces cas,
chaque variable fonctionne comme une variable auxiliaire pour 1’autre. Une seule variable peut
étre abandonnée dans chacun de ces groupes. Deux groupes se composent de plus de deux
variables chacun. Ici, chaque variable est donc traitée comme étant abandonnée et sa meilleure

variable auxiliaire est identifiée a partir des autres variables du méme groupe.
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Figure 4. Arbre de groupement pour les variables de la qualité de 1’eau sur le site Arin (EH16)

Si une variable doit étre retirée de la liste des variables mesurées, I’indice de performance agrégé
est appliqué. Les variables a abandonner sont classées en fonction des valeurs d’indice des
informations agrégées. L’indice des informations agrégées fournit le rang des variables qui
peuvent étre abandonnées d’un point de vue statistique. Ainsi, il peut servir a accompagner
d’autres critéres comme information supplémentaire pour les décideurs et les concepteurs de
réseau afin de choisir quelle variable a abandonner. Les autres critéres peuvent inclure de
préférences des intervenants ou I’importance de la variable pour des études spécifiques. Si
plusieurs variables peuvent étre abandonnées, 1’indice des informations agrégées est appliqué

pour classer les différentes combinaisons (Tableau 2).
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Tableau 2. Les combinaisons de variables a éliminer

Y?m?b,le Me'll'le'ur Var(,[l) 1,% Deux 1,% Trois variables 1,%

¢éliminée auxiliaire variables
Cl Na 0.0838 [2.9818| CI | TDS |2.4406| CI DS | TVS |2.2793
Na Cl 0.0838 [2.9818| Na | EC |2.4420| (I TDS | Turb |2.2801
DS Na 0.0842 [2.9825]| CI | EC |2.4420| (I TDS | 7SS |2.2806
EC DS 0.0877 [2.9872| Na | TVS |2.4424| Na EC | TVS |2.2808
Turb. 7SS 0.0872 [2.9874| CI | TVS |2.4424| CI EC | TVS |2.2808
7SS Turb. | 0.0872 (29877 TDS| TVS |2.4428| Na | Turb | EC |2.2815
VS 1SS 0.0880 [2.9878| Na |Turb|2.4431| CI | Turb | EC |2.2815
Ca SO, 0.0897 [2.9918| CI |Turb|2.4431| Na | Turb | TVS |2.2819
SO, Ca 0.0897 [2.9918| TDS | Turb |2.4435| CI | Turb | TVS |2.2819
COD BOD 10.0924 |12.9952| Na | TSS |2.4437| Na TSS | EC |2.2820
BOD COD [0.0924 {29952 CI | TSS |2.4437| ClI 7SS | EC |2.2820
N NO; 0.1145 [3.0157| TDS | 7SS |2.4440| TDS | Turb | TVS |2.2823
Fcoli Teoli | 0.1165 |3.0191| EC | TVS |2.4442| CI DS | Ca |2.2831
NO; N 0.1145 (3.0305| Turb| EC |2.4450] ClI TDS | SO4 |2.2831
Tcoli Feoli | 0.1165 (3.0324 | Turb| TVS |2.4453| Turb | EC | TVS | 2.2837
Combinaisons avec la plus haute NO; | Feoli|2.4801| BOD | NO; | Tcoli | 2.3435
“ NO; | Teoli | 2.5010| COD | NO; | Tcoli | 2.3442

5.2 Comparaison de quatre techniques d’extension des séries chronologiques
Dans I’expérience Monte-Carlo, 5000 essais sont générés. Ce nombre a été choisi en fonction de
la pré-analyse de la convergence de I’erreur dans I’estimation des différentes statistiques. Les
résultats de 1’expérience Monte-Carlo indiquent que les quatre techniques d’extension des
enregistrements préservent la valeur moyenne. Cependant, pour 1’estimation de I’écart-type, les
méthodes OLS et KTRL entrainent une sous-estimation systématique de 1’écart-type, tandis que

LOC et KTRL2 préservent la variance des enregistrements étendus.

Les valeurs des biais (BIAS) (Tableau 3) et la racine de I’erreur quadratique moyenne («root

mean square error» RMSE ) pour 1’estimation de la moyenne et de I’écart-type décroissent avec
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des coefficients de corrélation élevés et les grandes tailles d’échantillons. Pour 1’estimation de
I’écart-type, les valeurs de BIAS indiquent que I’OLS et le KTRL sous-estiment ’écart-type,
tandis que LOC et KTRL2 préservent la variance dans les registres étendus. En utilisant la
technique LOC ou KTRL2, les valeurs de RMSE sont équivalentes et inférieures a celles
correspondant aux techniques OLS et KTRL. Ces résultats peuvent indiquer que les méthodes
LOC et KTRL2 évaluent précisément 1’écart-type, compte tenu de la disponibilité d’un nombre

suffisant d’enregistrements avec un degré élevé d’association.

Tableau 3. Valeurs de BIAS pour estimer la moyenne et 1’écart-type pour I’expérience de Monte-
Carlo

Moyenne Ecart-type

no|m2 | P TGOS TLOC | KIRL | KTRL2 | OLS | LOC | KTRL | KTRL2

96 | 24 | 0.5 | 0.001 | 0.002 | 0.001 0.001 -0.080 | 0.000 [ -0.079 0.001

78 | 48 | 0.5 | 0.001 | 0.002 | 0.000 0.001 -0.166 | 0.001 | -0.164 0.002

48 | 78 | 0.5 | 0.002 | 0.002 | -0.001 -0.001 -0.260 0.004 | -0.257 0.007

24 1 96 | 0.5 | 0.000 | 0.002 | -0.001 0.001 -0.366 | 0.012 | -0.361 0.015

96 | 24 | 0.7 | 0.000 | 0.000 | 0.000 -0.001 -0.054 | -0.001 | -0.053 0.000

78 | 48 | 0.7 | -0.001 | -0.001 | -0.001 | -0.001 -0.110 | 0.000 | -0.108 0.001

48 | 78 | 0.7 | 0.000 | 0.000 | -0.001 [ -0.001 -0.170 | 0.002 | -0.168 0.004

24 1 96 | 0.7 | -0.002 | 0.001 | 0.000 0.003 -0.232 | 0.009 | -0.229 0.012

96 | 24 | 0.9 | -0.001 | -0.001 | -0.001 -0.001 -0.020 | -0.001 | -0.020 0.000

78 | 48 | 0.9 | -0.001 | -0.001 | -0.001 | -0.001 -0.040 | 0.000 [ -0.039 0.001

48 | 72 | 0.9 | 0.000 | 0.000 | 0.000 0.000 -0.061 0.000 | -0.059 0.001

24 1 96 | 0.9 | -0.001 | -0.001 | -0.001 -0.001 -0.081 0.003 | -0.078 0.005

Les méthodes OLS et KTRL surestiment les percentiles faibles et sous-estiment les percentiles
¢levés. Les méthodes LOC et KTRL2 ont tendance a réduire la partialité dans 1’estimation des
percentiles extrémes. En général, pour I’estimation des percentiles, les valeurs BIAS (Figure 5) et
RMSE diminuent avec des coefficients de corrélation élevés et les grandes tailles

d’enregistrements.
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Figure 5. Valeurs de BIAS pour I’estimation des percentiles pour 1’expérience de Monte-Carlo

Les résultats de 1’expérience empirique confirment que les techniques OLS et KTRL réduisent

considérablement la variance observée dans la variable dépendante, tandis que LOC et KTRL2 ont
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tendance a préserver la variance. Les techniques OLS et KTRL sous-estiment les valeurs de
concentrations ¢élevées et surestiment les valeurs faibles. D’autre part, les techniques LOC et
KTRL2 ont tendance a réduire le biais dans I’estimation de valeurs des hautes et des basses
concentrations. Les deux techniques produisent des séries étendues qui préservent relativement

bien les percentiles extrémes.

En utilisant des données réelles de qualité de I’eau, KTRL2 a une meilleure performance que LOC
pour I’estimation de percentiles extrémes. La meilleure performance de KTRL2 découle du fait que
les données réelles de qualité de I’eau ne suivent pas une distribution normale en raison de la
présence de valeurs extrémes. Méme apres la transformation, certaines déviations de normalité
peuvent exister. Cette déviation 1égére de la normalité ou la présence de valeurs extrémes fait que
KTRL2 est la meilleure méthode. Cette performance relativement meilleure est illustrée par KTRL
et KTRL2 en comparaison avec OLS et LOC, respectivement. Elle est principalement attribuable a
la robustesse de 1’estimateur de pente en présence de valeurs extrémes ou a I’écart par rapport a la

normalité.

5.3 L’évaluation et la reconfiguration des sites d’échantillonnages
Les résultats de 1’expérience empirique indiquent que les techniques de régression et de RNA
réduisent fortement la variance observée dans les registres étendus, tandis que la technique
MOVE3 préserve la variance. Les techniques de régression et RNA sous-estiment les
concentrations élevées et surestiment les faibles. D’autre part, la méthode MOVE3 réduit le biais
dans I’estimation des hautes et des basses concentrations. La méthode MOVE3 produit des séries

étendues qui préservent relativement bien les percentiles extrémes (Figure 6).
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Figure 6. Box-plots de 1’U ratio pour I’estimation de percentiles

L’algorithme de groupe hybride appliqué dans cette étude divise le Delta du Nil en 11 groupes
d’USs similaires. Deux des 11 groupes ont une seule US, et un groupe avec deux USs qui sont a
¢gale distance du centre du groupe. On a décidé de continuer a mesurer les variables de qualité de
I’eau aux sites associées aux USs des groupes a US unique et une US de grappe a deux USs.
L’échantillonnage optimal stratifié est ensuite appliqué pour distribuer 47 des sites de suivi parmi

les huit autres groupes.

En appliquant 1’échantillonnage optimal stratifié¢, le nombre optimal d’USs jaugées est égal au
nombre d’USs déja jaugées dans trois groupes (Tableau 4), supérieur au nombre d’USs déja
jaugées dans quatre groupes et inférieur au nombre d’USs déja jaugées dans cinq groupes. Pour les
groupes dont le nombre d’USs déja jaugées est inférieur au nombre optimal, la distance entre les
USs et le centre du groupe est utilisée pour déterminer 1’US prioritaire. Pour les groupes avec plus
d’USs que ce qui est requis par 1’échantillonnage optimal stratifié, un index des informations
agrégées est utilisé pour déterminer la combinaison optimale d’USs a abandonner. La Figure 7

montre les USs du delta du Nil, les sites a mesurer en continu, ceux a éliminer et a ajouter.
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Figure 7. Les USs du delta du Nil, les sites a mesurer en continu, ceux a éliminer et a ajouter.
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Tableau 4. Résultats pour I’application de 1’échantillonnage optimal stratifi¢

Cluster | No. USs | No.USs | Ecart-type | Ecart-type [ No. optimal

jaugées x no. US USs jaugées
A 3 5 0.075 0.975 5
B 5 10 0.058 0.87 5
C 9 1 0.089 0.801 4
D 5 3 0.097 0.485 2
E 9 4 0.157 1.962 7
F 16 14 0.127 2.032 10
G 7 1 0.087 0.609 3
H 2 2 0 0 1
L 16 8 0.137 2.192 11
O 1 1 0 0 1
Z 1 1 0 0 1

5.4 Estimation des caractéristiques de la qualité de I’eau aux sites non jaugés
Plusieurs indices sont utilisés pour évaluer les modeles ERNA et ERNA-ACC. Les valeurs du
critere de NASH par le modele ERNA-ACC pour I’estimation des valeurs moyennes des quatre
variables considérées pour la qualité de 1’eau sont plus élevées que celles provenant du modele
ERNA. Cela indique que le modele ERNA dans I’espace ACC (ERNA-ACC) est meilleur que

celui de ’ERNA seul.

Les indices RMSE et RMSEr fournissent respectivement 1’évaluation de I’exactitude des
prédictions sur une échelle absolue et relative. Le modeéle ERNA-ACCA offre de meilleurs
résultats que le modéle ERNA en fonction de ces deux indices (Tableau 5). Les indices BIAS et
BIASr fournissent une indication sur la tendance d’un mode¢le a surestimer les valeurs ou a les
sous-estimer. L’analyse fondée sur I’indice BIAS suggere que le modele ERNA produit des
résultats légerement meilleurs que le modele ERNA-ACC pour D’estimation des valeurs

moyennes de la BOD et des TVS. Toutefois, le B/ASr indique que le modeéle ERNA-ACC fournit

43



de meilleurs résultats que le modele ERNA pour I’estimation des valeurs moyennes des quatre
variables considérées. Cela indique que les erreurs obtenues en utilisant le modéle ERNA sont
plus symétriques autour de zéro, mais qu’elles ont plus de dispersion que celles obtenues avec le

modele ERNA-ACC.

Tableau 5. Résultats de la validation Jackknife pour la performance des deux modeles

Métrique Variables ERNA ERNA-ACC
BOD 0.62 0.84
TVS 0.68 0.78
NASH
TN 0.61 0.72
TDS 0.80 0.82
BOD 7.95 5.15
TVS 2.85 2.37
RMSE (mg/) 1 2.26 1.92
TDS 451.71 42441
BOD 15.09 8.60
RMSEr (%) TVS 31.42 23.42
™ 21.24 12.87
TDS 28.35 18.02
BOD -0.02 0.08
TVS 0.35 0.41
BIAS (mg/) ™ 0.47 0.15
TDS 127.74 84.36
BOD 2.46 1.80
BIASF (%) TVS 8.78 7.44
TN 6.95 2.72
TDS 12.31 10.19

Selon les critéres NASH, RMSE, RMSEr et BIASr, le modéle ERNA-ACC a donné un rendement

sensiblement meilleur que le modele ERNA. Par conséquent, 1’application de modéles ERNA
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dans I’espace des attributs canoniques peut améliorer les performances des modéles ERNA dans

I’espace originel des attributs.

6. Conclusions

Dans cette thése, une revue de littérature a jour des méthodes statistiques utilisées pour
I’évaluation et la reconfiguration des réseaux de suivi de la qualité des eaux de surface est
effectuée. Deux nouvelles approches statistiques ont été proposées pour I’évaluation et la
reconfiguration des réseaux de suivi de la qualité des eaux de surface. La premiére approche est
proposée pour la rationalisation des variables de la qualité de I’eau. La deuxiéme approche est
proposée pour I’évaluation et la redistribution des sites d’échantillonnage. Une nouvelle
technique d’extension des séries chronologiques est proposée. Finalement, deux nouvelles
approches statistiques sont proposées pour estimer les caractéristiques de la qualité de 1’eau sur

des sites non jaugés.

La nouvelle approche proposée dans cette thése pour 1’évaluation et la sélection des variables
optimales surmonte les insuffisances de la méthode conventionnelle de corrélation-régression.
On conclut que I’approche proposée permet d’identifier, d’une maniére systématique et
objective, la combinaison optimale des variables de la qualité de I’eau a mesurer en continu et les
variables qui peuvent étre abandonnées. Enfin, on conclut que 1’approche proposée pourrait étre
un outil de décision utile pour la sélection optimisée des variables de la qualité de 1’eau. Cette
approche peut étre appliquée pour la rationalisation des variables de la qualité de 1’eau de tout
type de réseaux de suivi, tels que: les réseaux de suivi de la qualité de I’eau de surface, les eaux

souterraines, des lacs et des milieux marins.
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La nouvelle technique d’extension des séries chronologiques (KTRL2) proposée dans cette thése
est comparée a trois autres méthodes: OLS, LOC et KTRL. La technique KTRL2 combine
I’avantage de LOC en réduisant le biais dans 1’estimation de la variance et la robustesse de

KTRL en présence de valeurs extrémes.

Les expériences Monte-Carlo et empiriques indiquent que les techniques OLS et KTRL ne peuvent
pas fournir des enregistrements avec les variances appropriées ou avec les formes de distribution
appropriées. L’évaluation des biais de moments et des percentiles indiquent que les techniques
LOC et KTRL2 sont plus efficaces que les techniques OLS et KTRL, respectivement. L’estimation
de la pente KTRL2 a I’aide de percentiles des variables dépendantes et indépendantes pendant la
période d’enregistrements simultanés, on a prouvé que les estimations de la variable dépendante
possédant des propriétés semblables a celles attendues de répartition de la variable dépendante ont
¢été obtenues. L expérience empirique montre que KTRL2 posseéde des propriétés plus avantageuses

que LOC en présence de valeurs extrémes.

Lorsque plusieurs estimations doivent étre générées et des calculs effectués sur les probabilités
de dépassement, telles que les probabilités de dépasser une régle ou une norme pour la qualité de
I’eau, des inférences qui deviennent dépendantes de la distribution de probabilité¢ des données
estimées sont arrétées. Dans ces cas, il faut utiliser les méthodes LOC et KTRL2, plutdt que OLS
et KTRL, pour générer des données. La nouvelle technique KTRL2 est supérieure si aucune
transformation ne peut produire une quasi-normalité en raison des distributions a queues lourdes

et de présence de valeurs extrémes.
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La nouvelle approche proposée pour 1’évaluation et la reconfiguration des sites de suivi de la
qualité des eaux de surface surmonte plusieurs lacunes existant dans les approches utilisées. En
conclusion, ’approche proposée permet de distribuer spatialement les points de contréle pour la
mise en place d’un nouveau réseau de suivi de la qualité de I’eau. Elle peut étre appliquée pour
développer ou réduire un réseau de surveillance fonctionnel. Cette approche peut évaluer et
identifier, de maniére systématique et objective, les sites de suivi a échantillonner en permanence,
les sites a abandonner et les sites a ajouter. Cette approche est applicable uniquement pour les
réseaux de suivi de la qualité des eaux de surface. Elle peut étre appliquée a différentes
configurations de réseaux de suivi des eaux de surface. Cependant, les attributs de sous-bassin
doivent étre choisis sur la base des conditions physiographiques, climatiques, et hydrologiques des

bassins suivis.

Deux mode¢les pour I’estimation des valeurs moyennes de la qualité de I’eau aux sites non jaugés
ont été présentés. Le premier modele est fondé sur les réseaux de neurones artificiels (RNAs) et
le deuxieme modele est basé sur ’analyse de corrélation canonique (ACC) et les RNAs. La
validation par la méthode de rééchantillonnage «jackknife» évalue la performance des deux
modeles. Les résultats indiquent que les deux modeles fonctionnent de manicre acceptable.
L’application de modeles ERNA dans I’espace des attributs ACC peut considérablement
améliorer la performance des modeéles ERNA dans I’espace des attributs d’origine. L’utilisation
de ces modéles en paralléle aux activités de suivi permet de fournir aux décideurs une

information de qualité de 1’eau a chaque unité spatiale dans le delta du Nil.
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7. Recommandations pour les travaux futurs

L’approche proposée pour de rationalisation des variables de la qualité de 1’eau peut étre
modifiée en utilisant la régression multiple, ou plus d’une variable auxiliaire peut étre utilisée

pour la reconstitution des informations sur une variable a ¢liminer.

Parallelement aux approches proposées, une analyse des cofits ou d’un indice d’information peut
étre introduite pour traiter du compromis entre le nombre des variables de la qualité¢ de ’eau a
mesurer, le nombre d’emplacements du suivi de la qualit¢ de I’eau et la fréquence

d’échantillonnage.

Les modeles développés ici sont congus pour estimer les valeurs moyennes pour la qualité de
I’eau pour quatre variables sélectionnées sur des sites non jaugés dans le Delta du Nil en Egypte.
La modification des méthodes présentées dans le présent document serait nécessaire pour estimer

d’autres parameétres statistiques et tenir compte des variables non stationnaires.

Le développement des méthodes qui permettent 1’estimation d’une série chronologique détaillée
de la qualité¢ de I’eau des sites non jaugés représente une orientation de recherche future trés

importante.
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Abstract: An up-to-date review of the statistical approaches utilized for the assessment and
redesign of surface water quality monitoring (WQM) networks is presented. The main technical
aspects of network design are covered in four sections, addressing monitoring objectives, water
quality variables, sampling frequency and spatial distribution of sampling locations. This paper
discusses various monitoring objectives and related procedures used for the assessment and
redesign of long-term surface WQM networks. The appropriateness of each approach for the
design, contraction or expansion of monitoring networks is also discussed. For each statistical
approach, advantages and disadvantages are examined from a network design perspective.
Possible methods to overcome disadvantages and deficiencies in the statistical approaches that
are currently in use are recommended.

Key words — sampling, aquatic, water quality, monitoring network, design, expansion,

contraction

1 Introduction

Freshwater is a finite resource that is essential for agriculture, industry and human existence
(Bartram and Balance, 1996). Water demand for industrial water supply, irrigation, and
hydropower generation is ever increasing with world development. Water of adequate quantity
and quality is essential for sustainable development. Water quality is a term used to describe the
chemical, physical, and biological characteristics of water with respect to its suitability for a

particular use.
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Water quality is affected by a wide range of natural and anthropogenic influences. Natural
processes (hydrological, physical, chemical and biological) may affect the characteristics and
concentration of chemical elements and compounds in freshwater. The following are examples

of natural processes:

e Hydrological processes: Dilution, evaporation, percolation, leaching, suspension and
settling;

e Physical processes: Volatilization, adsorption, desorption and diffusion;

e Chemical processes: Photodegradation, acid/base reactions, oxidation/reduction (redox)
reactions, dissolution of particles and precipitation of minerals;

e Biological processes: Decomposition of organic matter, bioaccumulation and

biomagnification.

Aside from natural processes, there are also anthropogenic impacts that affect water quality, such
as human-induced point and nonpoint pollution sources, introduction of xenobiotics and

alteration of water quality due to water use and river engineering projects (Chapman, 1996).

Assessment of water resources requires knowledge and full understanding of the processes
affecting both water quantity and water quality (Harmancioglu et al.,, 1999). In order to
understand the process dynamics of a watershed, a well-designed WQM network is required.
Monitoring programs help elucidate the various processes affecting water quality, as well as
provide water managers with the necessary information for water resources management in

general and water quality management in particular.
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WQM programs encompass a variety of activities that include the following: definition of the
monitoring purpose and desired information, monitoring network design, sampling protocol
design, laboratory analysis, data verification and storage, and data analysis. Several aspects of a
monitoring program, such as sampling procedures, sample handling and storage and laboratory
analysis, must be performed by properly trained staff to ensure the utility of the generated data.
Thus, in the last few decades, researchers have been increasingly turning their attention to the
design of monitoring networks. The first step towards establishment of a monitoring network is
the definition of the monitoring objectives. The design of the monitoring network is the
translation of objectives into a protocol that describes the variables to be measured, as well as the

location, timing and duration of monitoring.

In the 1960s and 1970s, WQM programs were developed to describe the general status of water
quality. These early efforts typically involved arbitrary approaches that lacked a consistent or
logical design strategy (Sanders, et al., 1983). Sampling locations and frequencies were often
determined by convenience or by other subjective criteria. Once the network was established,
there was often no assessment of the effectiveness of the monitoring design (Tirsch and Male,
1984; Ward et al., 1990). Inadequacy of a proper network design methodology often results in
water quality data collected with little analysis or ultimate purpose (GAO, 2000, 2004). For long-
term operational WQM networks, what was previously a design problem has become an

assessment and redesign problem (Harmancioglu et al., 1999).
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Given that water quality is a complex topic, statistical approaches can make a significant
contribution. There are several statistical methods used to assess the performance of WQM
networks. A significant amount of research has been directed toward evaluating current design
procedures and investigating effective means to improve the efficiency of existing networks
(Harmancioglu et al., 1999). However, there is presently no established strategy or methodology
for designing monitoring networks, particularly regarding the location of sampling stations
(Strobl et al., 2006). Thus, a logical and consistent design methodology that allows for more
efficient and effective data collection and, consequently, more useful outputs, is required. Such
an approach would permit not only better water pollution control recommendations and better
allocation of financial resources, but also a better understanding of the ecosystem under study

(Strobl and Robillard, 2008).

This paper presents a comprehensive review of the various statistical approaches that have been
proposed for the assessment and redesign of surface WQM networks. Each approach is
explained, and its advantages and disadvantages from a network design perspective are
discussed. The appropriateness of each approach for the design, contraction or expansion of
monitoring networks is reviewed. The following definitions are used in this document: design of
a network refers to the choice of optimum monitoring sites, sampling frequency and variables
measured; expansion of an existing network is an increase in the number of monitoring locations,
the sampling frequency, or the variables measured; and finally, contraction of an existing
network refers to a decrease in the number of monitoring locations, samples taken or variables

measured.
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The remaining sections of this paper are as follows. Section 2 presents the monitoring objectives.
Section 3 describes the statistical approaches used for the selection of water quality variables.
Section 4 discusses the statistical approaches used for the assessment of sampling frequencies.
The statistical approaches used for the assessment and redesign of monitoring locations are

presented in section 5. Finally, concluding remarks are provided in section 6.

2 Monitoring objectives

Monitoring objectives should define the information output expected from the network. Failure
to adequately specify the desired information leads to failure of the network itself (Harmancioglu
et al., 1992). The monitoring objectives are the foundation upon which the monitoring program
is built. Three main challenges may arise when identifying monitoring objectives: selecting from
multiple potential objectives, stating the objective and transforming objectives into statistical
questions. One major obstacle is that objectives are often described in global terms, rather than

specific, precise, and clear-cut statements (Harmancioglu et al., 1999).

Definition of the monitoring goals is essential for both the design and operation of a network.
The literature provides a wide range of possible objectives for water quality monitoring (Ward et
al., 1979; Sanders et al., 1983; Whitfield, 1988; Zhou, 1996; and Harmancioglu et al., 1999). The
following is a summary of the most common monitoring objectives as presented in the literature,

some of which are only applicable for either long-term or short-term monitoring networks:

e Identify spatial and temporal trends;

e Assess compliance with standards;
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e Facilitate impact assessment studies;

e Determine suitability for various water uses;
e Execute general surveillance;

e Evaluate various control strategies;

e Estimate mass transport in rivers; and

e Facilitate water quality modeling or other specific research activities.

Ward (1989) introduced a statistical perspective regarding monitoring objectives. He viewed
monitoring as a form of statistical sampling, and thus he indicated that the objectives must be
specified in statistical terms. The collected data are expected to allow for reliable statistical
analyses and the eventual transfer of data into useful information. Ward (1989) described a

systematic approach to defining objectives, which includes the following steps:

e Specify objectives of water quality management (general objectives), for example,
preservation of water quality;

e Specify objectives of the monitoring network within the framework of water quality
management (specific objectives), for example, identification of trends;

e Give a statistical description of the specific objectives, for example, specification of the

precision required or accepted error.

Such an approach would foster efficient selection of variables, sampling locations and sampling
frequencies. Definition of the statistical methods is also helpful for the assessment of the

performance of the network and the quality of the resultant information. Whitfield (1988)
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recommended identifying the monitoring objectives on a site-by-site basis, designing a sampling
strategy for each objective and periodically evaluating the adequacy of the design. The periodic
assessment of WQM programs should take into account not only changes in environmental
conditions, but also shifts in management objectives. A monitoring program’s main goal(s) may
be translated into monitoring objectives that vary on a site-by-site basis: What are we trying to
measure at this site? What are the water quality variables to be measured? What is the
appropriate statistical tool to use in order to obtain the desired information? Answering these
three questions will help identify the water quality variable(s) to be measured at each site as well
as the sampling strategy needed to meet the monitoring objective(s) based on the chosen

statistical approach.

The problem of climate change has become increasingly recognized as a major environmental
concern but has not yet been addressed in WQM network design. Climate change refers to any
long-term significant change in the variability or mean state of the atmosphere. Since aquatic
ecosystems are highly influenced by numerous exchange processes between the atmosphere and
hydrosphere, changes in any of the principal atmospheric variables may have a significant effect
on water quantity and quality. For example, higher air temperatures are expected to affect the
hydrologic cycle and melt snowpacks more rapidly. At the same time, surface water
temperatures will rise due to temperature exchange with the warmer atmosphere. In general,
changes in water temperatures as well as changes in the timing, intensity, and duration of
precipitation can affect water quality. Higher water temperatures reduce dissolved oxygen levels,
which in turn may have an effect on aquatic life. Increases in the frequency and intensity of

rainfall may result in increased pollution and sedimentation in surface water streams.
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Furthermore, a sea level rise may also affect freshwater quality by increasing the salinity of
coastal rivers and causing saltwater intrusion. Thus, assessment of the changes in climate
conditions and their impact on water quality should be an important monitoring objective, and

the design of monitoring networks should be adjusted to incorporate this new objective.

Water quality monitoring is a costly undertaking, as it requires sufficient equipment,
instrumentation, specialized personnel and adequate funding. Consequently, availability of
resources, as well as other relevant political, legal, and social constraints, should be considered

when specifying monitoring objectives. Inadequate monitoring is a poor investment.

3 Water quality variables

The quality of a water body is usually described by a set of interrelated physical, biological and
chemical variables. Water quality can be defined in terms of one variable to hundreds of
compounds. Thus, choosing appropriate variables to characterize surface water quality is a
highly complicated issue (Sanders et al., 1983; Ward et al., 1990; Harmancioglu et al., 1999).
Many recognize that it is not possible to measure everything in the environment, and that some
logical means of selecting variables should be part of water quality information systems (Ward et

al., 1990).

Selection of the set of water quality variables to be measured (design) or addition of new
variables to those already being measured (expansion) involves subjective issues, such as
monitoring type, monitoring objectives, basin characteristics and available budget. Proposed

methods for the assessment and re-selection of variables fall under the category of contraction,
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which aims to reduce the number of variables being measured. Two main approaches for
selecting monitoring variables have been proposed in the literature: the correlation and

regression method and principal component analysis (PCA).

3.1 Correlation and Regression analysis

The correlation and regression approach is based on three steps. The first step is to assess the
level of association among the variables by correlation analysis. If high correlation exists
between variables, it is an indication that some of the information produced may be redundant
and perhaps one can stop measuring some. The second step is the selection of water quality
variables to be discontinued and variables to be continuously measured. This step is based on
some subjective criteria, such as the significance of the variable, the presence of the variable in
local or international standards, cost of analysis and so forth. In the third step, regression analysis
is used to reconstitute information about the discontinued variables using auxiliary variables
from those continuously measured. Thus, the original list of variables being measured becomes

partially measured, and partially estimated using regression analysis.

During the 1970s, several studies showed that concentrations of major ionic constituents can be
related to specific conductance (McKenzie, 1976; Hawkinson et al., 1977; Briggs and Ficke,
1978). Specific conductance can serve as an indicator variable from which concentrations of
major ionic solutes can be determined, in cases where suitable regression functions can be found
(Sanders et al., 1983). Yevjevich and Harmancioglu (1985) investigated the transfer of
information by bivariate correlations among daily water quality variables observed along the

Upper Potomac River Estuary, USA. The objective was to determine pairs of variables that
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exhibited strong relationships to each other in order to identify which variables that should
continue to be sampled and those that can be estimated. Harmancioglu and Yevjevich (1986,
1987) studied the effects of removing deterministic components (trends, periodicity and
stochastic dependence) in order to see the effects of these characteristics on the amount of
information transfer. They concluded that some basic similarities in deterministic components

are the main contributors to transferred information.

The search for correlation among water quality variables or between water quantity and water
quality variables represents the first step in defining the dependent and independent variables in a
regression model. In a multiple linear regression, the problem of multicolinearity may exist.
Nevertheless, when this problem occurs, it means that at least one predictor is redundant with
other predictors. In this case, a ridge regression or a stepwise regression may be used rather than

a simple multiple linear regression.

3.2 Principal Component Analysis
PCA is one of a number of factor extraction methods. Since Hotelling (1933) introduced PCA, it
has been used for data interpretation, pattern recognition, dimensional analysis, and
multicolinearity detection. PCA is a data technique rather than a statistical technique, meaning
that many of the commonly applied statistical inference tests are not directly applicable (Hintze,
2001). PCA transforms a set of correlated variables into a smaller set of uncorrelated variables,

called principal components (Jobson, 1992).
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PCA can be applied to a set of water quality variables to discover the variables that form
coherent subsets that are relatively independent of one another. Variables that are correlated with
one another, but largely independent of other subsets of variables, are combined into one
component. The components are thought to reflect the underlying processes that created the
correlations between variables. Mathematically, PCA produces several linear combinations of
observed variables, and each linear combination forms a component. The components
summarize the patterns of correlations in an observed correlation matrix. The factor loading
matrix obtained from PCA reflects the characteristics of the extraction procedure, which

maximizes the variance extracted from the data in each successive component.

Karpuzcu et al. (1987) used PCA to reduce the number of variables to be directly observed. It is
claimed that such methods give better estimates of the most representative water quality
variables than those obtained by conventional correlation analysis. For the Richibucto drainage
basin, New Brunswick, Canada, St-Hilaire et al. (2004) recommended that water quality
variables that were found to explain most of the variance by PCA be monitored more closely, as
they are key elements for the understanding of variability in water quality. Similarly, Ouyang
(2005) employed PCA to identify important water quality variables in the assessment of the

surface WQM network of the lower St. Johns River in Florida, USA.

3.3 Discussion

The main advantage of the correlation and regression approach over the PCA approach is that the
former allows for the reconstruction of information regarding discontinued variables. However,

these approaches are mainly based on the assumption of a linear relationship among water
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quality variables, but the relationship between physical, biological and chemical variables may
be nonlinear. Thus, the mutual information measure and Artificial Neural Networks (ANNs) may
be used instead of linear correlation and regression analyses. Mutual information is a measure of
a nonlinear dependence or the amount of redundant information between two variables. The
ANN is more flexible than regression models in its ability to capture the relationships among

water quality variables and requires less prior knowledge of the system under study.

If the structure of the data is inherently linear (for example, if the underlying distribution is
normal), PCA is an optimal feature extraction algorithm; however, data that have a nonlinear
lower-dimensional structure will not be detectable by PCA (Monahan, 2000). In the early 1990s,
a neural-network-based generalization of PCA to the nonlinear feature extraction problem was
introduced in the chemical engineering literature by Kramer (1991), who referred to the resulting
technique as nonlinear principal component analysis (NLPCA). The fundamental difference
between PCA and NLPCA is that PCA only allows for linear mapping, while NLPCA allows for
nonlinear mapping (Hsieh, 2004). Kramer’s NLPCA has been applied in various fields, including
chemical engineering (Kramer, 1991), sea surface temperature (SST) fields (Monahan, 2001;
Hsieh, 2001), Northern Hemisphere atmospheric variability (Monahan et al., 2000; 2001), and
Canadian surface air temperature (Wu et al., 2002). However, the NPLCA has not yet been

applied to water quality multivariate datasets.

Another deficiency in both the correlation/regression and PCA approaches is the absence of a
criterion to identify the combination of variables to be continuously measured and those to be

discontinued. Consider the case in which budget cuts require w variables to be discontinued.
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Which w variables among the m variables currently being measured should be selected? The
number of possible combinations of variables to discontinue is given by the binomial

coefficient C(m, w). For each combination, a factor can be computed according to which the

combinations may be ranked (Ouarda et al., 1996). It is important to identify the type of desired
information. For example, the inverse of the variance of the mean value could be used as a
surrogate for the amount of information pertaining to a particular water quality variable. The
total cost of laboratory analysis for each combination of variables could also be used as a
criterion to rank possible combinations. Ouarda et al. (1996) proposed an information
performance index based on the variance of the mean value for the contraction of the
hydrometric network in Ontario, Canada. Such a procedure would allow for identification of the

best combination of variables to be continuously measured and those to be discontinued.

These assessments can also serve to resolve the trade-off between the number of water quality
variables measured and the sampling frequency and locations. Thus, the decision will be either to
discontinue more variables in favor of keeping more monitoring locations and/or increasing the
sampling frequency, or to keep more water quality variables, while decreasing the number of

monitoring locations and/or the sampling frequency.

4 Sampling Frequency

Sampling frequency is a very important aspect of WQM network design, as it affects not only
data utility but also operation costs. By sampling too frequently, the obtained information is
redundant and expensive, while infrequent sampling may limit the precision. Statistical methods

proposed for the assessment and calculation of sampling frequencies are directly related to the
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monitoring objectives and the data analysis methods. The following subsections describe
different approaches used to assess and select sampling frequencies. The suitability of each
method for network contraction or expansion is examined. The last subsection discusses

deficiencies in these strategies from a design perspective and possible areas for further research.

4.1 Trend analysis

Lettenmaier (1976) proposed a method to determine optimum sampling intervals based on the
parametric trend test, where the required sampling frequency corresponds to a specified power of
the trend test. This is known as the effective sample method (ES). The word “effective” indicates
the maximum number of independent samples that can be collected on an annual basis. The basis
of ES was developed by Bayley and Hammersley (1946) and was later expanded upon by

Lettenmaier (1976) and Sanders and Adrian (1978).

This approach is divided into two steps. The first step is to define the maximum number of
samples that can be collected per year in order to avoid autocorrelation, or at least to decrease its
effect. The second step is to estimate the length of record (number of years) needed to reliably
detect trends at specified confidence levels and test powers. The sampling frequency required to
obtain roughly independent samples is based on the autocorrelation between measurements with
different time lags. The equation developed by Bayley and Hammersley (1946) that is used to

determine the number of effective samples from a dependent time series is given by:

1
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where n* is the effective number of samples per year, n is the number of samples taken per

year, k is the number of lags between samples and p, is the autocorrelation coefficient for lag
k. An effective sample size per year can then be determined for each of the water quality
variables. If the data obtained from the current sampling frequency are totally independent
(p, =0), then equation (1) will be reduced to n* = n, which is the existing sampling frequency.
Since n" is either smaller than or equal to n, this method is considered to be a contraction

approach.

Lettenmaier (1976) and LaChance et al. (1989) furthered the application of the ES method using
the standard error and trend magnitude of a time series to determine the length of record needed
to reliably determine trend magnitudes at a specified statistical significance level. Lettenmaier

(1976) presented equation (2), which was developed from the power function of a classical t-test:

2
N* — lz(ta/l,(nfl) +t/},(n72))

2
T
08

where N7 is the total number of independent samples needed, ¢ is the Student’s “t” statistic, a

)

is the type I error risk of inferring a difference when none exists, B is the type II error risk of
failing to detect a trend when in fact it is present, 7r is the absolute value of the change at the

beginning and ending predicted values along a regression line for a period of study and o, is the

standard deviation of the residuals. N~ (total number of samples) from equation (2) can be

divided by »n" (number of samples per year) from equation (1) to determine the number of
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sampling years needed (sampling duration) to reliably detect an existing trend with the desired

confidence and power.

The ES method, which was used by Lettenmaier (1976) and LaChance et al. (1989), makes the
general assumption that the data are normally distributed. However, in both of those studies
some non-normality in the data was accepted. The autocorrelation coefficients of equation (1)
must be generated from a stationary time series, which is accomplished by removing trends and
seasonality (LaChance et al., 1989). Recently, Yue and Wang (2004) examined the ability of ES
to eliminate the influence of autocorrelation when using the non parametric Mann-Kendall (MK)
rank correlation test by Monte-Carlo simulation. Their results showed that when no trend exists
within the time series, ES can effectively limit the effect of serial correlation. In contrast, if a
trend exists within the time series, the existence of the trend will contaminate the estimate of the
magnitude of sample autocorrelation, and the ES computed from such a series cannot properly
eliminate the effect of autocorrelation. However, if the ES is computed from a sample
autocorrelation estimated from a de-trended series, then ES can still effectively reduce the

influence of autocorrelation.

“Step trends” in quality may be detected from discontinuous monitoring as a before-and-after
approach in a single watershed, by testing for differences in mean constituent concentrations or
mean indicator values between two or more sequential time periods (Lettenmaier, 1976; Sanders
et al., 1983; NRCS, 2003). The step trend approach is best used when the watershed in question
is paired with a control (Green, 1979; NRCS, 2003) because of the potential confounding effects

of climatic conditions and annual variability. The formula applied by Lettenmaier (1976) was
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modified by Zar (1996) to allow the user to specify the power to detect a difference between time

periods, as follows:

2xSE(ty oiny) +1 )2
o P o a(n-1) TLp1)2(01)) 3)
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where 7 is the size of each sample, S, is the estimate of pooled variance between the two time

periods and ¢ is the minimum detectable difference between the time periods. Values from the

t-distribution are for a one-tailed £ and a one-tailed or two-tailed «, depending on the type of

hypothesis to be tested.

4.2 Confidence Interval

Sanders and Adrian (1978) and Sanders et al. (1983) recommended that the confidence interval
about the mean be used as the main criterion for the selection of sampling frequency. The
purpose is to select a sampling frequency that yields an estimate of the mean (x ) within a

prescribed degree of accuracy (confidence limits) using the following equation:

{u} 4)

where n is the number of samples, ¢ is the Student’s “t” statistic, s is the sample standard

deviation and E is half the confidence interval (expected error).
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At this point, the sampling frequency can be defined for a specific water quality variable at a
specific monitoring location. The second step is to allocate the number of samples to different
monitoring locations using proportional sampling techniques, which is often based on variability
(Ward and Nielsen, 1978; Sanders et al., 1983; Chen and Cheng, 1989). In practice,
autocorrelation may be present, so that part of the information contained in one measurement is

also contained in the next measurements. In this case the variance of X 1is:

k=1

Var(x) :%2{1+gni:(n—k)pk} (5)

where o is the variance of the population of measurements and 7 is the number of samples

(Loftis and Ward, 1979). When Var(x) given by equation (5) is substituted into equation (4), we
obtain a quadratic equation that can be solved for n. Gilbert (1987) obtained an approximate

expression by ignoring the term in the quadratic equation that has »> in the denominator:
n—1

n :D{1+2Zpk} (6)
k=1

|:(ta/2) ST
where D = E

The relationship between the confidence interval and the number of samples as shown in
equation (4) becomes theoretically valid if the variance of the stationary component computed

from different sampling intervals stabilizes after a certain sampling interval. After this sampling
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interval, the variance becomes independent of the sampling interval and any change in the
number of samples will only affect the expected error. Using the confidence interval about the
mean as the main criterion to assess and redesign the sampling frequency may lead to either an

increase or decrease in the sampling frequency.

Whitfield (1983) applied this approach to identify the sampling frequency, which allows the
detection of a 10 percent difference between annual mean concentrations for one of the
monitoring locations on the Yukon River in Canada. High variability in water quality records
resulted in large estimations of the required frequencies, which undermines the applicability of
such undertaking. Tokogz (1992) and Harmancioglu and Tokgoz (1995) assessed sampling
frequencies of the WQM network in the Prosuk River basin, Turkey. Their results showed that
this method is not applicable to water quality time series with a short duration of observations
and a large number of missing values, due to the difficulty in meeting the underlying
assumptions of the method. It is difficult to meet the assumption that states that the variance of
the stationary component calculated from different sampling intervals stabilizes after a certain

sampling interval in case of limited water quality records with large gaps.
4.3 Harmonic analysis

Zhou (1996) proposed an approach aimed at defining the sampling frequency in terms of

periodicity based on harmonic analysis, 4, , as follows:

h = A, + i 4, cos @z f,1)+ B, sin2x f,1)]+ ¢, 7)
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where 4, is a constant, 4, and B, are the harmonic series coefficients, j is the index of the j th

harmonic at time ¢, and & is the total number of harmonics to be fitted to the data. k£ is equal to

N/2 for an even sample size and (N-1)/2 for an odd sample size, where N is the sample size.
(4 jz +B jz)% and f, =j/N are the amplitude and frequency for the j ™ harmonic. g, 1s an

independent random variable with a mean of zero and a variance of o. The details concerning

the estimation of the constant and the harmonic coefficients are described in Zhou (1996).

The frequency of the harmonics chosen to fit the data series must be restricted

to0< f, > (1/2At), where the frequency (1/2A¢) is called the Nyquist frequency (fn). The

Nyquist frequency is the minimum frequency that will faithfully sample a signal, which is twice
the maximum frequency of the signal. Thus, fn gives the minimum sampling frequency required.
Harmonic analysis may reveal the highest frequency of significant periodic fluctuations in the
real time series; let this frequency be fs. Then the sampling frequency fp should be more than

twice fs, in order to capture significant frequent fluctuations.

Harmonic analysis is carried out on a de-trended time series. Thus, the first step is to determine if
there is a trend in the time series, and if a trend is detected, then it should be removed before

performing harmonic analysis.

The cyclic variability present in water quality time series should be considered before a final
selection of sampling frequencies is made. Three main cyclic variations are commonly found in

water quality data: the annual cycle, weekly cycle and diurnal variation. Annual cycles may
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reflect the hydrology (high and low flow seasons), the weather (winter and summer) or the
activities (cultivation seasons) present in the watershed. Reaches immediately downstream of
wastewater treatment plants often exhibit weekly cycles. Highly regulated streams with dams for
power production also exhibit a weekly cycle. Since power production and flow are reduced
during weekends, water quality may be degraded as well. Some water quality variables such as
dissolved oxygen (DO) and biochemical oxygen demand (BOD) commonly exhibit diurnal
variability. Such variables may require several samples per day to define their periodicity.
Detection of high-frequency variations in national and regional long-term monitoring networks
would be very costly. Thus, if detection of weekly or diurnal variability is desired, implementing
a parallel monitoring program (at selected sites) is recommended. In general, collecting monthly
samples imply that temporal variations on a time scale less than a month are not the major
concern. Similarly, if a special survey is carried out involving intensive monitoring for short
period (e.g. two years), indicates that time variations over several years are not the major

concern.

4.4 Binomial test

Extreme values or excursions are most commonly defined as observations that exceed any preset
limit, such as a stream standard, drinking water standard, compliance limit, action limit, or
control limit (Ward et al., 1990). Mace (1964) and Ward et al. (1990) described an approach for
estimating the sample size required to control the risk of type I and type II errors when assessing
the proportion of time that a criterion is exceeded. This approach is applicable when individual
values are determined to be either "above" or "below" a criterion (nominal scale). The number of

exceedances of a limit always follows the binomial distribution regardless of the distribution the
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data follow (Ellis and Lacey, 1980). An iterative approach is used to estimate the number of

exceedances (e) in a specified number of samples (7) that meets the following conditions:

1-B(e;nl-p*)<a (®)

£ = B(e;n,1 = p) ©)

where B is the cumulative binomial probability, p* is the proportion of time that
concentrations must be within the criterion and p is a selected proportion associated with an

unacceptable frequency of exceedances. The results of the calculation using equations (8) and (9)
can be displayed graphically, enabling the appropriate values of e and »n to be read for given

values of &, B, p* and p (Miller and Ellis, 1986). Mace (1964) and Klotz and Meyer (1985)

used an arcsin normal approximation to estimate the required sample size:

Za+Zﬂ

= (10)
2arcsin\/; —2arcsin,/p *

n

where z, and z, are quantiles from the standard normal distribution. By fixing &, p* and p,

n increases as B decreases and vice versa. Thus, this approach could be used to increase or
decrease the number of samples. Hapuarachchi and Macpherson (1992) described an approach
for estimating sample size when data are autocorrelated. When the measurements follow an
autoregressive process of order one, or AR(1), as is commonly the case with water quality data,

the authors suggested using an approximate sample size given by:
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where p, is the estimated lag-1 autocorrelation, and z,: and z, represent the p” and p

quantiles of the standard normal distribution, respectively. Smith et al. (2003) compared error
rates for the binomial test and the variable acceptance sampling approach. Acceptance sampling
by variable is a major field in statistical quality control, where the view is that a group of
manufactured items is to be accepted or rejected (Smith et al., 2003). In the acceptance sampling
by variable approach, the value of the mean that results in the distribution having a standard with
an associated probability of exceedance is calculated. The mean of the observed data is then
compared with the derived mean. Smith et al. (2003) showed that, as autocorrelation increases,
the required sample size increases. They also concluded that the variable acceptance approach is
superior to the binomial method in the sense that it requires smaller sample sizes to achieve the

same error rates.

4.5 Bayesian analysis

Bayesian analysis has not yet been proposed for the assessment of sampling frequency.
However, it has been proposed for the assessment of compliance with standards (Smith et al.,
2001; McBride and Ellis, 2001). The following is a brief description of how Bayesian analysis is

applied to the assessment of compliance as proposed by McBride and Ellis (2001).

In Bayesian analysis, the exceedance probability is regarded as a continuous variable about

which a statement of a confidence is desired. The obtained data are used to update a prior belief
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in order to obtain a posterior belief, which is known as confidence of compliance (McBride and
Ellis, 2001). The prior belief, as well as the posterior information, are stated as a probability
density function (pdf). Thus, the required probabilities can be obtained by integrating the
posterior pdf up to x, where x is the probability of exceedance allowed in water quality standards.

The equation for the posterior pdf'is as follows:

L<e|n,x>

LjL(e | n, x> g(x) dx

h<x

e,n)= g(x) (12)

where e is the number of exceedances in n samples, h(x|e,n) is the posterior pdf of x for given
values of e and n, and g(x) is the prior pdf of x. L{e|n,x) is the likelihood function for any » and x

given by:

L<e

n,x)="C, x* (1-x)"* (13)

where "C, is the binomial coefficient. Thus, the posterior probability density is given by:

x¢(1-x)""°

hx i
.[0 x4 (1=x)""° g(x) dx

e,n>=

g(x) (14)

The probability of compliance or Confidence of Compliance (CC) is calculated from the

distribution function:
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CC:F<xSX|e,n>:J.0xh<x e,n) dx (15)

where X is the value of x where the tested hypothesis is true. The confidence of failure (CF) is
given as CF = [- CC. Noting that the likelihood function follows a binomial distribution,
McBride and Ellis (2001) chose four different priors, or g(x), to demonstrate the influence of the
prior assumptions on the confidence results. Two reference priors (uniform and Jeffreys’) and
two other user-defined priors were used. The results showed that using the Bayesian technique
(with Jeffreys’ reference prior) makes compliance rules less onerous, particularly for smaller
numbers of samples, while still affording the desired degree of protection (McBride and Ellis,

2001).

Smith et al. (2001) showed that if the sample size is smaller than 20, the binomial method cannot
adequately control the error rates. Given sufficient prior information, Bayesian methods may be
used with smaller sample sizes to help select the error rates of concern. The selection of the prior
pdf g(x) can be difficult when there is little information, and the analysis becomes subjective.
Support for these probabilities can come from previous reports and surrounding sites. This would
lead to a more objective formulation of priors and would make the Bayesian approach a sound

alternative (Smith et al., 2001).

4.6 Regression analysis

Tirsch and Male (1984) addressed the temporal design of networks by multivariate linear
regression models. Monitoring precision, as described by the corrected regression coefficient of

determination, is expressed as a function of sampling frequency. This method can be applied to
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examine sampling frequencies lower than the one currently in use. Such an approach aims to
either continue with the current sampling frequency or to reduce the number of required samples
if no significant change appears in the coefficient of determination. Thus, using regression
analysis in this framework is considered a contraction approach. Tirsch and Male (1984) applied
this method using daily specific conductance records of the Shoshone River basin monitoring
network and daily stream flow records of the Millers River basin in north central Massachusetts,

USA.

4.7 Entropy concept
Entropy theory provides a measure of information contained in a set of data or the distribution of
a random variable. It was first developed by Shannon (1948). In environmental and water
sciences, entropy theory has been applied to a wide spectrum of problems (Singh, 1997).
Harmancioglu (1984) introduced the entropy concept as a way to determine the optimal sampling
intervals in water quality monitoring. The entropy principles in this case were applied to
determine the information content of stochastic dependent variables in order to identify the
optimum sampling intervals with respect to time. The application of entropy principles to the
design of WQM networks was subsequently extended to the assessment of network efficiency
and cost effectiveness (Harmancioglu and Alpaslan 1992). The following is a brief description of
how the entropy technique is used to assess sampling frequency. The marginal entropy H(X) is
first determined for the water quality variable under assessment (Equation 16), where the total

range of X is divided into intervals of equal size (Ax).

H(X)=(M/2)In27+(1/2)In|C|+M / 2— M In(Ax) (16)
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where M is the number of variables, |C | is the determinant of the covariance matrix and Ax is

the class interval size for the M-variables. In this case, M is replaced by one and the covariance
matrix C converts directly into the variance. In the second step, the water quality variable X is
described as the subseries X for time lags k=0, 1, ..., K. A maximum lag K is assumed and the
subseries Xy, X;, ..., Xj are considered separate variables. The total entropy is computed for each
time lag using equation (16), where M in this case is the number of lagged subseries and the

conditional entropy H(X,|X,....X,) is computed using equation (17). The conditional entropy

quantifies the remaining entropy of a random variable given that the value of the second random

variable(s) is known.

H(X | Xy X3 )= H(X ), X X ) = H(X oo X)) (17)

In the third step, the transinformation is computed for lag k=1, 2, 3, ..., K, using equation (18).
Transinformation or mutual information is an entropy quantity that measures the redundant
information between variables. It is the difference between the total entropy and the conditional

entropy of the dependent variable (Harmancioglu, 1981).

T(Xo,X,)=H(X)-H(X,|X}) (18)

where T(X,,X,) is the transinformation between lag zero (the original data set) and lag k. High

transinformation means that there is high information redundancy between successive

measurements. When no further reductions are observed in the transinformation at lag k = K, it is
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considered that the lags beyond this point do not contribute significantly to the reduction of

uncertainty. Thus, the entropy concept is considered a contraction approach.

Although not specifically a parametric approach, the data must be normal or lognormal for the
multivariate case. The entropy-based approach is not well-suited for other skewed distributions
with multivariate data (Harmancioglu and Alpaslan, 1992; Yang and Burn, 1994). The entropy
method requires approximating a continuous probability distribution function with a discrete
function. This discretization was shown by Harmancioglu et al. (1985) to be critical to the value
of the entropy provided by the analysis, and has the potential to change the decision arising from
entropy-based analysis. The choice of the time interval for which the water quality values are
assigned (period used for time-averaging) also appears to have a significant impact on the

accuracy of the results.

4.8 Semivariogram

The semivariogram method is based on the fundamental work of Krige (1951) and Matheron
(1963), and is the first stage in a geo-statistical analysis. The semivariogram is a graphical
representation of how the similarity between values varies as a function of the distance (and
direction) or time separating them. The theoretical semivariogram is a plot of one distance, or

“lag” separating pairs of points (x-axis). The general equation for the semivariogram is:

1 n(h)-1

) Zl Z(x,,.,)—Z(x,)] (19)

y(h) =
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where y(4) is the semivariance, n(k) is the number of points separated by the time or distance

h (the “lag”) and [Z (x.,)—Z (xi)] 1s the difference between the values of variables separated by

i+h

the lag 4.

The procedure begins by plotting an experimental semivariogram using the available data, and a
theoretical model is fitted to the resulting plot. The y-axis represents the variance and the x-axis
represents the sampling frequency. Several models are frequently used to describe the theoretical
semivariogram, including the Gaussian, linear and exponential models. The curve fitted to the
data usually consists of two distinct parts: an initial rising segment and a horizontal flat segment
(Figure 1). The point at which the curve levels off is used to calculate both the sill (y-axis) and
the range of correlation (x-axis). The sill is the maximum semivariance exhibited by the data set
and the range of correlation is the lag (sampling frequency) at which the sill value is reached.
Pairs of points separated by a distance or time greater than the range of correlation are
considered to be spatially or temporally uncorrelated. A sample can be considered representative

of the time defined by the effective sampling frequency, which is the range of serial correlation.

(Figure 1)

The semivariogram was introduced to define the effective range of correlation and consequently
to assess the sampling frequency. In order to have a serially independent data series, the
sampling frequency is selected based on the effective range of correlation. Dowdall et al. (2005)
utilized geostatistical techniques in the optimization and design of sampling regimes to monitor

temporal fluctuations in the levels of technetium in the Norwegian Arctic marine environment.
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Khalil et al. (2004) used the semivariogram to assess sampling frequency in the Nile Delta of
Egypt; one year of daily records of specific conductance (EC) and dissolved oxygen (DO) were
used, and the effective range of correlation as an indicator of autocorrelation was chosen as the

design criterion.

4.9 Discussion

Calculation of sampling frequencies by statistical methods often results in optimization of
sampling around one purpose or goal (Ward et al.,, 1990). Water quality monitoring cannot
address every information need through one data collection procedure (Whitfield, 1988), yet the
system must attempt to meet several information goals simultaneously. Whitfield (1988)
suggested that different sampling frequencies should be used for different monitoring objectives
in order to maximize the information gain. Zhou (1996) assessed different sampling frequencies
for different monitoring objectives, and selected the highest sampling frequency in order to fulfill
multiple objectives. Ward et al. (1990) recommended evaluating logical alternative sampling
frequencies in terms of their ability to satisfy multiple objectives, rather than optimize for any

one objective.

The approaches described in this paper are used to assess the sampling frequency of a specific
water quality variable at a specific monitoring location. However, in practice, water quality
monitoring programs usually measure several water quality variables at several monitoring
locations. Ward (1978) and Sanders et al. (1983) used proportional sampling to address this
issue. Proportional sampling consists of distributing a pre-identified total number of samples

among monitoring locations and/or variables based on a given weight for each variable and
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location. The weights are typically assigned as a function of population density, historical
variance, mean variable values, and flow (Ward, 1978). However, the number of samples
selected may not satisfy all the monitoring objectives at all the monitoring locations for all the
measured variables. Thus, the consequences of applying proportional sampling should be
evaluated. The assessment of the sampling frequency for different objectives simultaneously may

be a possible area for further research.

Another challenge in determining optimal sampling frequencies is related to the time scale of
monitoring. For example, to estimate the mean value it is important to set the monitoring
objective whether to estimate the long-term annual mean or specific interval mean (year, month
or day). An explicit consideration of scale in monitoring system design and data analysis is
important to produce meaningful statistical information (Loftis et al., 1991). Loftis et al. (1991)
discussed how the time scale in water quality monitoring can have a marked effect on the
information extracted from monitoring data. As demonstrated by simulation results, a process
that is stationary over a long period of time may contain short-term runs that are important from
a management standpoint. In a given time series, runs above or below the long-term mean might
be described either as autocorrelation or short-term trends (Loftis et al., 1991). These authors
also showed that long-term mean would not be determined with high precision by intensive
sampling when observations are autocorrelated. However, autocorrelation works to reduce rather
than increase the variance of error in estimating specific-interval (annual, for example) means for
a given number of equally spaced observations. They concluded that the distinction between
autocorrelation and trends in a time series is scale dependent. They also determined that

autocorrelation has a much different effect on the estimation of long-term means than it does on
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the estimation of specific-period means. Thus, the importance of scale should be considered

while assessing the sampling frequency.

Several studies have demonstrated the usefulness of continuous monitoring using data loggers
equipped with water quality sensors. Continuous monitoring improves the resolution of the
signal being measured and is able to capture transient events (Harriman et al., 1990; Wade and
Whitfield, 1994; Whitfield and Wade, 1992; Weatherley and Ormerod, 1991; Whitfield and
Dalley, 1987). These technologies will likely transform our view of catchment processes, by
allowing observation of hydro-chemical changes at temporal resolutions that are orders of
magnitude finer than before (Kirchner et al., 2004). In order to determine the input-output mass
balance of a particular catchment, weekly or monthly chemical monitoring may not be adequate.
Pollutant loads are estimated by multiplying pollutant concentrations in water by discharge rates.
Fixed interval sampling (weekly or monthly) may miss important events, especially in streams in
which pollutant concentrations and/or discharge levels are highly variable, or where stream flow
responds quickly to precipitation events. In such a flashy stream, it is almost impossible to
synchronize grab sampling with peak flows, making continuous monitoring essential for accurate
estimation of flux (Whyte and Kirchner, 2000). Continuous monitoring avoids under- and over-
sampling storm events, and thus also avoids under- and over-estimation of cumulative flux
(Whyte and Kirchner, 2000). Weekly or monthly monitoring programs cannot capture short-term
chemical dynamics, which closely reflect hydrological processes. Thus, high-frequency chemical
observations will be essential in developing, calibrating, and validating the next generation of

catchment models (Kirchner et al., 2004).
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5 Monitoring locations

The choice of monitoring locations is an important aspect in the design of a monitoring network.
If the location is not representative of the water body, the data interpretation and presentation
becomes inconsequential (Sanders et al., 1983; Ward et al., 1990). Early practices in water
quality sampling focused on sites with easy access, without any systematic approach to selection
of sampling locations (Harmancioglu et al., 1999). Over time, the number of sites has increased
to include stations at points of interest such as those located upstream and downstream of highly
industrialized or highly populated areas, areas with point pollution sources, or areas of intensive
land use (Tirsch and Male, 1984). Later, various methodologies were proposed for the selection
of both the number and location of sampling stations. The following subsections describe the
different approaches used to assess and redesign sampling locations, organized by the statistical
analysis method employed. Each approach is described, and its suitability for the design,
contraction or expansion of the number of monitoring locations is discussed. The last subsection
discusses the deficiencies in the proposed approaches from a design perspective as well as

possible ways to overcome those drawbacks.

5.1 Stream order hierarchical approach

The stream order hierarchical approach proposed by Sanders et al. (1983) is based on using
stream ordering to describe a stream monitoring network. The stream ordering procedure
(Horton, 1945) assigns each unbranched small tributary the order of one, a stream made up of
only first order tributaries the order of two, and so on. Later, Sharp (1970; 1971) used stream
ordering procedures to measure the uncertainty involved in locating the source of pollutants

observed at the outlet of a network. Sanders et al. (1983) followed Sharp’s procedure (1970;
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1971) by selecting sampling locations on the basis of the number of contributing tributaries,
pollutant discharge or BOD loads. This approach systematically locates sampling sites so as to
divide the river network into sections that are equal with respect to the number of contributing
tributaries, discharge or pollutant loading. Three levels of design criteria are considered by
Sanders et al. (1983) for location sampling: the macrolocation, the microlocation and

representative sampling.

The macrolocations are the river reaches that will be sampled within the river basin, and they are
defined using the stream ordering approach. The microlocation is a point within the reach that is
completely well-mixed relative to outfalls or point sources of pollution. The microlocation
provides representative sampling of the reach, and requires an analysis of mixing. The
representative locations are the points in the river cross-section that provide a lateral profile of

the stream.

In addition, the mixing process is an important process in case of pollutant released into a water
body. Regardless of the pollutant nature, the mixing process consists of a one-dimensional
movement induced by turbulent mean flow (advection) and three-dimensional spreading action
produced by the turbulent flow components (diffusion) (Abbott and Basco, 1989). Numerical
advection-diffusion models are intended to make predictions by solving the advection-diffusion
equation (Abbott and Basco, 1989; Sloan and Pender, 1998). The advection-diffusion equation
uses, time, velocity and the diffusion coefficient with spatial variability. Typically, these models
use medium time steps (days to months) and are generally limited to small spatial scales. Details

of different methods used to calculate vertical, transverse, longitudinal mixing distances and
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pollutant transport are available in Fischer et al. (1979), Abbott and Basco (1989), and

Czernuszenko and Rowinsk (2005).

When no data are available, the stream order hierarchical approach can be applied to select
monitoring locations. However, the role of tributary order may be overly emphasized. Assigning
each unbranched small tributary the order of one assumes that each of these tributaries has the
same contribution to the system. This assumption may be valid if all tributaries drain the same
area and have the same activities within these areas. Moreover, in the presence of a point source
of pollution (such as industrial effluent), assigning an order of one to the source assumes that it
has the same weight as an unbranched tributary, yet it is completely different in the type and
loading of pollution. Using the discharge of the tributaries or pollution sources instead of order
gives a true weight to each tributary. In operational monitoring networks, pollutant loading can
be used to assess the existing monitoring locations. Although assessing pollutant loads may
produce a rather different system of locations, the hierarchical approach works well in initiating

a network when no data or very limited amounts of data are available.

5.2 Regression approach

Spatial design of water quality networks is also performed using regression techniques. Tirsch
and Male (1984) proposed a multivariate linear regression model where the adjusted regression
coefficient of determination between sampling locations is considered a measure of monitoring
precision. In this approach, a regression model is performed in which each monitoring location is
considered the dependent variable, and different combinations of the remaining locations are

considered the independent variables. The adjusted coefficient of determination is obtained for
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each model, and the monitoring precision changes with the addition or deletion of some number
of stations within the network. A high coefficient of determination indicates that a high degree of
redundancy exists and that the station selected as a dependent variable might not be needed.
Tirsch and Male (1984) applied this approach using daily specific conductance records from the

network monitoring the Shoshone River basin, USA.

The advantage of using regression is that it allows data regarding discontinued locations to be
reconstructed. However, assessment using regression utilizes only one water quality variable to
assess the spatial distribution of locations. Usually, in monitoring networks, several water quality
variables are measured. Thus, if this approach is applied to all the measured variables

sequentially, as many designs as the number of variables could be obtained.

5.3 Entropy concept

Another statistical approach to spatial sampling is the entropy-based method. Using this method,
the amount of transinformation between sampling locations is determined based on the degree of
uncertainty (Harmancioglu and Alpaslan, 1992; Harmancioglu et al., 1999). Dependence
between sampling locations results in reduced entropy, or uncertainty, between the locations. If
the dependence is consistent over time, one or more of the sampling sites may be discontinued

with a minimal loss of information.

For a multivariate case and assuming multivariate normal data, the joint entropy of X is defined
by equation (16). This equation results in a single value that expresses the joint entropy over the

whole network for M locations. Marginal entropy for each sampling location is computed using
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the same equation by letting M =1, adding the subscript m to X to represent each sampling

location, and substituting the variance (02) for |C| .

The entropy method has been applied to multivariate data, but only one variable is analyzed at a
time (Harmancioglu et al., 1994; Ozkul et al., 1995, 2000). However, handling multivariate data
should be conducted simultaneously rather than sequentially. Another deficiency in this method
is the discretization problem, as explained in subsection (4.7). This approach reflects the amount
of redundant information among monitoring locations, and may give an indication to increase the
number of locations. However, the method cannot define where exactly new stations should be

located.

5.4 Multivariate data analysis

Different multivariate data analysis techniques have been employed for the redesign of water
quality monitoring locations. These include principal component analysis (PCA), cluster analysis
(CA), and discriminant analysis (DA). Cluster analysis (CA) is an exploratory data technique
used to group similar observations into clusters, where the within-cluster variance is minimized
and the between-cluster variance is maximized (Peck et al., 1989; Jobson, 1992). In earlier years,
the validity of clustering techniques was questioned because of the lack of inferential tests
offered by many other statistical techniques (Baker and Hubert, 1975; Wong, 1982). However,
using additional tests such as estimating the bootstrap confidence intervals (Peck et al., 1989),
performing a discriminant analysis on the final clusters (Jobson, 1992), or combining
hierarchical and non-hierarchical clustering techniques (Jobson, 1992) can provide validation for

the chosen clusters.
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Discriminant analysis (DA) is a multivariate statistical method that is somewhat similar to CA
except for one major difference: in DA, the groups are already known and the user is testing the
ability of a set of variables to discriminate between the various groups. DA has been developed
for both parametric (Rao, 1973) and nonparametric (Rosenblatt, 1956; Parzen, 1962) cases. The
nonparametric form is also known as the k-nearest neighbor method. The nonparametric form is
appropriate when the data do not have a multivariate normal distribution. DA can be used as a
validation measure to test the discriminating ability of the clusters from a previous CA. Details
concerning PCA, CA and DA are available in reference text books (e.g. Tabachnick and Fidell,

1996; Jobson, 1992).

Odom (2003) used PCA, CA, and DA to assess and redesign the WQM network in the Great
Smoky Mountains National Park, Tennessee, USA. He used the average pollutant values at each
location in the PCA. Then, he used the first three principal components in a cluster analysis to
define similar locations, and finally applied DA to verify the groups found in CA. Ouyang
(2005) applied PCA to evaluate the effectiveness of the surface WQM network of the lower St.
Johns River in Florida, USA, where the variables evaluated in PCA are the monitoring locations.
He also used the water quality mean values at each location as variables for different cases. In
these two studies, the authors summarized the information content of the data series using mean

values only, and did not consider all of the available data.

Often, analysts tend to standardize the variables before performing PCA. In water quality data,

only one water quality variable may be the main source of the variability. This variable will
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figure disproportionately in the covariance matrix and consequently in the principal components.
The first principal component will largely represent that variable, and the other principal
components will have negligibly small variances. Thus, principal components based on the
covariance matrix will not involve the other variables. In this case, the variables can be
standardized before extracting the eigenvalues and eigenvectors. This is equivalent to finding
principal components from the correlation matrix. Zitko (2006) asserted that standardization of
variables may not eliminate the influence of high variability in few variables on the PCA

outcome. Scaling the variables to a fraction of their range ((xn. —%;)/(Xmax — Xmin)) 1S

recommended by Zitko (2006), and is believed to better remove the effect of such variables on

the outcome of PCA.

When the variances differ greatly, or if the measurement units are not commensurate as is
common in water quality data, the components of the covariance matrix will be dominated by the
variables with large variances. The other variables will contribute very little. For a more
balanced representation in such cases, the components of the correlation matrix may be used.
Extracting principal components using the covariance matrix with standardized variables is
equivalent to extracting principal components using the correlation matrix. Standardizing
variables or rescaling the variables to a fraction of their range aims to eliminate the
overwhelming effect of largely different variances. Standardization, i.e. scaling the variables to a
fraction of their range or centering the variables by removing the means preserves the
distribution of the variable. However, scaling the variables may lead to less variability than

standardization or centering the variables.
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5.5 Optimization approaches

Some researchers stress the use of optimization techniques for the selection of both sampling
locations and sampling frequencies (e.g. Skalski and MacKenzie, 1982; Bernstein and Zalinski,
1983; Reinelt et al., 1988; Palmer and MacKenzie, 1985; Spooner et al., 1985; MacKenzie et al.,
1987). In these studies, several experimental designs were suggested, mainly related to impact
assessment and ecological monitoring. In these designs, two requirements are expected to be
fulfilled by the network: cost-effectiveness and statistical power. The latter is often investigated
by analysis of variance (ANOVA) techniques, and optimization methods are used to maximize

the statistical power of the network while minimizing the costs (Harmancioglu et al., 1992).

Some design approaches combine both the spatial and temporal design criteria to evaluate the
space-time trade-off. The approach in these combined designs is to compensate for a lack of
information in one dimension by increasing the intensity of efforts in the other dimension
(Harmancioglu and Alpaslan, 1992). Tirsch and Male (1984) combined spatial and temporal
design using multivariate linear regression. Regression analysis, as applied for the assessment of
sampling frequency (4.6) and monitoring locations (5.2), can be combined to evaluate the space-
time trade-off. This may take the form of a plot with a temporal axis and a spatial axis to define a
precision space. Different location combinations appear on the y-axis and different sampling
frequencies appear on the x-axis. In the x-y space, curves of the adjusted coefficient of
determination define the trade-off between the spatial and temporal measures. Then, the best
combination is decided on an economic basis, by maximizing the net benefits resulting from the
monitoring network. The assessment of monitoring benefits is derived from monitoring

reliability, as measured by the coefficient of determination.
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Ozkul (1996) investigated space-time dimensions of the WQM network in the Mississippi River
basin using the entropy concept. They derived curves of redundant information with respect to
both the number of stations and sampling frequencies, where redundant information
(transinformation) increases with an increase in the number of sampling locations and decreases

with a decrease in temporal sampling frequencies (Harmancioglu et al., 1999).

The basic entropy measure used in this combined approach is transinformation. The objective is
to select the space-time combination that produces the least amount of transinformation. For a
constant level of transinformation, a number of space-time alternatives exist. From such
alternatives, one may evaluate whether to increase the number of monitoring locations and
decrease the sampling frequency or to decrease the number of monitoring locations and increase
the sampling frequency. The final decision depends on the evaluation of cost reduction with
respect to decreases in number of monitoring locations or sampling frequencies (Harmancioglu

et al., 1999).

Schilperoort et al. (1982) emphasized the need to optimize monitoring networks to achieve cost-
effective designs while fulfilling the monitoring objectives. This approach enables the space-time
trade-offs in the design to be evaluated. In general, economic analysis can be considered the
main tool used to evaluate the space-time trade-off, where the options are either to increase the
number of monitoring locations and decrease the sampling frequency or to increase the sampling

frequency and decrease the number of monitoring locations.
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5.6 Discussion

The statistical approaches that have been proposed for the assessment of monitoring locations are
mainly contraction approaches that aim to decrease the number of locations in the monitoring
network. The stream ordering approach is the most frequently used approach to design a
monitoring network when no water quality data are available. In this method, one of the stream
attributes, such as the stream order, stream length, area served by each stream or stream flow, is
used to weight each stream. This approach can be used to select monitoring locations during the
establishment of a new monitoring program. Although one of the suggested weights is pollutant
loading, this approach is valid only if the pollutant loads are measured at all streams.
Furthermore, different stream attributes can be used at the same time by giving a combined
weight to different attributes for each stream. In this case, the placement of the monitoring
locations is done in accordance with several stream attributes simultaneously. Using several

attributes sequentially may result in a different spatial design.

The main disadvantage of the entropy and regression methods is that both approaches are
generally applied using only one water quality variable. However, assessment and redesign of
the water quality monitoring locations is more reliable when based on several water quality

indicators. Multivariate data should be handled simultaneously rather than sequentially.

Several inconsistent spatial designs are obtained in case of applying these methods to several
water quality variables sequentially. For example, Ozkul et al. (2000) applied the entropy based
approach to the case of basin segment 07 of the Mississippi River basin in Louisiana in the USA.

They used a water quality monitoring network consisting of 12 locations, where 26 water quality
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variables are measured on a monthly basis. The entropy approach was applied for each water
quality variable separately to select the best combination of monitoring locations. Using the
electric conductivity (EC), results indicated that three locations can be excluded from the
monitoring network; these are locations number 049, 051 and 055. Using the DO, results
indicated that only two locations may be excluded (locations 054 and 055), while using the
chemical oxygen demand (COD) indicates that all the aforementioned locations (049, 051, 054

and 055) should be included.

The multivariate data analysis approaches overcome this disadvantage by employing several
water quality variables simultaneously. However, there are two main disadvantages in using
multivariate data analysis. The first disadvantage is that the reconstruction of information at
discontinued locations is not considered. The second disadvantage is that the multivariate data
analyses are based on a linear structure in the data set. Given that the relationship between
physical, chemical and biological variables may be nonlinear, application of conventional

multivariate analyses may be not appropriate.

The common disadvantage of the proposed approaches is that they only focus on identifying
monitoring locations to be discontinued. However, the optimum spatial design may consist in the
discontinuation of a number of existing monitoring locations while adding other locations at
ungauged sites. This downfall arises from excessive focus on assessment using the water quality

data already obtained while ignoring the characteristics of the basins being monitored.
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Assessment and redesign of monitoring locations should involve several water quality indicators
simultaneously as well as the basin characteristics. Different basin characteristics may affect the
spatial allocation, such as climatic region, land use, geology, existence of point and nonpoint
sources of pollution and human activities within the region. In addition, the assessment and
redesign of monitoring locations should also assess whether monitoring locations can be
discontinued and if new monitoring locations should be added. The redesign approach to be used

should always allow for reconstituting information at discontinued locations.

The classical tools for multivariate statistical analysis include multiple linear regression, PCA
and Canonical Correlation Analysis (CCA). CCA is a way of explaining the linear relationship
between two sets of variables (Shu and Ouarda, 2007). Torranin (1972) and Rice (1972)
presented the first applications of CCA in hydrology. Torranin (1972) demonstrated the potential
of CCA applications for hydrological problems through a study of coastal monthly precipitation
forecasts and seasonal snowmelt runoff. Rice (1972) applied CCA to hydrological prediction.
More recently, CCA has been used with regression or ANN to estimate flood quantiles at
ungauged sites (see Ouarda et al., 2000, 2001; Shu and Ouarda, 2007). In this approach, CCA is
used to measure similarity between ungauged sites and gauged drainage basins using
hydrological, meteorological and basin characteristics. Then, regression or ANN is used to
estimate flood quantiles at ungauged sites. In the assessment of spatial distribution of water
quality monitoring locations, CCA can play an important role by identifying the correlation
between basin characteristics and measured water quality variables. Consequently, this strategy

can be employed as the first step to estimate water quality at ungauged locations or discontinued
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locations. Thus, using CCA with regression or ANN may overcome the disadvantages of using

multivariate data analysis.

In general, popular multivariate data analysis methods suffer from the limitation of being linear.
Since the late 1980s, ANN methods have been increasingly used to perform nonlinear regression.
More recently, ANN methods have been extended to perform nonlinear PCA (NLPCA) and
nonlinear CCA (NLCCA) (Hsieh, 2004). In PCA, a given dataset is approximated by a straight
line, which minimizes the mean square error (MSE), whereas in NLPCA, the straight line is
replaced by a curve that minimizes the MSE. Similarly, NLCCA removes the restriction of
detecting only linear oscillations in two spaces. Given that water quality data time series often
have a nonlinear structure (Lettenmaier, 1988; Berryman et al., 1988), it may be more
appropriate to use the recently-developed nonlinear methods instead of classical multivariate

data analysis.

6 Conclusions

Research into important aspects of WQM network design has been ongoing since the 1970s. This
paper focused mainly on statistical approaches as a quantitative tool for the assessment and
redesign of WQM networks. The design of water quality monitoring programs is not a
straightforward process, and is based mainly on the monitoring objectives. It is therefore very

important that the objectives of the monitoring program be carefully defined.

Identification of the monitoring objectives should be specific and clearly stated, preferably on a

site-by-site basis. The objectives statement should include why we want to monitor at this
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location, what we would like to monitor, what is the type of information required, and what is the
analysis tool we intend to use in order to obtain the desired information. Assessing climate
change impacts on water quality should be one of the objectives of surface water-quality-
monitoring programs. Input from different stakeholders such as policy makers, water managers,
researchers and the public should be considered in the various steps of assessment and redesign,

especially when identifying the monitoring objectives.

This review reveals that, although much research has been undertaken to evaluate the
performance of monitoring networks, several deficiencies in the proposed approaches still exist.
The proposed approaches for the assessment and rationalization of the water quality variables are
based mainly on the assumption of linear structure among the variables. Applying nonlinear
techniques such as mutual information and ANN will overcome this deficiency. Another
deficiency is the absence of a criterion to identify a combination of variables to be continuously
measured and those to be discontinued. A performance index based on information criterion may
help overcome this downfall. Such an index would also help to integrate the assessment of water

quality variables with the assessment of sampling frequency and sampling locations.

The approaches proposed for the assessment of the sampling frequency address a specific water
quality variable at a specific monitoring location, and often result in the optimization of sampling
around only one of the monitoring objectives. Proportional sampling is recommended to
distribute a pre-identified total number of samples among monitoring locations for multiple
variables. Such an allocation of the number of samples may result in a fewer number of samples

at some locations than required. Thus, an assessment of the consequences of applying
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proportional sampling should be conducted, especially in monitoring networks with multiple

objectives.

Most of the approaches proposed for the assessment of spatial distribution of monitoring
locations are based on only one water quality variable. In addition, these methods are based
mainly on the assumption of a linear structure in the data, reconstitution of information about
discontinued locations is not considered. These approaches focus mainly on identifying
monitoring locations to be discontinued, when it may be that the optimal spatial distribution of
monitoring locations involves discontinuing of a number of existing locations and while also
adding other locations at ungauged sites. The incorporation of basin characteristics in the
assessment is believed to overcome this deficiency. New technologies and analysis techniques
need to be explored with respect to monitoring network design. Artificial intelligence
technologies as well as the new generation of nonlinear multivariate data analysis (NLPCA and

NLCCA) induce innovation and new problem-solving criteria.

This review has also revealed that, in the past, the majority of water-quality-monitoring
programs have been designed on a rather arbitrary basis. Although many studies have sought to
improve the performance of monitoring networks, most have focused mainly on only one of the
network design aspects. Few researchers have examined the optimization of different aspects
simultaneously. Network assessment and redesign require combining the assessment of the
monitoring objectives, the variables to measure, the sampling frequency and the sampling
locations into one framework. The three main aspects in monitoring design should be assessed

simultaneously, and may be linked by a criterion of either cost or information.
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Finally, the design of a monitoring network needs to be periodically re-assessed and modified

accordingly to changing environmental conditions and/or shifts in management priorities. In

order to facilitate the periodic assessment of the monitoring network performance, the design or

the assessment and redesign should be well documented. The documentation should indicate the

approaches followed, the standardized laboratory procedures and techniques employed and the

data analysis procedures to follow in order to obtain the desired information.
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Abstract

Despite several decades of operation and the increasing importance of water quality monitoring
(WQM) networks, authorities still rely on subjective or semi-subjective decision processes to
identify the optimal combination of water quality variables to measure. For this purpose, a
statistical approach is developed for the assessment and selection of the optimal combination of
water quality variables. The proposed approach overcomes deficiencies in the conventional
correlation-regression approach used to assess and eventually reduce the number of water quality
variables in WQM networks. For the reduction of water quality variables, criteria developed
from record-augmentation procedures are integrated with correlation analysis and cluster
analysis to identify highly associated water quality variables. This step is followed by the
application of an information performance index to systematically identify the optimal
combination of variables to be continuously measured and those to be discontinued. The linear
regression and maintenance of variance (MOVE) record-extension techniques are employed to
reconstitute information about discontinued variables. The proposed approach is applied for the
rationalization of water quality variables in the Nile Delta surface WQM network in Egypt.
Results indicate that the proposed approach represents a useful decision support tool for the
optimized selection of water quality variables. The MOVE record-extension technique is shown

to result in better performance than regression for the estimation of discontinued variables.

Keywords: sampling; water quality indicator; monitoring network; rationalization; record

extension; record augmentation.
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1 Introduction and review

Assessment of water resources requires knowledge and a full understanding of both the water
quantity and the water quality processes (Harmancioglu et al., 1999). Water quality monitoring
programs aid in understanding various water quality processes as well as provide water managers
with the necessary information for water resources management in general and water quality
management in particular. The design of monitoring networks is the translation of the monitoring
objectives to specify sampling sites, sampling frequency and the variables to be measured. Both
sampling frequency and sampling sites are influenced by water quality variables being
monitored, and therefore the selection of the specific variables of interest is intrinsic to the
design and subsequent operation of a water quality monitoring network (Strobl and Robillard,

2008).

The quality of a water body is usually described by sets of physical, chemical and biological
variables that are mutually interrelated. Water quality can be defined in terms of one variable to
hundreds of compounds and for multiple uses. This is a very complex issue since there are
numerous variables to choose from in representing surface water quality (Sanders et al., 1983;
Harmancioglu et al., 1999). Many researchers have recognized that it is impossible to measure
everything in the environment, and that some logical means of selecting the variables to measure
has to be part of every water quality information system (Ward et al., 1990). Consideration
should be given to reduce the number of variables sampled without a substantial loss of
information. Fewer variables would be easier and less costly to analyze. Dependencies or
correlations between various water quality variables become easier to establish if they are few,

saving time and effort (Strobl and Robillard, 2008).
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A review of the literature reveals that the main statistical approach proposed to reduce the
number of variables being measured is the Correlation-Regression (CR) approach. The CR
approach is based on three steps. The first step is the assessment of the level of association
among the variables being measured by correlation analysis. If high correlation exists among
variables, this is an indication that some of the information produced may be redundant. The
second step is the selection of water quality variables to be continuously measured and those to
be discontinued. This step is based on some subjective criteria, such as the significance of the
variable, the presence of the variable in local or international standards, etc. It may also be based
on the cost of the laboratory analysis. The third step is the reconstitution of information about

discontinued variables using auxiliary variables from the continuously measured ones.

During the 1970s, several studies showed that the concentrations of major ionic constituents can
be related to specific conductance (McKenzie, 1976; Briggs and Ficke, 1978). Specific
conductance can thus serve as an indicator variable from which the concentrations of major ionic
solutes can be determined in cases where suitable regression functions can be found between the
former and the latter (Sanders et al., 1983). Yevjevich and Harmancioglu (1985) investigated the
transfer of information using bivariate correlations between daily water quality variables
observed along the Upper Potomac River Estuary, USA. The objective was to determine pairs of
variables that exhibited strong relationships in order to define variables to be sampled
continuously and variables that can be estimated. Similar analyses were carried out by
Harmancioglu et al. (1987) on monthly data from a highly polluted river basin in Turkey.

Harmancioglu and Yevjevich (1986, 1987) studied the effects of removing deterministic
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components (trends, periodicity and stochastic dependence) in order to see the effects of these
characteristics on the amount of information transfer. They concluded that some basic

similarities in deterministic components are the main contributors to transferred information.

The main advantage of the CR approach is that it allows for the reconstitution of information
about discontinued variables using regression analysis. However, three main deficiencies exist in
the CR approach as commonly practiced for water quality variables reduction. The first
deficiency is the method used to identify highly associated variables. The correlation coefficient
is commonly used as a criterion to assess the level of association, but selection of the proper
threshold above which a correlation coefficient can be considered sufficient to associate two
variables can be problematic. Assessment of the correlation coefficient is always left to a
subjective designer preference. Thus, studies of the same set of variables by different
investigators may lead to different results. The second deficiency is the absence of a criterion to
identify the combination of variables to be continuously measured and those to be discontinued.
The third deficiency is that the use of regression analysis to reconstitute information about
discontinued variables often results in an underestimation of the variance in the extended records

(Alley and Burns, 1983; Hirsch, 1982).

The main goal of this study is to modify the conventional CR approach to overcome these
deficiencies, summarized as follows: 1) Subjective assessment of the correlation coefficient; 2)
Subjective selection of discontinued variables; and 3) Underestimation of the variance in the

extended records of the discontinued variables.
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In the following section, a description of the study area is provided. In section 3, the
methodology is presented. In section 4, the results obtained are presented and discussed. Finally,

the conclusions from this work are presented in section 5.

2 Egyptian national WQM network

In a survey of world freshwater, it has been reported that Egypt is among the ten countries to be
plagued with scarcest water resources by the year 2025 due to its rapidly increasing population
(Engelman and Le Roy, 1993). The distribution of the Egyptian share of Nile River water to its
population is near the water poverty threshold and will fall well below this threshold in the years
to come (MWRI, 1997; Wolf, 2000). The per-capita share of fresh water resources in Egypt is
now almost 800 m’® per person per year (Abdel-Gawad et al., 2004; Frenken, 2005). One of the
applied solutions to stretch limited Egyptian water resources is the reuse of any kind of drainage
water (agricultural/industrial/municipal or most often a mixture thereof) in agricultural
production processes. Drainage water with low salinity is used directly or after mixing with fresh
Nile water in the case of slightly brackish water. Drainage water with high salinity or that is

contaminated by municipal and industrial wastes cannot be used in irrigation.

The drainage system in the Nile Delta is composed of 22 catchment areas. Depending on their
quality, effluents are either discharged into the Northern Lakes or pumped into irrigation canals
at 21 sites along the main drains to augment freshwater supply (DRI-MADWQ, 1998).
Numerous programs have been developed in the past to monitor the water quality of the Nile and
of agricultural drainage in Egypt. In 1977, the National Water Research Center (NWRC) had

started to monitor a few volumetric and qualitative water parameters (predominantly concerning
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salinity) in some of the main drains in the Nile Delta. Since 1997, the NWRC continuously had
to expand its monitoring activities to include an ever-increasing number of sampling sites and
water quality variables. The monitoring program of the Nile Delta drainage system aims at
assessing its compliance with the national standards, estimating mass transport and identifying

temporal and spatial trends (NAWQAM, 2001).

Twenty-eight water quality variables are measured monthly at 94 sites on the Nile Delta drainage
system (Figure 1). Two more variables were added in August 1999: the Fecal Coliform (¥Col)
and the Total Nitrogen (7N). Three other variables were added in August 2000: Manganese
(Mn), Boron (B), and Nickel (Ni). Turbidity (7urb) records are available from August 1997 to
July 2005. The available data for the 33 water quality variables from the 94 monitoring sites

from August 1997 to July 2007 are used in this study (Table 1).

(Figure 1) and (Table 1)

3 Methodology

The methodology is divided into two main subsections. The first subsection deals with the
background on the record augmentation and extension approaches often used to reconstitute
information concerning short-record streamflow stations as adapted to water quality monitoring

networks. The second subsection presents the proposed approach.
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3.1 Background on record augmentation and extension approaches

The estimation of the mean and variance of streamflows or other hydrological variables at a
short-record gauge from another longer continuously measured gauge is termed record
augmentation (Vogel and Stedinger, 1985). However, the problem of actually extending
monthly, weekly or daily records is termed record extension. The following subsections present

respectively a short review of record-augmentation and record-extension approaches.

3.1.1 Record augmentation

We assume that the measured variable y has », years of data and the measured variable x has

n, +n, years of which »n, are concomitant with the data observed for y, illustrated as follows:

X015 X0 5 X3 5ueeens X 5 Xg 15 Xy 10 50eenene s X 4,

In the case of water quality variable reduction, one can consider that year », is the year where
assessment and selection took place. After », years, the decision is to stop measuring the
variable y and continue measuring the variable x. Assume after », years that our interest is to
estimate the mean x, or the variance o of the variable y as accurately as possible. Matalas and
Jacobs (1964) developed a procedure for obtaining unbiased estimators of both x, and o},

showing that the mean value ( 4, ) of the extended series can be determined by:

ny

~ :— + A —_— __
Hy =1 411, B(x; — X)) (1)
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where y, and x, are the mean values of y, and x, based on short records i=1,...,n;, X, is the

mean value of x, observed during the period i=n, +1,...,n,and the parameter S is the

estimated regression coefficient. Based on this formulation, it is possible to show (Cochran,

1953) that the variance of z, is given by:

Var{,&y}:o-—yz{l— e (pz—l_pzﬂ )

n, n, +n, n -3

where o is the population variance of y and 0 is the population correlation between x and y.

For practical use, these values may be replaced by their estimates based on the », years of data

(Ouarda, et al., 1996). In order to assess whether the extended series provides additional

information on the variable y, the variance above must be compared with the variance obtained
from the short record (o /n, ), and the condition for an improved estimator (smaller variance) of

the mean is given by:

p*>1/(n,~2) 3)

Thus, estimating the mean from the extended series is profitable only if the correlation
coefficient between the two variables exceeds (]n1 —2|)_1/ ? (Ouarda et al., 1996). If the variance of
the y -series is of interest, one can proceed as in the case of the mean. Matalas and Jacobs (1964)

obtained the following expression for the unbiased variance estimator & :
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where s? is the variance estimate based on the entire x-series and s.,s., are the standard
yl»°2x1

X

deviations of y and x based on the short records i=1...,n,. Moreover, Matalas and Jacobs

(1964) showed that the variance of the variance estimator (Var{d‘; }) 1s given by:

s 20';1 nza;‘
Var{ay = +

Ap* +Bp+C 5
1 e 02 3 PO ©)

where

(3 +2)n, —6)(n, ~8) mny(ny —4) ~ 2ny(n; —4)
. (”1 _5) o _4{(”1 _3)(”1 _2)_ (”1 _3) _4] ©
g Sz 2k =6) (;121(’;1) _6)+2(n3 —m —14)+(n —4)[—”22?”_1 3_)5 ) s +3)——(i’: lféi':] __42))J (7)

3(n2 +2) (nl +1)(2n1 +n, —2)(111 _3)+(n1 _4{ 2n23 +2(n1 +1)+ (nlnz (nl —4))J 8)

€ =2 1)+ 7y -1 =32

The first term on the right-hand side in equation 5 is equal to the variance of the variance

estimator based on the », years of the y-series, and estimation is therefore profitable when:

p?>(-B+VB?-44C)/24 9
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Referring to our main objectives, one can use either equation 3 or equation 9, or both, as criteria
to assess the required correlation coefficient threshold and consequently to identify highly
associated pairs. Thus, using such criteria, one can overcome the first disadvantage of the CR
approach. In this study, the higher correlation coefficient obtained from equations 3 and 9 was

used as a criterion to evaluate the correlation coefficients among water quality variables.

3.1.2 Record extension
The literature review reveals that several approaches are available for record extension. The first

approach is linear regression. To estimate records of the discontinued variable y for the period

n, +1 through », years, one can use simple linear regression of y on x.

y; =a+bx; (10)

where p; are the estimated values of y for i=n, +1,.n, and « and » are the constant and slope

of the regression equation, respectively. The parameters « and » are the values that minimize

the sum of the squared difference between estimated and measured y values. The solutions of a

and b are found by solving the normal equations (Draper and Smith, 1966, p. 59). The optimal

solution to equation 10 is:

.);i:)_/l"'r(syl/sxl)(xi_)_cl) (11)
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where r is the product-moment correlation coefficient between the », concurrent measurements
of x and y. The use of regression analysis often results in underestimation of the variance in the
extended records (Alley and Burns, 1983). Matalas and Jacobs (1964) demonstrated that

unbiased estimates of the mean ( 4, ) and variance (&) are achieved if the following equation is

used:

N _ 12
yi:yl+r(syl/sxl)(xi_xl)+a(l_r2) Sy € (12)

where « is a constant that depends on », and », (see Hirsch, 1982), r is the product-moment
correlation coefficient between the », concurrent measurements of x and y and e; is a normal

independent random variable with zero mean and unit variance. However, due to the presence of

an independent noise component (¢, ), the problem in using equation 12 is that studies of the
same sequence of x and y by different investigators will almost surely lead to different values

of 7, (Hirsch, 1982; Alley and Burns, 1983).

Hirsch (1982) suggested two other methods referred to as MOVE1 and MOVE2 (Maintenance of
Variance, Types 1 and 2). In MOVE], Hirsch (1982) chose the estimators of « and » so that if

equation 10 is used to generate an entire sequence j;, for i=1..,n +n,, the short sample

= 2
moments y, and s},

would be reproduced. Similarly in MOVE2, Hirsch (1982) chose « and »

so that if equation 10 is used to generate an entire sequence p; for i=1,..,n, +n,, the unbiased

estimates 4, and 6. would be estimated.

127



Hirsch (1982) evaluated the MOVE1, MOVE2, regression and regression-plus-noise methods
using a Monte-Carlo study as well as an empirical analysis. Samples for the Monte-Carlo study
were generated under the assumption that concurrent observations of x and y are stationary,
serially independent and have a bivariate normal probability distribution. The empirical analysis
used real data to explore the performance of the four approaches under conditions of non-normal
distribution, serial dependence and seasonal cycles. Both the Monte-Carlo study and the
empirical analysis showed that regression cannot be expected to provide records with the

appropriate variability.

In practice, one uses equation 10 to generate the jp, only for i=n, +1,.,n, +n, not for
i=1,.,n, +n,. This suggests that Hirsch used estimators of « and » that did not achieve what he

intended (Vogel and Stedinger, 1985). MOVE3 was then proposed by Vogel and Stedinger
(1985). In MOVE3, the main goal is to select « and » in equation 10 so that the resultant

sequence of ny +n, values {y,...¥,1, Pyis1s Purenz ) has a mean 2, and variance & (the Matalas

and Jacobs estimators of equations 1 and 4). Estimates of « and » for the MOVE3 method are

obtained by rewriting equation 10 as:

)3,»=a+b(x,»—)?2) (13)

where estimates of « and » are obtained from equations 14 and 15:
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a:l(”l +”2)ﬁy_”1J71J/”2 (14)

b2 =y +ny =162 =, 0% =, (= 1, = ma a2, P ]l 1% ] (15)

Vogel and Stedinger (1985) carried out a Monte-Carlo experiment, which indicated that MOVE2
and MOVES3 techniques are nearly indistinguishable with respect to the mean square error of the

estimators of the mean and variance of the complete extended record.

Record augmentation and extension techniques are widely applied in hydrometric networks to
reconstitute information about flow in short-gauged stations. Hirsch (1979, 1982), Vogel and
Stedinger (1985) and Moog and Whiting (1999) applied the regression and MOVE techniques to
the logarithm of the streamflow records rather than the raw data. This transformation tends to
improve the normality of discharge histograms, which generally exhibit a strongly positive skew
(Hirsch, 1982). In addition, it is preferable to scale the residuals by computing errors not in flow
rate, but in the logarithm of flow (Hirsch, 1979). In this way, errors are appropriately weighted
relative to the discharge. Otherwise, the error measure would be dominated by the largest

discharges in the largest streams (Moog and Whiting, 1999).

Similarly, water quality variables generally exhibit positive skew (Lettenmaier, 1988; Berryman
et al., 1988), which is also confirmed in our case by a preliminary analysis of the Nile Delta data.
Consequently, in this study, record-extension techniques are applied on the logarithms of the
water quality variables. The consequences of this transformation are that, for any of the
techniques, the sample mean of the extended record of the logarithms is an unbiased estimate of
the mean of the logarithms, but the sample mean of the extended record of concentrations is not

an unbiased estimate of the mean of the concentration (Hirsch, 1982; Sydor, 1998). However, the
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objective is to produce records with sample cumulative distribution functions (CDFs) that are

close approximates of the CDF of the actual records (Hirsch, 1982).

3.2 Proposed approach

The proposed approach consists of four main steps. The first step is to assess the level of
association among the variables being measured and to define groups of variables that are highly
associated. Then, for each highly associated group of variables, the second step is to assume that
each variable within the group would be discontinued and to identify its best auxiliary variable
from the same group. The third step is to assess different combinations of variables to be
discontinued and variables to be continuously measured. The last step is to build models with
which the information about discontinued variables can be reconstituted from continuously

measured variables.

3.2.1 Association assessment
Given the large number of variables that can be measured to assess surface water quality, it is
desirable to pre-classify them into smaller groups such that variables of the same group are
highly correlated. This can be done using cluster analysis (CA). Hierarchical clustering is carried
out in two consecutive steps: 1) define dissimilarity between variables, and 2) define the linkage
function between clusters. A matrix of association (correlation coefficients) is converted into a
dissimilarity matrix by substituting each (r) with (1—7?). In the second step, the average

linkage function is used to define the various clusters.
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To define at which level of dissimilarity the clusters are best identified, the conditions for an
improved estimator (smaller variance) of the mean or the variance as expressed by equations 3

and 9 are employed. Equations 3 and 9 are used to identify dissimilarity measures (4, and d,)
for the cluster analysis as follows:

d, <1-—1 (16)

n =2

dv<1—(—3¢\/32—4ch/2A (17)

Thus, one can use d,, and d, as criteria to identify the distance linkage at which the cluster can

be created. Using such criteria, one can assess the correlation coefficients between variables.
This allows the designer to overcome the first disadvantage in the conventional CR approach.
Assessment of correlation among water quality variables is applied at each monitoring site
separately. The separate treatment of each site is based on the preliminary analysis, which
indicates that the levels of correlation between different variables vary from site to site. It should
be noted that, as a particular case, some of the clusters may contain only one variable each
(single-variable cluster). The final rationalized list of variables should ideally contain variables
from all identified clusters of variables. If all variables of a particular cluster are discontinued, it
will no longer be possible to extend data within that cluster. Thus, variables that form single-

variable clusters should be continuously measured.
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3.2.2 Best auxiliary variables
After identifying clusters of highly associated variables, the following step is to study each
multiple-variable cluster separately. The approach assumes that each variable within the cluster
is the variable to be discontinued. For each discontinued variable, the best auxiliary variable for
record extension is selected from the other variables in the same cluster. This selection depends
on the correlation between discontinued and auxiliary variables, and the length of the common
period of record. In this study, Equation 2 is used to identify the best auxiliary variable that

minimizes the variance of the estimated mean of each discontinued variable.

Using Equation 2, the choice of the best auxiliary variable is based on the number of concurrent
years of measurements, the correlation coefficient and also on the number of years after the

assessment and reselection took place (#,). One can assess the precision of the variance of the
. . . . ) :
mean value estimator (Equation 2) after a certain number of years, assuming o, and p remain

unchanged and equal to their estimates based on », years of data. In this study, =, is assumed to

be two years, thus one would like to reconstitute information about discontinued variables after

two years from assessment and reselection took place.

3.2.3 Selection of discontinued variables
This step aims to define the variables to be continuously measured and those to be discontinued.
For instance, we consider the case where budget cuts require k¥ variables to be discontinued.
Which k variables among the w variables in the list of variables being measured should be
selected? The number of possible combinations of variables to discontinue is given by the

binomial coefficient, C(w,k). For each combination, one may compute an information index
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according to which the combinations may be ranked. Such a procedure allows the identification
of the best combination of variables to discontinue, or provides the decision maker with the rank
of the best combinations to discontinue. For practical comparison of the combinations, the
information index must be based on some kind of aggregated information (Ouarda et al., 1996).

An aggregated performance index, /,, can be defined as follows:

I,= Y JVarlilXi} (18)

variables X

where X is the water quality variable and Var{a{xX}} is the variance of the mean value estimator
expected after n, years (Equation 2). This summation is carried out over all variables under
study. For the discontinued variables, the variance of the mean value estimator after », years is
estimated using Equation 2. The population parameters in Equation 2 are replaced by their
estimates based on the », years of data. For continuously measured variables, the variance of the
mean value after »n, years is assumed to be equal to the variance of the mean after n; years

multiplied by (rn;-1)/(n+n,-1). The performance index is applied to the standardized variables in

order to remove the dimensionality and scale effects from the variables.

The aggregated performance index (Equation 18) assumes that all water quality variables have
equal importance (equal weights). The performance index can be modified by assigning a weight
to each variable in the case where the designers or decision makers assume that some of the
variables are more important than others. In this study, equal importance is assumed for all water

quality variables. Applying the aggregated performance index (Equation 18), one can evaluate
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each of the possible combinations. After having examined all possible combinations, one can

identify the optimal combination that has the minimum 7,, or one can even provide the decision

makers with the rank of all possible combinations. Thus, using such an aggregated performance
index, one can overcome the second disadvantage in the conventional approach. Figure 2

illustrates the flow of the analyses as described above.

(Figure 2)

Up to this step, the proposed approach to rationalize the number of water quality variables can
identify in a systematic and objective way the optimal combination of variables to be
continuously measured and those to be discontinued. The following step is to reconstitute
information about discontinued variables, which normally takes place a few years after

discontinuation.

3.2.4 Information transfer
In the case of reconstituting information about discontinued water quality variables, the objective

is to estimate monthly records of the discontinued variable for the n, years {%w----a I, {, while

maintaining the main statistical characteristics of the historical records. In water quality, one may
be interested not only in the statistical moments but also in extreme values. If the technique used
for record extension introduces a bias into the value of the more extreme-order statistics, this will
lead to bias in the estimates of the probability of exceedance of selected extreme values or,

conversely, bias in the estimation of distribution percentiles (Hirsch, 1982). In this study, the
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linear regression and MOVE3 record-extension techniques are carried out to reconstitute

information about discontinued variables.

3.2.5 Performance evaluation of the two record-extension techniques
An empirical experiment is designed to examine the usefulness of the simple linear regression
and MOVE3 techniques for preserving the statistical characteristics of the discontinued water
quality variables. In order to evaluate the performance of the two record-extension techniques, a
cross-validation (jackknife) is conducted. In the cross-validation, two years of monthly records
are in turn removed from the available ten years of data. All possible combinations of successive
or non-successive two-year periods are considered. Thus, from the available ten years of monthly
records C(10,2) = 45 possible combinations are considered. The values for these two years of
monthly observations are then estimated using the two record-extension techniques calibrated

with the remaining eight years.

The experimental design is as follows: For each pair of water quality variables identified in the
previous step as the variable to be discontinued and its best auxiliary, the two record-extension
techniques are applied. Thus, different realizations of extended water quality variable records
(i.e., the possible pairs % 45 in all 94 locations) are generated for cross-validation. Important
characteristics of the observed and generated records during the extension period are computed
for the two record-extension techniques. The evaluation of records generated by the extension
techniques involves determining the ability of the techniques to reproduce the various statistical

properties of the observed records.
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The extended records {ﬁ”lﬂ,...., I, } are compared to the observed records {ynl+l yeens Vi } based on

the estimation of the mean, standard deviation and over the full range of percentiles (from the 5t

to the 95" percentile). Moreover, the extended series {yl, Vaseeres Vs Vst oeeees j/nz} is compared to
the observed series {yl, Vaseers Vs Vi seeees ynz} in terms of the estimation of the y-time rate of

change (trend magnitude). Two methods are used to estimate the trend magnitude; (i) the simple
linear regression and (ii) Sen’s slope. The slope of the simple linear regression of y over time is
an indicator of the y-time rate of change. The Sen’s slope estimate is a nonparametric alternative
to the trend magnitude (EPA, 2000). This approach involves computing slopes for all pairs of
ordinal time records and then using the median of these slopes as an estimate of the overall slope.
In cases where there are n time records, where y; denotes the record value for the i time record,
there will be n (n-1)/2 possible pairs of time points (7, /) in which i > j. The slope for each pair is
called a pair-wise slope, by, and is computed as b;; = (yi-y;) / (i - j). Sen’s slope estimator is then

the median of the n (n-1)/2 pair-wise slopes.

Different performance measures are applied. First, the ratio U, of each statistic for the extended
series over the historic records is computed. The ratio U is used to assess the performance of the
record-extension techniques in preserving the historic characteristics. If the ratio U for a given
statistical parameter is larger than 1, it means that the applied technique overestimates this

parameter. If it is less than 1, the technique underestimates the parameter.

Concurrently, three performance measures are used to assess the two record-extension
techniques. They are the mean multiplicative error (MME), the relative bias (BIASr) and the

relative root mean square error (RMSEr), which are defined as follows:
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ilnj}i —Iny,

MME =exp| =20 (19)
ny
BlAsr = 3 1= (20)

ny i=n;+1 Vi

1,

RMSEV:\/l 3 {y—y} 1)
Vi

nz i=n;+1

where j; and y, are, respectively, the estimated and measured values of the dependent variable

for i=n, +1,..n,. The MME of the logarithms is equal to the geometric mean of ( 7/y ), and thus,

MME values that are equal to unity indicate an ideal performance of the record-extension
technique. The ratio U and MME are applied to the logarithms of the extended records, while the
BIASr and the RMSEY are applied to the reverse transformed records (original records). The ratio
U is used to compare each statistic with its historical value. The three performance measures of

equations 19 to 21 are applied to compare the estimated records with the observed records.

4 Results

In this section, results obtained from the application of the proposed approach to the Nile Delta
drainage system WQM network are presented. The proposed approach is applied to each of the
94 monitoring sites under study. Results are presented in two subsections. The first subsection
presents the results of the application of the proposed approach to the Arin drain monitoring site

(EH16), of the Bahr-Hadus drainage catchment, in the eastern Delta. The second subsection
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presents the results obtained from the empirical experiment to identify the best technique to use

in reconstituting information about discontinued variables.

4.1 Rationalization results
Using CA and the criteria developed for the assessment of the correlation coefficient (d,, and
d,), groups of highly correlated water quality variables are identified. Figure 3 shows the cluster

tree for EH16, where the x-axis indicates the water quality variables and the y-axis indicates the

linkage distance between clusters. The lowest criterion from d,, and &, (equations 16 and 17) is
applied. Results show that 4, =0.75 and 4, =0.33. Thus, the 4, criterion is applied as indicated
by the horizontal line at a cutoff distance of 0.33 (Figure 3). Using the higher value (d,, instead
of d,), one cannot guarantee that extension will be profitable within each cluster of variables, i.e.

that variables within each cluster can serve as auxiliaries for a precise estimation of the variance

for any of the discontinued variables in the same cluster.

Using d, as a criterion, the water quality variables are divided into 24 clusters, 18 of which are

single-variable clusters. These 18 variables should be continuously monitored as the information
they provide cannot be estimated from other variables. Six other clusters are considered for
further analysis. The Specific conductance (EC), Total Dissolved Solids (7DS), Sodium (Na) and
Chlorine (CI) form the first cluster. The second cluster consists of the Calcium (Ca) and Sulphate
(8O,). Nitrate (NO;) and Total Nitrogen (7N) form the third cluster. The fourth cluster consists
of the Total Coliform (7Col) and the Fecal Coliform (FCol). Biochemical Oxygen Demand
(BOD) and Chemical Oxygen Demand (COD) form the fifth cluster. The last cluster consists of
Total Suspended Solids (7SS), Total Volatile Solids (7VS) and Turbidity (7urb). One should
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assure that at least one variable from each of the six clusters is continuously measured. Given
that the six clusters contain a total of 15 water quality variables, the maximum number of

variables to discontinue is 9.

(Figure 3)

Within each multiple-variable cluster, each variable is assumed to be discontinued and its best
auxiliary variable is identified based on Equation 2. Four clusters consist of only two variables
each. It is clear in these cases that each variable works as an auxiliary for the other variable, and
only one variable can be discontinued from each one of these clusters. Two clusters consist of
more than two variables each. Each variable is hence considered to be discontinued and Equation

2 is applied to identify its best auxiliary from the other variables of the same cluster.

Using Equation 2, Na is found to be the best auxiliary for C/ and TDS. CI is the best auxiliary for
Na and TDS is the best auxiliary for EC. For the last cluster, 7SS is found to be the best auxiliary
for Turb and for TVS. Turb is the best auxiliary for 7SS. Table 2 shows all alternatives, assuming
each variable to be discontinued (first column), the best auxiliary variable is identified (second

column). The estimated variance based on Equation 2 is presented in the third column.

If one variable is to be discontinued from the list of variables being measured, the aggregated
performance index is applied (Equation 18). The variables listed in Table 2 are ranked based on
the aggregated performance index (fourth column). If only one variable is to be discontinued,

from a statistical point of view, it can be either Na or CI. Discontinuation of either of these two
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variables leads to an equal performance index. Table 2 provides the rank of the variables to be
discontinued from a statistical point of view. Thus, it can be used along with other criteria as
support for decision makers and network designers to choose which variable to discontinue.
Other criteria may include stakeholders’ preference or the significance of the variable in specific

studies.

(Table 2)

Where more than one variable is to be discontinued, the aggregated information index is applied
to rank the different combinations. For example, if two water quality variables must be
discontinued, C(15,2)=105 different combinations may be considered. Table 2 shows the first
fifteen combinations ranked based on the aggregated information index for the case of two
variables to be discontinued (col. 5 to 7), and for the case of three variables to be discontinued
(col. 8 to 11). Similarly, the proposed approach can provide decision makers, WQM network
designers and stakeholders with a variety of scenarios (combinations) for any number of

variables to be discontinued.

The proposed approach can also be applied using spatial correlation between variables measured
at different sites. In this case, instead of evaluating the correlations between variables measured
at the same site, one can evaluate the correlation between the same variable measured at different
monitoring sites. Thus, the decision could be to discontinue the measurement of some variables

at some sites, and continuously measure the same variables at auxiliary sites.
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4.2 Empirical experiment

The results of the empirical experiment are presented herein. Figures 4 and 5 summarize the
results obtained for the ratio U. Figure 4 shows the ratio U distribution for the estimation of the
statistical moments and Figure 5 shows the ratio U distribution for the estimation of different
non-exceedance percentiles. From the previous step, 962 pairs of variables are considered at all
94 monitoring locations. Box plots in Figures 4 and 5 are constructed from 42872 records. This
number of records is less than the expected number (possible pairs X 45 at all 94 monitoring
sites). This reduction is mainly due to the absence of the F'Cal and the TN measurements in the

first two years, and the turbidity in the last two years of the monitoring program.

The box plots in Figures 4 and 5 represent the distribution of the ratio U for a given statistic and
record-extension technique. The accuracy of each approach can be judged by the degree of
dispersion in the box plots, by the closeness of the median to a value of 1 and by the symmetry

of the box plot around the value of 1 (Hirsch, 1982; Vogel and Stedinger, 1985).

(Figures 4 and 5)

In Figure 4, box plots represent the distribution of the ratio U for the estimation of the mean and
the standard deviation. For the estimation of the mean, the regression and MOVE3 techniques
lead to median values of U equal to 1. Boxes are symmetric around 1 and have almost the same
dispersion. Figure 4 shows that the regression technique tends to underestimate the standard
deviations. The cross-validation shows that approximately 75 percent of the regression standard

deviations are lower than the historical values, with a median value of 0.91. As for the MOVE3
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technique, the median value is 1.02. The MOVE3 standard deviation box plot is more symmetric

around 1 and shows relatively less dispersion than the one corresponding to the regression.

Figure 5 shows that the median values of the ratio U for low percentiles are higher than 1 while
those corresponding to high percentiles are lower than 1 for both record-extension techniques. In
general, the median values of the ratio U for the MOVE3 percentiles are very close to 1. The box
plot values range between 0.95 and 1.06 for the regression and between 0.98 and 1.02 for
MOVE3. In general, MOVE3 box plots are symmetric around 1 and show relatively less
dispersion than those corresponding to the regression. These results suggest that the regression
tends to overestimate low percentiles and underestimate high percentiles. MOVE3 reduces the

bias exhibited by the regression.

In Figure 5, the box plots representing low percentiles show more dispersion than those
corresponding to high percentiles, especially for regression. To further study the impact of the
percentile value on estimation error, one needs to study the estimation error (y; —y;) as a
function of the values of several water quality records. Figure 6 illustrates the estimation error
for the COD when BOD is used as the auxiliary variable at monitoring site EH16. Figure 6
shows that the error generally increases as COD values increase. Figure 7 shows the percentile
estimation error and relative error for one trial of the generated records. Results indicate that the
low percentile estimation error is lower than the error corresponding to high percentiles. On the
other hand, relative error evolves in the opposite direction. These results are more intuitive as

one usually expects the error to increase as the variable values increase.
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(Figures 6 and 7)

In order to confirm the results presented in Figures 4 and 5, the #-test is applied to compare the
ratio U mean values with 1. Table 3 shows the ratio U means and standard deviations for both
record-extension techniques. Asterisks shown beside the mean values indicate that the hypothesis
that the ratio U is equal to one is rejected at the 5% significance level in these cases. Table 3
shows that the tested hypothesis is rejected for all statistical parameters for both record-extension
techniques. While the ratio U mean values for high and low percentiles show a significant
difference from 1 for both record-extension techniques, mean values derived using MOVES3 are
always closer to 1 than the corresponding values obtained by regression. In addition, standard
deviations obtained from MOVE3 are less than those from regression. These results also confirm
that MOVE3 performance is better than the regression for preserving the statistical parameters of

the discontinued water quality variables.

(Table 3)

Figure 8 illustrates the MME exhibited by the two extension techniques in estimating the water
quality concentration percentiles. Results indicate that MOVE3 MME values are closer to 1 than
regression MME values. The curves corresponding to MOVE3 and the regression method
intersect at the median as the regression approach overestimates low percentiles and
underestimates high percentiles. Figure 9 illustrates the B/ASr exhibited by the two extension
techniques in estimating the water quality concentration percentiles. BI4Sr shows an identical

behavior to MME, as BIASr values for the MOVE3 are, in general, closer to zero than regression
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BIASr values. Figures 5, 8 and 9 clearly illustrate the regression overestimation of low
concentrations and underestimation of high concentrations, as would be expected from its

tendency to produce an extended record with a lower variance than that of the observed record.

(Figures 8 and 9)

Table 4 shows the ratio U, BIASr and RMSEr for the estimation of the trend magnitude in the
extended series. Using the simple linear regression slope or Sen’s slope, the ratio U of the trend
magnitude estimated from both the regression and MOVE3 extended series to that estimated
from the observed series are close to 1. The BIASr shows similar results, as the BIASr values are
close to zero. For the RMSEr, results indicate that there is no significant difference between the

regression and MOVE3, though the RMSE¥ for the MOVES3 is higher than that for regression.

(Table 4)

The MME, BIASr and the RMSEr are also computed for individual water quality records, where
each error represents the difference between the extended and actual water quality record. Table
5 shows that the MME are 1.014 and 1.030 for the regression and MOVE3 techniques,
respectively. The #-test is applied to determine the significance of the difference between the two
techniques based on average errors. The last column in Table 5 represents the probability of
accepting the null hypothesis that there is no significant difference between the error mean
values based on two-tailed #-test. The #-test indicates that there is significant difference between

the two average MME values. Similarly the #-test indicates that there are significant differences
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between the two average BIASr and RMSEr values. In general, the RMSEr shows high values
and relatively large differences between the two extension techniques. These high values of the
RMSEYr are due to the back-transformation of the estimated records, which consequently shows
the dimensionality and the scale effects of the variables. These results indicate that the regression
performance is better than MOVE3 on the estimation of individual water quality monthly

records.

(Table 5)

The results in this section can be summarized as follows. The two extension techniques produce
extended records that are unbiased in the mean. Furthermore, results indicate that regression
substantially reduces variability and MOVE3 tends to preserve variability. The regression
technique underestimates high concentration values and overestimates low values. On the other
hand, the MOVE3 technique tends to reduce the bias in the estimation of both high and low
concentration values. The MOVE3 technique produces extended records that preserve both high
and low percentiles relatively well. The linear regression technique is generally better than
MOVE3 for the estimation of individual water quality records. The #-test shows that there is a
significant difference in the average MME, BIASr and RMSEr, which indicates that the
regression technique is relatively better than MOVE3 for the estimation of individual water

quality records.
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5 Conclusions

A statistical approach for the assessment and selection of the optimal combination of water
quality variables to measure in surface WQM networks is presented here. Criteria developed
from record-augmentation procedures are employed with CA to identify highly correlated
variables. An information performance index is then applied to identify optimal combinations of

variables to be continuously measured and those to be discontinued.

Simple linear regression and the MOVE3 technique are applied to reconstitute information about
discontinued variables using the data of the case study. Different statistical performance
measures are used to assess each of the extension techniques and their ability to maintain
statistical characteristics of the water quality records. The MOVE3 technique showed better
performance in preserving the statistical characteristics of the water quality discontinued
variables. Conversely, regression shows better performance for the estimation of individual
water quality records. Therefore, the MOVE3 technique is recommended for the reconstitution of
information about discontinued water quality variables in the Nile Delta WQM network, while

the regression technique is recommended for the reconstitution of missing values.

It can be concluded that the proposed approach can identify, in a systematic and objective way,
the optimal combination of variables to be continuously measured and variables to discontinue.
Using the proposed approach and the MOVE3 record-extension technique allows the
deficiencies inherent in the conventional correlation-regression approach to be overcome.
Finally, it can be concluded that the proposed approach could be a useful decision support tool

for the optimized selection of water quality variables.
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It should be emphasized that the proposed approach provides the decision maker with the
optimal combinations of variables to discontinue from a statistical point of view. However,
various qualitative criteria could be integrated when deciding which variables to discontinue and
which variables to be continuously measured. Such criteria may vary based on the specific nature

of the monitoring program under assessment.

In addition, the decision may be in the form that some variables could be determined less
frequently instead of being terminated. For instance, instead of terminating the monthly
measurements of two variables, the decision could be to measure four variables bimonthly. This

can be illustrated as follows:

XpsXgs Xypueenes Xy s Xy 15X, 105X, 135X, 145 X

m+L> 20 430 Y +4° n1+5’xn1+6’ """ ’xn1+n2

YisVos Viseenne > V4> yn1+2 yn1+4 yn1+6’ ’yn1+n2

Such a decision may help in reassessing the inter-variables correlation and updating record-
extension techniques parameters frequently. This may improve reconstitution of information
about the less frequently sampled variables on the short as well as on the long terms. It may also

assist in integrating the assessment of the variables to be measured with the sampling frequency.

Parallel to the proposed evaluation of the number of variables to discontinue, a cost analysis can
also be introduced. This would help to address the trade-off between the number of water quality

variables to be measured on one hand and the sampling frequency and the number of sampling
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sites on the other hand. Thus, the decision will be either to discontinue more variables in favor of
keeping more monitoring sites and increasing the sampling frequency, or to keep more water
quality variables while reducing the number of monitoring locations and/or the sampling

frequency.

The proposed approach may be modified by using multiple regression or stepwise regression,
where more than one auxiliary variable can be used in reconstituting information about the
discontinued variable. In this case, the proposed approach should be adapted accordingly. For
instance, the criteria to identify the correlation coefficient threshold and the criteria to identify

the optimal combination of variables to discontinue should be modified.
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Table 1. Water Quality variables measured at the Egyptian national WQM network

Water Quality Variable Symbol | Unit | Water Quality Variable | Symbol Unit
Biochemical Oxygen Demand | BOD mg/l | Streamflow 0 m’/sec
Chemical Oxygen Demand COD mg/l | Temperature T °C
Dissolved Oxygen DO mg/l | Acidity pH -
Specific Conductance EC dS/m | Total Suspended Solids TSS mg/1
Total Dissolved Solids DS mg/l | Total Volatile Solids Vs mg/1
Calcium Ca mg/l | Turbidity Turb NTU
Magnesium Mg mg/l | Visibility disc Vis cm
Sodium Na mg/l | Total Coliform TColi | MPN/100ml
Potassium K mg/l [ Fecal Coliform FColi | MPN/100ml
Bicarbonate HCO; mg/l | Cadmium Cd mg/1
Sulphate SOy mg/l | Manganese Mn mg/1
Chloride Cl mg/l | Copper Cu mg/1
Nitrate NO; mg/1 Iron Fe mg/1
Ammonium NH, mg/l | Zinc Zn mg/1
Total Phosphorus P mg/l | Nickel Ni mg/1
Total Nitrogen TN mg/l | Boron B mg/1
Lead Pb mg/1
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Table 2. Variables to discontinue and their best auxiliary variables

Qne Best A . .

variable .. Var(,u) 1,% | Two variables | 1,% Three variables 1,%

discontinued auxiliary
Cl Na 0.0838 [2.9818 Cl TDS|2.4406| CI | TDS | TVS |2.2793
Na Cl 0.0838 |2.9818| Na EC |2.4420| CI | TDS | Turb|2.2801
DS Na 0.0842 [2.9825 Cl EC |2.4420| CI | TDS | TSS |2.2806
EC 7DS |[0.0877 (2.9872] Na VS |2.4424| Na | EC | TVS |2.2808
Turb. 7SS [0.0872 |2.9874 Cl TVS|2.4424| CI | EC | TVS |2.2808
1SS Turb. [0.0872 (2.9877| TDS | TVS|2.4428| Na |Turb| EC |2.2815
Vs 7SS 10.0880 |12.9878| Na Turb|2.4431| CI |Turb| EC [2.2815
Ca SO, 10.0897 12.9918 Cl Turb|2.4431| Na |Turb| TVS |12.2819
SO, Ca 0.0897 [2.9918| TDS |Turb|2.4435| Cl |Turb| TVS [2.2819
COD BOD (0.0924 (2.9952| Na 1SS 12.4437| Na | TSS | EC (2.2820
BOD COD 10.0924 12.9952 Cl 7SS 12.4437| CI | TSS | EC [2.2820
TN NO3 10.1145 |3.0157| TDS | TSS |12.4440| TDS | Turb | TVS |2.2823
Fcoli Teoli 10.1165 |3.0191] EC TVS |2.44421 Cl | TDS| Ca |2.2831
NO3 TN {0.1145 [3.0305]| Turb | EC |2.4450| C! | TDS | SO4 12.2831
Tcoli Feoli 10.1165 (3.0324| Turb | TVS|2.4453 | Turb| EC | TVS |2.2837
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Table 3. t-test for the ratio U of various statistics

Technique Regression MOVE3
Statistic Mean Stal.ldz.lrd Mean Stal.ldz.lrd
deviation deviation
Mean 1.016% | 0.149 | 1.019% [ 0.143
Standard deviation | 0.913* | 0259 | 1.082* | 0.388
5™ percentile 1.228% | 0.588 | 1.088* | 0.570
10™ 1.176% | 0.477 |1.082*% | 0.436
150 1.150% | 0.425 | 1.080* | 0.385
20" 1.125% | 0.377 | 1.072*% | 0.343
25t 1.104* | 0.330 | 1.064* [ 0.309
30™ 1.088* | 0.299 | 1.059* | 0.288
35™ 1.067% | 0262 | 1.048*% | 0.262
40™ 1.052* | 0.237 | 1.040*% | 0.241
45™ 1.034* | 0211 |[1.029*%| 0.220
50™ 1.017% | 0.183 | 1.019%| 0.194
55t 1.008* | 0.171 | 1.015%| 0.181
60" 0.996* | 0.163 | 1.006* | 0.171
65™ 0.983* | 0.158 |0.996% [ 0.163
70" 0.972* | 0.154 |0.988* | 0.157
75t 0.961* | 0.150 |0.981* | 0.149
8o™ 0.951* | 0.146 | 0.974*| 0.142
85t 0.942* | 0.144 |0.968* | 0.136
90" 0.932* | 0.141 |0.962*| 0.131
95t 0.918* | 0.142 [0.953*| 0.128

* The hypothesis that the ratio U is equal to 1 is rejected at the 5% level of significance.
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Table 4. Average error measures for the trend magnitude estimation

Error measures

Regression slope

Sen’s slope

Regression | MOVE3 | Regression | MOVE3
ratio U 0.988 0.989 0.994 1.002
BIASr -0.012 -0.011 -0.006 0.002
RMSEr 0.639 0.747 0.600 0.702
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Table 5. Average error measures for record-extension techniques

Error measure Regression [ MOVE3 t 2-tailed sig.
MME 1.014 1.030 -10.77 5.1E-27
BIASr 12.56 14.97 -6.23 0

RMSEyr 47.92 55.92 -8.78 0
BIASY (In values) 4.12 3.04 7.54 4.7"-14
RMSEr¥ (In values) 18.14 19.41 -5.75 8.559
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Figure 4. Box plots of the ratio U for the mean and standard deviation
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Abstract

The extension of records at monthly, weekly or daily time steps at a short-record gauge from
another continuously measured gauge is termed “record extension”. Ordinary least squares
regression (OLS) of the flows, or any hydrological variable, is a traditional and still common
record-extension technique. However, its purpose is to generate optimal estimates of each daily (or
monthly) record, rather than the population characteristics, for which the OLS tends to
underestimate the variance. The line of organic correlation (LOC) was developed to correct this
bias. On the other hand, the Kendall-Theil robust line (KTRL) method has been proposed as an
analogue of OLS, its advantage being its robustness in the presence of extreme values. In this
study, four record-extension techniques are described, and their properties are explored. These
techniques are OLS, LOC, KTRL and a new technique (KTRL2), which includes the advantage of
LOC in reducing the bias in estimating the variance and the advantage of KTRL in being robust in
the presence of extreme values. A Monte-Carlo study is conducted to examine these four
techniques for bias, standard error of moment estimates and full range of percentiles. An empirical
examination is made of the preservation of historic water quality concentration characteristics using
records from the Nile Delta water quality monitoring network in Egypt. The Monte-Carlo study
showed that the OLS and KTRL techniques are shown to have serious deficiencies as record-
extension techniques, while the LOC and KTRL2 techniques show results that are nearly similar.
Using real water quality records, the KTRL2 is shown to lead to better results than the other

techniques.

Key words —Record extension; Ordinary least squares; Line of organic correlation; Kendall-Theil

Robust Line; Monitoring network.
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1 Introduction

Water quality monitoring network rationalization consists of reducing the number of monitoring
sites, the number of samples and/or the number of water quality variables measured. The
reduction in water quality variables is usually based on correlation analysis. Consideration
should be given to reduce the number of variables sampled without substantial loss of
information. Fewer variables are easier and less costly to analyze. The establishment of
dependencies or correlations between various water quality variables saves time and effort

(Strobl and Robillard, 2008).

A review of the literature reveals that correlation and regression analyses are commonly used to
reduce the number of water quality variables being measured (e.g., Sanders et al., 1983;
Yevjevich and Harmancioglu, 1985; Harmancioglu and Yevjevich, 1986, 1987). A correlation
analysis is used to assess the level of association among the variables. If two variables show high
correlation, this correlation is then an indication that some of the information produced may be
redundant. Consequently, in practice, one may discontinue the monitoring of one variable and
only continuously measure the other. Then, the ordinary least squares regression (OLS)
technique is used to reconstitute information about the discontinued variable, using the

continuously measured one as an explanatory variable.

The use of OLS regression often results in underestimation of the variance in extended records
(Hirsch, 1982; Alley and Burns, 1983). Additionally, if the technique used for record extension

introduces a bias into the value of the more extreme order statistics, this will lead to bias in the
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estimates of the probability of exceedance of selected extreme values or, conversely, to a bias in
the estimation of distribution percentiles (Hirsch, 1982). In water quality, one may be interested
in, not only the statistical moments, but also percentiles, which can be used to assess compliance

with standards or objectives (Khalil et al., 2010).

The line of organic correlation (LOC) was proposed as a linear fitting procedure in hydrology by
Kritskiy and Menkel (1968). This line has also been called the "maintenance-of-variance
extension" or MOVE (Hirsch, 1982). The LOC is widely applied to streamflow record extension
at short-gauged stations (e.g., Hirsch, 1982; Vogel and Stedinger, 1985, Moog et al., 1999). The
main advantage of the LOC is that the cumulative distribution function of the predictions,
including the variance and probabilities of extreme events such as floods and droughts,
approximates the distributions of the actual records they are intended to represent (Helsel and

Hirsch, 2002).

The Kendall-Theil robust line (KTRL) has the desirable properties of a nonparametric estimator.
It is almost as efficient as the parametric estimator (e.g. OLS) when all assumptions of normality
are met and is even much more efficient when those assumptions are not met (Helsel and Hirsch,
2002). When the data or their transforms exhibit a linear pattern, constant variance and near-
normality of residuals, the KTRL and OLS will give nearly identical results (Hirsch et al., 1991).
However, when extreme values exist, the KTRL will produce a line with greater efficiency than

OLS (Hirsch et al., 1991; Helsel and Hirsch, 2002).
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The main goal of this study is to assess the usefulness of four record-extension techniques in
reconstituting information about discontinued water quality variables. These techniques are OLS,
LOC, KTRL and a new technique that combines the advantage of LOC in preserving the
cumulative distribution function of predictions as well as the advantage of the KTRL in being
robust in the existence of extreme values. This new technique will be referred to hereafter as

KTRL2.

In the following section, the theoretical background is provided. Section 3 details the Monte-
Carlo simulations and empirical experiments. The results obtained are presented and discussed in

section 4. Finally, conclusions are presented in section 5.

2 Theoretical background

Assume that the measured variable y has n, years of data and that the measured variable x has

n, +n, years, of which », are concurrent with the data observed for y, illustrated as follows:

Xps Xy Xgperees X, 5 X, 15X

ny 2 Al 200000 > xn1+n2

Yi5V2s Vioeeens Yy

For water quality variables reduction, one can consider that the initial assessment and variable

selection occurred in year n,. After n, years, the measurement of variable y is discontinued,

and the variable x continues to be measured. Assume that after n, years, we desire to
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reconstitute information about the variable y . To estimate records of the discontinued variable

y for the period n, +1 through n, years, a record extension technique can be used.

In this section, four record extension techniques are described. These are the ordinary least
squares regression (OLS), line of organic correlation (LOC), Kendall-Theil robust line (KTRL)

and a new technique Kendall-Theil robust line 2 (KTRL2).

2.1 Ordinary Least Squares (OLS) regression

Ordinary Least Squares (OLS), commonly referred to as linear regression, is an important tool
for the statistical analysis of water quality data. It is used to describe the co-variation between a

variable of interest and one or more other variables. OLS of y on x can be illustrated as

follows:

JA’i :a+bx[ (1)

where J, is the estimated value of y for i=n, +1,...,n,, @ and b are the intercept and slope of

the regression equation, respectively. The parameters a and b are the values that minimize the

squared error in the estimated y values. The solution of a and b is found by solving the normal

equations (Draper and Smith, 1966). The optimal solution to Equation 1 is:

j’i:)_/1+r(syl/sxl)(xi_)_cl) (2)

173



where y, and X, are the mean values of », and x,: the series for the concurrent records
(i=L..,n), s, and s, are the standard deviations of y, and x, and r is the product-moment

correlation coefficient between y, and x,.

2.2 Line of Organic Correlation (LOC)

An alternative to OLS is to specify that the extension equation be of the form given in Equation
1, while a and b are to be set not to minimize the squared error, but rather to maintain the sample
mean and variance. The idea that led to the development of LOC was that of finding the values

of a and b in Equation 1 that satisfy the following equations (Hirsch, 1982):

n n

2)’}1‘:2)}[ (3)

i=l1 i=l1

>G5 =20 -’ )

One such solution is:
)gizyl—i_(syl/sx])(xi_'fl) (5)

The LOC has been called by various names, e.g., “reduced major axis” (Kermack and Haldane,
1950), “allometric relation” (Teisser, 1948), “geometric mean functional regression” (Halfon,
1985) and “maintenance-of-variance extension” or MOVE (Hirsch, 1982). Hirsch (1982) carried
out a Monte-Carlo experiment to examine the OLS and LOC for bias and standard error of

moments estimates and order statistics. Results showed that OLS cannot be expected to provide
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records with the appropriate variability, and that the LOC is an effective technique in terms of
producing time series with properties (such as variance and extreme order statistics) most like the

properties of the records they are intended to present.

2.3 Kendall-Theil Robust Line (KTRL)

The Kendall-Theil robust line (K7RL) is based on the Kendall’s rank correlation coefficient
(tau), which is used to test for any monotonic, and not necessarily linear, dependence of y on x.
Related to tau is a robust nonparametric line applicable when y is linearly related to x. This line
will not depend on the normality of residuals for the validity of significance tests, nor will it be
strongly affected by extreme values, in contrast to OLS (Helsel and Hirsch, 2002). The robust
estimate of slope for this nonparametric fitted line was first described by Theil (1950). The Theil
slope estimate is computed by comparing each data pair to all others in a pair-wise fashion. An
n-element data set of (x, y) pairs will result in n (n-1)/2 pair-wise comparisons. For each of these

comparisons, a slope Ay/Ax is computed. The median of all possible pair-wise slopes is taken

as the nonparametric slope estimate (b, ):

Y=V
X, —x (6)
Vi<j i=12,...n-1 J=23... ]

b, =median

The intercept (a, ) is defined as follows:

a, =median (y)—b, * median (x) (7)

175



This formula assures that the fitted line goes through the point (median (x), median (y)). This is
analogous to OLS, where the fitted line always goes through the point (mean (x), mean (y)). b,
is an unbiased estimator of the slope of a linear relationship, and » from OLS is also an unbiased
estimator. However, the variances of the estimators differ. When the residuals from the true
linear relationship are normally distributed, OLS is slightly more efficient (has a lower variance)
than KTRL. When residuals depart from normality (i.e., are skewed or prone to extreme values),

then b, can be much more efficient than the OLS slope (Hirsch et al., 1991; Helsel and Hirsch,

2002).

2.4 Kendall-Theil Robust Line 2 (KTRL2)
Similarly, the new record-extension technique (KTRL2) proposed in this paper follows KTRL
but with a modification of the intercept (a,) and slope (b, ). Its objective is to produce records
with sample cumulative distribution functions (CDFs) that are close approximates of the CDFs

of actual records. KTRL2’s developmental goal is to find the values of a, and b, in Equation 1

that minimize the error in estimating the y percentiles; a, and b, are defined as follows:

q(»); —q(»),;
q(x); —q(x), (®)
Vi<j i=5"10"...90"  j=10"15"....95"

bq =median

The intercept is defined as follows:

a, =median(y)—b, * median(x) 9)
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where ¢(y) and ¢(x) are the percentiles of y and x estimated during the period of concurrent

records. Percentiles are obtained for the range of the 5% 10™... to the 95™ percentile. Thus, a set
of 19 (x, ) pairs of percentiles will result in 171 (n (n-1)/2 =19 (19-1)/2) pair-wise comparisons.

For each of these comparisons, a slope Ay/Ax is computed and the median of the 171 possible

pair-wise slopes is taken as the slope estimate. Thus, the objective is to minimize the error in

estimating the y percentiles rather than minimizing the error in estimating the y records.

3 Evaluation experiments

In order to evaluate the four record-extension techniques, Monte-Carlo and empirical experiments
are conducted. Monte-Carlo experiments allow for a comparison and evaluation of different record-
extension techniques using records with predefined distributional and statistical properties. The
empirical experiment allows for an evaluation of the four record-extension techniques using real
data. In both the Monte-Carlo and empirical experiments, the four record extension techniques are
evaluated under different levels of correlation between x and y as well as different sizes of

concurrent records (7;).

3.1 Monte-Carlo experiment
In the Monte-Carlo experiment, the experimental design carried out by Hirsch (1982) for the
comparison of OLS and LOC is followed. The x and y variable sequences of 120 cases were
generated from a bi-variate normal distribution with x4 =14=0 and o =c’=1. Three cross-

correlation coefficients and different combinations of the number of records during the concurrent

period (n;) and the period to be estimated (7,) are considered. Monte-Carlo experiments are carried
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out for (n;, ny) values of (96, 24), (72, 48), (48, 72) and (24, 96) and for correlation coefficient

values (p) of 0.5, 0.7 and 0.9. Monte-Carlo experiments are conducted with each of the twelve
different combinations of p and (n,,n,) to evaluate the ability of the four record-extension

techniques in reproducing the various statistical properties of the population considered in the
extended series. The extended series are evaluated based on the estimation of the mean, standard

deviation and over the full range of percentiles (from the 5" to the 95" percentile).

3.2 Empirical experiment

The main objective of the empirical experiment is to evaluate the four record extension techniques
using real water quality records under different levels of correlation as well as different sizes of
concurrent records (n;). In the empirical experiment, water quality records from the Nile Delta
drainage system water quality monitoring network are used. The monitoring network consists of 94
monitoring locations (Figure 1), at which monthly samples have been taken since August 1997.
Monthly water quality records, available for electric conductivity (EC), total suspended solids
(TDS) and Chlorine (Cl) at the 94 monitoring locations from August 1997 to July 2007, are used in
the empirical experiment. These three variables are chosen in order to be able to evaluate the
record-extension techniques under different levels of correlation. The preliminary analysis indicates
that the correlation between the EC and TDS is higher than that between the EC and Cl in most of
the 94 monitoring locations. The EC is used as an explanatory variable to estimate the TDS and Cl

using the four record-extension techniques.

(Figure 1)
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An empirical experiment is designed to examine the utility of the four record-extension
techniques in reproducing records that preserve the statistical characteristics of the observed TDS
and Cl records. Three different combinations of the size of records during the concurrent period
(n;) and the extension period (7,) are considered for each of the two estimation models (TDS and
Cl). Empirical experiments are carried out for (n;, ny) values of (108, 12), (84, 36) and (60, 60).
In order to evaluate the performance of the four record-extension techniques, a cross-validation
(jackknife) method is applied. In the cross-validation, when (7;, n2) equals (108, 12), one year of
monthly records is removed from the available ten years of data. The monthly values for the
removed year are then estimated using the four record-extension techniques calibrated with the
nine remaining years. Similarly, for (n;, n,) values of (84, 36) and (60, 60), the cross-validation

method is applied to estimate three and five years of monthly data respectively.

At each of the 94 monitoring sites, the four record-extension techniques are applied to estimate
the TDS and CI using the EC as an explanatory variable. Thus, for each of the two estimation
models considered, when (n;, n,) equals (108, 12), 940 (94 locations % 10 different sample
combinations) different realizations of extended water quality variable records are considered.
For (n;, n,) values of (84, 36) and (60, 60), possible combinations of successive or non-
successive three and five years are considered respectively. Consequently, from the available ten
years of monthly records C(10,3) = 120 and C(10,5) = 252 possible combinations are
considered. Thus, 11280 (94 locations x 120 different sample combinations) different
realizations of extended water quality variable records are considered when (n;, n,) equals (84,
36) and 23688 (94 locations x 252 different sample combinations) are considered when (n;, n>)

equals (60, 60).
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In general, water quality variables exhibit a positive skew (Lettenmaier, 1988; Berryman et al.,
1988), which is also confirmed in our case by a preliminary analysis of the Nile Delta data.
Consequently, in the empirical experiment, the record-extension techniques are applied to the

logarithms of the EC, TDS and Cl.

3.3 Evaluation criteria
In the Monte-Carlo experiments, the utility of the four record-extension techniques in producing
extended data series {yl, Vosererenns Vo, ,JA/nlﬂ, ..... .)’>n1+n2} that preserve the population mean, standard
deviation and the full range of percentiles is evaluated. In the empirical experiments, the utility
of the techniques in reproducing the statistics of the observed data series

{yl, Vyeereeens Vs Vuioeee ynl+n2} is evaluated. Two metrics are used to evaluate the performances

of the four record-extension techniques. These are the bias (B/AS) and the root mean square error

(RMSE), which can be defined as follows:

BfAs:an -, (10)
i=1
1 &G
RMSE=\/;Z(,V,~ ) (n
i=1

where ¥, and y, are, respectively, the estimated and the measured statistic of the dependent

variable for ; =1,...n, where n is the number of trials in the Monte-Carlo or empirical studies. In

addition to the two metrics, a ratio U of the value of each statistic (mean, standard deviation or
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percentiles) for the extended series to that for the observed series is computed. The ratio U is
used to assess the performance of a record-extension technique in preserving the observed
records characteristics. If the ratio U for a given statistic is larger than 1, then the applied
technique overestimates this statistic. If it is less than 1, the technique underestimates the target

statistic.

4 Results

The results are divided into two subsections: the first subsection presents the results of the Monte-

Carlo experiment, and the second subsection presents the results of the empirical experiment.

4.1 Monte-Carlo experiment results

In the Monte-Carlo experiment, 5000 trials are generated. This number was chosen based on pre-
analysis examination of the convergence of the error in estimating different statistics. Table 1
shows the BIAS values for the estimation of the mean and standard deviation from the extended
data series. The hypothesis that the mean estimation BIAS value is equal to zero could not be
rejected at the 0.05 significance level for any of the extension techniques under any of the twelve
designed combinations. In addition, results show that there is no significant difference in the BIAS
values for the estimation of the mean between the four record-extension techniques, under any of

the twelve different combinations considered.

(Table 1)
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Using the OLS or KTRL, the hypothesis that the BIAS value for the estimation of the standard
deviation is equal to zero is rejected at the 0.05 significance level for all of the 12 combinations
being considered. On the other hand, this hypothesis is rejected for 3 out of the 12 combinations
considered when LOC is used and for 5 out of the 12 combinations when KTRL2 is used. The OLS
and KTRL techniques result in a systematic underestimation of the standard deviation with BIAS
values ranging between -0.366 and -0.020. The LOC BIAS values range between -0.001 and 0.012,
while KTRL2 BIAS values range between 0.000 and 0.015. Table 1 shows also that the BI4S values
decrease with an increase in the correlation coefficient or an increase in the number of concurrent
records. These results may indicate that, given the availability of a sufficient number of concurrent
records with a high level of association, both the LOC and KTRL2 techniques will estimate the
standard deviation with high precision. In general, Table 1 shows that BIAS values corresponding
to the LOC and KTRL2 are closer to zero than those corresponding to the OLS and KTRL under

any of the twelve designed combinations.

Table 2 shows the RMSE values for the estimation of the mean and standard deviation using the
four record-extension techniques for each of the twelve designed combinations of n;, n, and p.
The RMSE values for the estimation of the mean and standard deviation decrease with high
correlation coefficients and large sizes of concurrent records. RMSE values for the estimation of the
mean using the OLS are lower than those corresponding to other techniques, especially for small
sizes of concurrent records. RMSE values for the estimation of the standard deviation using either

the LOC or KTRL2 are equivalent and lower than those corresponding to OLS and KTRL.

(Table 2)
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The values of the ratio U of the estimation of the standard deviation are presented in Table 3. The
results show that the ratio U’s mean values that correspond to either the LOC or KTRL2 are closer
to 1 than those that correspond to OLS or KTRL. When using the OLS or KTRL, the hypothesis
that the ratio U’s mean value is equal to 1 is rejected at the 0.05 significance level for all of the 12
combinations considered. On the other hand, for the LOC or KTRL2, this hypothesis cannot be
rejected for most of these combinations. Table 3 also shows that the ratio U becomes closer to 1
with high correlation coefficients and with large sizes of concurrent records. An increase in the
number of concurrent records will ensure more precise estimates of the intercept and slope of the

record-extension technique.

(Table 3)

Figure 2 shows the BIAS values for the estimation of the full range of non-exceedance percentiles
(from the 5™ to the 95™) using the four record-extension techniques. In Figure 2, six frames
representing the two extreme cases (n; = 96 and n; = 24) under each of the three correlation
coefficients considered are presented. Figure 2 shows that the BIAS values for the estimation of
extreme percentiles decreases with high correlation coefficients and large sizes of concurrent
records. When n; is equal to 24, the BIAS ranges between -0.6 and 0.6 when the correlation
coefficient is equal to 0.5. The BIAS ranges between -0.4 and 0.4 when the correlation coefficient is

0.7 and between -0.17 and 0.17 when the correlation coefficient is 0.9.
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When n; is equal to 24, the LOC and KTRL2 tend to underestimate low percentiles and
overestimate high percentiles, while when 7n; equals to 96, this bias in estimating extreme
percentiles is reduced. For instance, when the correlation coefficient is equal to 0.7 and #»; is equal
to 24, the BIAS ranges between -0.4 and 0.4, while it ranges between -0.1 and 0.1 when n; is equal

to 96.

(Figure 2)

Similarly, Figure 3 shows the RMSE for the same six combinations. Figure 3 indicates that, the
RMSE values for the estimation of high or low percentiles using any of the record-extension
techniques decrease when the correlation coefficient or the size of concurrent period (n;) increase.
When n; is equal to 24, results show that the RMSE values for the estimation of high or low
percentiles reach 0.4 for KTRL2 when the correlation coefficient is equal to 0.5. Meanwhile, when
the correlation coefficient is equal to 0.7, the maximum RMSE is 0.35 and is only 0.25 when the
correlation coefficient is equal to 0.9. For a correlation coefficient of 0.5, the RMSE values for the
estimation of high or low percentiles reach 0.4 for KTRL2 when n; is equal to 24, while its
maximum is only 0.17 when #n; is equal to 96. Similar results are shown when the correlation
coefficient is 0.7 and 0.9. RMSE values for the estimation of the percentiles using the LOC are

lower than those corresponding to the KTRL2, for the case of small size of concurrent records.

(Figure 3)
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In summary, the Monte-Carlo experiment results indicate that OLS and KTRL substantially reduce
variability, while LOC and KTRL2 tend to preserve variability. The OLS and KTRL techniques
overestimate low percentiles and underestimate high percentiles. The LOC and KTRL2 techniques
tend to reduce the bias in the estimation of extreme percentiles. In addition, results show that error
measures for the estimation of the standard deviation and extreme percentiles decrease with high

correlation coefficients and large sizes of concurrent records.

The main advantage of LOC and KTRL2 over OLS and KTRL is that they allow a proper estimate
of the probabilities of extreme events corresponding to the actual records. Thus, LOC and KTRL2
are both preferable methods when the probability distribution of the estimates, rather than just the

mean or an individual estimate, is to be interpreted and used.

4.2 Empirical experiment results

A preliminary analysis of the Nile Delta data shows that, for most of the 94 locations, the EC, TDS
and Cl records exhibit a positive skew. Consequently, in the empirical experiment, the record-
extension techniques are applied to the logarithms of the three variables considered and the
performance measures are applied to the reverse transformed records. The distribution of the
correlation coefficient values of the TDS and EC, and the Cl and EC monthly log-transformed
records are shown in Figure 4. For the TDS and EC, the correlation coefficients range between 0.52
and 0.98 with a median value of 0.93, while for Cl and EC, they range between 0.39 and 0.97 with
a median value of 0.8. Extreme values detected in the EC and TDS time series occur at the same

time, which leads to high correlation coefficients. On the other hand, the number of extreme values
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is larger in EC than in CI and these extreme values do not occur simultaneously, which leads to

relatively low correlation coefficients.

(Figure 4)

The first estimation model considered deals with the estimation of TDS using EC as an explanatory
variable. Figures 5 and 6 summarize the results obtained for the ratio U for the mean and standard
deviation (Figure 5) and for the full range of percentiles (Figure 6). The box plots in Figures 5a and
6a are plotted using the 940 cross-validation records applied at the 94 monitoring locations. Figures
5b and 6b are plotted using 11280 records and Figures 5c and 6c¢ are plotted using 23688 records.
The cross-validation method shows that the ratio U median values corresponding to the estimation
of the mean values are equal to 1 for the four record extension techniques and for the three (n;, n,)
combinations considered. The boxes corresponding to the four record extension techniques are

symmetric around 1 and have almost the same dispersion.

Figure 5 shows also that the OLS and KTRL techniques lead to the underestimation of the standard
deviations. Approximately 75% of the OLS and KTRL standard deviations are lower than those
calculated from the observed values. The ratio U median values for standard deviations are 0.994,
0.972 and 0.948 for OLS when (n,, n,) equals (108, 12), (84, 36) and (60, 60) respectively. As for
KTRL the median values are 0.996, 0.983 and 0.967 respectively. The LOC median values are
closer to 1 than those corresponding to OLS or KTRL (1.000, 0.999 and 0.995 respectively), while
for KTRL2 the ratio U median value is 1.001 for the three (n;, n;) combinations considered. The

box plots corresponding to LOC and KTRL2 are more symmetric around 1 and show almost the
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same dispersion as shown by those corresponding to the OLS and KTRL. However, for both the
mean and standard deviation, the box plots dispersion increases with the decrease in the size of
concurrent records. This indicates that, with a large number of concurrent records, estimates of the

intercept and slope of the record-extension techniques are more precise.

(Figure 5)

Figure 6 shows that the median values of the ratio U for low percentiles are higher than 1, while
those corresponding to high percentiles are lower than 1 when using either the OLS or KTRL
record-extension techniques. However, when using either the LOC or KTRL2, the median values
of the ratio U are very close to 1. The box plots corresponding to the LOC and KTRL2 are
symmetric around 1 and show almost the same dispersion as shown by those corresponding to the

OLS and KTRL.

Under any of the three (n;, n;) combinations, the ratio U median values corresponding to LOC or
KTRL2 are closer to 1 than those corresponding to OLS or KTRL respectively. Using any of the
four record extension techniques, the median values become closer to 1 as n; increases. These
results suggest that OLS and KTRL tend to overestimate low percentiles and underestimate high
percentiles. LOC and KTRL2 reduce the bias exhibited by OLS and KTRL. Given that the
correlation coefficient is almost the same in the three (n;, n,) combinations, results indicate that the

bias in estimating extreme percentiles is reduced by increasing the number of concurrent records.

(Figure 6)
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Similarly, for the second estimation model considered, to estimate Cl using EC as an explanatory
variable, Figures 7 and 8 (a, b and c¢) summarize the results obtained for the ratio U for the mean
and standard deviation (Figure 7) and for the full range of percentiles (Figure 8). Figures 7 and 8
show also that the box plots dispersion increases with the decrease in the number of concurrent
records. Figure 7 confirms that LOC and KTRL?2 are superior in preserving the standard deviation
of the observed records. However, comparing the LOC and KTRL2, the dispersion in the box plot
corresponding to KTRL2 is relatively smaller than that corresponding to the LOC. This indicates
that KTRL2 is relatively better than LOC in preserving the standard deviation of the observed

records.

For the estimation of percentiles (Figure 8), when using OLS or KTRL, the ratio U median values
are higher than 1 for low percentiles (e.g. 5™ 10™ 15" percentiles) and lower than 1 for high
percentiles (e.g. 85", 90", 95™ percentiles). Results show that 75% of the OLS and KTRL low
percentiles are higher than those calculated from the observed values. On the other hand about 75%
of the OLS and KTRL high percentiles are lower than those calculated from observed values.
However, when using either LOC or KTRL2, the median values are very close to 1 under any of
the three (n;, n,) combinations considered. For any of the four record extension techniques, the
ratio U median values become closer to 1 as n; increases. These results confirm that LOC and

KTRL2 reduce the bias exhibited by OLS and KTRL in the estimation of extreme percentiles.

(Figures 7 and 8)

188



The comparison of Figure 5 with Figure 7 and Figure 6 with Figure 8, shows that the box plots
presented in Figures 7 and 8 have a larger dispersion than those of Figures 5 and 6 respectively.
The higher dispersion in Figures 7 and 8 is due to the relatively low correlation coefficients

between Cl and EC in the second estimation model.

Figure 9 illustrates the BIAS and RMSE exhibited by the four extension techniques in estimating the
TDS percentiles for the three (n;, n,) combinations considered. Results indicate that BIAS values
for the estimation of the extreme percentiles using LOC and KTRL2 are closer to zero than those
corresponding to OLS and KTRL, respectively. OLS and KTRL tend to overestimate low
percentiles and underestimate high percentiles, which is the consequence of underestimating the
standard deviation. Figure 9 shows also that, for the estimation of extreme percentiles, KTRL is
much better than OLS as BIAS values corresponding to KTRL are closer to zero than those
corresponding to OLS. However, the comparison of LOC and KTRL2 BIAS values indicates that
there is no significant difference. Results of the three (n;, n;) combinations indicate that the B/AS
values for the estimation of extreme percentiles is reduced significantly by increasing the number

of concurrent records.

(Figure 9)

Figure 9 shows also the RMSE exhibited by the four record-extension techniques for the estimation
of the TDS percentiles. Results show that RMSE values corresponding to the estimation of high
percentiles are higher than those corresponding to low percentiles. Figure 9 shows that the RMSE

values corresponding to the estimation of extreme percentiles are lower for KTRL or KTRL2 than
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OLS or LOC respectively, while those corresponding to KTRL are slightly lower than those
corresponding to KTRL2. In addition, the RMSE results confirm that the error on the estimation of

extreme percentiles is reduced significantly by increasing the number of concurrent records.

Figure 10 illustrates the BIAS and RMSE values exhibited by the four extension techniques for the
estimation of the CI percentiles for the three (n;, n;) combinations considered. Figure 10 shows
that, for the estimation of extreme percentiles, KTRL and KTRL2 are much better than OLS and
LOC respectively. The RMSE results indicate that KTRL and KTRL2 lead to better results than

OLS and LOC respectively for the estimation of extreme percentiles.

(Figure 10)

Figures 9 and 10 indicate that LOC and KTRL2 lead to better results than OLS and KTRL
respectively, except for the slightly lower RMSE for the estimation of TDS percentiles when KTRL
is used. The comparison of LOC and KTRL?2 indicates that both techniques will lead to comparable
results when a strong linear relationship exists between the dependent and independent variables.

However, KTRL2 is more robust to the presence of extreme values.

The presence of extreme values affects the calculation of the statistical parameters upon which
the OLS and LOC depend for the estimation of the intercept and slope (Equations 2 and 5). The
mean is very sensitive to the presence of extreme values, while the median is not affected by the
magnitude of a single extreme observation. In addition, the sample variance is strongly

influenced by outlying values. If extreme values are present, the variance will indicate a much
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greater spread than is indicated by the majority of the data. This is the main reason why KTRL

and KTRL2 show better results than OLS and LOC when using real water quality records.

Figures 6, 8, 9 and 10 clearly illustrate that both OLS and KTRL overestimate low
concentrations and underestimate high concentrations, as one would expect from these methods
tendency to produce an extended record with a lower standard deviation than that of the observed
record. From the two empirical estimation models considered, results of the three (n;, n>)
combinations indicate that the BIAS values for the estimation of extreme percentiles is reduced

significantly by increasing the number of concurrent records.

Thus, in summary, results indicate that OLS and KTRL substantially reduce variability observed in
the dependant variable, while LOC and KTRL2 tend to preserve variability. The OLS and KTRL
techniques underestimate high concentration values and overestimate low values. On the other
hand, the LOC and KTRL2 techniques tend to reduce the bias in the estimation of both high and
low concentration values. Both techniques produce extended records that preserve extreme
percentiles relatively well. Using real water quality data, KTRL2 shows a better performance than
LOC in the estimation of extreme percentiles. The better performance shown by KTRL2 is due to
the fact that real water quality data do not follow a normal distribution due to presence of extreme
values. Even after transformation, some deviation from normality may exist. This slight deviation
from normality and/or the presence of extreme values makes KTRL2 preferable. This relatively
better performance shown by KTRL and KTRL2 over OLS and LOC, respectively, is mainly due to
the robustness of the slope estimator towards the presence of extreme values and/or deviation from

normality.
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5 Conclusions

OLS, LOC, KTRL and the new technique KTRL2 were compared using a Monte-Carlo study of
samples from bi-variate normal populations and an empirical analysis, which used water quality
records from the Nile Delta water quality monitoring network. Different statistical performance
measures were used to assess the performance of each of the extension techniques and their

ability to maintain the statistical characteristics of the water quality records.

The Monte-Carlo study and the empirical analysis show that OLS and KTRL fall substantially
short of achieving the desired result of creating a realistic extended record. They cannot be

expected to provide records with the appropriate variability or the appropriate distribution shape.

The evaluation of the biases of moments and non-exceedance percentiles shows that LOC and
KTRL2 are better than OLS and KTRL, respectively. OLS and KTRL estimates substantially
underestimate the variance. Consequently, the frequency of extreme events, such as the
exceedance of standards, would be underestimated by OLS or KTRL. On the other hand, by
estimating the KTRL2 slope using percentiles of y and x rather than observed records, allow the
estimates y, from observed x; to have distributional properties similar to those expected, had y,
been measured. However, when the size of the concurrent records is small, the LOC becomes
slightly more precise than KTRL2 for the estimation of percentiles. The empirical experiment
shows KTRL2 to have more desirable properties than LOC. The results show also that these

differences are significant when extreme values are present.
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When multiple estimates are to be generated and statements are to be made about probabilities of
exceedance, such as probabilities of exceeding some water quality standard, inferences are made
that depend on the probability distribution of the estimated data. In these cases, LOC and
KTRL2, rather than OLS and KTRL, should be used to generate data. KTRL?2 is superior when
no transformation can produce near-normality due to heavy tails in the distribution and/or the

presence of extreme values.
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Table 1. BIAS values for estimating the mean and the standard deviation for the Monte-Carlo

experiment
n | n P Mean Standard deviation

OLS | LOC | KTRL | KTRL2 OLS LOC | KTRL | KTRL2
96 | 24 | 0.5 | 0.001 | 0.002 [ 0.001 0.001 -0.080* | 0.000 [ -0.079* [ 0.001
78 | 48 | 0.5 | 0.001 | 0.002 | 0.000 0.001 -0.166* | 0.001 |-0.164*| 0.002
48 | 78 | 0.5 | 0.002 | 0.002 | -0.001 -0.001 -0.260* | 0.004* | -0.257* | 0.007*
24 | 96 | 0.5 | 0.000 | 0.002 | -0.001 0.001 -0.366* | 0.012* | -0.361* | 0.015*
96 | 24 | 0.7 | 0.000 | 0.000 | 0.000 -0.001 -0.054* | -0.001 | -0.053*| 0.000
78 | 48 | 0.7 | -0.001 | -0.001 | -0.001 -0.001 -0.110* | 0.000 [ -0.108* [ 0.001
48 | 78 | 0.7 | 0.000 | 0.000 | -0.001 -0.001 -0.170* | 0.002 |-0.168* | 0.004*
24 |1 96 | 0.7 | -0.002 [ 0.001 0.000 0.003 -0.232* | 0.009* | -0.229* | 0.012*
96 | 24 | 0.9 | -0.001 | -0.001 [ -0.001 -0.001 -0.020* | -0.001 | -0.020* | 0.000
78 | 48 | 0.9 | -0.001 | -0.001 | -0.001 -0.001 -0.040* | 0.000 [ -0.039*( 0.001
48 | 72 | 0.9 | 0.000 [ 0.000 [ 0.000 0.000 -0.061* | 0.000 |-0.059*| 0.001
24 1 96 | 0.9 | -0.001 | -0.001 [ -0.001 -0.001 -0.081* | 0.003 |-0.078* | 0.005*

* The hypothesis that the BIAS is equal to zero is rejected at the 5% level
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Table 2. RMSE values for the estimation of the mean and the standard deviation for the Monte-

Carlo experiment

n | P Mean Standard deviation
OLS LOC | KTRL | KTRL2 OLS LOC | KTRL | KTRL2

96 | 24 | 0.5 | 0.099 | 0.101 0.101 0.104 0.106 0.077 0.106 0.077
78 | 48 | 0.5 | 0.111 | 0.117 | 0.117 0.127 0.184 0.093 0.183 0.093
48 | 78 | 0.5 | 0.134 | 0.144 | 0.150 0.166 0.278 0.119 0.276 0.120
24 1 96 | 0.5 | 0.184 | 0.204 | 0.224 0.257 0.396 0.183 0.394 0.183
96 | 24 | 0.7 | 0.096 | 0.097 | 0.097 0.098 0.088 0.071 0.088 0.072
78 | 48 | 0.7 | 0.104 | 0.106 | 0.111 0.115 0.136 0.083 0.135 0.083
48 | 78 | 0.7 | 0.121 | 0.125 | 0.140 0.150 0.196 0.102 0.196 0.103
24 1 96 | 0.7 | 0.160 | 0.171 0.208 0.228 0.273 0.153 0.275 0.153
96 | 24 | 0.9 | 0.095 [ 0.095 [ 0.096 0.096 0.072 0.068 0.072 0.068
78 | 48 | 0.9 | 0.098 | 0.098 | 0.104 0.105 0.084 0.073 0.084 0.074
48 | 78 | 0.9 | 0.106 | 0.107 | 0.124 0.126 0.104 0.083 0.104 0.083
24 1 96 | 0.9 | 0.123 | 0.125 | 0.168 0.172 0.136 0.108 0.139 0.108
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Table 3. Ratio U values for the standard deviation for the Monte-Carlo experiment

n; n; 4 OLS LOC KTRL | KTRL2
96 24 0.5 0.920* 1.000 0.921* | 1.001
72 48 0.5 0.834* 1.001 0.836* | 1.002
48 72 0.5 0.740* 1.004* | 0.743* | 1.007*
24 96 0.5 0.634* 1.012* | 0.639* | 1.015%*
96 24 0.7 0.946* 0.999 0.947* | 1.000
72 48 0.7 0.890* 1.000 0.892* | 1.001
48 72 0.7 0.830* 1.002 0.832* | 1.004*
24 96 0.7 0.768* 1.009* [ 0.771* | 1.012*
96 24 0.9 0.980* 0.999 0.980* | 1.000
72 48 0.9 0.960* 1.000 0.961* | 1.001
48 72 0.9 0.939* 1.000 0.941* | 1.001
24 96 0.9 0.919* 1.003 0.922* | 1.005*

* The hypothesis that the ratio U is equal to 1 is rejected at the 5% level
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Abstract

There are several deficiencies in the statistical approaches proposed in the literature for the
assessment and redesign of surface water quality monitoring locations. These deficiencies vary
from one approach to another, but generally include: (i) ignoring the attributes of the basin being
monitored; (i1) handling multivariate water quality data sequentially rather than simultaneously;
(111) focusing mainly on locations to be discontinued; and (iv) ignoring the reconstitution of
information at discontinued locations. In this paper, a methodology that overcomes these
deficiencies is proposed. The basin being monitored is divided into sub-basins, and a hybrid-
cluster analysis is employed to identify groups of sub-basins with similar attributes. A stratified
optimum sampling strategy is then employed to identify the optimum number of monitoring
locations at each of the sub-basin groups. An aggregate information index is employed to
identify the optimal combination of locations to be discontinued. The proposed approach is
applied for the assessment and redesign of the Nile Delta drainage water quality monitoring
locations in Egypt. Results indicate that the proposed methodology allows the identification of (i)
the optimal combination of locations to be discontinued, (ii) the locations to be continuously
measured and (iii) the sub-basins where monitoring locations should be added. To reconstitute
information about the water quality variables at discontinued locations, regression, artificial
neural network (ANN) and maintenance of variance extension (MOVE) techniques are
employed. The MOVE record extension technique is shown to result in a better performance
than regression or ANN for the estimation of information about water quality variables at
discontinued locations.

Keywords: water quality; monitoring locations; hybrid-cluster; stratified sampling; record

extension; artificial neural networks.
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1 Introduction and review

The selection of monitoring locations is an important aspect in the design of water quality
monitoring networks. For instance, if the location is not representative of the water body, the
data interpretation and presentation become inconsequential (Sanders et al., 1983; Ward et al.,
1990). Early practices in water quality sampling focused on sites with easy access, without any
systematic approach to the selection of monitoring locations (Harmancioglu et al., 1999). Over
time, the number of sites has increased to include locations at points of interest such as those
located upstream and downstream of highly industrialized or highly populated areas, areas with
point-pollution sources or areas of intensive land use (Tirsch and Male, 1984). Later, various
methodologies were proposed for the selection of both the number and location of monitoring

locations.

The stream-order hierarchical approach is the most frequently used approach for designing a
monitoring network when no water quality data are available. The stream-ordering procedure
(Horton, 1945) assigns each un-branched small tributary the order of one, assigns a stream made
up of only first-order tributaries the order of two, and so on. Sharp (1970; 1971) used stream-
ordering procedures to measure the uncertainty involved in locating the source of pollutants
observed at the outlet of a network. Sanders et al. (1983) followed Sharp’s procedure (1970;
1971) by selecting monitoring locations on the basis of the number of contributing tributaries,
pollutant discharges or loads. This approach systematically locates monitoring locations so as to
divide the stream network into sections that are equal with respect to the number of contributing
tributaries, the discharge or the pollutant loading. As discussed by Khalil and Ouarda (2009)

assigning each un-branched small tributary the order of one assumes that each of these tributaries
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has the same contribution to the system. This assumption may only be valid if all tributaries
drain the same area and have the same activities within these areas. In addition, in the presence
of a point source of pollution (such as industrial effluent), assigning an order of one to the source
assumes that it has the same weight as an un-branched tributary, yet it is completely different in

the type and loading of pollution.

Tirsch and Male (1984) proposed an approach based on multivariate linear regression. Where a
regression model is performed in which each monitoring location is considered the dependent
variable and different combinations of the remaining locations are considered the independent
variables. The adjusted coefficient of determination is obtained for each model, and the
monitoring precision changes with the addition or deletion of some locations within the network.
A high coefficient of determination indicates that a high degree of redundancy exists and that the
location selected as the dependent variable might not be needed. Tirsch and Male (1984) applied
this approach using daily specific conductance records from the network monitoring the
Shoshone River basin in the USA. The main advantage of the regression approach is that it
allows the reconstitution of information at discontinued locations. However, the main deficiency
is that the approach is applied using only one water quality variable. In reality, the assessment
and redesign of the water quality monitoring locations are more reliable when they are based on
several water quality indicators. Multivariate data should be handled simultaneously rather than

sequentially.

Harmancioglu and Alpaslan (1992) proposed the use of the entropy theory to decide upon the

number and locations of monitoring sites. Using this method, the amount of transinformation
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(mutual information) between monitoring locations is determined based on the degree of
uncertainty (Harmancioglu and Alpaslan, 1992). Dependence between monitoring locations
results in reduced entropy, or uncertainty, between the locations. If the dependence is consistent
over time, one or more of the monitoring locations may be discontinued with a minimal loss of
information. This method was applied to select monitoring locations in the Gediz and Sakarya
River basins in Turkey by Harmancioglu et al. (1994) and in the Mississippi River (Louisiana) in
the USA by Ozkul (1996). Similar to the case for the regression approach, the main deficiency
here is that the entropy approach is applied using only one water quality variable. A second

deficiency is that the reconstitution of information at discontinued locations is not considered.

Different multivariate data analysis techniques have been employed for the redesign of water-
quality-monitoring locations. These include principal component analysis (PCA), cluster analysis
(CA) and discriminant analysis (DA). For example, Odom (2003) used PCA, CA and DA to
assess and redesign the water-quality-monitoring network in the Great Smoky Mountains
National Park, Tennessee, USA. Odom (2003) used the average pollutant values at each location
in the PCA. Then, the first three principal components were used in a cluster analysis to define
similar locations, and, finally, the DA was applied to verify the groups found in CA. Multivariate
data analysis approaches overcome the deficiency in the regression and entropy approaches by
employing several water quality variables simultaneously. However, the reconstitution of

information at discontinued locations is not considered.

The common disadvantage of the proposed approaches is that they mainly focus on identifying

monitoring locations to be discontinued. However, the optimum design may consist in the
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discontinuation of a number of existing monitoring locations while adding other locations at un-
gauged sites. This downfall arises from the excessive focus on assessment using the water
quality data already obtained, while ignoring the attributes of the basins being monitored (Khalil
and Ouarda, 2009). Different basin attributes may affect the spatial allocation, such as the
climatic region, land use, geology, the existence of point and non-point sources of pollution and

the human activities within the basin being monitored (Khalil and Ouarda, 2009).

Thus, deficiencies in the current approaches can be summarized as follows: (i) ignoring attributes
of the basin being monitored in the assessment procedure (regression, entropy, multivariate
statistics); (i1) using only one water quality variable (stream order, regression, entropy); (iii) not
considering the reconstitution of information at discontinued locations (stream order, entropy,
multivariate statistics); and (iv) focusing only on the locations to be discontinued (regression,

entropy, multivariate statistics).

The main goal of the present study is to develop a methodology for the assessment and redesign
of monitoring locations that overcomes the deficiencies in the current applied approaches. In the
following section, a description of the study area is provided. In section 3, the methodology is
presented. In section 4, the obtained results are presented and discussed. Finally, the conclusions

from this work are presented in section 5.

2 Nile Delta Water Quality Monitoring Network

Egypt is a semi-arid country with rainfall rarely exceeding 200 mm/year along its north coast.

The rain intensity quickly decreases away from the coastal areas, and scattered showers can
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hardly be depended upon for agricultural production (Abu-Salama, 2007). According to an
agreement between Egypt and Sudan (1959), the Nile water allocation is 18.5 billion m’ to
Sudan and 55.5 billion m® to Egypt (Dijkman, 1993). About 97% of Egypt's water resources are
from the Nile River. The distribution of Egypt’s share of the Nile water to its population is near
the water poverty threshold and will fall well below this threshold in the years to come (MWRI,
1997). The per capita share of fresh water resources in Egypt is about 800 m’ per person per year
(Abdel-Gawad et al., 2004; Frenken, 2005). It is expected to drop to 450 m’ per person by the

year 2025 (Abdel-Gawad et al., 2004).

One of the applied solutions to stretching the limited Egyptian water resources is the reuse of
agricultural drainage water in irrigation after mixing it with fresh irrigation water. The drainage
system in the Nile Delta is composed of 22 catchment areas. Depending on their quality,
effluents are either discharged into the northern lakes or pumped into irrigation canals at 21 sites
along the main drains to augment the freshwater supply (DRI-MADWQ, 1998). In 1997, the
National Water Research Center (NWRC) started a national water-quality-monitoring program.
The monitoring program of the Nile Delta drainage system aims to (i) assess its compliance with
the national standards, (ii) estimate mass transport, and (ii1) identify temporal and spatial trends
(NAWQAM, 2001). The Nile Delta drainage system monitoring network (Figure 1) consists of
94 monitoring locations, through which 33 water quality variables are measured on a monthly

basis.

(Figure 1)
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Twenty-one of the 94 monitoring locations are located at drainage water reuse locations (mixing
points), which are used to identify the optimal mixing rate of the drainage water with fresh
irrigation water. Ten monitoring locations are located in the drainage system main streams.
These locations are used as checkpoints for the assessment of the water and salt balance.
Thirteen monitoring locations at the drainage system outfalls to the northern lakes and the
Mediterranean are used to assess the amount of pollution discharged. Fifty monitoring locations
are located at tributaries that serve sub-catchments and deliver water to the main drainage

systems. These 50 locations are the focus of the present study.

3 Methodology

The methodology proposed in the present study is developed to overcome the four main
deficiencies in the currently applied statistical approaches. In order to incorporate the attributes
of the monitored region into the assessment and redesign of monitoring locations, the Nile Delta
is divided into spatial units (SUs). A spatial unit (SU) is an area that is drained by only one point
in the drainage system. Measuring the water quality at this point describes the effect of the SU
attributes on the water quality conditions. Thus, for each SU, attributes that explain different
natural and anthropogenic effects are identified. It is assumed that the SU attributes provide
information concerning the main source of pollution in the drainage systems. The measured
water quality variables that better explain the variability in water quality in the Nile Delta
drainage system are selected based on PCA. These data preparation steps are described in

subsection 3.1.
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To reconstitute information about the variables measured at discontinued monitoring locations,
record extension techniques are employed. A short review of record extension techniques is
provided in subsection 3.2. The proposed methodology for spatially distributing water-quality-

monitoring locations is described in subsection 3.3.

3.1 Data preparation

Data preparation consists of three steps, dividing the Nile Delta into SUs, identifying SU
attributes and selecting the water quality variables that best describe the variation in the drainage
system water quality. The Nile Delta is divided into 94 SUs (Figure 2), from which 50 are
gauged. The SU attributes are selected to describe different natural and anthropogenic effects

within each SU. However the selection is restricted by data availability.

(Figure 2)

Water quality variables that better explain the variability in water quality are selected using PCA.
PCA is one of a number of factor extraction methods. PCA transforms a set of correlated
variables into a smaller set of uncorrelated variates called principal components (Jobson, 1992).
The first component explains most of the variance in the data, and each successive component
explains less of the variance (Tabachnick and Fidell, 1996). Correlations between the variables
and principal components are called component loadings. The component loading matrix
obtained from PCA reflects the characteristics of the extraction procedure, which maximizes the
variance in each successive component. Once the loading matrix is extracted, rotation can take

place. Rotation is ordinarily used after extraction to maximize high correlations and minimize
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low ones, which facilitates interpretation of the components. Numerous methods of rotation are
available. The one applied in this study is varimax (variance maximizing procedure). The
interpretation of the components is in terms of the variables related to these components and
their significance to the physical processes. The water quality variable most related to each
component (the variable with the highest absolute factor loading) is then selected as an indicator

of the water quality variables (one indicator from each component).

3.2 Information reconstitution at discontinued locations
Assume that the variable y measured at a discontinued monitoring location Y has n, years of
data and that the variable x measured at a continuously monitored location X has n, +n, years
of which n, are concomitant with the data observed at Y, illustrated as follows:

Location (X) :x,,X,, X5,...... 2 X, 5 X, s X

m+L 420000t 4 xn] +n,

Location (Y): ¥, Vs V3oeeee- YV

Consider that year n, is the year when the assessment and redesign took place. After n, years, a
decision is made to stop monitoring at location Y and continue measuring at location X. Assume
that after n, years, our interest is to reconstitute information about water quality variables at
discontinued locations. Matalas and Jacobs (1964) developed a procedure for obtaining unbiased

. . 2 . A
estimators of the mean () and the variance (o, ), showing that the mean value (4, ) of the

extended Y series can be determined using Equation 1:
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N n, a._  _
M, =Y+ B(x, — X)) (1)
n,+n,
where y, and X, are the mean values of y, and x,, respectively, based on the short records
i=1,.,n, X, is the mean value of x, observed during the period i=n, +1,....,n, and the

parameter ﬁ’ is the estimated regression coefficient. Based on this formulation, it is possible to

show (Cochran, 1953) that the variance of £, is given by Equation 2:

o, n 1-p°
Var{,uy}:n—) 1_n +2n ('02_ n -3 @
1 1 2 1

where 0'y2 is the population variance of y and 0 is the population correlation coefficient
between x and y . For practical use, these values may be replaced by their estimates based on
the n, years of data (Ouarda, et al., 1996). For the variance estimator (oA'i ), Matalas and Jacobs
(1964) obtained the following expression:

ny+n, =3 ny —1

2 _ N2 .2 1— 2 p2 3
y ﬂ Sx+ (n1_3)(n]+n2_1) nl_z(syl ﬁsxl) ( )

where s} is the variance estimate based on the entire x-series and s,,s,, are the standard
deviations of y and x based on the short records i=1,...,n,. Moreover, Matalas and Jacobs

(1964) showed that the variance of the variance estimator (Var{é‘i }) is given by Equation 4:
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where A,B and C are constants that depend on », and n, (see e.g. Vogel and Stedinger, 1985).

Thus, by using the formulas provided by Matalas and Jacobs (1964), one can estimate the mean
and the variance of the discontinued variables during the period i =n, +1,....,n,. However, to

extend the records of the selected water quality variables at a discontinued location, a record

extension technique should be applied.

3.2.1 Record extension techniques

Linear regression is one of the commonly used record extension techniques. To extend records of
the discontinued variable y for the period n, +1 through n, years, one can use simple linear

regression of y on x, which leads to the following formula:

y, =a+bx, (5)

where ), are the estimated values of y for i=n, +1,.n, and a and b are the constant and

slope of the regression equation, respectively. The parameters a and b are the values that

minimize the sum of the squared difference between the estimated and measured y values. The

solutions of a and b are found by solving the normal equations (Draper and Smith, 1966, p. 59).

The optimal solution to Equation 5 is:
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where 7 is correlation coefficient between x and y computed from records of the concurrent
period. The use of regression analysis often results in underestimation of the variance in the
extended records (Alley and Burns, 1983). Hirsch (1982) suggested two other methods referred
to as MOVE1 and MOVE2 (Maintenance of Variance Extension, Types 1 and 2). In MOVEI,

Hirsch (1982) chose the estimators of @ and b so that if Equation 5 is used to generate an entire
sequence y,, for i=1,...,n, +n,, the short sample moments y, and sjl would be estimated. In
MOVE2, Hirsch (1982) chose a and b so that if Equation 5 is used to generate an entire
sequence y, for i=1,...,n, +n,, the unbiased estimates 4, and 6‘j would be estimated. Hirsch

(1982) evaluated the MOVEI, MOVE2 and regression methods using both a Monte-Carlo study
and empirical analysis, both of which showed that regression cannot be expected to provide

records with the appropriate variability.

In practice, one uses Equation 5 to generate the p, only for i=n, +1,...,n, + n,. This suggests

that Hirsch used estimators of a and b that did not achieve what he intended (Vogel and
Stedinger, 1985). MOVE3 was then proposed by Vogel and Stedinger (1985). In MOVE3, the

main goal is to select a and b in Equation 5 so that the resultant sequence of n, + n, values
U 1sees Vots Putatseoes Durna ;. has mean ft, and variance 65 (the Matalas and Jacobs estimators

(Equations 1 and 4). Estimates of a and b for the MOVE3 method are obtained by rewriting

Equation 5 as:
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yi=a+blx,-%,) ()
where estimates of @ and b are obtained from Equations 8 and 9:

a=[(n1+n2)[1y—n1)71]/n2 (8)

b = [(”1 +n, - 1)&}% - (”1 - 1)3_51 -n (J_’l - :[’y )2 — N, (a - '[ly )2][(112 - 1)532 ]_1 )

Vogel and Stedinger (1985) carried out a Monte-Carlo experiment that indicated the MOVE2
and MOVE3 techniques to be nearly indistinguishable with respect to the mean square error of
the estimators of the mean and variance of the complete extended record. Khalil et al. (2010)
compared the regression and MOVE3 techniques for the reconstitution of information about
discontinued water quality variables in the Nile Delta water quality monitoring network in Egypt.
They recommended the use of MOVE3 in the case of reconstituting information about
discontinued variables, while the regression technique is recommended for the reconstitution of
missing values. Khalil et al. (2010) compared record extension techniques for information
transfer between water quality variables measured at the same monitoring locations, while in this

study information transfer among locations is considered.

An artificial neural network (ANN) is an information processing system that is designed to
mimic certain structures and functions of the biological neural networks of the human brain.
Given sufficient parameters, an ANN can be used to create nonlinear mathematical models for
general approximation. Among the various types of ANNs, multilayer perceptrons (MLPs),

originally proposed by Rumelhart and McClelland (1986), are the most commonly used and
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well-researched class of ANNs (Ouarda and Shu, 2009). This type of ANN implements a feed-
forward supervised paradigm. A MLP consists of an input layer, one or more hidden layers and
an output layer. The input layer receives the values of the input variables. The output layer
provides the ANN prediction and represents the model output. The layers lying between the
input and output layer are called hidden layers. Nodes in each layer are interconnected through
weighted acyclic arcs from each preceding layer to the following without lateral or feedback

connections.

In this study, a MLP having one input layer, one hidden layer and one output layer is used.
Inputs are the selected water quality variables at the continuously monitored location(s), and the
outputs are the same types of variables at the discontinued location. The tan-sigmoid transfer
function is used for nodes in the hidden layer. The use of a nonlinear transfer function extends
the nonlinear approximation ability of the ANN (Shu and Ouarda, 2007). A linear transfer
function is used for the output nodes. A linear transfer function for the output nodes has the

advantage of potentially unbounded outputs (Shu and Burn, 2004).

Determining the number of neurons in the hidden layer is an important task when designing an
ANN (Shu and Ouarda, 2007). Too many hidden nodes may lead to the problem of overfitting.
Too few nodes in the hidden layer may cause the problem of underfitting. As a rule of thumb, the
number of nodes in the hidden layer should be less than twice the input layer size (Shu and
Ouarda, 2007). In this study, a sensitivity analysis is performed to identify the optimal number of
hidden nodes. By varying the number of hidden neurons from three to eight, ANNs with seven

hidden neurons are identified as providing the most accurate estimation. Thus, seven hidden
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neurons are ultimately used in the hidden layer. In this study, the linear regression, MOVE3 and
ANN record extension techniques are employed to reconstitute information about variables at the

discontinued location(s).

Hirsch (1982), Vogel and Stedinger (1985) and Moog and Whiting (1999) applied the regression
and MOVE techniques to the logarithm of the streamflow records rather than the raw data. This
transformation tends to improve the normality of discharge histograms, which generally exhibit a
strongly positive skew (Hirsch, 1982). Similarly, water quality variables generally exhibit a
positive skew (Lettenmaier, 1988; Berryman et al., 1988), which is also confirmed in our case by
a preliminary analysis of the Nile Delta data. Consequently, in this study, record extension

techniques are applied to the logarithms of the water quality variables.

3.2.2 Identification of the best auxiliary location(s)
For each of the selected water quality variables at a discontinued location, a best auxiliary
variable to be used as a predictor in the record extension techniques is selected from other
continuously monitored locations using Equation 2. The continuously measured variable that

minimizes the variance of the estimated mean of the discontinued variable after », years is

selected as the predictor. Thus, for a discontinued location, the best auxiliary variables could be
selected from several continuously measured locations. Consequently, for each discontinued
location, one or more continuously monitored locations could be identified as the auxiliary
location(s). By using Equation 2, the choice of the best auxiliary variable is based on the number

of concurrent years of measurements (7,), the correlation coefficient and also the number of

years after the assessment and reselection took place (#, ).
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One can assess the precision of the variance of the mean value estimator (Equation 2) after a

2

, and the correlation coefficient ( o ) remain unchanged

certain number of years, assuming that o

and equal their estimates based on n, years of data (Ouarda et al., 1996; Khalil et al., 2010). In
this study, n, is assumed to be two years, thus, one would like to reconstitute the information

about the discontinued variables after two years from when assessment and reselection took

place.

3.2.3 Empirical experiment
In the case of reconstituting information about water quality variables at a discontinued location,

the objective is to estimate the monthly records of these variables for the n, years
{j/w yeeees Vo }, while maintaining the main statistical characteristics of the historical records. In

the assessment of water quality, one may be interested not only in the statistical moments but
also in the extreme values. If the technique used for record extension introduces a bias in the
value of the more extreme-order statistics, this will lead to bias in the estimates of the probability
of exceeding selected extreme values or, conversely, bias in the estimation of distribution

percentiles (Hirsch, 1982).

An empirical experiment is designed to examine the utility of the simple linear regression,
MOVE3 and ANN techniques for preserving the statistical characteristics of the water quality
variables measured at discontinued locations. In order to evaluate the performance of the three
record extension techniques, a cross-validation (jackknife) is conducted. In the cross-validation,

two years of monthly records are in turn removed from the available ten years of data. All
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possible combinations of successive or non-successive two-year periods are considered. Thus,
from the available ten years of monthly records C(10,2) = 45 possible combinations are
considered. The values for these two years of monthly observations are then estimated using the

three record extension techniques calibrated with the remaining eight years.

The experimental design is as follows. Each of the 50 monitoring locations is assumed to be
discontinued, and, for each of the selected variables at a discontinued location, the best auxiliary
variable is identified from other continuously monitored locations using Equation 2. For each
pair of water quality variables identified as the variables to be discontinued and their best
auxiliary, the three record extension techniques are applied. Thus, different realizations of the
extended water quality variable records (i.e. the number of selected variables at each location X
50 considered locations x 45 different combinations) are generated for cross-validation.
Important characteristics of the observed and generated records during the extension period are
computed for the three record extension techniques. Evaluation of the records generated by the
extension techniques involves determining the ability of the techniques to estimate records with

the various statistical properties of the observed records.

The extended records {j/n]” N } are compared to the observed records {ym] yoeees Vo, } based

on the estimation of the mean, standard deviation and over the full range of percentiles (from the
5™ to the 95™ percentile). Different performance measures are applied. First, the ratio U of each
statistic estimated from the extended records over that estimated from the observed records is
computed. The ratio U is used to assess the performance of the record extension techniques in

preserving the variable characteristics. If the ratio U for a given statistical parameter is larger
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than 1, this means that the applied record extension technique overestimates this statistical
parameter. If it is less than 1, the record extension technique underestimates the statistical
parameter. Concurrently, two performance measures are used to assess the three record extension
techniques. They are the relative bias (BIASr) and the relative root mean square error (RMSEr),

which are defined as follows:

1 & st — st
BIASy =— ) —4—L 10
nt ; st (19)
1 & st —st ?
RMSEyr=_|— 4 7 11
nt Z:l:{ st } (h

where sf, and st, are the estimated statistical parameters from the extended records
{ﬁnlﬂ,...., j}nz} and the observed records {ynlﬂ,....,ynz}, respectively, and nt stands for the

number of trials generated in the empirical experiment. The three performance measures are

applied to the reverse-transformed records (original records).

3.3 Assessment and redesign of monitoring locations

An approach to spatially distributing monitoring locations, when the objective is either to
establish a new water-quality-monitoring network or to assess and redistribute monitoring
locations for an operating monitoring network is proposed in this section. The assessment and
redesign of the water quality monitoring locations consists of two main steps. The first step is to

group the SUs into clusters of similar SUs with respect to their attributes. In the second step,
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stratified optimum sampling is applied to identify the optimal number of gauged SUs in each of

the identified clusters.

3.3.1 Hybrid-cluster algorithm
To build clusters of SUs with similar attributes, cluster analysis (CA) can be employed. CA is an
exploratory data technique used to group similar observations into clusters, where the within-
cluster variance is minimized and the between-cluster variance is maximized (Peck et al., 1989;
Jobson, 1992). In earlier years, the validity of clustering techniques was questioned because of
the lack of inferential tests offered by many other statistical techniques (Baker and Hubert, 1975;
Wong, 1982). However, using additional tests such as combining hierarchical and partitional
(non-hierarchical) clustering techniques can provide validation for the chosen clusters (Jobson,

1992).

Hierarchical methods most commonly use agglomerative techniques where each observation
starts in a cluster by itself (N SUs = N clusters). As the algorithm progresses, observations are
joined based on a linkage distance until there is only one cluster composed of all the observations
(N clusters = 1). K-means clustering is a partitioning method based on the Euclidean distance
where the optimal cluster centers are obtained in an iterative fashion by minimizing the sum of
the squared distances between the cluster means and the cluster members. The objective of this
technique is to divide N observations (SUs) with P dimensions (attributes) into K clusters so that
the within-cluster sum of squares is minimized (Hartigan, 1975). The algorithm separates the
data into clusters by identifying a set of cluster centers, assigning each SU to a cluster,

determining new cluster centers, and repeating this process until no change occurs in the cluster
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centers and members. It is an iterative procedure in which the SU attribute vectors move from

one cluster to another to minimize the value of the objective function (F) :

K P

%)

k=1 j=1

d’ (Sijk _Cjk) (12)

B

1l
—_

where K denotes the number of clusters, P is the number of attributes, N, represents the number

of SUs in cluster £, d is the linkage distance, S,, denotes the value of attribute j in the SU vector

ijk
i assigned to cluster k and C, is the mean value of attribute j for cluster k defined by the

following equation:

C =—ZSf,~k (13)

One of the benefits of using hierarchical methods is the generation of the dendrogram, which can
be very useful in visualizing “good” cluster partition points based on the linkage distance. The
question of the ideal number of clusters is addressed by Jobson (1992). Jobson (1992) suggested
graphing the linkage distance for each number of clusters and picking the number of clusters
prior to an obvious increase in the linkage distance. This point identifies a large increase in the

linkage distance that is needed to join additional observations.

While hierarchical clustering procedures are not influenced by initialization and local minima,

partitional clustering procedures are influenced by the initial guesses (e.g., the number of clusters
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and cluster centers) (Rao and Srinivas, 2006). The partitional clustering procedures are dynamic
in the sense that a SU can move from one cluster to another to minimize the objective function
(Equation 12). In contrast, the SU committed to a cluster in the early stages cannot move to
another one under hierarchical clustering procedures. The relative merits of the hierarchical and
partitional clustering methods spurred the development of hybrid-clustering methods that are a

blend of these methods (Srinivas et al., 2002; Rao and Srinivas, 2006).

K-means are initialized to K random points from the data or are input by the user. The initial
seeds (cluster centers) may be obtained from a previous clustering method (Jobson 1992).
Cluster centres developed based on hierarchical method provide the non-hierarchical method
with an initial partition but do not force the non-hierarchical method to strictly match the
hierarchical results (Srivivas et al., 2002). Seeding merely provides a rational starting point that
increases confidence in the final results and decreases the time in which the partitional method

takes to arrive at an optimum solution (Rao and Srinivas, 2006).

Hosking and Wallis (1997) adjusted the clusters obtained by Ward’s minimum variance
algorithm using the K-means algorithm. They used one at-site attribute (the drainage basin area)
and three geographic location attributes (the gauge elevation, latitude and longitude) in cluster
analysis to identify homogeneous watersheds based on the four selected attributes. Recently, Rao
and Srinivas (2006) compared three hybrid-clustering algorithms, which are a blend of
agglomerative hierarchical and partitional clustering procedures, for the regionalization of
watersheds for flood-frequency analysis. The hierarchical clustering algorithms considered for

hybridization were single linkage, complete linkage and Ward’s minimum variance algorithms,
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while the partitional clustering algorithm used was the K-means. The relative performances of
the three hybrid-cluster algorithms, the three hierarchical clustering algorithms and the K-means
were evaluated by using annual maximum flow data from watersheds in Indiana, USA. The
overall performance of the hybrid models in optimizing the objective function was found to be
better than that of the hierarchical and K-means clustering algorithms. Of the three hybrid
models presented, the combination of Ward’s and K-means algorithms consistently provided

good estimates of the groups of watersheds.

In this study, a hybrid-clustering algorithm is employed to identify clusters of similar SUs with
respect to their attributes. Each of the considered attributes was standardized prior to the cluster
analysis in order to remove the dimensionality and scale effects. The Euclidian distance is used
as a proximity measure to define the distance between the SUs, and Ward’s algorithm is used to
define the various clusters in an agglomerative hierarchical algorithm. From the hierarchical
cluster algorithm, different numbers of clusters are considered, and cluster centers are computed

and then used as seeds for the K-means clustering algorithm.

The Euclidean distance between the attributes of two SUs can be used to quantify the distance
(dissimilarity) between two SUs or between the SU and the cluster center. The Euclidean
distance between the SUs S, = (s,,,5,y,....,5,) and S, =(8,,,5,,....,5,5) in the Euclidean P-

space is defined as:

P

dEuclidean = Z (Sli - S2i )2 (14)

i=1
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where s, stands for the i"™ attribute in the first SU and P is the number of attributes. As for

Ward’s algorithm, the objective function (W) (Ward, 1963) minimizes the sum of the squares of

the deviations of the SU attribute vectors from the centers of their respective clusters:

=

K k

W= Z (Sijk—Cjk)z (15)

k=1 j=1 i

Ward’s algorithm starts with single-SU clusters. At this point, the cluster centers are the same as
the attribute vectors. Therefore, the value of W is zero. At each step in the analysis, the union of
every possible pair of clusters is considered and two clusters whose combination results in the
smallest increase in W are merged. The change in the value of the objective function, W, due to
the merger depends only on the relationship between the two merged clusters and not on the
relationships with other clusters. Ward’s algorithm is good at recovering the cluster structure,
and it tends to form clusters of equal size. This characteristic of Ward’s algorithm makes it
useful for the identification of homogeneous regions (SUs, in our case) (Hosking and Wallis,

1997; Rao and Srinivas, 2006; Ouarda et al., 2008).

3.3.2 Stratified optimum sampling
The methodology proposed in this section can be applied for both expansion and reduction of the
number of monitoring locations. If the monitoring budget allows increasing the number of
monitoring locations by u, then the total number of locations to be distributed among clusters

becomes (M + u), where M is the current number of monitored locations. Similarly, if the budget
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requires reducing the number of monitoring locations by u, the total number of locations to be

distributed becomes (M - u).

From the first step, by applying the hybrid-cluster algorithm, the number of clusters, the number
of SUs in each cluster, the cluster centers and the distance between each SU and its cluster center
are identified. If the objective is to establish a new monitoring network, the question involves
how to distribute M monitoring locations among obtained clusters? To distribute M monitoring
locations among the obtained clusters, a stratified optimum sampling strategy is applied. The
optimal allocation for each cluster of SUs is proportional to the standard deviation of the
distribution of the SUs within the cluster. A larger number of locations is allocated in the group

with the greatest variability as follows:

m, =M —""— (16)

where m; is the number of SUs to be gauged in cluster (i), N, is the number of SUs in cluster
(i), o, is the standard deviation for cluster (i) (which is the standard deviation of distances

between each of the cluster members and the cluster center), and & is the number of clusters,

where:

M=m,. (17)
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In the case where the objective is the assessment and redistribution of water quality monitoring
locations of an operating monitoring network, one can proceed as with the design approach to
identify the optimal number of gauged SUs at each cluster by applying Equation 16. Comparing
the optimal number of gauged SUs for each cluster and the number of already gauged SUs, one
may have three cases for the number of already-gauged SUs within the cluster: (i) equal to, (ii)
less than, or (iii) greater than the optimal number of gauged SUs. In the first case, no action
should be taken; in the second case, monitoring locations should be added at some of the un-

gauged SUs; finally, in the third case, some of the already-gauged SUs may be discontinued.

When adding monitoring location(s) to a cluster that exhibits a shortage in the number of
monitoring locations, the un-gauged SUs with the greatest distance from gauged SUs should
have the first priority. These SUs are indicative of SUs within the cluster that explain a greater
amount of variability, and therefore, they offer the greatest benefit in terms of information
gained. If only one monitoring location is to be added, the minimum distance in the attribute
space between each un-gauged SU and the gauged SUs is computed. Then the un-gauged SU
with the maximum value of the minimum distance is selected to be gauged. When more than one
monitoring location must be added, a similar procedure is followed to identify the second un-
gauged SU, the minimum distance is computed between each of the remaining un-gauged SUs
and each of the gauged SUs including the un-gauged SU selected in the first step (considered

gauged) and so forth.

When discontinuing monitoring location(s) from over-monitored cluster(s), an aggregated

information index is applied to identify the optimal combination of monitoring locations to be
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discontinued. For instance, consider the case where the assessment carried out in the previous
steps requires 2 gauged SUs to be discontinued (/# = the number of already-gauged SUs — the
optimum number). Which 4 SUs among the v gauged SUs in the over-monitored cluster
should be selected? The number of possible combinations of SUs to discontinue is given by the
binomial coefficient, C(v,%4). For each combination, one may compute an information index,

according to which the combinations may be ranked.

Such a procedure allows the identification of the best combination of gauged SUs to discontinue
or provides the decision-maker with the rank of the best combinations to discontinue. For
practical comparison of the combinations, the information index must be based on some kind of
aggregated information (Ouarda et al., 1996). Khalil et al. (2010) used an aggregated

performance index (/,) to evaluate combinations of water quality variables to be discontinued

based on the variance of the estimated mean value, which can be modified for the case of

locations as follows:

I,= 2 YvarlaVi (18)

Locations variables V

where V' is the water quality variable and Var{,&{V}} is the variance of the mean value estimator
expected after n, years (Equation 2). The summation in /, is carried out over all of the selected
variables and over all of the gauged locations within the over-monitored cluster. For variables at
a discontinued SU, the variance of the mean value estimator after n, years is estimated using

Equation 2. The population parameters in Equation 2 are replaced by their estimates based on the
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n, years of data. For variables at continuously measured SUs, the variance of the mean value
after n, years is assumed to be equal to the variance of the mean after n, years multiplied by

(n,-1)/(n,+n,-1). The performance index is applied to the standardized variables to remove the

dimensionality and scale effects from the variables.

By applying the aggregated performance index of Equation 18, one can evaluate each of the
possible combinations. After having examined all possible combinations, one can identify the

optimal combination that has the minimum /_, or one can even provide the decision-makers with

the rank of all possible combinations. Figure 3 illustrates the flow of the analyses described

above.

(Figure 3)

Thus, the proposed approach to assess and redesign the water quality monitoring locations can
identify, in a systematic and objective manner, the optimal combination of gauged SUs to

discontinue, the locations to be continuously measured and the SUs to be gauged.

4 Results

This section is divided into three subsections, respectively representing the data preparation, the

empirical experiment results and the monitoring location assessment and redesign.
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4.1 Data preparation

The data preparation consists of three steps. The first step is to divide the Nile Delta into SUs,
where each SU is drained by one point on the drainage system. Ninety-four SUs are hence
obtained, from which 50 are gauged and 44 are un-gauged (Figure 2). The second step is to
identify the SUs attributes. The following attributes are identified for each SU: (i) cultivated area
(feddan = 4200 m?); (ii) average soil salinity (ppm); (iii) average soil hydraulic conductivity
(m/d); (iv) average total annual rainfall (mm/year); (v) drainage system total length (km); (vi)
average total industrial effluent (m3/day); (vii) waste water plants total capacity (m3/day); (viii)
number of livestock; and (ix) average annual applied fertilizers (tons/year). Although the
population density is an important attribute, it is excluded from this study due to limited
information and difficulty in identifying the population for each SU. The summary statistics of

the identified attributes are presented in Table 1.

(Table 1)

The third step is to identify variables best describing the variation in the Nile Delta drainage
water quality using PCA. The results show that the first seven principal components have
eigenvalues greater than one and explain about 85.08% of the total variance in the original data
set. Table 2 shows components loading matrix, where the percentage of variance explained by
each principal component and the rotated correlation coefficients for each of the water quality
variables and the considered components are presented. The values shown are the correlations
between the variables and the principal components. Because of the large number of principal

components extracted, 0.7 (70%) is considered the cut-off value for the correlation coefficients.
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Thus, any water quality variable with an absolute component correlation coefficient value greater
than or equal to 0.7 is considered to be an important variable contributing to variations of the

Nile Delta drainage water quality.

(Table 2)

Based on the PCA results (Table 2), the first principal component represents mineral-related
variables (Electric Conductivity (EC), Total Dissolved Solids (TDS), Calcium (Ca), Magnesium
(Mg), Sodium (Na), Potassium (K), Bi-Carbonate (HCOs3), Sulphate (SO4) and Chloride (Cl)).
The second component consists of Total Coliform (TCol), Fecal Coliform (FCol), Biochemical
Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Phosphorus (TP) and Water
Temperature (Temp.), and it is negatively correlated with the pH and Dissolved Oxygen (DO).
The third component represents turbidity with four most correlated variables: Total Suspended
Sediments (TSS), Total Volatile Solids (TVS), Turbidity (turbid.) and Visibility (Visib.)
(negatively correlated). The fourth component represents nitrates, including Nitrate (NO;),
Ammonium (NH4) and Total Nitrogen (TN). The fifth to seventh components represent trace
elements such as Cadmium (Cd), Copper (Cu), Iron (Fe), Manganese (Mn), Zink (Zn), Lead (Pb)
and Nickel (Ni). The highly correlated variables in the first four components are selected as

indicators: TDS, BOD, TVS and TN.

4.2 Empirical experiment

The results of the empirical experiment designed to examine the three record extension

techniques are presented herein. Figures 4 and 5 summarize the results obtained for the ratio U.
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Figure 4 shows the distribution of the ratio U for the estimation of the mean and standard
deviation, while Figure 5 shows the distribution of the ratio U for the estimation of different non-
exceedance percentiles. The box plots in Figures 4 and 5 are constructed from 9000 records. This
number of records is based on four water quality variables selected at each of the 50 considered
locations, for 45 different record combinations. The box plots in Figures 4 and 5 represent the
distribution of the ratio U for a given statistic and record extension technique. The accuracy of
each approach can be judged by the degree of dispersion in the box plots, by the closeness of the
median to a value of 1 and by the symmetry of the box plot around the value of 1 (Hirsch, 1982;

Vogel and Stedinger, 1985).

(Figures 4 and 5)

Figure 4 indicates that for the estimation of the mean, the regression, MOVE3 and ANN
techniques lead to median values of U equal to 0.96, 1 and 0.97 respectively. The boxes are
symmetric around 1 and have almost the same dispersion. Figure 4 shows also that the regression
and ANN techniques tend to underestimate standard deviations. The cross-validation shows that
more than 75 percent of the regression and almost 75% of the ANN standard deviations are
lower than the values estimated from the observed records, with median values of 0.62 and 0.73,
respectively. For the MOVE3 technique, the median value is 0.98. The MOVE3 standard
deviation box plot is more symmetric around 1 and shows almost the same dispersion as ANN,

while the regression box plot shows the least dispersion.
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Figure 5 shows that the median values of the ratio U for low percentiles are higher than 1, while
those corresponding to high percentiles are lower than 1, for the regression and ANN. In general,
the median values of the ratio U for the MOVE3 percentiles are very close to 1. The ratio U
median values range between 0.81 and 1.25 for the regression, between 0.85 and 1.24 for ANN
and between 0.99 and 1.01 for MOVES3. In general, MOVE3 box plots are symmetric around 1
and show relatively less dispersion than those corresponding to the regression and ANN for low
percentiles. For high percentiles, box plots corresponding to the three techniques show almost
the same dispersion. These results suggest that the regression and ANN tend to overestimate low
percentiles and underestimate high percentiles, while MOVE3 reduces the bias exhibited by the

other two techniques.

Figure 6 illustrates the BIASr exhibited by the three extension techniques in estimating water
quality concentration percentiles. Results indicate that MOVE3 BIASr values for extreme
percentiles are closer to zero than regression and ANN BIASr values. The curves corresponding
to the MOVES3, regression and ANN techniques intersect at the median as the regression and
ANN techniques overestimate low percentiles and underestimate high percentiles. Figure 7
illustrates the RMSEr exhibited by the three extension techniques in estimating water quality
concentration percentiles. Figure 7 shows that the MOVE3 RMSEr values are closer to zero than
those corresponding to regression and ANN for low percentiles, while for large percentiles there
is no significant difference between the three techniques. Figures 5 and 6 clearly illustrate the
regression and ANN overestimation of low concentrations and underestimation of high
concentrations, as would be expected from their tendency to produce an extended record with a

lower variance than the observed record.
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(Figures 6 and 7)

4.3 Monitoring location assessment and redesign

Based on the SUs attributes, Figure 8 shows the SU hierarchical clustering tree (dendrogram),
where the x-axis indicates the SU code and the y-axis indicates the linkage distance between the
clusters. Figure 9 shows the relationship between the linkage distance and the number of clusters.
There is a sharp change of slope around a linkage distance of 5, corresponding to 11 clusters.

Based on Figure 9, 11 clusters are selected, and the cluster centers are computed.

(Figures 8 and 9)

The K-means clustering algorithm is then employed, using the computed cluster centers (initial
seeds) to identify 11 SU clusters. The K-means cluster analysis almost verified the 11 clusters
obtained in Figure 8, with slight differences. Table 3 shows the K-means cluster members and
the distance of each member from its cluster center. Confirming the K-means clusters, the 94
SUs are thus grouped into 11 clusters. Table 3 shows that two out of the eleven clusters are

single-SU clusters. These are SU 3 (Cluster O) and SU 41 (Cluster Z).

SU 3 exhibits the highest WWTPs capacity in the Nile Delta. The drainage system of SU 3
receives around 1415000 m*/day of treated sewage from the WWTPs serving eastern Cairo. The
total WWTPs capacity of SU 3 is more than ten folds that of the second highest SU (SU 11). The

drainage system of SU 11 receives around 133483 m’/day of treated sewage from the WWTPs
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serving the Mansoura city in the Eastern Delta. SU 41 shows the highest industrial activities
within the Nile Delta. It includes about 50 factories in the Alexandria industrial region with a
total industrial effluent of around 123561 m’/day. The total industrial effluents of SU 41 is
almost four times that of the second highest SU (SU 3), where the drainage system of SU 3
receives around 34139 m’/day of industrial effluent from factories in eastern Cairo.

Consequently, these two SUs should be continuously measured.

In addition, cluster H includes two SUs (SUs 48 and 50) which are equal distance from the
cluster center. Consequently, the distances standard deviation is equal to zero. Hence, by
applying stratified optimum sampling, no gauged locations will be allocated to cluster H. Since

both SUs are gauged, one of these SUs may be discontinued.

(Table 3)

Table 4 shows the number of SUs in each cluster, the number of gauged SUs and the standard
deviation within each cluster. In the case, the objective is to assess and redistribute the 50 gauged
locations, SUs 3 and 41, which form the single-SU clusters O and Z, respectively, should be
continuously measured. One of the SUs 48 and 50, which are the members of cluster H should be
discontinued. Thus, for the case of no change in the number of monitoring locations, 47

monitoring locations are distributed among the remaining eight clusters.

(Table 4)
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By applying the stratified optimum sampling (Equation 16), the optimal number of gauged SUs
in each of the 11 clusters is determined, as shown in Table 4. The optimal number of gauged SUs
is equal to the number of already-gauged SUs at each of clusters A, O and Z. It is greater than the
number of already-gauged SUs at each of clusters C, E, G and L. It is smaller than the number of

already-gauged SUs at each of clusters B, D, F and H.

Thus, no action is taken for clusters A, O and Z, and the already-gauged SUs in these clusters
should be continuously measured. For clusters C, E, G and L, three, three, two and three
monitoring locations should be added, respectively. The addition of new monitoring locations at
un-gauged SUs is based on the minimum distance between each un-gauged SU and the gauged
SUs in the attributes space. The un-gauged SU with the maximum minimum distance is the first
to be gauged. For instance, monitoring locations are added at SUs 51, 61 and 80 in cluster C.
These SUs show the maximum distances calculated for un-gauged SUs in cluster C. The SUs

marked by (*) in Table 3 are selected to be gauged in these four clusters.

For clusters B, D, F and H, five, one, four and one of the gauged SUs should be discontinued,
respectively. For cluster D, where three SUs are already-gauged, /, is applied to identify which
SU should be discontinued. Assuming that SU 13 is to be discontinued, 7, is 1.4408, when SU 19
i1s assumed to be discontinued, 7, is 1.4410, and it is 1.4411 when SU 18 is assumed to be
discontinued. Similarly for cluster H, in case SU 48 is assumed to be discontinued, /, is 1.4411,
while if SU 50 is assumed to be discontinued, /, is 1.4412. Thus, based on /,, SUs 13 and 48 may
be discontinued from cluster D and H respectively. Table 5 shows different combinations of five

gauged SUs to be discontinued from cluster B. Table 5 shows the first 9 combinations out of 252
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possible combinations ranked based on /,. Similarly, Table 6 shows the first 9 combinations out

of 1001 possible combinations for the discontinuation of four gauged SUs from cluster F.

(Tables 5 and 6)

For instance, if the monitoring budget allows increasing the number of monitoring locations by
10%, stratified optimum sampling is used to distribute 55 monitoring locations among the 11
clusters. Given that two of the eleven clusters are single-SU clusters and one of the SUs in
cluster H should be discontinued, stratified optimum sampling is used to distribute 52 locations
among the remaining eight clusters. Table 4 shows the optimal number of gauged locations at
each cluster for the case of increasing the number of locations by 10%. Similarly, if the
monitoring budget requires decreasing the number of monitoring locations by 10 %, stratified
optimum sampling is used to distribute 42 monitoring locations among the eight multi-SU

clusters.

5 Conclusions

A methodology for the assessment and redesign of surface water quality monitoring location is
presented in this paper. The proposed methodology is applied to assess the Nile Delta drainage
water-quality-monitoring network. The proposed methodology incorporates basin attributes to
cluster the Nile Delta SUs into groups of similar SUs using a hybrid-cluster algorithm. Stratified

optimum sampling is then applied to identify the optimum number of gauged SUs at each cluster.
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Dividing the monitored basin into clusters of spatial units with similar attributes and applying a
stratified optimum sampling strategy allows to spatially distribute the monitoring locations for
the establishment of a new water quality monitoring network. For an operating monitoring
network, the proposed methodology can be applied to expand or contract the monitoring
network. In the case of over-monitored clusters, an aggregate information index is used to
identify the best combination of locations to be discontinued. For the under-monitored clusters,
the distance between each of the un-gauged SUs and the gauged SUs in the attributes space is
used to identify locations to be added. It can be concluded that the proposed approach can
systematically and objectively assess and identify the monitoring locations to be continuously

measured, the locations to be discontinued and the locations to be added.

In addition, an empirical experiment is conducted to examine the utility of three record extension
techniques in reconstituting information regarding variables at discontinued locations. Simple
linear regression, MOVE3 and ANN techniques are applied to reconstitute information about
variables at discontinued locations using the data from the case study. Different statistical
performance measures are used to assess each of the extension techniques and their ability to
maintain the statistical characteristics of the water quality records. The MOVE3 technique
showed better performance in preserving the statistical characteristics of the discontinued water
quality variables. Consequently, the MOVE3 technique is recommended for the reconstitution of
information about water quality variables at discontinued locations in the Nile Delta WQM

network.
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The main advantages of the proposed methodology are as follows: 1) it allows for the spatial
distribution of monitoring locations when no water quality data is available and for the expansion
or contraction of the number of monitoring locations in an operating monitoring network; and 2)
it allows for the reconstitution of information about water quality variables at discontinued
locations. Thus, the use of the proposed approach and MOVE3 allows to overcome the

deficiencies inherent in the conventional approaches used to design the monitoring locations.

Parallel to the proposed methodology, a cost analysis can be introduced. This analysis would
help to address the trade-off between the number of water quality monitoring locations on one
hand and the sampling frequency and number of water quality variables to be measured on the
other hand. Thus, the decision would be either to reduce the number of monitoring locations in
favor of keeping more variables and increasing the sampling frequency or to increase the number
of monitoring locations while reducing the number of variables to be measured and/or the

sampling frequency.
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Table 2. PCA loading matrix for the Nile Delta water quality variables

Principal Components

Water Quality Variables 1 > 3 4 5 5 -
Discharge (Q) 0.427 1-0.103 | 0.156 | 0.105 | -0.116 | 0.094 | 0.602
Total Coliform (TCol) -0.180 | 0.931 | 0.164 | 0.057 | -0.076 | 0.138 | -0.001
Fecal Coliform (FCol) -0.182 1 0.926 | 0.160 | 0.058 | -0.080 [ 0.165 [ 0.002
Biochemical Oxygen Demand (BOD) | -0.031 | 0.961 | -0.032 | 0.014 | 0.111 | -0.106 | -0.057
Chemical Oxygen Demand (COD) -0.021 | 0.943 | -0.022 | 0.033 | 0.111 | -0.113 | -0.063
Total Suspended Solids (TSS) 0.125 | 0.012 | 0.972 | 0.001 | 0.049 | 0.003 | -0.053
Total Volatile Solids (TVS) 0.115 | 0.006 | 0.974 | 0.009 | 0.047 | -0.008 | -0.067
Nitrate (NO3) 0.210 [ -0.005 | -0.015| 0.947 | -0.102 | -0.054 | 0.030
Ammonium (NHy) 0.134 | 0.536 | -0.042 | 0.781 | -0.013 | -0.098 | -0.034
Total Phosphorus (TP) -0.162 | 0.860 | 0.209 | 0.130 | -0.088 [ 0.113 | -0.109
Total Nitrogen (TN) 0.241 | -0.078 | -0.012 | 0.954 | -0.050 | 0.023 | 0.023
Cadmium (Cd) -0.183 | -0.068 | -0.083 | -0.028 | 0.110 | -0.129 | 0.693
Copper (Cu) 0.087 | 0.114 | -0.038 | -0.090 | -0.641 | 0.179 | -0.036
Iron (Fe) -0.088 | -0.060 | 0.070 | -0.020 [ 0.208 | 0.888 | -0.140
Manganese (Mn) 0.136 | 0.301 | 0.385 | -0.058 | -0.170 | 0.616 | 0.071
Zinc (Zn) 0.164 | -0.085 | -0.130 | -0.250 | 0.634 | 0.354 | 0.061
Lead (Pb) 0.165 | 0.226 | 0.037 | 0.029 | 0.569 | 0.110 | 0.285
Nickel (Ni) 0.130 | 0.036 | 0.007 | -0.164 | 0.769 | 0.051 | -0.206
Boron (B) 0.548 | -0.042 | -0.253 | 0.118 | 0.354 | -0.040 | -0.314
pH 0.331 | -0.700 | 0.168 | 0.367 | 0.097 | -0.124 | -0.162
Electric Conductivity (EC) 0.981 | -0.110 | 0.093 | 0.087 | 0.034 | 0.009 | 0.023
Total Dissolved Solids (TDS) 0.982 | -0.116 | 0.076 | 0.085 | 0.035 | 0.004 | 0.016
Calcium (Ca) 0.940 | -0.144 | -0.130 | 0.130 | 0.085 | -0.051 | -0.029
Magnesium (Mg) 0.969 | -0.116 | 0.134 | 0.090 | 0.001 | 0.036 | 0.023
Sodium (Na) 0.978 | -0.107 | 0.121 | 0.067 | 0.027 | 0.017 | 0.033
Potassium (K) 0.937 | -0.014 | 0.009 | 0.049 | 0.164 | -0.013 | -0.039
Bi-Carbonate (HCO3) 0.913 | -0.009 | 0.299 | 0.092 | -0.115 | 0.049 | -0.014
Sulphate (SOy4) 0.935 | -0.176 | -0.150 | 0.145 | 0.141 | -0.061 | -0.054
Chlorine (Cl) 0.973 | -0.094 | 0.147 | 0.053 | 0.006 | 0.029 [ 0.052
Water temperature (Temp.) 0.018 | 0.732 | -0.102 | 0.129 | 0.213 | -0.427 | -0.167
Dissolved Oxygen (DO) 0.343 | -0.682 | -0.197 | 0.231 | 0.256 | -0.231 | -0.288
Turbidity (Turbid.) 0.117 | 0.024 | 0.951 | 0.028 | -0.014 | 0.090 | 0.081
Visibility (Visib.) 0.030 | -0.351 | -0.793 | 0.103 | 0.135 | -0.272 | -0.099
% Variance exp. 31.83 | 19.14 | 12.17 | 8.35 5.59 4.39 3.61

Bold numbers indicate variables with an absolute factor correlation coefficient greater than or equal to 0.7. Shaded

cells indicate the factor correlation coefficients for the selected variables
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Table 3. Spatial Units Clusters

Cluster SU Dist.** | Cluster SU Dist. Cluster SU Dist.
4 59 0.564 43 gauged
10 61%! 2.086 F 56 2.409
33 gauged C 62 1.134 74 2.676
44 66 1.015 49 gauged
47 80** 1.444 78 1.121
52 1.755 13 81+ 1.978
A 60 1.583 18 gauged G 82 1.544
75 1.496 D 19 g5*! 2.555
77 2.087 63 3.139 86 1.398
88 0.705 73 2.266 87 0.750
89 0.961 6 q 48
90 0.488 17 50
92 0.795 25 gauged 22
5 31 24
7 E 54! 2.580 38
8 55 0.985 39 gauged
9 58 1.286 40
11 64* 1.542 42
15 gauged 69+ 1.568 45
27 2 L 46
B 29 12 70 0.264
30 14 71 0.218
35 16 72 0.482
65 2.921 20 79%! 1.761
67 2.284 21 g4+’ 0.583
68 1.530 F 23 gauged 91 0.273
76 1.925 26 93 0.391
83 2.440 28 942 0.959
1 gauged 32 O 3 gauged
C 51% 1.431 34 Z 41 gauged
53 0.832 36 * Dist. Stands for the minimum
57 0.630 37 distance to gauged SU.

*SUs selected to be gauged; *' First SU to be gauged; ** Second SU to be gauged
** Minimum distance to gauged SU.
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Table 4. Stratified optimum sampling

Cluster | No. | Gauged | Standard | St-deviation | Optimum no. | Expansion | Contraction
SUs | SUs deviation | x SU no. gauged SUs [ 10% (55) | 10% (45)
A 13 5 0.075 0.975 5 5 4
B 15 10 0.058 0.87 5 5 4
C 9 1 0.089 0.801 4 5 4
D 5 3 0.097 0.485 2 3 2
E 9 4 0.157 1.962 7 8 6
F 16 14 0.127 2.032 10 11 9
G 7 1 0.087 0.609 3 3 3
H 2 2 0 0 1 1 1
L 16 8 0.137 2.192 11 12 10
O 1 1 0 0 1 1 1
Z 1 1 0 0 1 1 1

256




Table 5. Aggregate Information index to identify 5 locations to be discontinued from Cluster B

Location to discontinue 1,
5 7 8 9 15 1.44056
5 7 8 9 27 1.44057
5 7 8 9 35 1.44059
5 7 9 15 27 1.44060
5 7 9 15 35 1.44061
5 7 8 15 27 1.44061
5 7 8 15 35 1.44062
5 7 9 27 35 1.44062
5 7 8 27 35 1.44064
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Table 6. Aggregate Information index to identify 4 locations to be discontinued from Cluster F

Location to discontinue 1,
12 23 26 32 1.44074
12 23 32 37 1.44077
2 12 23 32 1.44077
12 23 32 36 1.44078
12 23 26 37 1.44081
2 12 23 26 1.44081
12 16 23 32 1.44081
12 23 26 36 1.44082
2 12 23 37 1.44083
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Article V. Estimation of water quality characteristics at ungauged
sites using artificial neural networks and canonical correlation
analysis
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Abstract

Two models are developed for the estimation of water quality mean values at ungauged sites.
The first model is based on artificial neural networks (ANNs) and the second model is based on
canonical correlation analysis (CCA) and ANNs. An ensemble ANN model is developed to
establish the functional relationship between water quality mean values and basin attributes. In
the CCA-based ANN model, CCA is used to form a canonical attribute space using data from
gauged sites. Then, an ANN is applied to identify the functional relationships between water
quality mean values and the attributes in the CCA space. The two models are applied to 50
subcatchments in the Nile Delta, Egypt. A jackknife validation procedure is used to evaluate the
performance of the two models. The results show that the developed models are useful for
estimating the water quality status at ungauged sites. However, the CCA-based ANN model

performed better than the ANN in terms of prediction accuracy.

Keywords: water quality; canonical correlation; artificial neural networks; jackknife; ungauged

site; prediction.

1 Introduction

Water quality is a term used to describe the chemical, physical and biological characteristics of
water with respect to its suitability for a particular use. Water quality is affected by a wide range
of natural and anthropogenic influences. Natural processes (hydrological, physical, chemical and
biological) may affect the characteristics and concentration of chemical elements and compounds
in freshwater. There are also anthropogenic impacts that affect water quality, such as human-

induced point and nonpoint pollution sources, introduction of xenobiotics and alteration of water
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quality due to water use and river engineering projects (Chapman, 1996). The assessment of
water resources requires knowledge about the processes affecting both water quantity and water
quality (Harmancioglu et al., 1999). To understand the process dynamics of a watershed, a well-

designed water quality monitoring network is required.

In general, water quality data are needed to delineate the following (Whitfield, 1988S;
Harmancioglu et al., 1992): the general nature and trends in water quality; the effects of natural
and anthropogenic factors on the general trends in water quality processes; the effectiveness of
water pollution control measures; and the level of compliance with established quality standards.
They are also needed to assess the general water quality conditions over a wide area and to
model water quality processes. Thus, water quality monitoring programs help explain the various
processes affecting water quality, as well as provide water managers with the necessary

information for decision making (Khalil and Ouarda, 2009).

Normally, information is derived from water quality data at gauging sites. However, in many
cases, water quality networks are characterized by their low density and their inconvenient
spatial distribution. Even when water quality monitoring networks are well developed, historical
water quality data may not be available at the sites of interest. In this study, the feasibility of
using water quality data generated from gauging sites and the attributes of the basins being

monitored to estimate water quality conditions at ungauged sites is investigated.

In hydrometric networks, regional flood frequency analysis has been widely used to estimate

flood quantiles at sites where streamflow records are not available. Regional flood frequency
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analysis is a practical way of obtaining estimates of flood quantiles at ungauged or insufficiently
gauged hydrological sites (Ouarda et al., 2000). A number of regionalization techniques have
been developed for this purpose (see e.g., Wiltshire, 1986; Burn, 1990; Cavadias, 1990; Ouarda

et al., 2001; Shu and Burn, 2004; Shu and Ouarda, 2007).

The first step in regional flood frequency analysis is the identification of homogeneous regions.
This step aims to identify catchments that are hydrologically similar to the target site (ungauged
site). Conventionally, homogeneous regions are identified based on geographic or administrative
boundaries (Matalas, 1975; Beable and McKerchar, 1982). However, regions identified based on
geographic continuity do not necessarily show hydrologic similarity (Cunnane, 1988).
Alternatively, the hydrological neighborhood (Ouarda et al., 2001) or region of influence
technique (Burn, 1990), in which each site has a potentially unique set of catchments forming the
homogeneous region for the site, has received much attention because of its flexibility and
effectiveness (Shu and Ouarda, 2007). The Groupe de Recherche en Hydrologie Statistique
(GREHYS, 1996) conducted comparison studies, which indicate that the neighborhood technique
performs better than the homogeneous region approach for the identification of hydrologically

similar catchments.

Canonical correlation analysis (CCA) (Ouarda et al., 2000, 2001) is a frequently used approach
for defining hydrological neighbourhoods (Shu and Ouarda, 2007). Originally, it was introduced
by Cavadias (1990) for flood quantile estimation. Cavadias (1990) identified homogeneous
regions based on visual judgments of clustering patterns. Ouarda et al. (2000) applied the CCA

approach to jointly estimate extreme flood peak and volume quantiles in Québec, Canada.
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Ouarda et al. (2001) further improved the CCA approach and proposed detailed algorithms for
identifying homogeneous regions for gauged and ungauged sites using CCA (Shu and Ouarda,

2007).

Shu and Ouarda (2007) used CCA to construct a canonical physiographic space using the site
characteristics from gauged sites. Then, artificial neural network (ANN) models are applied to
identify the functional relationships between flood quantiles and the physiographic variables in
the CCA space. Shu and Ouarda (2007) compared the original CCA model (Ouarda et al., 2001),
the canonical kriging model (Chokmani and Ouarda, 2004), the original ANN models and the
CCA-based ANN models for the estimation of flood quantiles at ungauged sites. Results showed
that the CCA-based ANN models provide superior estimations compared with the original ANN
models. In addition, results showed that the ANN ensemble approaches provide a better
generalization ability than the single ANN models. From this work, it was concluded that the
CCA-based ensemble model has the best performance among all models in terms of prediction
accuracy. CCA was also used by Guillemette et al. (2009) to estimate water temperature at
ungauged site. They interpolated maximum monthly temperature using kriging in CCA space, an
approach initially developed by Chokmani and Ouarda (2004) for flood quantile estimation.
Guillemette et al. (2009) showed that interpolating in CCA space provided better water

temperature estimations than kriging in Principal Component Analysis (PCA) space.

In this study, the regional flood frequency analysis approach as applied for the estimation of flow
quantiles at ungauged sites is adapted for the estimation of water quality mean values at

ungauged sites. In the following section, a description of the study area is provided. In Section 3,
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the methodology is presented. In Section 4, results are presented and discussed. Finally,

conclusions from this work are presented in Section 5.

2 Nile Delta water quality monitoring network

Egypt is a semiarid country with rainfall rarely exceeding 200 mm/year along the North Coast.
The rain intensity decreases quickly away from the coastal areas, and scattered showers can
hardly be depended upon for agricultural production (Abu-Salama, 2007). According to an
agreement between Egypt and Sudan in 1959, the Nile water allocation is 18.5 billion m’ to
Sudan and 55.5 billion m® to Egypt (Dijkman, 1993). About 97% of Egypt’s water resources are
from the Nile River. The distribution of Egypt’s share of the Nile’s water to its population is near
the water poverty threshold and will fall well below this threshold in the years to come (MWRI,
1997). The per capita share of freshwater resources in Egypt is about 800 m® per person per year
(Abdel-Gawad et al., 2004; Frenken, 2005). It is expected to drop to 450 m’ per person by the

year 2025 (Abdel-Gawad et al., 2004).

One of the solutions applied to stretch limited Egyptian water resources is the reuse of any kind
of drainage water (agricultural/industrial/municipal or most often a mixture thereof) for
agricultural production. The drainage system in the Nile Delta is composed of 22 catchment
areas. Depending on their quality, the effluents are either discharged into the northern lakes or
pumped into irrigation canals at 21 sites along the main drains to augment the freshwater supply
(DRI-MADWQ, 1998). Numerous programs have been developed in the past to monitor the
quality of the Nile water and the agricultural drainage water in the Nile Delta. In 1977, the

National Water Research Center (NWRC) started to monitor a few volumetric and qualitative
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water parameters (predominantly concerning salinity) in some of the main drains in the Nile

Delta.

Since 1997, the NWRC has expanded its monitoring activities to include an ever-increasing
number of sampling sites and water quality variables. The monitoring program of the Nile Delta
drainage system has the following aims: assessing compliance with national standards,
estimating mass transport and identifying temporal and spatial trends (NAWQAM, 2001). The
Nile Delta drainage system monitoring network (Figure 1) consists of 94 monitoring locations,
through which 33 water quality variables are measured on a monthly basis. Of the 94 monitoring
locations, 21 locations are located at drainage water reuse locations, and 10 locations in the
drainage system main streams are used as check points for assessing the water and salt balance.
Thirteen monitoring locations are located at outfalls to the northern lakes and the Mediterranean
and 50 monitoring locations are located at tributaries that serve small catchments and deliver

water to the main drainage systems.

(Figure 1)

3 Methodology

The description of the methodology is divided into two main parts. The first part describes the
data preparation and the second part describes the development of two water quality models
designed to estimate the water quality conditions at ungauged sites. However, before data
preparation, the Nile Delta is divided into subcatchments, which are spatial units (SUs) that drain

to only one point on the drainage system. Measuring the water quality at one of these points
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describes the effect of the SU’s natural and anthropogenic impacts on the water quality

conditions.

The data preparation consists of two main steps. In the first step, attributes that explain different
natural and anthropogenic effects are identified for each SU. In the second step, water quality
indicators are selected from the 33 measured water quality variables. In this step, the water
quality variables that better explain the variability in the water quality in the Nile Delta drainage

system are selected. These data preparation steps are described in sub-section 3.1.

In the second part, two models are developed to estimate water quality at ungauged sites. The
models are based on the functional relationship between SU attributes and the selected water
quality variables at gauged SUs. Model development is described in subsection 3.2, along with

the evaluation procedure and criteria.

3.1 Data preparation

The data preparation consists of two steps: identifying SU attributes and selecting the water
quality variables that best describe the variations in the water quality. The water quality
measured at each SU reflects the impact of its unique natural and anthropogenic influences. The
attributes are selected to describe the different natural and anthropogenic characteristics within
each SU. However, selection is restricted by data availability. The following attributes are

identified for each SU:

e Cultivated area (feddan [feddan = 4200 m*]);
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e Average soil salinity (ppm);

e Average soil hydraulic conductivity (m/d);
e Average total annual rainfall (mm/year);

e Drainage system total length (km);

e Average total industrial effluent (m*/day);
o Wastewater plant total capacity (m3/ day);
e Number of livestock; and

e Average annual applied fertilizers (tons/year).

Although the population density is an important attribute, it is excluded from this study due to

limited information and difficulty to identify the population for each SU.

The quality of a water body is usually described by sets of physical, chemical and biological
variables that are mutually interrelated. Water quality can be defined in terms of one variable to
hundreds of compounds (Khalil et al., 2010).The water quality variables that best explain the
variability in the water quality are selected by using principal component analysis (PCA). PCA is
one of a number of factor extraction methods. Since Hotelling (1933) introduced PCA, it has
been used for data interpretation, pattern recognition, dimensional analysis, and multicollinearity
detection. The PCA transforms a set of correlated variables into a smaller set of uncorrelated
variates, called principal components (Jobson, 1992). The PCA can be applied to a set of water
quality variables to identify variables that form coherent subsets that are relatively independent
one another (Khalil and Ouarda, 2009). The principal components summarize the patterns of

correlation among observed variables. Variables that are correlated with one another, but largely
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independent of other subsets, are linearly combined into one component (Khalil and Ouarda,
2009). The first component explains most of the variance in the data, and each successive

component explains less of the variance (Tabachnick and Fidell, 1996).

Interpretation of the components is based on the variables related to them and their significance
to physical processes. Correlations between variables and principal components are called
component loadings. The component loading matrix obtained from PCA reflects the
characteristics of the extraction procedure, which maximizes the variance in each successive
component. Once the loading matrix is extracted, rotation can take place. Rotation is ordinarily
used after extraction to maximize high correlations and minimize low ones. Numerous methods
of rotation are available; the one applied in this study is varimax (variance maximizing
procedure). Water quality variables most related to the main components (the ones that explain
most of the data variance) are selected to represent water quality at the gauged SU. One water
quality variable is selected as an indicator from each component (the variable with the highest
absolute factor loading). This step is followed by calculating the mean values of the selected
variables over the record period at the gauged SUs. These values are used as the output in the

developed models.

3.2 Water quality models

The relationship between SU attributes and water quality is established using two different
models. The first model is based mainly on ANNs. The second model uses CCA and ANN. The
following subsections describe these two models as well as the model evaluation procedure and

criteria.
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3.2.1 ANN Ensemble (EANN) model
ANN is a computational model that attempts to imitate the way the human brain biological
neural networks works. The ANN can be used to model complex and nonlinear relationships or
to find patterns in data. Among the various types of ANNs, multilayer perceptrons (MLPs),
originally proposed by Rumelhart and McClelland (1986), are the most commonly used and
well-researched class of ANNs (Ouarda and Shu, 2009). This type of ANN implements a feed-
forward supervised paradigm (Shu and Ouarda, 2007). A MLP consists of an input layer, which
receives the values of the input variables, an output layer, which provides the model output, and
one or more hidden layers. Nodes in each layer are interconnected through weighted acyclic arcs
from each preceding layer to the following, without lateral or feedback connections (Shu and

Ouarda, 2007).

Several studies have shown that the performance of a single ANN can be improved by using
ensemble techniques (Sharkey, 1999; Dietterich, 2000; Shu and Burn, 2004; Ouarda and Shu,
2009; Zaier, et al., 2010). The ANN ensemble is a group of ANNs that are trained for the same
problem, where results obtained by these ANNs are combined to produce the ANN ensemble
output. As described by Merz (1998), the construction of ANN ensembles consists of two main
tasks: (1) the generation of the component ANN constructing the ensemble; and (2) the
combination of the multiple outputs from the ANN components to produce the ANN ensemble
output. Several methods were proposed in the literature to generate ensemble ANNSs include: (i)
manipulating the set of initial random weights, (i1) using different network topology, (iii) training

component networks using different training algorithms, and (iv) manipulating the training set
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(Sharkey, 1999; Shu and Ouarda, 2007). The most frequently used techniques for the
manipulation of the training data set are bagging (Breiman, 1996) and boosting (Schapire, 1990)
techniques. The most frequently used approaches to combine outputs from ANN components are
averaging and stacked generalization (Wolpert, 1992; Shu and Ouarda, 2007). In this paper, the
ANN ensemble is used to establish the functional relationship between the SU attributes and the
water quality mean values at gauged SUs. The abbreviation EANN stands for an ANN ensemble

and will be used in the remainder of the paper to represent this model.

For each of the EANN components, a MLP having one input layer, one hidden layer and one
output layer is used. Inputs are the SU attributes and outputs are the mean values of the selected
water quality indicators. For the nodes in the hidden layer, the tan-sigmoid transfer function is
used. The use of a nonlinear transfer function extends the nonlinear approximation ability of the
ANN (Shu and Ouarda, 2007). For the output nodes, a linear transfer function is used. A linear
transfer function for the output nodes has the advantage of potentially unbounded outputs (Shu

and Burn, 2004).

Determining the number of neurons in the hidden layer is an important task when designing an
ANN (Shu and Ouarda, 2007). Too many hidden nodes may lead to the problem of overfitting.
Too few nodes in the hidden layer may cause the problem of underfitting. As a rule of thumb, the
number of nodes in the hidden layer should be less than twice the input layer size (Shu and
Ouarda, 2007). In this study, a sensitivity analysis is performed to identify the optimal number of
hidden nodes. By varying the number of hidden neurons from three to fifteen, ANNs with seven

hidden neurons are identified as providing the most accurate estimation when they are applied to
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estimate the mean values for the selected water quality indicators. Thus, seven hidden neurons

are finally used in the hidden layer.

To identify the size of an ensemble, Hansen and Salamon (1990) and Agrafiotis et al. (2002)
have suggested that using ten networks can achieve a significant reduction in classification error.
Opitz and Maclin (1999) have shown that, when the ensemble size increases to ten or fifteen, the
generalization ability of the ensemble can be noticeably improved. Shu and Burn (2004) have
suggested that a network size of ten is necessary to attain sufficient generalization ability. The
preliminary analysis of Shu and Ouarda (2007) showed that the estimation error of flood
quantiles gradually decreases when the ensemble size increases from 5 to 14, while with a further
increase of the ensemble size to 20, no improvement in the estimation error is observed.
Different ensemble sizes ranging from 5 to 20 were applied in this study. The results indicated
that estimation error gradually decreases when the ensemble size increases to 15. Beyond a size
of 15, virtually no improvement in the estimation error is observed. Thus, an ensemble size of 15
is used in the present paper. Following Shu and Ouarda (2007) and Ouarda and Shu (2009), the
bagging procedure is selected to generate the individual member networks, and simple averaging

is used to combine the outputs from each individual ANN.

3.2.2 EANN-CCA model
In the second model, the EANN model in the CCA space is used to establish the functional
relationship between water quality mean values and SU attributes at gauged SUs. The CCA is
used to form a canonical attribute space using the SU attributes at gauged SUs. The ANN

ensemble models are applied to identify the functional relationships between water quality mean
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values and SU attributes in the CCA space. The abbreviation EANN-CCA will be used in the

remainder of the paper to represent this model.

The goal of CCA is to analyze the linear relationships between two sets of random variables.
Consider X and Y, two random sets of variables, CCA can be defined as the problem of finding
linear combinations W =a' X and V' = 'Y that are maximally correlated (where W and V are
the canonical variables, @ and £ are the eigenvectors). The maximum number of canonical

variable pairs is equal to the smallest dimensionality of the two variables X and Y (Ouarda et al.,

2001). Let C be the total covariance matrix of variables X and Y defined as:
C C
C= [ xx xy} (1)

where C,, is the X covariance matrix, C,, is the Y covariance matrix, and C,, =C,, 1s the

between-sets covariance matrix. The correlation between W and V can then be calculated as

(Ouarda et al., 2001):

e a' Cy S
\/a,CXX ap Cy, B

2)

The canonical correlations between X and Y can be found by solving the eigenvalues equations

(Tabachnick and Fidell, 1996):
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where the eigenvalues p” are the squared canonical correlation. The number of non-zero

solutions to these equations are limited to the smallest dimensionality of X and Y (Tabachnick
and Fidell, 1996). CCA requires all variables to be transformed for normality and standardized.
In this study, all variables are transformed using a Box-Cox transformation, and standardized
prior to CCA. Details concerning CCA are available in reference text books (e.g. Muirhead,

1982; Tabachnick and Fidell, 1996).

Suppose a set of SU attributes, X, and water quality mean values, Y, associated with each gauged
SU. Using CCA, canonical variables W and V can be obtained as a linear combination of X and
Y, respectively. The coefficients used for the combination are computed so that the correlation
between the variables / and V' is maximized. The goal of the EANN model is to approximate the
functional relationship between the canonical attribute variables W and the water quality mean
values Y, which act as the input and output of an EANN, respectively. To achieve this goal, the
attributes and the water quality records available at gauged SUs are used to calibrate the CCA
and to train the EANN. Knowing the CCA combination coefficients, the attributes variable for an
ungauged site (Xu) can be easily projected into the CCA space to obtain the canonical attributes
variable in the CCA space (Wu). Applying the projected attributes data to the EANN input layer,

estimation can be obtained directly from the output layer.
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The EANN models in the CCA space have the same structure, transfer function, number of
neurons in the hidden layer and number of ANN components as defined for the EANN model.
The component networks in the EANN-CCA models are also generated using the bagging

approach, and the resulting networks are combined using simple averaging.

3.2.3 Evaluation procedure and criteria
A jackknife procedure is used to compare the relative performance of the EANN and EANN-
CCA models. In this procedure, the water quality mean values at each gauged SU are
temporarily removed, thus the SU is assumed to be ungauged. Then, each model is calibrated
using the data of the remaining gauged SUs. Estimates for water quality variable means are
obtained for the temporarily removed SU using the calibrated models, and then the estimations
are evaluated against mean values calculated from the observed records. Evaluations are
conducted using the following five indices: the Nash criterion (NASH), the root mean squared
error (RMSE), the relative root mean squared error (RMSEr), the mean bias (BIAS) and the

relative mean bias (BIASr). The metrics are computed according to the following equations:

Z(yi _);i)z
NASH =1 )

Z(yl _y)z

russi = |13 (5,5, )
i=1

RMSEr = \/lZ(uJ (6)

nig Yi
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Biasr = li[u] 3

where n is the total number of SUs being modeled, y, is the mean estimation from the observed
records for site 7, y, is the mean estimation obtained from the model for site 7, and y is the mean

of the mean estimation from the observed records of the # sites.

4 Results

4.1 Data preparation
Dividing the Nile Delta into SUs leads to 94 SUs, of which 50 are gauged and 44 are ungauged.
Figure 2 shows the Nile Delta gauged and ungauged SUs. Summary statistics for the identified

attributes are presented in Table 1.
(Figure 2) and (Table 1)

PCA is employed to identify the water quality variables that best describe the variation in the
water quality. Results show that the first seven principal components have eigenvalues greater
than one and explain about 85.08% of the total variance in the original data set. Table 2 shows
the percentage of variance explained by each principal component and the rotated correlation

coefficients for the highly correlated water quality variables. The values shown are the
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correlations between the variables and the principal components (loadings). Because of the large
number of extracted principal components, 0.7 (70%) is treated as the cutoff value for the
correlation coefficients. Thus, any water quality variable with an absolute loading value greater
than or equal to 0.7 is considered to be an important variable that contributed to variations in the

Nile Delta drainage water quality.

(Table 2)

Based on the PCA results (Table 2), the first principal component represents mineral-related
variables (Electric Conductivity (EC), Total Dissolved Solids (TDS), Calcium (Ca), Magnesium
(Mg), Sodium (Na), Potassium (K), Bi-Carbonate (HCOs3), Sulphate (SO4) and Chloride (Cl)).
The second component consists of Total Coliform (TCol), Fecal Coliform (FCol), Biochemical
Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Phosphorus (TP) and Water
temperature (Temp.), and it is negatively correlated to pH and Dissolved Oxygen (DO). The
third component represents turbidity with four highly correlated variables: Total Suspended
Sediments (TSS), Total Volatile Solids (TVS), Turbidity (turbid.) and visibility (Visib.)
(negatively correlated). The fourth component represents nitrates, Nitrate (NOs3), Ammonium
(NH4) and Total Nitrogen (TN). The fifth to seventh components represent trace elements such
as Cadmium (Cd), Copper (Cu), Iron (Fe), Manganese (Mn), Zink (Zn), Lead (Pb) and Nickel
(N1). The highly correlated variables in the first four components are selected as indicators: TDS,

BOD, TVS and TN. The summary statistics of these selected variables are presented in Table 1.
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The selection of water quality variables is followed by a trend assessment of the annual mean
values. The trend assessment is performed using the Mann-Kendall nonparametric trend test. The
results indicate that for the four selected water quality variables, at almost all 50 gauged sites, the
null hypothesis that there is no trend in the annual mean values can be accepted when the
significance level is 0.05. Thus, an overall mean value is calculated for each water quality

variable at each of the gauging sites for water quality models calibration and validation.

4.2 Water quality models

For the EANN and EANN-CCA models, results obtained using the jackknife validation method
are presented in Table 3. A model can be claimed to produce a perfect estimation if the NASH
criterion is equal to 1. Normally, a model can be considered accurate if the NASH criterion is
greater than 0.8. NASH values for the EANN-CCA model estimation of the mean values of the
four considered water quality variables are higher than those for the EANN model estimation.

This indicates that the EANN model in the CCA space is better than the EANN.

(Table 3)

RMSE and RMSEr indices provide an assessment of the prediction accuracy on an absolute and
relative scale, respectively. The EANN-CCA model performed better than the EANN model
according to these two indices. The BIAS and BIASr indices provide an indication about whether
a model tends to overestimate or underestimate. The analysis based on the B/AS index suggests
that the EANN model performed slightly better than the EANN-CCA model for the estimation of

the BOD and TVS mean values. However, the BIASr indicates that the EANN-CCA model

290



performed better than the EANN model for the estimation of the mean values of the four
considered variables. This indicates that the errors obtained when using the EANN model are
more symmetric around zero but show more dispersion than those obtained when using the
EANN-CCA model. This result is illustrated by the jackknife plots for the BOD and TVS in

Figure 3.

Overall, the EANN-CCA model yielded a significantly better performance than the EANN
model according to the NASH, RMSE, RMSEr and BIASr indices. These results indicate that
applying ANN models in the CCA attributes space can greatly improve the performance of ANN
models in the original attribute space. ANNs are nonparametric approaches, which are limited in
their ability to extrapolate beyond the range of the observed data used in the training process.
The EANN-CCA approach combines both parametric and nonparametric methods, which seems
to help the performance of the ANNs. Transformation of inputs through CCA before using
EANN seems also to filter some of the noise in the data. The EANN model focuses then on
reproducing the true signal rather than the noise. In this sense, combining CCA with EANN
helps avoid overfitting. Shu and Ouarda (2007) concluded that the CCA technique is better able
to characterize the physiographic space for conducting flood quantile estimation. In agreement
with their conclusions, the research results of this paper show that CCA is capable of

characterizing the SU attribute space for the estimation of water quality mean values.

Using the jackknife validation procedure, estimates for the selected water quality variables
(BOD, TVS, TN and TDS) using the EANN and EANN-CCA models are shown in Figure 3.

From Figure 3, it can be observed that the EANN-CCA model tends to provide a better
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estimation than the EANN model for the estimation of the mean values of the four selected water
quality variables. Plots corresponding to the EANN model show more dispersion around the 45
degree line than in plots corresponding to the EANN-CCA model. Both models overestimate the
mean values at sites with values lower than 34 mg/l for BOD, 10 mg/l for TVS and 12 mg/l for
TN and underestimate the mean values at sites with values higher than 60 mg/l for BOD, 20 mg/l
for TVS, 20 mg/1 for TN and 4000 mg/1 for TDS. However, using the EANN-CCA model, the
error and bias for those sites are lower than when using the EANN model. Overestimation of low
water quality mean values and underestimation of high mean values is mainly due to the limited
number of SUs represent these values. These SUs are underrepresented in this case study. For
instance, there are only four SUs in the database that show BOD mean values greater than 60
mg/l and only five SUs that show BOD mean values less than 34 mg/l. Thus less training data is

available in the variable space occupied by these small or high values.

(Figure 3)

5 Conclusions

Two water quality models for the estimation of water quality mean values at ungauged sites are
presented in this paper: the ANN ensemble (EANN) and ANN ensemble in the canonical space
(EANN-CCA) models. The EANN model establishes the functional relationship between water
quality mean values and basin attributes in the original space. For the CCA-based EANN model,
the CCA is used to project the basin attributes into the canonical attribute space. EANN models

are then used to approximate the functional relationship between the water quality mean values
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and the projected attribute variables. The two models are developed and applied to the data of the

case study.

Jackknife validation is used to assess the performance of the two models. Results showed that
both models performed acceptably. Although the EANN-CCA model has a better prediction
accuracy than the EANN model, the EANN model leads to a less biased estimation of the BOD
and TVS mean values. Results indicate that applying EANN models in the CCA attribute space
can greatly improve the performance of EANN models in the original attribute space. Thus, a
CCA-based EANN model can be used to provide an estimate for water quality mean values at

ungauged sites.

Models developed in this paper are designed to estimate the water quality mean values for four
selected variables at ungauged sites in the Nile Delta, Egypt. Modification of the methods
presented in this paper to account for non-stationary variables and the development of methods
which allow the estimation of detailed water quality time series represent important directions of

future research.
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Table 1. Descriptive Statistics of SU attributes and selected water quality variables

SU Attributes and WQ variables Minimum | Mean Maximum STDV
Cultivated area (fedd) 912.51 | 63323.11 | 294852.06 | 50902.16
Soil Salinity (ppm) 1280.00 | 2027.57 2560.00 281.77
Soil hydraulic conductivity (m/day) 0.08 0.19 1.00 0.15
Average Rainfall (mm/year) 37.50 87.43 150.00 35.07
Drains total length (km) 18.12 173.25 540.97 115.11
Total Industrial effluent (m3/day) 0.00 4420.42 | 123561.00 | 18314.81
Total WWTP capacity (m’/day) 0.00 37078.78 | 1415000.00 | 200098.72
Livestock (count) 1957.00 |62470.27 | 206552.00 | 49447.63
Total annual fertilizers applied (tones/year) 444.64 11730.73 | 31047.36 7887.32
Biochemical Oxygen Demand (mg/l) 26.36 45.80 94.79 13.05
Total Volatile Solids (mg/1) 5.33 13.60 30.82 5.11
Total Nitrogen (mg/1) 6.78 14.45 25.29 3.65
Total Dissolved Solids (mg/l) 698.60 1685.62 5768.84 1010.07
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Table 2. PCA loading matrix for the Nile Delta water quality variables

Principal Components

Water Quality Variables 1 > 3 4 5 5 -
Discharge (Q) 0.427 1-0.103 | 0.156 | 0.105 | -0.116 | 0.094 | 0.602
Total Coliform (TCol) -0.180 | 0.931 | 0.164 | 0.057 | -0.076 | 0.138 | -0.001
Fecal Coliform (FCol) -0.182 1 0.926 | 0.160 | 0.058 | -0.080 [ 0.165 [ 0.002
Biochemical Oxygen Demand (BOD) | -0.031 | 0.961 | -0.032 | 0.014 | 0.111 | -0.106 | -0.057
Chemical Oxygen Demand (COD) -0.021 | 0.943 | -0.022 | 0.033 | 0.111 | -0.113 | -0.063
Total Suspended Solids (TSS) 0.125 | 0.012 | 0.972 | 0.001 | 0.049 | 0.003 | -0.053
Total Volatile Solids (TVS) 0.115 | 0.006 | 0.974 | 0.009 | 0.047 | -0.008 | -0.067
Nitrate (NO3) 0.210 [ -0.005 | -0.015 | 0.947 | -0.102 | -0.054 | 0.030
Ammonium (NHy) 0.134 | 0.536 | -0.042 | 0.781 | -0.013 | -0.098 | -0.034
Total Phosphorus (TP) -0.162 | 0.860 | 0.209 | 0.130 | -0.088 [ 0.113 | -0.109
Total Nitrogen (TN) 0.241 | -0.078 | -0.012 | 0.954 | -0.050 | 0.023 | 0.023
Cadmium (Cd) -0.183 | -0.068 | -0.083 | -0.028 | 0.110 | -0.129 | 0.693
Copper (Cu) 0.087 | 0.114 | -0.038 | -0.090 | -0.641 | 0.179 | -0.036
Iron (Fe) -0.088 | -0.060 | 0.070 | -0.020 [ 0.208 | 0.888 | -0.140
Manganese (Mn) 0.136 | 0.301 | 0.385 | -0.058 | -0.170 | 0.616 | 0.071
Zinc (Zn) 0.164 | -0.085 | -0.130 | -0.250 | 0.634 | 0.354 | 0.061
Lead (Pb) 0.165 | 0.226 | 0.037 | 0.029 | 0.569 | 0.110 | 0.285
Nickel (Ni) 0.130 | 0.036 | 0.007 | -0.164 | 0.769 | 0.051 | -0.206
Boron (B) 0.548 | -0.042 | -0.253 | 0.118 | 0.354 | -0.040 | -0.314
pH 0.331 | -0.700 | 0.168 | 0.367 | 0.097 | -0.124 | -0.162
Electric Conductivity (EC) 0.981 | -0.110 | 0.093 | 0.087 | 0.034 | 0.009 | 0.023
Total Dissolved Solids (TDS) 0.982 | -0.116 | 0.076 | 0.085 | 0.035 | 0.004 | 0.016
Calcium (Ca) 0.940 | -0.144 | -0.130 | 0.130 | 0.085 | -0.051 | -0.029
Magnesium (Mg) 0.969 | -0.116 | 0.134 | 0.090 | 0.001 | 0.036 | 0.023
Sodium (Na) 0.978 | -0.107 | 0.121 | 0.067 | 0.027 | 0.017 | 0.033
Potassium (K) 0.937 | -0.014 | 0.009 | 0.049 | 0.164 | -0.013 | -0.039
Bi-Carbonate (HCO3) 0.913 | -0.009 | 0.299 | 0.092 | -0.115 | 0.049 | -0.014
Sulphate (SOy4) 0.935 | -0.176 | -0.150 | 0.145 | 0.141 | -0.061 | -0.054
Chloride (Cl) 0.973 | -0.094 | 0.147 | 0.053 | 0.006 | 0.029 [ 0.052
Water temperature (Temp.) 0.018 | 0.732 | -0.102 | 0.129 | 0.213 | -0.427 | -0.167
Dissolved Oxygen (DO) 0.343 | -0.682 | -0.197 | 0.231 | 0.256 | -0.231 | -0.288
Turbidity (Turbid.) 0.117 | 0.024 | 0.951 | 0.028 | -0.014 | 0.090 | 0.081
Visibility (Visib.) 0.030 | -0.351 | -0.793 | 0.103 | 0.135 | -0.272 | -0.099
% Variance exp. 31.83 | 19.14 | 12.17 | 8.35 5.59 4.39 3.61

Bold numbers indicate variables with an absolute factor correlation coefficient greater than or equal to 0.7. Shaded

cells indicate the factor correlation coefficients for the selected variables.
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Table 3. Jackknife validation results for the performance of the two models

Metrics | Variables EANN EANN-CCA
BOD 0.62 0.84
TVS 0.68 0.78
NASH
TN 0.61 0.72
TDS 0.80 0.82
BOD 7.95 5.15
RMSE TVS 2.85 2.37
(mg/l) TN 2.26 1.92
TDS 451.71 424 .41
BOD 15.09 8.60
RMSEr| TVS 31.42 23.42
(%) TN 21.24 12.87
TDS 28.35 18.02
BOD -0.02 0.08
BIAS TVS 0.35 0.41
(mg/l) TN 0.47 0.15
TDS 127.74 84.36
BOD 2.46 1.80
BIASY TVS 8.78 7.44
(%) TN 6.95 2.72
TDS 12.31 10.19
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Figure 3. Jackknife estimation using the EANN and EANN-CCA models
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Appendix

Preliminary analysis
Bani-Ebeid drain EHO6, Bahr-Hadus drainage system, Western Delta
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Descriptive statistics for water quality variables at Arin drain (EH06), western Delta

Variables No. Average | Median Stal.ld?.ll‘d Variance Skewness | Kurtosis
samples deviation
Discharge 58 0.57 0.50 0.21 0.05 0.25 -0.35
Total Colif. 116 46076.9 32952 39470.3 | 1557901010.3 1.90 3.65
Fecal Colif. 84 22259.3 16567 26534.6 704083475.9 3.64 17.11
BOD 116 31.64 24.00 20.78 431.71 0.86 -0.18
COD 116 48.53 34.00 35.19 1238.44 0.89 -0.18
TSS 120 91.57 63.50 80.18 6429.35 2.00 4.10
TVS 116 10.07 7.00 8.56 73.21 1.91 3.89
NO; 119 6.59 2.60 7.95 63.26 1.89 4.65
NH,4 116 0.35 0.30 0.30 0.09 4.54 25.47
P 120 0.25 0.20 0.20 0.04 3.26 14.58
TN 83 12.99 8.18 12.07 145.72 1.53 3.43
Cd 61 0.01 0.01 0.01 0.00 0.97 0.67
Cu 102 0.05 0.03 0.07 0.00 2.79 7.26
Fe 119 0.55 0.40 0.41 0.17 1.49 2.09
Mn 81 0.21 0.18 0.20 0.04 1.70 3.34
Zn 102 0.04 0.03 0.05 0.00 2.10 4.41
Pb 67 0.02 0.02 0.02 0.00 1.87 3.92
Ni 25 0.01 0.01 0.00 0.00 1.09 0.75
Boron 39 0.25 0.12 0.31 0.10 2.68 8.82
pH 119 7.46 7.40 0.45 0.20 1.30 7.41
EC 116 1.64 1.25 0.89 0.79 0.93 -0.32
TDS 120 1110.96 878.63 577.16 333111.48 0.94 -0.25
Ca 120 4.52 3.98 2.14 4.57 1.34 2.02
Mg 120 2.43 2.14 1.17 1.37 1.06 0.73
Na 120 9.79 6.13 8.04 64.60 1.49 1.55
K 120 0.41 0.32 0.24 0.06 1.34 1.59
HCO; 120 4.43 4.24 1.65 2.73 0.93 2.81
S04 120 4.71 4.23 3.27 10.71 1.56 3.40
Cl 120 8.55 4.50 9.15 83.68 2.47 7.65
Temprature 120 22.30 22.80 5.36 28.75 -0.07 -0.90
DO 120 3.51 3.40 2.13 4.54 0.55 -0.15
Turbidity 119 60.83 54.61 35.46 1257.10 1.65 2.99
b isability 117 | 3775 | 3500 | 1735 301.10 0.36 0.81
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