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Abstract: In summer, salmonids can experience thermal stress during extreme weather conditions.
This may affect their growth and even threaten their survival. Cool water zones in rivers constitute
thermal refuges, allowing fish to be more comfortable to grow and survive in extreme events.
Therefore, identifying and understanding the spatiotemporal variability of discrete thermal refuges
and larger scale cooling zones in rivers is of fundamental interest. This study analyzes thermal
refuges as well as cooling zones in two salmonid rivers in a subarctic climate by use of thermal
infrared (TIR) imagery. The two studied rivers are the Koroc and Berard Rivers, in Nunavik, Quebec,
Canada. On the 17 km studied section of the Berard River, four thermal refuges and five cooling
zones were detected, covering 46% of the surveyed section of the river. On the 41 km section studied
for the Koroc River, 67 thermal refuges and five cooling zones were identified which represent 32% of
the studied section of the river. 89% of identified thermal refuges and about 60% of cooling zones are
groundwater-controlled. Continuity of permafrost and shape of the river valley were found to be
the main parameters controlling the distribution of refuges and cooling zones. These data provide
important insights into planning and conservation measures for the salmonid population of subarctic
Nunavik rivers.

Keywords: surface water–groundwater interaction; thermal infrared imagery; thermal refuges;
cooling zones; permafrost

1. Introduction

Rivers in northern Quebec are known for their abundance of salmonids (brook trout,
Arctic char, and Atlantic salmon). Fish were an important food source for Indigenous
peoples, then for the first settlers [1]. Today, fishing is still important for local communities
and for revenues from sport fishing [2]. The optimal temperature range for salmonid
growth varies according to species, but is generally between 7 ◦C and 17 ◦C while the lethal
temperature range is 25–27 ◦C [3–5]. In summer, salmonids experience thermal stress in
rivers as a result of higher average water temperature usually occurring on warm days
with air temperature above 30 ◦C [6]. This affects their growth and even threatens survival.
Similarly, during winter, water temperature plays an important role on spawning time
and survival of buried eggs into the gravel substratum [7]. Extreme conditions in Quebec
rivers are likely to occur more frequently due to climate change [8,9]. This will have a
negative impact on the population of salmonids in the future, especially as certain northern
species (e.g., Arctic char) are the most vulnerable with regard to thermal stress [7,10].
However, cool water zones in rivers constitute thermal refuges allowing fish to grow and
to survive, even under climate extremes [11,12]. The use of thermal refuges by fish during
heatwaves has been well documented [13,14]. Therefore, identifying and understanding
the spatiotemporal variability of discrete thermal refuges and larger scale cooling zones
in rivers is of fundamental interest to understanding fish habitat vulnerability, but still
remains difficult to address at large scales.
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Thermal infrared (TIR) imagery is one of the relatively low-cost solutions to eval-
uate large-scale surface water (SW) temperature [15]. TIR images have been used to
map river water temperature [16], thermal refuges [15,17], surface water-groundwater
exchange [18,19] and more specifically to monitor the thermal refuge of fish habitats [20–22].
TIR images have been used for identifying types of thermal refuges in addition to impor-
tant parameters affecting them with regard to landscape variables in different rivers and
watersheds [17,18,23]. However, previous studies have not examined rivers in Arctic and
subarctic regions where permafrost is present. In the presence of permafrost, groundwa-
ter (GW) flow is limited [24]. Furthermore, its interaction with rivers has more complex
processes that are prone to evolve due to climate change [25]. Moreover, GW-dependent
refuges are most abundant and less temporally variable in rivers [15,17]. Therefore, study-
ing processes and parameters controlling thermal refuges in rivers of high-latitude river
environments is important to better anticipate their variability under climate change and
thawing of permafrost.

During warm days (as targeted for this study), in a river where there is no GW seepage
or if the GW seepage is constant along the river, the ‘asymptotic warming paradigm’ [26]
indicates that river water temperature will increase from upstream to downstream since
it is in contact with solar radiation for a longer period. However, in reality, a river’s
longitudinal temperature profile is considerably more complex, often due to the presence
of cooling zones where high GW seepage occurs into the active channel. We therefore
also examine these larger, diffuse GW-driven cooling zones with a view to shedding light
on their controlling processes in permafrost-prone regions (as opposed to more southerly
rivers, e.g., [17,26]).

The main objective of this paper is to evaluate the effect of GW-SW interaction and GW-
controlled thermal refuges on river water temperature mitigation in northern rivers with
the presence of permafrost. This paper therefore analyzes thermal refuges as well as cooling
zones in two rivers in Nunavik, a subarctic region of Quebec, Canada (between 58◦ N and
59◦ N latitude). First, we map the distribution of thermal refuges and cooling zones using
TIR imagery. We then investigate the riverscape hydromorphologic context of each refuge
and cooling zone to identify critical parameters affecting water temperature, highlighting
the role of GW in driving river temperature heterogeneity in a permafrost-prone region.

2. Study Area

The two studied rivers are the Koroc River and the Berard River. Both rivers are
located in a subarctic climate of Nunavik, northern Quebec, Canada, and drain into Ungava
Bay (Figure 1A). In previous studies, Arctic char, salmon and trout have been identified in
these rivers and fishing is important for local communities [27,28].

The Berard River’s source is in highlands close to the limit of the watershed of Melezes
River. The river flows northwards, crosses several water bodies and lakes along its path,
and ends in Ungava Bay in the northern village of Tasiujaq. The imagery of this river is for
a length of 17 km downstream of Berard Lake (Figure 1B).

The Koroc River’s source is located in the heights of the Torngat Mountains at the
border of Labrador and Quebec, in eastern Canada. The Koroc River is located in a valley
shaped by glaciers. The river runs westward and drains into the eastern shore of Ungava
Bay, 18 km north of the northern village of Kangiqsualujjuaq. Thermal imagery of the
Koroc River is focused on a 41 km stretch between upstream of the river delta, where the
river is braided and wide, and downstream of waterfalls in the uplands, where the river
flows over bedrock (Figure 1C).
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Figure 1. Location of the northern villages in Nunavik region of Quebec province (A), and surveyed
section of the Berard River (B) and Koroc River (C).

The Berard and Koroc Rivers are located in a continental subpolar climate based on
2001 to 2010 weather data and Köppen–Geiger climate classification method [29]. The
annual average temperatures in Tasiujaq and Kangiqsualujjuaq for the 1951–1980 period
were −5.7 ◦C and −5.4 ◦C, respectively. For the 1981–2010 period, however, the values
were −5.2 ◦C and −4.9 ◦C. Based on high emission climate scenarios, the annual average
temperature is expected to become −0.3 ◦C and −0.2 ◦C for Tasiujaq and Kangiqsualujjuaq
for the 2021–2050 period [30].
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Average annual precipitation for the 1951–1980 period were 447 mm and 478 mm
for Tasiujaq and Kangiqsualujjuaq, respectively. Based on high emission climate scenar-
ios for the 2021–2050 period, an increase of 11% and 12% is predicted for Tasiujaq and
Kangiqsualujjuaq [30]. This indicates severe trends of climate change in the Nunavik region.

The Berard River is located in the zone of discontinuous and widespread permafrost,
while the Koroc River and its floodplain are in a zone of discontinuous and dispersed
permafrost. However, further from the flood plain of the Koroc River, permafrost is
discontinuous and widespread (Figure 2). Considering climate change trends in the region,
the permafrost condition is prone to evolve [31]. The permafrost map shown in Figure 2 is
based on surface temperature modeling, snow cover and other surface land metrics. This
map has cells with a size of 250 m2 [31].
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on recent alluvial deposits (Figure 3A). Koroc River is located completely on alluvial de-

Figure 2. Permafrost map of Ungava Bay region (adapted from [31]).

The quaternary geology of both studied rivers consists of shallow sediments with a
minimum thickness of 1 m. Berard River is located on glaciomarine sediments and partly on
recent alluvial deposits (Figure 3A). Koroc River is located completely on alluvial deposits
in the river valley and above the river valley the geology is mainly made of unconfined
till and exposed bedrock (Figure 3B). The bedrock under both rivers is a mix of different
types of volcanic, intrusive igneous and metamorphic rocks such as basalt, granite, marble,
quartzite and gneiss belonging to Churchill Province [32].
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3. Materials and Methods
3.1. Airborne Imagery

Airborne optical and TIR imagery of the two rivers were acquired in early August
of 2019, using methods and equipment described by Dugdale et al. (2013 [15]; 2015 [17]).
For optimal identification of cold water patches, the flights were conducted between 12:00
and 16:00 on a sunny day to target maximum sunlight (for optical imagery) and high river
temperature (for thermal imagery), as well as low flow (based on local forecasts). Mean
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flight altitude was ~750 m above ground level. Therefore, in each TIR image every pixel
has a footprint of less than 0.5 × 0.5 m2 on the ground. An image and GPS point were
acquired every two seconds. Given the low groundspeed of the helicopter during survey
flights, imagery has >75% overlap.

Thermal refuges were defined as a zone at least 0.5 ◦C cooler than the main river
water temperature and an area larger than 1 m2 [17]. Using the classification scheme
in Dugdale et al. (2013) [15], the thermal refuges were divided into seven types (eight
considering subgroup for wall-base channels, Table 1). Using the GPS point of each imagery
and comparing the TIR and optical image pairs, we mapped the location and type of each
thermal refuge. We also inspected aerial photos to confirm that thermal refuges were not
false positives (e.g., shadow).

Table 1. Thermal refuge classification, showing thermal refuge types and the abbreviations used in
maps (modified from [17]).

Refuge Type Abbreviation Description

Tributary confluence plume T.C.P. Cold water plume created by discharge
of tributary

Lateral seep L.S.
Bank-side cold water patch created through
direct intersection of water table by
river channel

Spring brook S.B. Cold channel emerging from floodplain
depressions, springs or wetlands

Cold side channel C.S.C. Secondary cold channel alongside main river
stem; may be ephemeral

Cold alcove C.A.
Cold water patch at downstream end of bar;
often coincides with emergence of
abandoned/relict channel

Hyporheic upwelling H.U. Hyporheic resurgence found downstream of
bars, riffles and meanders

Wall-base channel A W.C. (A) Cold channels formed by runoff at base of
terrace (A)

Wall-base channel B W.C. (B) Cold channels formed by runoff on valley
wall (B)

In addition to the identification of cold water zones in the river (thermal refuges), the
aerial images were used to extract the temperature profile for each study river. The average
river water temperature in each TIR image was calculated by averaging the temperature of
three pixels in each thermal image, which were selected manually on the river central line
(Figure 4, inside green). The relatively low (three) number of temperature sampling points
in each image is due to: (1) anomalies at the edges of each thermal image due to vibration
of the camera during flights (Figure 4, inside pink), meaning that averaging the value of
the entire wetted area might introduce temperature error; (2) the high degree of overlap
and position of the river channel in the center of each image meant that the inclusion of a
larger number of sampling points did not change mean temperature (see the very similar
temperature of all SP points in Figure 4 analysis result table).

In the next step, the mean temperature for each image was assigned with its distance
from downstream, the distance of the center of each TIR image from the survey start point
(yellow trapezoid shown in Figure 1). Plotting the mean water temperature of each image
against its distance from downstream thus gives the temperature profile of the river.



Geographies 2022, 2 534Geographies 2022, 2, FOR PEER REVIEW 7 
 

 

 
Figure 4. Example of a TIR image showing location of manually selected three points for making 
river water temperature average and zones of temperature anomalies caused by camera vibration. 

In the next step, the mean temperature for each image was assigned with its distance 
from downstream, the distance of the center of each TIR image from the survey start point 
(yellow trapezoid shown in Figure 1). Plotting the mean water temperature of each image 
against its distance from downstream thus gives the temperature profile of the river. 

Cooling zones were then identified using the river temperature profile. By moving 
downstream (value of 0 on the horizontal axis of the graph), zones that exhibited a tem-
perature decrease >0.25 °C were identified as cooling zones. The 0.25 °C has been selected 
as the threshold to avoid random variation of water temperature on the graph which can 
be due to errors in recorded temperature by a camera in motion during the flight or the 
possible presence of small patches of clouds. 

3.2. Links to Landscape Metrics 
Different landscape metrics in three major groups mentioned below were considered 

for the description of the thermal refuges and cooling zones in the rivers. The landscape 
metrics used are those previously demonstrated to correspond to the occurrence or distri-
bution of thermal refuges based on the work of Dugdale et al. (2015) [17]. Parameters that 
show a good correlation with the occurrence of thermal refuges and cooling zones can be 
analyzed for the identification of potential cool water, in the absence of thermal imaging. 

3.2.1. Drainage Network 
This group focuses on the channels and tributaries entering the main stem and their 

density. In the case of cooling zones, we quantified the number of tributaries in each zone. 
Aerial imagery and freely available water feature maps [33] were used for the identifica-
tion of tributaries. 

3.2.2. River Geomorphology 
In this category, parameters such as river and valley width were studied. For the 

thermal refuge parameters at the site and for the cooling zones average of these values 
within the zone has been considered. In addition, river sinuosity in the cooling zone reach 
has been addressed (Figure 5). Measurements of width and length, are based on Open 
TopoMap, freely available in QGIS, with a resolution of about 30 m (1 arcsecond). 
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river water temperature average and zones of temperature anomalies caused by camera vibration.

Cooling zones were then identified using the river temperature profile. By moving
downstream (value of 0 on the horizontal axis of the graph), zones that exhibited a tem-
perature decrease >0.25 ◦C were identified as cooling zones. The 0.25 ◦C has been selected
as the threshold to avoid random variation of water temperature on the graph which can
be due to errors in recorded temperature by a camera in motion during the flight or the
possible presence of small patches of clouds.

3.2. Links to Landscape Metrics

Different landscape metrics in three major groups mentioned below were considered
for the description of the thermal refuges and cooling zones in the rivers. The landscape
metrics used are those previously demonstrated to correspond to the occurrence or distri-
bution of thermal refuges based on the work of Dugdale et al. (2015) [17]. Parameters that
show a good correlation with the occurrence of thermal refuges and cooling zones can be
analyzed for the identification of potential cool water, in the absence of thermal imaging.

3.2.1. Drainage Network

This group focuses on the channels and tributaries entering the main stem and their
density. In the case of cooling zones, we quantified the number of tributaries in each zone.
Aerial imagery and freely available water feature maps [33] were used for the identification
of tributaries.

3.2.2. River Geomorphology

In this category, parameters such as river and valley width were studied. For the
thermal refuge parameters at the site and for the cooling zones average of these values
within the zone has been considered. In addition, river sinuosity in the cooling zone reach
has been addressed (Figure 5). Measurements of width and length, are based on Open
TopoMap, freely available in QGIS, with a resolution of about 30 m (1 arcsecond).
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Figure 5. Schematic of river geomorphology parameters used for characterization of the cooling zones.

3.2.3. Geology and Land Cover

Vegetation and sediment type are the main factors studied in this category. Moreover,
potential links to permafrost are inspected by use of available open-source maps and
satellite imagery (e.g., Landsat imagery, from Google Earth imagery).

4. Results
4.1. Inventory of Thermal Heterogeneity
4.1.1. Thermal Refuges

In the studied section of the Berard River, four thermal refuges were detected: two cold
side channels and two lateral seeps (Figure 6A). Considerably more thermal refuges (67)
were identified in the studied section of Koroc River (Figure 6B). Considering the studied
length of rivers, thermal refuge densities are 0.23 and 1.63 per kilometer for Berard and
Koroc Rivers, respectively.
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Sixty percent of identified thermal refuges were GW-controlled. The other 40% were
tributary confluence plumes and wall-base channels, which were all detected on the Koroc
River. Although GW can affect water temperature in the tributaries entering the river,
tributary confluence plume and wall-base channels are not considered as GW–controlled
thermal refuges. In terms of GW-controlled refuges, 49% were spring brooks, 32% lateral
seeps, 11% cold alcoves, 6% cold side channels, and 2% hyporheic upwelling (Table 2).

Table 2. Identified thermal refuges.

Thermal Refuge Type Koroc River Berard River

Spring brook 23
Wall-base channel 20

Lateral seep 13 2
Cold alcove 5

Tributary confluence plume 4
Cold side channel 1 2

Hyporheic upwelling 1

4.1.2. Cooling Zones

On the 17 km studied section of Berard River, five cooling zones (B1 to B5) were
detected (Figure 7A), with a total length of 7.8 km, representing 46% of the surveyed section
of the river. On the 41 km studied section of Koroc River, also five cooling zones (K1 to
K5) were identified (Figure 7B), with a total length of 12.5 km, which is 32% of the studied
section of the river. Since the width of rivers is wide relative to the height/shading of
trees, the impact of shade on river temperature is negligible. The dominant cold water
source (GW-SW interaction or tributaries) for each cooling zone will be investigated in the
coming sections.

4.1.3. Correlation between Thermal Refuges and Cooling Zones

When comparing the location of thermal refuges and cooling zones, occurrence of
thermal refuges does not guarantee the existence of cooling zones in the river, and these two
phenomena might be a response to different factors. For instance, the highest temperature
decrease rate for both rivers does not correspond to the highest number of thermal refuges
present within a cooling zone (Table 3). However, a relationship between cooling zone
length and the number of thermal refuges in the same section can be seen for the Koroc
River (Figure 8A). This is not the case for Berard River. Due to the low number of identified
thermal refuges on this river, only one or no thermal refuge is present in each cooling
zone. Nonetheless, there is a significant correlation between the rate of water temperature
decrease and the length of the cooling zone on the Berard River (Figure 8B). Moreover,
since a large number of thermal refuges are wall-base channels and spring brooks in the
Koroc, there is a good correlation between cooling zone length and the number of channels
entering the river (Figure 8C).
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Table 3. Identified cooling zones’ characteristics.

River Zone

Water Tem-
perature
Decrease

(◦C)

Cooling
Zone

Length (m)

Temperature
Decrease

Rate (◦C/km)

Valley
Length (m) Sinuosity

Average
Channel

Width (m)

Average
Valley

Width (m)

Entrenchment
Ratio

Number of
Thermal
Refuges

Berard

B1 1.6 2363 0.68 2335 1.01 159 2154 13.57 0
B2 0.6 1251 0.48 1100 1.14 61 1965 32.36 0
B3 0.4 668 0.60 634 1.05 54 1526 28.26 1
B4 0.9 1620 0.56 1433 1.13 55 2332 42.10 1
B5 0.9 1885 0.48 1034 1.82 62 1982 32.09 0

mean 0.9 1557.4 0.56 1307.2 1.2 78.1 1991.7 29.7 0.4
SD 0.4 573.6 0.08 573.2 0.3 40.4 268.3 9.3 0.5

Koroc

K1 0.5 2753 0.18 2103 1.31 148 1397 9.45 3
K2 0.3 3085 0.10 2462 1.25 236 1119 4.73 4
K3 0.3 976 0.31 906 1.08 202 1521 7.52 1
K4 0.7 5175 0.14 4576 1.13 201 1522 7.59 12
K5 0.6 2253 0.27 2181 1.03 279 850 3.05 2

mean 0.5 2512.4 0.25 2445.6 1.0 213.2 1281.9 6.5 4.4
SD 0.2 1543.8 0.13 1191.4 0.3 43.2 261.2 2.3 3.9
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B3 0.4 668 0.60 634 1.05 54 1526 28.26 1 
B4 0.9 1620 0.56 1433 1.13 55 2332 42.10 1 
B5 0.9 1885 0.48 1034 1.82 62 1982 32.09 0 

mean 0.9 1557.4 0.56 1307.2 1.2 78.1 1991.7 29.7 0.4 
SD 0.4 573.6 0.08 573.2 0.3 40.4 268.3 9.3 0.5 

Koroc 

K1 0.5 2753 0.18 2103 1.31 148 1397 9.45 3 
K2 0.3 3085 0.10 2462 1.25 236 1119 4.73 4 
K3 0.3 976 0.31 906 1.08 202 1521 7.52 1 
K4 0.7 5175 0.14 4576 1.13 201 1522 7.59 12 
K5 0.6 2253 0.27 2181 1.03 279 850 3.05 2 

mean 0.5 2512.4 0.25 2445.6 1.0 213.2 1281.9 6.5 4.4 
SD 0.2 1543.8 0.13 1191.4 0.3 43.2 261.2 2.3 3.9 
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Figure 8. (A) Correlation between cooling zone length and number of thermal refuges in the Koroc 
River. (B) Correlation between water temperature decrease and cooling zone length in the Berard 
River. (C) Correlation between cooling zone length and number of channels entering the Koroc 
River. 
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Figure 8. (A) Correlation between cooling zone length and number of thermal refuges in the Koroc
River. (B) Correlation between water temperature decrease and cooling zone length in the Berard
River. (C) Correlation between cooling zone length and number of channels entering the Koroc River.

4.2. Links to Landscape Metrics
4.2.1. Drainage Network

Tributary confluence plumes were only located on the Koroc River. The Berard River
has only one significant tributary (5th order) in the studied section. Although this tributary
is approximately 1 ◦C colder than the average main stem water temperature, it did not
generate a confluence plume. This may be due to a fast mixing of cold water with the main
stem river or the limited tributary discharge. Similar phenomena also occur in the Koroc
River at the first cooling zone (K1), where a cold tributary enters the river without a cold
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water plume observed. This suggests that for better detection of potential cold tributary
confluence plume, hydraulic parameters such as the discharge and velocity of the main
stem versus the tributary should be considered.

The drainage network in addition to large tributaries includes smaller channels.
Smaller cold channels entering the river can form wall-base channels and spring brooks.
However, differentiating between spring brooks and wall-base channels was not easy due
to their morphological (but not process-based) similarity. We used drainage network analy-
sis to aid our classification; spring brooks were considered streams formed in floodplain
depressions that are only visible in the thermal or visible images but not present in the
drainage network maps, whereas wall-base channels were those formed by runoff and
therefore visible in the drainage network based on topographical maps. Wall-base channels
are in general wider and closer to the valley walls, compared to spring brooks, which can
sometimes be very narrow and only visible in thermal photos and flowing close to the
river channel (Figure 9). Moreover, wall-based channels which are numerous in the studied
section of the Koroc River can be classified into two types (Figure 9). The first type of
channel is located within the river valley, and brings collected runoff to the river (Type A).
The second type is sourced from the top of the river valley and usually connected to lakes,
bringing lake outflow to the river after periods of rainfall (Type B).
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Figure 9. Schematic view of the river valley showing wall-base channels Type A and B and
spring brooks.

As seen, there is a good relationship between the number of channels entering the
river and the length of a cooling zone. This suggests the cooling zones are not only the
result of GW influence but also SW drainage network. Looking at the maps of cooling
zones and thermal refuges (Figure 6), the first two cooling zones of Koroc and Berard rivers
seem to be mainly controlled by SW rather than GW. The first cooling zone in the Berard
River (B1) receives cold water from an upstream lake. The second cooling zone (B2) is
located after the main tributary of the Berard River having already cold water. For the
Koroc River tributary confluence plumes are present within the first two cooling zones
(K1 and K2). Tributary confluence plumes often have a larger effect in cooling the river
compared to other (smaller) types of thermal refuges, highlighting the importance of the
drainage network on the river temperature profile.

4.2.2. River Morphology

The occurrence of spring brooks and wall-base channels are related to valley shape and
width. In the studied section of the Koroc River, the valley is more than 1000 m in width
except for a few sections. This gives sufficient space for the development of numerous
wall-base channels and spring brooks. To show the relationship of these thermal refuge
types to the valley form, we calculated the entrenchment ratio by dividing valley width
by river width (Figure 5). Figure 10 shows the narrowest range of entrenchment ratios
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for spring brooks compared to other types followed by wall-base channel Type A. This
indicates that spring brooks and wall-base channels exist in a relatively narrow range
of moderate entrenchment values and are more likely to occur where valley width is on
average about eight times bigger than channel width. This is different for river tributaries
existing in wider valley reaches with an average entrenchment ratio of about 11 (Figure 10).
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Figure 10. Entrenchment ratio range for each thermal refuge class (abbreviation of refuge classes in
Table 1), showing maximum and minimum by whiskers, first and third quartile by box, median by
horizontal line and mean by cross.

In the case of the cooling zones, the entrenchment ratio and sinuosity values for the
Berard and Koroc Rivers vary considerably (Table 3) and moreover, are averaged over the
entire zones. Therefore, a correlation cannot readily be achieved for the identification of
potential cooling zones based on sinuosity or entrenchment ratio of the river.

The rate of temperature decrease for cooling zones on the Berard River is gener-
ally higher than those of the Koroc River (mean thermal gradient of −0.56 ◦C/km and
−0.25 ◦C/km for Berard and Koroc Rivers, respectively). The lower average temperature
decrease rate in Koroc River may be linked to its larger average width, meaning a larger
effective surface area for energy exchanges (i.e., radiative/turbulent heating).

The shape of river valleys plays an important role in controlling GW-SW interaction,
and can be classified as confined, semi-confined and unconfined (Figure 8 in [17]). While
the Koroc River’s rugged, steep valley is readily apparent from topographic maps (Figure 6,
background map), the Berard River’s corridor is predominantly flat. Based on the en-
trenchment ratio, the Koroc River is semi-confined. The upstream parts of the Berard River
(upstream of B2 cooling zone and near the lake) are semi-confined, the downstream section
is principally unconfined.

This difference in entrenchment ratio also explains the high number of thermal refuges
in the Koroc River in comparison to the Berard. In the Koroc, local GW flow has an
influential role in driving refuge distribution, whereas in the Berard River, the river valley
is flatter, therefore, thermal refuges which are derived by local GW flow are limited.

4.2.3. Geology and Land Cover

The main vegetation cover of the Koroc River valley is a coniferous forest in four
subgroups of tree cover. However, on top of the river valley, the vegetation cover has
lower density and more exposed bedrock (Figure 11A). Surface deposits under the Koroc
River and within the river valley consist mainly of alluvium (A), although in some zones
of the river valley, costal and pre-costal glaciomarine sediments (MGa) as well as rockfall
deposits (Ce) are also present. The sediments in the river valley are more permeable than
other surface deposits such as till (T) and bedrock (R) present on top of the river valley
(Figure 11B).
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Figure 11. Land cover (A, [based on 34]) and surface deposits (B, [based on 32]) of the Koroc River 
study area (legend for thermal refuges and cooling zones same as in Figure 6). Figure 11. Land cover ((A), based on [34]) and surface deposits ((B), based on [32]) of the Koroc River
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At the studied section of the Berard River, the landcover is predominantly composed of
shrublands with a mix of wetlands and tundra with shrubs (Figure 12A). Surface deposits
below and next to the Berard River are mainly deep-water fine-grained glaciomarine
sediments. Based on available morpho-sedimentological maps, alluvium is only present
in the downstream section of the Berard River (Figure 12B). The difference in scale of the
Berard River compared to the Koroc River can suggest a lower potential for sedimentation
and shallower alluvium for the Berard River.
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Figure 12. Land cover ((A), based on [34]) and surface deposits ((B), based on [32]) of the Berard
River study area (legend for thermal refuges and cooling zones same as in Figure 6).

The presence of a specific soil or vegetation type cannot be used to pinpoint the
existence of thermal refuge. In the case of the Koroc River, the entire studied section of the
river is on alluvium and surrounded by coniferous forest. For the Berard River case, all
thermal refuges are located in land-use comprising shrubland vegetation; three of them are
on alluvium and one on glaciomarine deposits. The difference in the number of thermal
refuges between the two studied rivers indicates that a higher density of vegetation and the
presence of thicker permeable materials may be linked to higher thermal refuge density.

While we hoped to assess linkages between permafrost coverage and the location of
thermal refuges, the resolution of permafrost maps (Figure 2) for the region is insufficient
for establishing any such relationships. Based on Figure 2, both studied rivers are located
entirely on one type of permafrost, potentially limiting further analysis. However, other
available permafrost maps suggest discontinuous permafrost closer to Ungava Bay for
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the Koroc River (Figure 13). This dataset indicates that all cooling zones and more than
60% of thermal refuges on the Koroc River are located on downstream sections where
discontinuous permafrost is present. This suggests discontinuity of permafrost may favor
higher GW-SW interaction and the existence of abundant thermal refuges.
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Figure 13. Location of Koroc River thermal refuges and cooling zones on permafrost continuity map
(adapted from [35]).

Aerial and satellite imagery can further be used for permafrost mapping and monitor-
ing [36], with a view to examining links to the distribution of thermal refuges or riverine
cooling zones. The presence of thermokarst lakes around the Berard and Koroc Rivers
suggests the existence of permafrost near these two rivers (Figure 14). A thermokarst lake
forms when land subsidence caused by a thaw of permafrost is filled by water [37]. The
absence of such lakes inside the Koroc River valley is also an indicator of the absence of
continuous permafrost. Both increase [38] or decrease [39] in the size of thermokarst lakes
show degradation of permafrost. The decrease or increase in size depend on different
factors and thawing stage of permafrost, and have been used in remote sensing studies
to monitor permafrost condition in arctic regions. Comparing Figure 14, a decrease in the
size of the lake south of the Tasiujaq airport can be observed suggesting internal drainage
of the lake to the Berard River, through degradation of shallow permafrost. Regarding
Koroc River obvious changes in the size of lakes are not observed in available satellite
images, which can suggest a more stable condition for permafrost. The stability of per-
mafrost near Koroc River can be due to the absence of significant sedimentary deposits
at the top of the river valley which sits on the bedrock. Another thermokarst landform,
beaded streams, forms when thermokarst lakes connect and form a river with pools and
riffles [40] (Figure 14). These types of streams are regularly found on the plateau outside
of the Koroc River’s valley. The Berard River itself can be considered as a beaded stream.
Especially upstream of its main tributary, there are parts of the river that are wider and
deeper and form pools. Since a pool section of a river is deeper, it is more probable that
permafrost is degraded and the river connects to the aquifer. However, under shallow riffle
sections of river permafrost can be present. These observations (based on satellite imagery)
again suggest better continuity of permafrost nearer the Berard River and less potential for
GW-SW interaction compared to Koroc River.
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Figure 14. Satellite imagery (June 2013 Google earth Landsat images) of Berard (A) and Koroc (B) Rivers
showing presence of thermokarst lakes and beaded streams (examples inside yellow circles).

5. Discussion

The difference in the number of identified thermal refuges between Koroc and Berard
rivers can be related to a range of hydromorphic, environmental and geologic characteristics,
such as valley confinement, geology, vegetation cover and permafrost condition. The semi-
confined shape of Koroc River valley explains both the abundance of wall-base channels
relating to runoff processes within/on the valley, and also spring brook refuges where
contact between valley wall and floor can drive GW seepage (e.g., [17]). Due to less
permeable surface deposits and less vegetated land cover, the valley tops are prone to
runoff. On the other hand, in the river valley the presence of more permeable materials
and higher vegetation cover favor GW infiltration/seepage and GW-SW interconnection
(e.g., [41]). This, in combination with less continuous permafrost around the Koroc River
compared to the Berard River, can explain the large difference in the number and density
of thermal refuges between the two rivers (i.e., higher density in the Koroc River).

Machine learning and remote sensing combinations have been used to identify the loca-
tion of thermal refuges and GW-SW interaction zones in numerous rivers (e.g., [17,42–44]).
In these studies, key landscape parameters (e.g., channel confinement, location of dry
valleys) have been noted as potential predictors for the location of thermal refuges. In our
paper, such relationships have not been achieved for either the Koroc and Berard Rivers be-
cause: (1) the two rivers have different characteristics (valley shape, size, etc.), (2) a reliable
dataset to build and train such models (length of studied river sections and the number of
identified thermal refuges and cooling zones) has not yet been achieved, and (3) detailed
data such as LiDAR topographic maps or permafrost map from geophysical field measure-
ments are not available. Nevertheless, the effect of the number of channels (i.e., tributary
valley distance) and entrenchment ratio on river water temperature is apparent for both
rivers (similar to findings by Dugdale et al., 2015 [17]). Our study also shows that the use
of TIR aerial images is a reliable way to detect cool zones in subarctic rivers. TIR images
show good results for the identification of spring brook and low-order wall-base channels
that cannot be identified from lower resolution DEMs that are typical in such data-sparse
regions. The large number of spring brooks and wall-base channels suggested that studying
the temperature of channels entering the river and identifying possible locations where
GW-fed channels can appear is important when it comes to the identification of potential
spawning and juvenile salmonid habitats (e.g., [43,45]) in subarctic rivers.



Geographies 2022, 2 545

The available permafrost maps were developed at a regional scale using a model and
are thus unsuited to analyze linkages to individual thermal refuges or cooling zones in the
studied rivers. The use of airborne GPR (ground-penetrating radar) alongside with TIR
imagery could be a possible solution to establish such a correlation between thermal refuges
and the existence of permafrost or depth of active layer where discontinuous permafrost
exists (e.g., [46,47]). Nevertheless, the results from satellite imagery and results from the
permafrost map for the Koroc River study site (Figure 13) suggest a possible linkage to the
continuity of permafrost.

The role of permafrost in GW-SW interaction for northern rivers is well known [24,25,35].
Open taliks can be formed under surface water bodies where lakes or rivers are larger
and deeper, such as the Koroc River. A talik refers to soil that is unfrozen throughout
the year and normally present under thermokarst lakes and rivers. Open taliks connect
the subpermafrost aquifer and the river (Figure 15); therefore, the presence of GW-based
cooling zones is probable in these areas. In the case of smaller rivers like the Berard River,
only closed taliks are formed; therefore, river can only interact with suprapermafrost
aquifer (Figure 15). The suprapermafrost is less thick, meaning that the GW flow is limited,
but since it flows over permafrost, water temperature is generally colder. GW flow over
permafrost can therefore explain existence of cold thermal refuges within cooling zones
or in general in arctic rivers of this study that have generally cooler water temperature
compared to rivers in the south.
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Changes in the size of thermokarst lakes near the Berard River can be an indication of
evolving GW-SW interaction caused by the thaw of permafrost. Considering the chang-
ing climate of northern Quebec and the predicted thaw of the permafrost [31], the GW
influence on the thermal budget of rivers in arctic and subarctic regions may become more
important in the future. It is possible that more GW thermal refuges will appear in the
future, potentially offsetting the climatic warming of surface waters because the thaw of
permafrost changes GW flow patterns. However, this is far from certain, and the future
evolution of river temperature patterns in the region is currently unknown. Nevertheless,
even if increased groundwater contributions may offset other climate-forced river tempera-
ture warming (and thus in-stream heat-stress events), any river temperature change will
likely change fish migration patterns (since the spawning and upstream migration cues
are dependent on water temperature [7]), with potential other serious consequences for
northern salmonid populations.

6. Conclusions

In total, 71 thermal refuges over 58 km studied reaches of the Koroc and Berard Rivers,
Nunavik, Quebec, were identified. The majority of identified thermal refuges are GW-
controlled, but non-GW-controlled thermal refuges were present in substantial numbers
(i.e., wall-base channels and tributary confluence plumes). Five cooling zones on each river
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were also observed. 40% of observed cooling zones are under influence of SW inlets either
from upstream lakes or tributaries. For the other 60%, the absence of such SW intakes
suggests that the cooling zone is the effect of GW-SW interaction. Therefore, it can be
confirmed that GW plays an important role in river temperature mitigation.

Due to the small case study size and differences between the two studied rivers, no
parameter within the three groups of landscape metrics showed a direct connection to
the existence of thermal refuges or cooling zones. However, similar to previous studies,
river entrenchment ratio and shape of the river valley were nonetheless linked to the
occurrence of thermal refuges. Further investigation specific to northern latitude rivers
is therefore needed to better identify important parameters in driving the occurrence of
thermal refuges.

Permafrost continuity plays an important role in the degree of GW-SW interaction for
northern rivers. The permafrost for the Berard River is more continuous than the Koroc
River and as a result, fewer thermal refuges are present. Based on previous studies, GW-
controlled thermal refuges were shown to be less temporally variable [15]. However, the
same cannot be confirmed for northern rivers. Permafrost can partly or completely freeze
and restrict GW flow. Therefore, thermal refuges driven from suprapermafrost aquifer
can vary seasonally. Moreover, regarding a longer time scale, satellite imagery analysis
near Berard River suggests that changes in the permafrost condition for the region have
started. Thaw of permafrost will lead to higher GW recharge, thus potentially to higher GW
flow. Here, the increased outflow of these lakes to the nearby river is expected. Therefore,
GW flow will have more influence on river water temperature, and the number of GW-
controlled thermal refuges may increase in the future. The speed of changes depends on
other features such as the sediment and bedrock types. Zones with potentially continuous
permafrost for the Koroc River are on bedrock and, thus, changes in the GW flow system
are less visible and may appear later. Future implementation of such studies will better
show temporal variation of thermal refuges and GW influence on river thermal budget.
This study has helped to better understand GW-SW interaction on river water temperature
for future application in fish habitat monitoring and river management of northern Quebec.
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