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Abstract: In arid and semi-arid regions, agriculture is an important element of the national economy,
but this sector is a large consumer of water. In a context of high pressure on water resources, appropri-
ate management is required. In semi-arid, intensive agricultural systems, such as the Tadla irrigated
perimeter in central Morocco, a large amount of water is lost by evapotranspiration (ET), and farmers
need an effective decision support system for good irrigation management. The main objective of
this study was to combine a high spatial resolution Sentinel-2 satellite and meteorological data for
estimating crop water requirements in the irrigated perimeter of Tadla and qualifying its irrigation
strategy. The dual approach of the FAO-56 (Food and Agriculture Organization) model, based on
the modulation of evaporative demand, was used for the estimation of crop water requirements.
Sentinel-2A temporal images were used for crop type mapping and deriving the basal crop coefficient
(Kcb) based on NDVI data. Meteorological data were also used in crop water requirement simulation,
using SAMIR (satellite monitoring of irrigation) software. The results allowed for the spatialization of
crop water requirements on a large area of irrigated crops during the 2016–2017 agricultural season.
In general, the crops’ requirement for water is at its maximum during the months of March and
April, and the critical period starts from February for most crops. Maps of water requirements
were developed. They showed the variability over time of crop development and their estimated
water requirements. The results obtained constitute an important indicator of how water should be
distributed over the area in order to improve the efficiency of the irrigation scheduling strategy.

Keywords: water management; remote sensing; evapotranspiration; Sentinel-2A; FAO-56

1. Introduction

The problem of the development and management of sustainable water resources
affects most countries of the world, especially those located in arid and semi-arid regions.
These countries have to face limited water resources and a constantly increasing demand
due to various factors: a high population growth, the expansion of irrigated agriculture,
and urban, industrial, and tourism development. Irrigation is the major water consumer in
the Mediterranean region (around 81% of mobilized water is used in agriculture), although
it concerns only 20% of the useful agricultural area [1]. With the aim of reducing water
consumption through rational management and ensuring the sustainability of agriculture,
precision agriculture has been a major focus of scientific research over the past decade,
using new technologies, such as satellite data, as well as new drone technologies [2].

Moroccan agriculture is characterized by equivalent statistics, with around 83% of
the water used for irrigation, while it only covers 13% of arable land. In addition, almost
half of the arable land is located in semi-arid areas (with precipitation between 200 and
400 mm/year), while in these areas, the evaporative demand is about 1500 mm/year. A
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rational and rigorous water management system in this area is essential. In this context,
studies on the rationing of water use for the agricultural sector, through irrigation manage-
ment, occupy an important place among scientific communities and basin agencies. After
water is supplied to the plant (by irrigation or precipitation), only a small amount is used
by the plant for its organic matter composition. The major part is evacuated by the stomata
in the form of water vapor. On a field scale, evaporation from the soil also contributes to
water loss.

Research carried out for several decades up to the present day on the determination of
crop water requirements has mainly focused on experimental approaches, in particular:
lysimetric methods [3], the sap flow technique [4–8], micrometeorological methods [9,10],
and scintillometry [11]. These methods require very sophisticated and expensive equipment.
This research has also focused on approaches based on models called indirect methods [12].
Among indirect methods, FAO-56 is the most frequently used approach for estimating
crop water requirements [13]. This simple and robust approach can be used to quantify
water requirements and assist decision makers in managing and planning irrigation at
the field scale [14–16]. However, one of the major problems encountered when managing
irrigation on a regional scale is the spatial variability of the parameters of the model.
Hence the interest of spatial remote sensing, which makes it possible to extrapolate local
information to a spatial scale [17–22]. The development of remote sensing capabilities
(temporal, spatial, and spectral resolution) offers a better opportunity for hydro-agricultural
management [17,23,24].

Several works have used space-based remote sensing, such as Sentinel-2 [20,25,26],
for irrigation water planning and management [15,27–32]. These works are based on
the relationship between surface temperature and transpiration; a plant under water
stress limits its transpiration by closing its stomata, which leads to high leaf temperatures.
Spatial remote sensing also provides continuous information on the state of vegetation
through vegetation indices [33–35]. The most commonly used vegetation index is the
NDVI (normalized difference vegetation index). It is defined as the difference between the
surface reflectance in the near-infrared range and the red on the sum of the plants [36,37].
The similarity between the evolution of the vegetation index (NDVI) during the crop
development cycle and that of the crop coefficient has encouraged scientists to study the
relationship between these two parameters in order to estimate crop water requirements on
a regional scale [17,32]. In this context, this work was a new application of SAMIR software
(satellite monitoring of irrigation), employing 10 m high-resolution NDVI time series data
for estimating the actual basal crop coefficient and vegetation fraction for running the
FAO56 dual crop coefficient water balance model in a highly fragmented and intensive
agricultural system. In fact, this work combined a 10 m Sentinel-2 based crop type map and
NDVI time series with meteorological data in order to estimate crop water requirements in
the Tadla irrigated perimeter and qualify the irrigation strategy in this highly fragmented
and intensive agricultural system. The maps produced make it possible to determine the
water needs of each crop in the irrigated perimeter at a daily, monthly, or seasonal time
step and with a resolution of 10 m2.

2. Materials and Methods
2.1. Study Area and Data Used

The study area was located in Morocco (32◦00′ N and 5◦00′ W), a country bordered to
the west by the Atlantic Ocean, to the east by Algeria, to the south by Mauritania, and to
the north by the Mediterranean. Morocco is therefore located in the extreme northwest of
Africa, just across from Europe, from which it is separated only by the 17 km of the Strait
of Gibraltar. Morocco is one of the Maghreb states and is the westernmost country. The
variety of Moroccan landscapes is rich. It changes from summits to plains, and from the
greenest vegetation to the most complete aridity.

The agricultural plain of Tadla is located in the Oum Er Rbia basin in central Morocco,
on an area of 320,000 ha. The study area was located in the irrigated perimeter of Tadla,
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which is part of the agricultural plain (Figure 1). With an average altitude of 400 m, the
perimeter has an arid to semi-arid climate, with temperatures ranging from −6 ◦C in Jan-
uary to 46 ◦C in August [38] and an average annual rainfall of 280 mm [39]. The perimeter
is supplied with irrigation water by the Bin El Ouidane and Ahmed El Hansali dams; it
is also characterized by a diversity of crops, including citrus fruits, olives, pomegranates,
cereals (wheat and barley), alfalfa, and sugar beets, due to the availability of ground and
surface waters [33].
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Figure 1. Location of the study area with Sentinel-2A images as a basemap.

2.1.1. Meteorological Data

The meteorological data used were recorded by the meteorological station Oulad Slimane,
located in proximity to the study area (Figure 1). This station measures solar radiation,
wind speed, temperature, air humidity, and precipitation. Following the standards of
the FAO-56 Penman–Monteith model [12], daily averages of climate data were calculated
to determine the reference evapotranspiration (ET0) in mm/day. The variation of ET0
and average daily temperature measured during the 2016/2017 agricultural season is
presented in Figure 2. The reference evapotranspiration records show moderate values in
autumn (1 to 2 mm/day) and high values in summer (2 to 6 mm/day), which characterizes
a semi-arid climate.

Agriculture 2022, 12, 1168 4 of 17 
 

 

 
Figure 2. Variation of ET0 and average daily temperature (Tavg) during the 2016/2017 agricultural 
season. 

2.1.2. Satellite Data and Pre-Processing 
In order to estimate evapotranspiration and determine crop water requirements in 

the study area, a time series of NDVI vegetation indices was used from Sentinel-2A mul-
tispectral satellite images (Table 1). Ten images covering the study area were acquired 
during the 2016/2017 agricultural season. This allowed us to have at least one image per 
month over the study area. The images were radiometrically and atmospherically cor-
rected using the sen2cor algorithm at 10 m spatial resolution (Figure 3). 

 
Figure 3. Flowchart of the methodology used. 

Table 1. Sentinel-2A image acquisition dates. 

Images Acquisition Dates Sensor 
1 3 November 2016 Sentinel-2A 
2 13 December 2016 Sentinel-2A 
3 23 December 2016 Sentinel-2A 
4 2 January 2017 Sentinel-2A 
5 12 January 2017 Sentinel-2A 
6 1 February 2017 Sentinel-2A 
7 30 March 2017 Sentinel-2A 
8 2 May 2017 Sentinel-2A 
9 1 June 2017 Sentinel-2A 
10 21 June 2017 Sentinel-2A 

Figure 2. Variation of ET0 and average daily temperature (Tavg) during the 2016/2017 agricul-
tural season.



Agriculture 2022, 12, 1168 4 of 17

2.1.2. Satellite Data and Pre-Processing

In order to estimate evapotranspiration and determine crop water requirements in the
study area, a time series of NDVI vegetation indices was used from Sentinel-2A multispec-
tral satellite images (Table 1). Ten images covering the study area were acquired during the
2016/2017 agricultural season. This allowed us to have at least one image per month over
the study area. The images were radiometrically and atmospherically corrected using the
sen2cor algorithm at 10 m spatial resolution (Figure 3).

Table 1. Sentinel-2A image acquisition dates.

Images Acquisition Dates Sensor

1 3 November 2016 Sentinel-2A
2 13 December 2016 Sentinel-2A
3 23 December 2016 Sentinel-2A
4 2 January 2017 Sentinel-2A
5 12 January 2017 Sentinel-2A
6 1 February 2017 Sentinel-2A
7 30 March 2017 Sentinel-2A
8 2 May 2017 Sentinel-2A
9 1 June 2017 Sentinel-2A
10 21 June 2017 Sentinel-2A
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2.2. Description of the Plant Water Requirement Model

The FAO-56 model was used to estimate water requirements [40]. This model is based
on the modulation of the evaporative demand by the crop coefficient. The latter is deduced
from the seasonal cycle of the normalized vegetation index (NDVI) by using the water
balance in the soil. The FAO-56 method is the simplest level of description of exchanges
between three components: soil, plants, and atmosphere [12,14,40]. It is operationally used
by most agricultural water managers, and it weighs a reference evapotranspiration (that
of a well-irrigated lawn subjected to current climatic conditions) by the crop coefficient
and that of water stress. There are three types of evapotranspiration (reference evapotran-
spiration, evapotranspiration under standard conditions, and evapotranspiration under
non-standard conditions).

The reference evapotranspiration, ET0, is defined as the total water loss by evaporation
and transpiration from a large area of well-irrigated grass, in full growth period, completely
covering the soil, and with an assumed crop height of 0.12 m. ET0 can be calculated from
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meteorological data using the FAO-56 Penman–Monteith method, which is considered as
the most recommended method for calculating the reference evapotranspiration [12].

The evapotranspiration under standard conditions, ETc, also called maximum evapo-
transpiration, is defined at different stages of development of a given crop under optimal
agronomic conditions, without diseases and without stress (hydric or nutritional). ETc is
related to ET0 through a coefficient called the cultural coefficient, Kc, which considers the
physical and physiological differences between the reference area and the given crop:

ETc = Kc × ET0 (1)

The evapotranspiration under non-standard conditions, also called real evapotranspi-
ration (ETr), is the quantity of water evaporated by the soil and vegetation at a given stage
of development as well as the presence of a real sanitary state (the presence of diseases and
insects, water stress, etc.). ETr is also related to ETc by a coefficient, Ks, called the water
stress coefficient:

ETr = Ks × Kc × ET0 (2)

The methods developed by FAO-56, based on the concept of reference evapotranspira-
tion and crop coefficients, have been used as an operational and standard tool for irrigation
programming. The algorithm used in this study was based on the FAO-56 model, with a
dual crop coefficient approach developed by [5,12]. It is recommended that this approach
be followed when better estimates of Kc are needed, such as for scheduling the irrigation of
individual fields on a daily scale. This approach consists of dividing the crop coefficient, Kc,
into two coefficients: the coefficient for transpiration, Kcb, called the basal crop coefficient,
and another for soil evaporation, Ke, called the evaporation coefficient:

ETc = (Kcb + Ke) × ET0 (3)

The basal crop coefficient (Kcb) is based on the development of the crop. Thus, Ke is
the coefficient that controls evaporation from the bare soil fraction as a function of surface
moisture. In this work, a linear relationship between the basal crop coefficient, Kcb, and
the normalized vegetation index, NDVI, was used for sugar beet, citrus, alfalfa, and cereal
crops. This allowed us to determine the maximum and actual evapotranspiration at the
field scale in the study area. Saadi et al. [41] used the SAMIR tool to simulate the ETc and
irrigation volumes of several irrigated perimeters in the Kairouan plain in Tunisia. This
tool is based on the FAO approach and used the NDVI from satellite images to estimate the
Kcb via a linear relationship (Figure 4).
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The evapotranspiration was estimated using satellite monitoring of irrigation (SAMIR)
software, which allows the spatialization of evapotranspiration (ET) and water balance of
irrigated crops over large areas [22,42]. The architecture of this program is based on the
FAO-56 model. It calculates the reference evapotranspiration, ET0, from climatic data. In
addition to that, the basal crop coefficient, Kcb, was determined by a time series of daily
NDVIs after the interpolation between the dates of acquisition of the satellite images [15].
In addition to the spatialization of ET, SAMIR can be used to determine the crop water
balance, which is obtained by coupling a soil module of three compartments (surface, root,
and depth) to the FAO-56 model.

The FAO-56 tables [12] provide values of the crop coefficient according to the crops. In
parallel to this approach, many studies have highlighted the relationship between NDVI
and the crop coefficient [15,17–19,23].

The calculation of the water balance requires climatic data to estimate the reference
evapotranspiration, ET0, precipitation, soil data, and irrigation data, as well as the crop
type map and vegetation phenology (to estimate crop coefficients with the FAO-56 method).
Irrigation data can be used in two ways: if they are available, they are used directly, and
if not, they are estimated from the water balance calculation [43]. In this work, water
quantities, as well as irrigation dates, were available. Concerning the soil data, three func-
tional compartments can be configured: evaporative, root, and depth. Each compartment
is characterized by its depth, field capacity, wilting point, diffusion coefficient, and satu-
ration humidity. In addition, a soil type map can also be used. In our case, the data used
were those published by the Food and Agriculture Organization of the United Nations
(FAO) [12,43].

2.3. Crop Type Mapping

The methodology adopted for the realization of the crop type map is illustrated in
Figure 5. The support vector machines (SVM) method was used for the classification of the
multitemporal satellite dataset. A field survey was carried out to collect the reference data
(120 samples); fifty percent of them were used for training the classification and checking
the spectral profiles of the different crops in the study area, while the other fifty percent
were used for the validation of the classification results.
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2.3.1. Extraction of NDVI Spectral Profiles from Crops

The NDVI time series was created from the multitemporal S2-A. According to the im-
ages (Figure 6), the study area contained different types of crops, such as sugar beets, alfalfa,
cereals (wheat and barley), citrus fruits, and olive trees; each type of crop is characterized
by a distinct spectral profile.
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(C) alfalfa; (D) citrus fruits and olives.

2.3.2. Crop Type Map

The NDVI was calculated for each image to create a time series covering the entire
crop year. The spectral curves or profiles (endmembers) of each crop were extracted from
the NDVI time series using the field database.

The result of the SVM classification is presented in Figure 7. The accuracy assessment
of the SVM classification is presented in Figure 8. The evaluation of the classification result,
with a time series of the normalized NDVI, returned a Kappa coefficient and an overall
accuracy of 92.32% and 93.91%, respectively.
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3. Results and Discussion
3.1. Crop Water Requirements under Optimal Agronomic Conditions
3.1.1. Seasonal Water Requirements

Estimating crop water requirements under optimal agronomic conditions does not
consider water stress, diseases, or weeds. The spatialization of crop water requirements
in the study area, during the period from 3 November 2016 to 1 June 2017, using the
SAMIR tool, showed that the estimated water requirements varied from 82 mm to 552 mm
depending on the type of crop (Figure 9).
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Analysis of the water requirement map (Figure 9) and the crop type map (Figure 7)
showed that the most water-consuming crops are alfalfa and sugar beets, respectively.
The comparison of the water requirements of alfalfa, sugar beets, citrus fruits, olive trees,
and cereals (wheat and barley) during the 2016–2017 agricultural season with the average
rainfall for the same period, which was 308.1 mm, provided a first indication of the level
of the average deficit to be covered by irrigation. These maps were used to determine
the water requirements of each crop for each pixel at a resolution of 10 m throughout the
agricultural season.
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3.1.2. Monthly Water Requirements

In order to understand the variation in water requirements between crops on a monthly
basis, a small site (Site1) was selected in the study area that aggregates the different
crops studied in this work (Figure 1). The spatio-temporal distribution of the monthly
accumulated amount of water required for each pixel of each crop was computed from
3 November 2016 to 1 June 2017 (Figure 10). It should be noted that crop water require-
ments depend on the crop development cycle; they increase when the chlorophyll activity
of the vegetation becomes important, as well as with the increase in temperature. In general,
the optimal amount of water for the crops is at its maximum during March and April.
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Concerning arboriculture, the citrus requires a relatively less amount of water com-
pared to other crops during November, December, January, and February. Cereals (wheat
and barley) need a significant amount of water starting from the sowing period (November).
This need becomes more important as the plant develops during the agricultural season,
and it reaches a maximum during March and April, which is normal, because at this time,
cereals begin their maturity stage, characterized by the start of the seed filling. Alfalfa is
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one of the crops with a short life cycle. After each harvest, alfalfa needs a large amount of
water, especially during May and June.

3.2. Crop Water Requirements under Real Agronomic Conditions

In order to estimate the water requirements of the crops in real conditions, five pilot
parcels were chosen (Figure 1), including one citrus parcel and six mixed parcels. These
parcels were selected in consultation with the ORMVAT office (Regional Office of Agricul-
tural Development of Tadla) based on the availability of irrigation data and accessibility to
these parcels during field visits.

The use of real daily data of the irrigation volumes of each parcel in the water balance
modeling allowed us to estimate the real water requirements of the different crops.

The period for the estimation of crop water requirements differs due to the life cycle
of each crop. Citrus fruits are inter-annual crops, in contrast to annual crops such as sugar
beets and cereals. The choice of estimation dates for sugar beets and cereals depends on
the grubbing-up period and the senescence phase, respectively. Table 2 shows the water
requirements per hectare for the different crops in the study area.

Table 2. Seasonal accumulation of crop water requirements.

Crop Type Estimation Area Estimation Period Water Requirements in (m3)

Citrus 1 ha 3 November 2016–1 July 2017 3657
Sugar beets 1 ha 3 November 2016–20 April 2017 2766

Alfalfa 1 ha 3 November 2016–1 July 2017 5126
Cereals 1 ha 1 December 2016–20 May 2017 3110

In order to evaluate the efficiency of the water supply in the study area, a comparison
of the water requirements, estimated with the SAMIR tool for five parcels (Figure 1), was
made with the irrigation data provided by the ORMVAT office and the rainfall during the
first quarter of the year 2017 (1 January 2017–31 March 2017) (Figure 11). In all cases, an
overexploitation of irrigation water resources was noted with the traditional method of
irrigation management used, and that a significant amount of water could be conserved if
the proposed remote sensing method were to be used. This demonstrates the need to adopt
integrated irrigation management to combat water resource depletion in the region.
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The objective of this study was to evaluate the potential of Sentinel-2 satellite data in
estimating crop water requirements based on the dual approach of FAO-56. The result of
this study showed the importance of new technologies in the management of irrigation
water by estimating the water requirements of crops. Farmers in the Tadla plain use
traditional methods of irrigation, which causes the loss of large quantities of water that
Morocco needs. This study allowed us to produce maps of water requirements of different
crops with a daily, monthly, or seasonal time step in the irrigated perimeter of Tadla, using
tools that are free and open-source.

Kharrou et al. [44] compared the water demand estimated by remote sensing and
irrigation water at the parcel scale in an irrigated perimeter of the Haouz plain in Morocco.
The comparison showed a large spatio-temporal variability in irrigation water demand and
supply. The total amount of irrigation water simulated by the model (359 mm) was 30%
less than the observed amount (512 mm), indicating an applied irrigation higher than the
observed ET, revealing over-irrigation and the fact that the excess amount was probably lost
by deep percolation; this finding coincides with our results presented in Figures 11 and 12,
where we found that there was water loss.
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This could be attributed to inadequate irrigation supply and/or socio-economic con-
siderations and farmer management practices. Their results also demonstrate the potential
for irrigation managers to use remote sensing-based models to monitor irrigation water
use for the efficient and sustainable use of water resources.

Saadi et al. [45] also worked on the estimation of irrigation water requirements, using
a time series of high-resolution NDVI images from the Spot satellite in the Kairouan plain in
Tunisia. In their work, they used the dual approach of FAO-56 with the SAMIR tool. For the
whole agricultural season, they found that the modeled irrigation volumes at the perimeter
were close to the observed volumes (135 and 121 mm, respectively, with an overestimation
of 11.5%). This overestimation of irrigation was observed during the month of November
and may be due to an error in the initialization of the soil water content parameters.
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3.3. Comparison between ETr and ETc

The comparison between ETr and ETc allows to determine the periods of water loss
(excess water) and water stress. During periods of water stress, ETr values are lower
than ETc values, which means that the plant needs a water supply. Figure 12 shows the
comparison between ETc and ETr in the study area during the 2016–2017 agricultural season
for citrus crops. The comparison showed that during the period from 11 March 2016 to
4 February 2017, ETc was almost equal to ETr, which means that the plant had a normal
development. Starting from April, the variations between ETc and ETr began to increase,
showing a lot of periods of stress and water loss, which required an adjustment of the water
supply during this period.

Figure 13 illustrates the comparison between ETc and ETr during the 2016–2017 agri-
cultural season for sugar beets. The analysis of their temporal curves showed that the
period from 11 March 2016 to 13 February 2017 was less critical for the plant, where ETc was
almost equal to ETr, except for some short periods of very low water stress. Overall, during
this period, the plant was considered to be in normal and good growth conditions. In
contrast, the sugar beet encountered a long period of water stress between 2 November 2017
and 13 March 2017. After this severe period, the plant went through fluctuating conditions,
between water stress and over supply. This can be explained by an alternation of dry days
and irrigation days, which proves the need for a proactive irrigation scheduling based on
temporal monitoring in order to avoid late irrigation, where the decision to irrigate is made
after dry days or after the appearance of signs of water stress on the plant. This is the case
in most of the irrigated perimeters in Morocco, where the agriculture is intensive, and the
irrigation time is determined in a subjective way.
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Concerning the cereals, the analysis of Figure 14 shows that the simulation of the
ETr was well-aligned over time with the variations of the ETc, except for the period from
1 February 2017 to 17 January 2017, which showed significant water stress. By contrast,
there was an excess of water for almost two months, starting from mid-April. This may be
due to the senescence phase of the cereals and the decrease in chlorophyll activity.
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Figure 15 shows the comparison between ETc and ETr for the alfalfa crop; the analysis
of their curves showed that during the period between 18 March 2016 and 17 May 2017,
the ETc was almost equal to the ETr, indicating a long normal period of development for
the alfalfa. However, a few critical periods were noticed, including a slight water deficit
during the first half of November and a slight excess of water from 5 September 2017 to the
end of the season. This water loss in the end of the season was related to over-irrigation
activity, which implies that a more effective irrigation management is needed for alfalfa.
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4. Conclusions

The FAO-56 dual approach is commonly used for irrigation management and to
estimate evapotranspiration at the parcel scale. The latter is determined by combining
Sentinel-2 satellite data with meteorological data. The main crop types considered in this
study were: cereals, sugar beets, alfalfa, citrus fruits, and olive trees (Figure 16). The
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combination of satellite and meteorological data allowed us to spatialize the evapotran-
spiration over the study area during the 2016/2017 agricultural season, using the dual
approach of the FAO-56 model, based on the reference evapotranspiration, ET0, the basal
crop coefficient, Kcb, and the water stress coefficient, Ks.
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The estimation of water requirements was performed according to two methods.

• The first method consists of determining the water requirements under optimal agro-
nomic conditions (without consideration of water stress, diseases, or weeds) for each
crop with a seasonal or monthly time step and a spatial resolution of 10 m. The
maps produced by this method showed that alfalfa is the most water intensive crop,
followed by sugar beets. The demands for alfalfa are more and more important during
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the months of April, May, and June because of the higher chlorophyll activity and the
increase in temperature.

• The second method consists of determining the water requirements under real agro-
nomic conditions (including water stress). A comparison was made between the water
inputs (irrigation and rain) for five parcels, with the estimated water requirements
made by the SAMIR tool. For the five plots, there was almost 10,000 m3 of difference
between the water inputs by irrigation and rain and the estimated requirements. Irri-
gation and rainwater inputs generally exceed crop water requirements, which means
that water is lost.

Considering that Morocco is among the countries that suffer from drought caused by
climate change, it will be essential to use new technologies for water management, such as
the estimation of crop water needs by satellite data or by drones; furthermore, setting up a
better irrigation scheduling strategy in the irrigated perimeter of Tadla will allow to save
important quantities of water and, subsequently, to protect groundwater resources, out of
concern for sustainability.
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