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Abstract: One important challenge in treating avascular-degraded cartilage is the development of
new drugs for both pain management and joint preservation. Considerable efforts have been invested
in developing nanosystems using biomaterials, such as chitosan, a widely used natural polymer
exhibiting numerous advantages, i.e., non-toxic, biocompatible and biodegradable. However, even
if chitosan is generally recognized as safe, the safety and biocompatibility of such nanomaterials
must be addressed because of potential for greater interactions between nanomaterials and biological
systems. Here, we developed chitosan-based nanogels as drug-delivery platforms and established an
initial biological risk assessment for osteocartilaginous applications. We investigated the influence
of synthesis parameters on the physicochemical characteristics of the resulting nanogels and their
potential impact on the biocompatibility on all types of human osteocartilaginous cells. Monodisperse
nanogels were synthesized with sizes ranging from 268 to 382 nm according to the acidic solution
used (i.e., either citric or acetic acid) with overall positive charge surface. Our results demonstrated
that purified chitosan-based nanogels neither affected cell proliferation nor induced nitric oxide
production in vitro. However, nanogels were moderately genotoxic in a dose-dependent manner but
did not significantly induce acute embryotoxicity in zebrafish embryos, up to 100 µg·mL−1. These
encouraging results hold great promise for the intra-articular delivery of drugs or diagnostic agents
for joint pathologies.

Keywords: nanogel; biopolymer; hyaluronic acid; osteoarthritis; biocompatibility; cartilage; osteocar-
tilaginous cells

1. Introduction

Treating joint diseases remains a challenging clinical goal despite major research efforts.
Different tissues and cell types forming the joint contribute to distinct disease pathogeneses,
which can either be primarily inflammatory (rheumatoid arthritis for instance), degener-
ative (as in chondrosarcoma) or both (such as in osteoarthritis). Unfortunately, there are
few clinical cures for such pathologies to date and pharmacological treatments are mainly
symptomatic, using analgesics and anti-inflammatory drugs until surgical intervention
is necessary [1]. Because cartilage, the central component of any joint, is an avascular
tissue [2], one drawback of such treatments is the poor control of systemic drug delivery [3],
which must be improved to develop more efficient and robust therapeutic approaches for
joint treatments.
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Intra-articular (IA) injection is a direct delivery approach commonly used to overcome
the poor joint bioavailability and allows lower dose administration of drugs, lower systemic
diffusion and, consequently, less systemic side-effects [3–5].

However, rapid clearance of drugs from the joint via blood vessels and lymphatic
system of the synovial tissue is a major limitation of IA injections [3,5–7]. For instance,
even though IA administration of corticosteroids is appropriate to treat inflammatory joint
conditions according to the OARSI guidelines [8], it shows mild to minor effects after
4 weeks post-injection, due to the short half-life of the drug in the synovial cavity, and is
therefore mostly used for short-term treatment [5,9].

Nanoparticles (NPs) could address this challenge. Indeed, NPs can be used as nanocar-
rier systems to deliver active components to target tissues in a precise and controlled
manner [10]. Moreover, nano-size materials have the ability to penetrate the extra-cellular
matrix (ECM) and can be tuned to regulate their elimination [3]. Thus, one goal of devel-
oping NPs for joint treatment is to provide a local sustained release of drugs and to avoid
repeated injections [3,5]. Indeed, depending on their design and physicochemical nature,
these nanoparticles could be retained in the joint from 2 to 4 weeks in vivo [11,12].

Nanohydrogels, or nanogels (NGs), a subtype of polymeric nanoparticles, combine
the characteristics of hydrogels (i.e., high-water content), a biopolymeric matrix mimicking
the extracellular environment of osteo-cartilage tissues, possible cellular adhesion, a high
loading capacity [13–15], and the possibility to be nanoengineered with the advantages
aforementioned. Numerous NGs have been developed and can be classified into two groups
according to the nature of the polymer: (i) synthetic polymers, such as the widely used
polyethylene glycol (PEG); (ii) natural biopolymers including alginate, collagen, chitosan
(CH) or hyaluronic acid (HA). The latter exhibit many advantages due to the fact of their
biological activities [16–18]. HA is an essential component of the cartilage, responsible for
the rheological properties of the synovial fluid, enabling it to act as a lubricant and shock
absorber, and it is therefore used in visco-supplementation treatments [19,20]. Chitosan
is a natural polysaccharide prepared from the deacetylation of chitin, consisting in β-
(1,4)-d-glucosamine and N-acetyl-d-glucosamine units and is generally considered as a
non-toxic, biocompatible and biodegradable polymer [21]. Because of its similar structure
to glycosaminoglycans (GAGs), CH is widely used for tissue engineering and is among the
most used natural biopolymers in biomedical applications [21,22]. Nevertheless, despite
the variety of NGs intended for drug delivery to the joint [23], their safety and toxicity
profiles raise concerns since they are designed to be administrated for a prolonged period
of time to patients [24]. Hence, both materials and synthesis techniques play crucial roles in
designing suitable injectable NGs that display biocompatible, biodegradable and enhanced
retention-time properties.

In this study, we developed chitosan-based nanogels and investigated the influence of
the synthesis parameters on their physicochemical characteristics. Intended to act as long-
lasting drug delivery platforms for osteocartilaginous applications, we further assessed the
possible toxicity of the NGs in human cells (chondrocytes, synoviocytes and osteoblasts)
from osteoarthritic patients and in zebrafish embryos. Our data show that chitosan-based
nanogels’ synthesis parameters are important for their physicochemical characteristics and
indicate that they can be suitable for osteoarthritis drug delivery.

2. Materials and Methods
2.1. Ethical Considerations

Human tissue samples were collected in accordance with the policies regarding the
ethical use of human tissues for research. The protocol used in this study was approved by
the Centre Hospitalier Universitaire Sainte-Justine Ethics Committee (#1985, #2252). The
animal study was approved by the Centre Hospitalier Universitaire Sainte-Justine Animal
Ethic Committee, Montreal, Canada (approved protocol number #644).
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2.2. Materials

To abridge the text, all reagents used in this study, as well as consumables and equip-
ment are listed and detailed in Tables S1 and S2, respectively.

2.3. Nanogel Synthesis and Characterization
2.3.1. Synthesis of CH/HA Nanogels

Nanogels were prepared as follows, based on a previously reported protocol [25,26]
(Figure S1): chitosan (CH, 2.5 mg·mL−1) was solubilized in either an aqueous solution
of citric acid (10% (w/v)) (NG CH–CA10) or of acetic acid (2% (v/v)) (NG CH–AA2 ) and
magnetically stirred overnight until complete dissolution. In parallel, a solution of sodium
tripolyphosphate (TPP, 1.2 mg·mL−1) and 60 kDa sodium hyaluronate (HA, 0.8 mg·mL−1)
in water was prepared. Both solutions were filtered (0.2 µm) prior use and synthesis was
performed under the most aseptic conditions possible. The anionic TPP/HA solution was
then added dropwise to the cationic CH one (1:2 volume ratio), at a constant flow rate of
4.5 mL·min−1 under concomitant ultrasonic (US) mixing (550 Sonic Dismembrator, Fisher
Scientific, Waltham, MA, USA, power 3/12) and moderate magnetic stirring. At the end
of the addition, US were maintained for an additional 60 s then magnetic stirring was
maintained for another 10 min. The colloidal solution changed from colorless to turbid
(characteristic Tyndall Effect).

2.3.2. Nanogel Purification and Lyophilization

Nanogel suspensions were dialyzed (Spectrum, New Brunswick, NJ, USA, Spectra/
Por® 6.0, MWCO 25 kDa) three times at room temperature against ×100 volumes of MilliQ
ultrapure water, for 36 h, under moderate magnetic stirring in order to remove solubilizing
agents (citric acid, acetic acid), excess TPP and unreacted polymer chains with low Mw.

Purified nanosuspensions were then lyophilized with sucrose (8% w/v) as a cryopro-
tective agent for a minimum of 24 h.

Finally, pH as well as the hydrodynamic diameters and zeta potentials were measured
prior and after dialysis and also after lyophilization to evaluate the impact of each process
on these parameters.

2.3.3. CH/HA Nanogel Characterization

Dynamic light scattering (DLS) and electrophoretic light scattering (ELS) were used
for measurement of average hydrodynamic diameters, polydispersity indexes (PdI), and ζ-
(zeta) potential (ZP), respectively (Nanobrook Omni, Brookhaven, NY, USA). Each sample
was analyzed in quadruplets at 20 ◦C at a scattering angle of 173◦, pure or acidic water
serving as a reference medium, according to the situation. DLS data were expressed in %
intensity in order to detect the potential presence of aggregates in the nanogel suspensions.

After each step, nanosuspensions were centrifugated at 4 ◦C at 16,000× g for 90 min.
Supernatants were then kept for pH measurements (Microprocessor pH meter, pH 211,
Hanna instruments, Woonsocket, RI, USA).

The nanogel production yield (PY%) was calculated from the lyophilized pellet as follows:

PY % =
wpellet − wsucrose

wHA + wCH + wTPP
× 100

where wpellet corresponds to the weight of the pellet after lyophilization; wsucrose corresponds
to the calculated weight of sucrose from the sucrose concentration; wHA, wCH and wTPP
correspond to initial weights of hyaluronic acid, chitosan and tripolyphosphate introduced
in the reaction mixture, respectively.
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2.4. Cells Studies
2.4.1. Culture of Chondrocytes, Synoviocytes and Osteoblasts

Human chondrocytes (CD) and synoviocytes (SYN) originated from our biobank (Dre
Florina Moldovan, CHU Sainte-Justine, Montreal, QC, Canada, #2252) where cells were
isolated from osteoarthritic patients undergoing total knee replacement [27–29], and human
osteoblasts (OB) were from PromoCell (C-12720, Heidelberg, Germany). CD and SYN were
grown in Dulbecco’s modified Eagle’s medium (DMEM), while OB were cultivated in
DMEM/F12, all enriched with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin
and L-glutamine (PSG). Cells were seeded in culture flasks within a maximum of ten pas-
sages at 37 ◦C in a humidified atmosphere of 5% CO2 until they reach approximately
70% confluency.

Before each treatment, growth media were removed and replaced by DMEM or
DMEM/F12, 0% FBS, 1% PSG to synchronize cells at G0. Cells were incubated for another
24 h. On the next day, cells were incubated with corresponding treatment in DMEM, or
DMEM/F12 5% FBS and 1% PSG media for 24, 48 or 72 h.

2.4.2. MTS and LDH Assays

Nanogel cytotoxicity was quantified using both the MTS and LDH colorimetric assays.
Cells were seeded at 5–10 × 103 cells per well into 96-well plates and grown as described
in Section 2.4.1. Untreated cells served as the negative control (and reference) while cells
treated with Triton X-100 0.1% (v/v) were used as positive controls. Cells were exposed
up to 400 µg·mL−1 (2-fold series dilution) to NG CH–AA2 and NG CH–CA10 for 24, 48
and 72 h. At predetermined timepoints, 50 µL/well of media were transferred in another
96-well plate for LDH assay and another 50 µL/well for NO quantification. The remaining
media were discarded and replaced by 50 µL/well of fresh media. Depending on the assay,
MTS 10% (v/v) and LDH 2X solutions were added to each well (volume ratio of 1:1) before
incubation for 2 h. Optical density (OD) was then measured at 490 nm using a microplate
reader (CLARIOstarplus, BMG LABTECH GmbH, Ortenberg, Germany).

For both techniques, the amount of formed formazan, (absorbance at 490 nm) is
representative of the metabolic activity of viable cells and of the number of damaged/dead
cells in the medium for MTS and LDH assays, respectively. Cell viability and cell death
were assessed as follows:

Cell viability % =
ODsample

ODnegative control
× 100

Cell mortality % =
ODsample −ODnegative control

ODpositive control
× 100

where ODsample corresponds to the optical density of the cells treated with the nanogels;
ODnegative control corresponds to the optical density of untreated cells (control group), for
which cell proliferation was considered 100%; ODpositive control corresponds to the optical
density of cells treated with Triton X-100 0.1% 30 min prior the assay.

Three different batches of NG CH–AA2 and of NG CH–CA10 were tested during three
independent experiments (n = 3 independent experiments for each dose and formula in
quadruplets, 1 batch per experiment).

2.4.3. Nitric Oxide Quantification

Nitrite (NO2
−), a stable product of nitric oxide (NO), was measured in culture super-

natants using a spectrophotometric method based on the Griess reaction [30], as previously
described [27]. Briefly, cell supernatants were first incubated for 5 min at room temperature
with a solution of sulfanilamide 1% (w/v) in phosphoric acid 5% (v/v) and protected from
light. A solution of naphtyl-ethylenediamine dihydrochloride 0.1% (w/v) was then added
for another 10 min. Absorbance was measured at 540 nm and nitrite concentration was
determined using a standard calibration curve of NaNO2 (0–100 µM; 0–6.99 mg·mL−1).
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2.4.4. DNA Extraction

Cells were exposed up to 400 µg·mL−1 (4-fold series dilution) to NG CH–AA2 and NG
CH–CA10 for 24, 48 and 72 h. DNA was extracted from chondrocytes, synoviocytes and
osteoblasts with the PureLinkTM Genomic DNA minikit (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s protocol. DNA was then quantified by spectrophotometry
at 280 and 260 nm (Epoch BioTek, Santa Clara, CA, USA) and 100 ng of DNA were loaded
into a 1.0% agarose gel and detected by electrophoresis (Bio-Rad ChemiDoc Imaging
System, Hercules, CA, USA). Untreated samples were split into two groups: one served as
reference (negative control group) for relative DNA quantification performed with Bio-Rad
Image Lab software (version 6.1, ©2020, Bio-Rad Laboratories, Inc., Hercules, CA, USA),
while the second one was treated with DNase prior gel loading to serve as positive control.
DNA extractions were performed twice with two different batches of NG CH–AA2 and
of NG CH–CA10 (n = 2 independent experiments for each dose and formula, 1 batch
per experiment).

2.5. Zebrafish Embryo Assay

Wild-type zebrafish (Danio rerio) embryos were raised at 28.5 ◦C and staged as previ-
ously described [31]. Healthy embryos at 4 h post-fertilization (hpf) were transferred into
the wells of a 6-well plate (n = 20 embryos/group). Different concentrations of chitosan-
based NGs were added to the zebrafish water (0, 6.25, 12.5, 25.0, 50.0 and 100.0 µg·mL−1).
Fish water, untreated or with NG, was renewed after 48 h incubation with the same formu-
lation and incubated until the end of the experiment at 96 hpf. Survival rate and hatching
success were monitored every 24 h for a period of 96 h under a microscope (SMZ660,
Nikon Instruments Inc, Melville, NY, USA) and malformations, such as morphological
abnormalities and pericardial oedema, were noted at 96 hpf. Experiments were performed
in triplicates for a total of 60 embryos for each group, and three different batches of NG
CH–AA2 and of NG CH–CA10 were tested (n = 3 independent experiments for each dose
and formula, 1 batch per experiment).

2.6. Statistical Analysis

Results are expressed as the means ± standard deviations, and statistical analysis was
performed using GraphPad Prism® version 9.0.0. (2020, GraphPad Software, San Diego,
CA, USA). For the in vivo experiments, results were tested by one-way analysis of variance
(ANOVA) and survival curves were obtained from Kaplan–Meier curves with log-rank
test, while for the in vitro experiments, results were tested by Student’s t-test or one-way
ANOVA. Statistically, a significant difference was considered at p < 0.05.

3. Results and Discussion
3.1. Nanogel Synthesis: Variability Factors and Resulting Physicochemical Properties
3.1.1. Optimization of the Formulation of CH-Based NG

Chitosan-based NGs were synthesized by ionic (or ionotropic) gelation following a
previously reported protocol [25,26], using a positively charged chitosan solution and a
negatively charged hyaluronic acid/TPP solution.

Different molecular weights (Mw) of chitosan (CH) and hyaluronic acid (HA) were
tested and hydrodynamic diameter (DH), polydispersity index (PdI) and zeta potential (ZP)
were measured by dynamic and electrophoretic light scattering.

The hydrodynamic diameter, DH, increased with increasing Mw of both HA and CH,
and larger NGs were obtained with medium Mw (MMW, 190–310 kDa) CH compared to
low Mw (LMW, 50–190 kDa) CH (506 ± 127 vs. 299 ± 34 nm, respectively, when 500 kDa
HA was used) (Figure S2a) as previously reported [32–34]. Higher PdI values were also
observed when using MMW CH with 10 kDa (PdI ~ 0.4) and 500 kDa HA (PdI ~ 0.5) as
also evidenced in other studies [35]. CH characteristics are known to influence NP size,
shape and the dispersity of the nanosuspension [21]. Sreekumar et al. (2018) showed that
the main parameters influencing the size of chitosan–TPP nanoparticles were the initial CH
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concentration, its degree of acetylation (DA) and the solvent environment of the polymer.
Their study showed that the average diameter of particles increased with CH concentration
from 0.1 to 5 mg·mL−1 and NPs from 100 to 1200 nm with a polydispersity of 0.1–0.4 were
obtained. When using 2.5 mg·mL−1 of CH with 20% degree of acetylation, the average
DH of the particles was approximately 600 nm [36]. In our case, 60 kDa HA demonstrated
smaller PdI of ~0.2–0.3, with the smallest PdI value obtained with LMW CH (Figure S2b)
with an average size of 221 ± 16 nm (Figure S2a). Regarding zeta potentials, the overall
results showed that positively charged NG were obtained, from +37± 3 mV to +47 ± 5 mV,
regardless of the molecular weight of both HA and CH (Figure S2c).

We further pursued the study with LMW chitosan and assessed the impact of the
dialysis purification process on the same parameters. As evidenced on Figure S3, dialysis
significantly increased the DH of 10, 60 and 1500 kDa HA NG by a factor of 1.2 to 1.6, as
these nanogels are prone to swell in pure water [26]. The best compromise in terms of size,
PdI and ζ-potential was obtained for nanogels prepared from LMW chitosan (50–190 kDa)
and 60 kDa hyaluronic acid. This formulation yielded the lowest and most stable, most
reproducible values of physicochemical characteristics, i.e., ~220 nm/+35 mV and a PdI
around 0.22. Nanoparticles with PdI below 0.3, indicating a good homogeneity in size, and
surface charge greater than 25 mV, are generally considered more stable and sufficient to
prevent NP aggregation [37].

Several cryoprotective agents were also tested to determine the best agent that could
maintain NG integrity after lyophilization and reconstitution (Table S3). For that purpose,
NG size as well as PdI were measured before and after lyophilization, and before/after
ratios were calculated. Freeze-drying is an efficient process to extend the shelf-life of
parenteral products [38] and a robust way to ensure that biological assays are performed
on similar batches with reduced bias incidence. For nanoparticles, the main risk is the
irreversible aggregation of the particles into larger aggregates [39]. Overall results showed
that both parameters were increased after reconstitution with 5–20% w/v trehalose and
lactose (up to two-fold with lactose 20% (w/v)). On the other hand, sucrose 10% and glucose
20% (w/v) demonstrated good cryoprotective properties with no impact on size and PdI
after sample reconstitution. However, due to the potential toxicity for zebrafish embryos,
the highest concentrations were discarded [40]. Further refinement led to the conclusion
that an 8% sucrose concentration was sufficient to ensure a satisfactory reconstitution
(Table S3).

3.1.2. Effect of the Acidic Solution

Chitosan-based nanogels can be easily obtained via electrostatic interactions between
CH and a number of negatively-charged electrostatic crosslinkers, either small molecules
such as TPP [34] or larger ones such as hyaluronate, alginate or modified dextran to name a
few [41]. However, in order to occur, CH must be positively charged, which is obtained by
dissolving the polymer in an acidic environment to promote the protonation of the amino
groups. For that purpose, two acids are mainly considered, namely, citric or acetic acid [42].

Because size and zeta potential as well as the dissolution rates and pharmacokinetics
of NGs also depend on chitosan’s characteristics, including the dissolving solvent, a series
of acid concentrations was tested for both acids and the resulting NGs, prepared from
LMW CH and 60 kDa HA, compared for their final physicochemical properties.

Both NG sizes (Figure 1) and zeta potentials increased with pH as the acid concentra-
tion decreased (pH from 1.93 to 3.31, Tables 1 and S4).
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**** p < 0.0001, Student t-test, GraphPad Prism version 9.0.0, GraphPad Software, CA USA.

Table 1. NG characterization. Mean and standard deviations of Hydrodynamic diameter DH (nm)
as well as Polydispersity Index (PdI), zeta potential (ZP) and pH were measured before (raw) and
after dialysis and after lyophilization and reconstitution. n = 3 batches (12 measurements) for NG
CH–CA10 and n = 4 batches (16 measurements) for NG CH–AA2.

NG CH−AA2 NG CH−CA10

Size (nm) PdI ZP (mV) pH Size (nm) PdI ZP (mV) pH

raw 453 ± 49 0.28 ± 0.03 49 ± 9 3.31 ± 0.02 252 ± 15 0.19 ± 0.02 27 ± 3 1.93 ± 0.02

dialyzed 355 ± 60 0.32 ± 0.02 40 ± 8 5.81 ± 0.09 233 ± 24 0.24 ± 0.03 30 ± 7 4.21 ± 0.12

lyophilized 382 ± 92 0.33 ± 0.02 40 ± 10 5.79 ± 0.11 268 ± 21 0.26 ± 0.03 27 ± 8 3.88 ± 0.54

Similar results were reported by Liu and Gao (2009) who found that nanoparticle
size and zeta potential increased when the CH solution pH increased up to pH 3.5–4 and
then decreased slowly until pH 5.5. However, at very low pH 1–2, CH molecules were
not sufficiently cross-linked by TPP to form stable particles. One explanation was that at
this critical pH value, most of the amino groups of chitosan was protonated while TPP
was protonated with a lower charge density [43]. In our case, NG of 252 ± 15 nm were
obtained with a pH value of the resulting nanosuspension of 1.93, indicating that both CH
protonation and TPP/HA deprotonation were sufficient to form stable nanoparticles. Acetic
acid 2% (v/v) and citric acid 10% (w/v) were the best compromises in terms of hydrodynamic
diameters, PdI, and possibility to remove excess acid by dialysis (Table S3). Hence, for the
rest of our study, LMW CH was dissolved either in acetic acid 2% (v/v) or in citric acid 10%
(w/v), resulting in two formulae, namely, NG CH–AA2 and NG CH–CA10.

Gheran et al. (2018) also studied the role of the acidic environment to form gadolinium-
complexed, HA/CH nanogels. Interestingly, when compared to the 10% citric acid for-
mulation, the 10% acetic acid one resulted in smaller NG for GdDOTP CH-HA nanogels
(197 vs. 242 nm) and, on the contrary, bigger NG for the GdDOTA ones (393 vs. 217 nm).
However, in both cases, the acetic acid formulation led to higher PdI values (0.2 vs. 0.4), as
also observed in our study [44].

Nonetheless, the fact that the quality/characteristics of the biopolymers and the fabri-
cation process used in this study and in others were dissimilar makes a direct comparison
difficult to establish across all NG formulations, as CH molecular weight, degree of acetyla-
tion, initial concentration and mass ratio of the biopolymers as well as reaction environment
(pH, temperature) influence NP size, shape and dispersity of the nanosuspension [21,45].
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3.2. Establishing Biocompatibility for CH-Based Nanogels

Cationic polymers such as chitosan or poly(ethylene imine) can exert cytotoxicity
because they can aggregate on cell surfaces and interfere with intracellular activity [46,47].
Rondon et al. (2020) as previously shown that diethylaminoethyl–chitosan DEAE-CH-
PEG-Folic acid/siRNA nanoparticles demonstrated overall good biocompatibilities with
however, slight hemagglutination and cell damage measured by LDH regarding Raw
264.7 macrophage cells [48]. Therefore, it is of primary importance to ascertain whether a
CH-based nanoformulation could serve as a drug delivery platform for osteocartilaginous
applications. To do so, biocompatibility must be established, and several aspects of com-
patibility examined, such as cytocompatibility with the cells of interest, inflammation and
genotoxicity [14]. In our case, hemocompatibility is less critical, as the NG formulations are
not intended for direct blood contact but for local, intra-articular delivery.

To our knowledge, most biocompatibility studies of CH-based systems for osteocarti-
laginous applications only assess toxicity towards chondrocytes [49] and animal tissues [50].
However, during certain joint pathologies (osteoarthritis for instance), cartilage destruc-
tion unveils bone and leads to osteoblasts/osteoclasts exposure. In a similar manner,
synoviocytes are indirectly exposed to any biomaterial introduced in the joints via the
synovial liquid.

Herein, to evaluate the cytotoxicity of the two NG formulae regarding surrounding
articular cartilage cells, MTS and LDH assays were performed to quantitatively estimate cell
proliferation and viability of human OA chondrocytes, synoviocytes and osteoblasts after
24, 48 and 72 h incubation with 0 to 400 µg·mL−1 of NG CH–CA10 or NG CH–AA2. Nitrite
production was also quantified in the media, using a spectrophotometric method based on
the Griess reaction, to study the effect of the NG on inflammation. Finally, potential DNA
damage was evaluated after DNA extraction of the cells and embryotoxicity after exposing
zebrafish embryos to NG.

3.2.1. Purified CH-Based Nanogels Were Not Cytotoxic nor Generate Nitric Oxide to
Osteocartilaginous Cells

For all three cell types, cell proliferation was superior to 80% for both NG at any
concentration and any time, with no significant changes compared to the control group
(Figure 2). Counterpart results from LDH assays also showed that both NG formulations
maintained cellular membrane integrity and no significant mortality was observed up to
a 72-h exposure (Figures 2 and S4). Moreover, NG CH–AA2 and NG CH–CA10 did not
induce nitric oxide (NO) production by the cells compared with the control group (Table S5),
even after 72 h of treatment. NO, an inflammation product induced by IL1-beta activation,
is a well-known key marker used to monitor joint inflammatory diseases [51–53].

Taken together, these results indicate that the synthesized CH-based NG did not in-
duce any cellular toxicity towards chondrocytes, synoviocytes and osteoblasts, regardless
of sizes and pH differences between the two formulations. This is consistent to what was
previously reported for acetic acid- and citric acid-based, Gd-loaded CH-HA nanogels
on rat endothelial cells, in which cell survival and membrane integrity were independent
of CH concentration and of the nature of the acid used for the nanogel preparation [44].
Similarly, 100–300 nm CH/HA NG containing plasmid DNA demonstrated excellent rat
synoviocytes viability (>95%) up to 80 µg·mL−1 but a significant toxicity when NG concen-
trations reached 160 µg·mL−1 [54]. Moreover, the authors noted a parallel production of
prostaglandin E2 (PGE2) and NO [55]; however, it remains unclear whether the effect was
attributable to the nanoparticle components, i.e., CH and HA, or to the loaded pDNA. This
slight dose-dependent cytotoxicity and transitory inflammation state was also reported
for CH/HA/pDNA nanoparticles in primary rabbit chondrocytes [56] and chitosan-IL-Ra
and folate-chitosan-IL-Ra nanoparticles in arthritis rat osteoblasts [57]. Finally, Alma-
lik et al. (2018) investigated the toxicological responses of CH-based NPs versus HA-coated
CH-based NPs. Results from cell viability of CHO-K1 cells and ROS production assays
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suggested that HA coating significantly rescued cells from lethal mitochondrial injury and
oxidative stress induced by CH-based NPs [58].
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Figure 2. Relative proliferation and morphology of chondrocytes (A,A′), synoviocytes (B,B′) and
osteoblasts (C,C′) treated with NG CH–AA2 (A–C, in stripped blue) and NG CH–CA10 (A′–C′,
in full red) for 72 h. Proliferation was assessed by MTS assay and was calculated as follow: %
proliferation = (ODsample/ODnegative control) × 100. n = 3 independent experiments for each dose and
formula in quadruplets. One-way ANOVA analyses with Dunnett’s multiple comparisons tests were
performed with GraphPad Prism 9.0.0. **** p < 0.0001. The green line represents the lower limit of
cell biocompatibility (80%). Phase contrast images (×20) of cells treated with 100 µg·mL−1 at 48 h
(chondrocytes and osteoblasts) and 72 h (synoviocytes). Scale bars: 100 µm.

Therefore, the synthesized CH-based nanogels can be globally regarded as safe to
osteocartilaginous cells, provided the NG concentration is not higher than 100 µg·mL−1.

3.2.2. Nanogels Were Moderately Genotoxic in a Dose-Dependent Manner but Did Not
Significantly Induce Acute Embryotoxicity

Genotoxic effects were also assessed by DNA laddering on human chondrocytes,
synoviocytes and osteoblasts treated with either 25, 100 or 400 µg·mL−1 of NG CH–AA2
or NG CH–CA10 up to 72 h. In parallel, zebrafish embryos were exposed to NG up to
100 µg·mL−1 from 4 to 96 hpf. Survival rates and hatching success were monitored every
day and morphological abnormalities were recorded at 96 hpf.

Results showed that the CH-based NGs were differently genotoxic to osteocartilagi-
nous cells. No significant apoptotic effects of NG towards chondrocytes were noted,
although synoviocyte apoptosis seemed to occur after 72 h of treatment with both types
of NGs (Figures S5 and S6). Moreover, osteoblast apoptosis appeared even more rapidly,
after 24 h of treatment starting from 100 µg·mL−1 of NG CH–AA2 and DNA was to-
tally degraded after 48 h exposition of 400 µg·mL−1 of the same NG. This phenomenon
was, however, slower for the NG CH–CA10 formulation, with DNA damage appearing
with a 24-h delay compared to the NG CH–AA2, with apoptosis beginning after 48 h of
100 µg·mL−1 NG (Figure 3). These results suggest that NG CH–AA2 are more toxic than
NG CH–CA10 regarding osteoblasts.
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Figure 3. DNA degradation of osteoblasts treated with NG for 24, 48 and 72 h. One hundred
nanograms of DNA were loaded into an 1.0% agarose gel when osteoblasts were treated with NG
CH–AA2 (A) and NG CH–CA10 (B). DNA relative quantification of osteoblasts treated with NG
CH–AA2 (A′) and NG CH–CA10 (B′) was performed using negative control bands as reference
(Image Lab 6.1 Software, Bio-Rad). Experiments were performed twice for each formula and each
dose. One-way ANOVA analyses with Dunnett’s multiple comparisons tests were performed with
GraphPad Prism 9.0.0. * p < 0.05, ** p < 0.01, *** p < 0.001.

Our findings are comparable to what was previously reported for the potential dam-
age to nuclear DNA of CH-based nanogels evaluated by various techniques, such as for
instance the alkaline Comet assay in SVEC4-10 murine lymph node endothelial cells [44], or
TUNEL assays in Chinese hamster ovary (CHO-K1) cells [58]. In any case, similarly to our
observations, data analyses showed detectable signs of DNA fragmentation only for the
highest doses of CH-based nanogels. However, it is worth mentioning that cationic chitosan
is able to form complexes with anionic nucleic acid through electrostatic interaction and is
widely used for nonviral gene delivery [59]. Hence, increasing both polymer concentration
and surface charge (zeta potential) could enhance DNA/chitosan complex formation [60]
and therefore lead to low yield of DNA isolation.

To further investigate the biocompatibility of these CH-based NG and the influence of
their formulation process, the toxicity of the two formulae was assessed in vivo on zebrafish
embryos (Danio rerio). Indeed, zebrafish is a well-established model to assess biomaterial
toxicity and has been proposed to serve as a high-throughput screening platform for
nanotoxicity [61,62] and drug delivery [63]. Actually, zebrafish present many advantages:
(i) they are highly fecund (200–300 eggs per day every 5–7 days); (ii) they grow rapidly
(juvenile in 30 days and adult in 90 days); (iii) they are easy to handle (small organism);
moreover, (iv) they display more than 70% homology with the human genome [61,62]. In
addition, any toxicity related to the musculoskeletal development is rapidly and visually
detected [64–66].

Survival rates were over 90% and 95% for NG CH–AA2 and NG CH–CA10, respec-
tively. Compared with the control group, treatment with the two NG did not significantly
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affect survival and hatching rates of zebrafish embryos (Figure 4). Morphological abnor-
malities, such as pericardial oedema and spine and tail malformations (Figure 4), were also
sparingly recorded at 96 hpf. No significant differences were observed at 96 hpf compared
with the control group for the two formulations at any doses (Figure 4).

Reports evaluating the toxicity of CH-based nanosystems using the zebrafish model
are still scarce, which makes a direct comparison of results more complicated. For instance,
Wang et al. (2016) compared the zebrafish embryonic toxicity of CH- and CH/TPP-based
particles [67]. In their study, both particle types decreased the hatching rate and increased
mortality in a concentration-dependent manner. Furthermore, the mortality rate of CH-
based particles was higher than that CH/TPP nanogels at 120 hpf at 250 mg·L−1, and
more malformations were also observed when zebrafish were treated with CH-based
particles (>10% at 120 hpf for 100 µg·mL−1 and about 30% at 200 µg·mL−1). This tendency
was similarly noted by Gao et al. (2011) who reported that zebrafish embryos exposed
to CH/TPP-based and ZnO nanoparticles showed a decreased in hatching rates and an
increase in mortality in a concentration-dependent manner [68]. Both studies used 1% acetic
acid as their CH dissolution medium, but several divergences are yet to be highlighted
between these studies. First, the nanoparticle/nanogel concentrations generating toxicities
in zebrafish embryos were all higher than the highest dose we tested. Nanogel sizes were
also different, ranging from 85 nm (Wang et al., 2016), to 200 and 340 nm nanoparticles
(Gao et al., 2011) and probably larger sizes for pure CH commercially available particles
(Wang et al., 2016; average size not outlined). However, nanoparticle size seems to play
a key role in zebrafish embryotoxicity, as evidenced by various studies [21,68]. Thus,
interestingly, while 85 and 200 nm CH-based NPs increased the mortality rates of zebrafish
embryos [67,68], no or less deaths were observed with 100–150 nm NPs and 340 nm
chitosan NPs [68–70]. Finally, very few studies detailed how nanoparticles/nanogels were
purified from their synthesis processes. A recent study demonstrated the toxicity of free
low molecular weight chitosan (LMW-CH), from 12.9 to 18.5 kDa, and of LMW-CH-based
nanoparticles (LMW-CH NPs). While purified LMW-CH NPs demonstrated good survival
rates over 80% after 3 days, unpurified LMW-CH NPs induced rapid damage of the yolk,
and later induced rapid death of zebrafish larvae in a dose dependent-manner [71]. Hence,
the authors suggested that the toxicity was caused by free LMW-CH chains, notably via
inducing damages to zebrafish larvae epithelium. They also investigated the influence of
the fish water pH on embryo survival and showed that neither acidic double-distilled water
from pH 4.0 to neutral induced animal mortality. Similar to our study, the diluted acidic NG
CH–CA10 formulation demonstrated slightly higher survival rates than the NG CH–AA2
one, with survival rates of 95% and 90%, respectively, validating the fact that an initial
nanosuspension of pH above 4.0 did not significantly impact zebrafish mortality. Therefore,
nanosuspension with a pH range from 4.0 to 7.4 (normal joint)–7.8 (inflamed joint) [72]
may be considered safe for CH-based nanogel injections, as long as the nanosuspensions
have been thoroughly purified to eliminate low molecular weight free chains.
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Figure 4. Survival, hatching and malformation rates of zebrafish (Danio rerio) embryos treated with
NG CH–AA2 ((A, A′,A′′), blue) and NG CH–CA10 ((B, B′,B′′), red) at various concentrations. NG
CH–AA2 (A) and NG CH–CA10 (B) were soaked into zebrafish water (only water for the control
group) at 4 hpf. Survival and hatching were monitored every day for four days (96 h). (C) The
gross morphology of a normal zebrafish at 96 hpf. Malformations, for example, morphological
abnormalities and pericardial oedema (D) were recorded at the end of experiments (96 hpf). Scale
bars: 100 µm (×4). n = 3 independent experiments per dose and per formula, including 20 embryos
per dose and per test, for a total of 60 embryos per dose. Survival rates were superior to 90% and 95%
for NG CH–AA2 and NG CH–CA10, respectively. No statistical difference was observed between the
control and treated groups regarding neither survival nor hatching rates (%) obtained with Kaplan–
Meier curves with log-rank test. The malformation rate (%) was inferior to 5% for both NG CH–AA2
and NG CH–CA10. No statistical difference was observed between control and treated groups by
One-way ANOVA analyses with Dunnett’s multiple comparisons tests (GraphPad Prism 9.0.0).
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4. Conclusions

Our study aimed to establish an initial biological risk assessment for the use of CH-
based nanogels as drug delivery platforms for osteocartilaginous applications. Although
the selected biomaterials forming these NG have been separately recognized as gener-
ally safe compounds for in vivo administration, the safety and biocompatibility of such
nanomaterials must be addressed because of the potential for greater interactions between
nanomaterials and biological systems as stated in norm ISO 10993-22 (clause 4.4). Our data
demonstrated the influence of synthesis parameters on the physicochemical characteristics
of the resulting NGs and highlighted their potential impact on the biocompatibility of
CH-based nanogels on all types of human, osteocartilaginous cells. Purified CH-based
NGs were non-toxic neither in vitro nor in vivo in zebrafish embryos up to 100 µg·mL−1.
Those encouraging results hold great promise for the intra-articular delivery of drugs or
diagnostic agents in otherwise poorly treated joint pathologies.
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multiple comparisons tests were performed with GraphPad Prism 9.0.0. * p < 0.05. **** p < 0.0001.
Figure S5: DNA degradation of chondrocytes treated with NG for 24 h. 48 h and 72 h. 100 ng of DNA
were loaded into an 1.0% agarose gel when chondrocytes were treated with NG CH-AA2 (A) and
NG CH-CA10 (B). DNA relative quantification of chondrocytes treated with NG CH-AA2 (A′) and
NG CH-CA10 (B′) was performed using negative control bands as reference (Image Lab 6.1 Software.
Bio-Rad). Experiments were performed twice for each formula and each dose. One-way ANOVA
analyses with Dunnett’s multiple comparisons tests were performed with GraphPad Prism 9.0.0.
* p < 0.05. ** p < 0.01.; Figure S6: DNA degradation of synoviocytes treated with NG for 24 h. 48 h
and 72 h. 100 ng of DNA were loaded into an 1.0% agarose gel when synoviocytes were treated with
NG CH-AA2 (A) and NG CH-CA10 (B). DNA relative quantification of synoviocytes treated with
NG CH-AA2 (A′) and NG CH-CA10 (B′) was performed using negative control bands as reference
(Image Lab 6.1 Software. Bio-Rad). Experiments were performed twice for each formula and each
dose. One-way ANOVA analyses with Dunnett’s multiple comparisons tests were performed with
GraphPad Prism 9.0.0. ** p < 0.01. *** p < 0.001. **** p < 0.0001.
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