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ABSTRACT  

In this paper, the methodology of using adaptive neuro-fuzzy inference systems (ANFIS) 

for flood quantile estimation at ungauged sites is presented. The proposed approach has 

the system identification and interpretability of fuzzy models and the learning capability 

of artificial neural networks (ANNs). The structure of the ANFIS is identified using the 

subtractive clustering algorithm. A hybrid learning algorithm consisting of back-

propagation and least-squares estimation is used for system training. The ANFIS 

approach provides an integrated mechanism for identifying the hydrological regions, 

generating knowledge from the data, providing flood estimates and self-tuning to achieve 

the optimal performance. The proposed approach is applied to 151 catchments in the 

province of Quebec, Canada, and is compared to the ANN approach and the nonlinear 

regression (NLR) approach. A jackknife procedure is used for the evaluation of the 

performances of the two approaches. Results indicate that the ANFIS approach has a 

much better generalization capability than the NLR approach and is comparable to the 

ANN approach.  
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1. INTRODUCTION AND REVIEW 

Providing reliable estimates of flood quantiles is essential for many engineering projects. 

However, it often happens that the record length of the available streamflow data at sites 

of interest is much shorter than the return period of interest, and even worse there may 

not be any streamflow record at these sites of interest. Regional flood frequency analysis 

can be used to construct more reliable flood quantile estimators in these situations. 

Hydrologic information from other member stations in a region is used to compensate for 

short records at these sites of interest. 

The index flood method proposed by Dalrymple (1960) and the regional regression 

method are the two most used regional estimation procedures. In the index flood method, 

it is assumed that the distribution of flood peaks at different sites within a given flood 

regime is the same except for a scale parameter. Regression methods are frequently used 

to build models that predict flood quantiles as a function of site physiographical and other 

characteristics (Thomas and Benson 1970). The methods have been widely used to obtain 

flood quantile estimates at sites where no historical flood records are available (Zrinji and 

Burn, 1994; Hosking and Wallis, 1997; Pandey and Nguyen, 1999; Shu and Burn, 2004b; 

Ouarda, et al., 2006). The most used regression methods for regional flood quantile 

estimation are parametric regression approaches. By using these methods, the form of the 

functional relationship between the dependent and independent variables is assumed to be 

known but may contain parameters whose values can be estimated from the data set. A 

power-form equation is generally used to relate a flood quantile of interest to catchment 



 

 2

physiographic, geomorphologic and climatic characteristics. A logarithmic  

transformation is generally required to linearize this equation. The estimated flood 

quantile using this technique is unbiased in a logarithmic flow domain; however the 

estimation will be biased in real flow domain (McCuen et al., 1990). Pandy and Nguyen 

(1999) and Grover et al. (2002) compared different regression methods for flood quantile 

and index flood estimation at ungauged catchments. The dimensionless nonlinear model 

was identified as the best parameter identification method. 

One of the most important and challenging steps in regional flood frequency analysis is 

the delineation of the homogeneous regions. Researchers have developed a number of 

regionalization techniques for objective determination of homogeneous regions (see e.g. 

Stedinger and Tasker, 1985; Acreman and Wiltshire, 1989; Burn, 1990; Hosking and 

Wallis, 1997; Reed and Robson, 1999; Ouarda et al., 2001; Chokmani and Ouarda, 2004; 

Shu and Burn, 2004a; Ouarda, et al., 2006). An extensive review and comparative 

evaluation of different regionalization techniques was conducted by GREHYS (1996a, 

1996b).  

During the past three decades, significant progress has been made in the two model free 

techniques, fuzzy logic and artificial neural networks (ANNs). These two techniques 

provide an attractive alternative to the traditional modeling tools. Fuzzy logic can easily 

incorporate expert knowledge into standard mathematical models in the form of a fuzzy 

inference system (FIS). A FIS is a nonlinear mapping of a given input vector to a scalar 

output vector by using fuzzy logic. A FIS simulates the process of human reasoning by 

allowing the computer to behave less precisely than conventional computing. It is 

suitable for approximate reasoning by using a collection of membership functions and 



 

 3

rules and is very powerful for modelling systems that are difficult to represent by an 

accurate mathematical model. Fuzzy systems have been widely used in solving problems 

in various areas and have also appeared in a number of applications in hydrology and 

water resources. The fields of hydrology and water resources commonly involve a system 

of concepts, principles, and methods for dealing with modes of reasoning that are 

approximate rather than exact. The capability of dealing with imprecision gives fuzzy 

logic great potential for hydrological analysis and water resources decision making 

(Bogardi et al., 2003). Fuzzy logic has been applied to solve problems in various domains 

in hydrology, such as hydrological extreme modelling (Pongracz, 1999; Shu and Burn, 

2004a), hydrometeorological event classification (Bardossy et al., 1995), Groudwater 

flow and transport modelling (Bardossy and Disse, 1993; Dou et al., 1997, 1999; Woldt 

et al., 1997), and Pollutant transport in surface water modelling (Di Natale et al., 2000).  

An ANN is an information processing system with massive parallelism and high 

connectivity. It acquires and stores knowledge resembling biological neural networks of 

the human brain (Haykin, 1994). Most hydrological processes are highly nonlinear, time 

varying and spatially distributed. ANN models have the ability to learn the underlying 

relationship between inputs and outputs of a process from historical data without the 

physical rules being explicitly attached. Mathematically, an ANN may be treated as a 

universal approximator. ANNs have seen numerous applications in hydrology (Task 

Commite, 2000a, 2000b). In the domain of regional flood frequency analysis, they were 

introduced by Shu and Burn (2004b) for index flood and flood quantile estimation. The 

application to selected catchments in the United Kingdom (UK) indicates that the 

nonlinearity introduced by ANN models allows them to outperform multiple linear 
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regression methods. The generalization ability of a single ANN can be improved by using 

a properly designed ANN ensemble. Dawson et al. (2006) applied ANNs to flood 

quantile and index flood estimation for 870 catchments across the UK. The results 

obtained from the ANNs are comparable in accuracy with those obtain by the Flood 

Estimation Handbook (FEH) (Reed and Robson, 1999) models. 

A judicious integration of fuzzy system and ANN can produce a functional neural fuzzy 

system capable of learning, high-level thinking, and reasoning (Loukas, 2001). It 

provides an effective approach for dealing with large imprecisely defined complex 

systems. Various schemes have been proposed for the integration. An adaptive neuro-

fuzzy inference system (ANFIS) is one of the most successful schemes which combine 

the benefits of these two powerful paradigms into a single capsule (Jang, 1993; Jang, et 

al., 1997). An ANFIS works by applying neural learning rules to identify and tune the 

parameters and structure of a FIS. There are several features of the ANFIS which enable 

it to achieve great success in a wide range of scientific applications. The attractive 

features of an ANFIS include: easy to implement, fast and accurate learning, strong 

generalization abilities, excellent explanation facilities through fuzzy rules, and easy to 

incorporate both linguistic and numeric knowledge for problem solving (Jang, et al., 

1997). Due to these fascinating features of the ANFIS, it is used in this paper to establish 

the relationship between catchment descriptors and flood estimates. 

In this paper, the ANFIS is proposed to provide the regional flood estimation. This 

approach provides an integrated mechanism for identifying the hydrological regions, 

generating knowledge from the data, providing flood estimates and self-tuning to achieve 

the optimal performance.  
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Identifying homogeneous regions requires finding those sites that are similar in their 

hydrological response. This step is challenging due to the difficulty to derive the exact 

mathematical form to express the similarity between different catchments (Shu and Burn, 

2004a). Furthermore, a trade-off between homogeneity and the size of a hydrological 

neighbourhood has to be taken into consideration (Ouarda et al., 2001). A small 

neighbourhood may ensure a high degree of homogeneity in the neighbourhood. 

However, it maybe very difficult to carry out an appropriate statistical estimation within 

the neighbourhood. Fuzzy techniques which are capable to model imprecision and 

uncertainty can be used to establish the relationships between the hydrological variable 

and physiogeographical variables by using fuzzy rules. There are generally two 

approaches to construct fuzzy rule bases. For the first approach, we might ask the domain 

experts to express their knowledge about the problem in the form of linguistic rules. This 

is the approach adopted by Shu and Burn (2004a) to derive the similarity between 

catchments that is subsequently used for homogeneous region delineation. In this 

approach, the fuzzy sets and fuzzy rules are initially specified by the domain experts and 

are tuned using optimization algorithms. For the second approach, the knowledge is 

generated directly from the observed field data. This approach is data driven, and thus is 

less subjective than the first one. The data-based approach is adopted in the present work. 

The subtractive clustering algorithm (Chiu, 1994) is used in the present work to identify 

the clusters of sites with similar physiogeographical characteristics. Rules representing 

the relationship between inputs and the output are then established based on the clusters. 

Parameters of the fuzzy system are adjusted during the training phase to achieve the best 

performance.  
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The goal of the ANFIS is to find a model or mapping that will correctly associate the 

inputs (catchment descriptors) with the output (flood statistics). By using the ANFIS 

approach, no (or very little) assumption is required about the form of the true function 

being estimated. In hydrology, the set of independent variables may be well defined, but 

the parametric form of the relationship is poorly understood. Thus, this type of 

nonparametric regression approach which makes no assumption concerning the form of 

the regression function has more advantages in this perspective compared to traditional 

parametric regression methods.  

The remainder of this paper is organized as follows: In Section 2, a general introduction 

to the basic fuzzy terminology, the ANFIS architecture and the system identification is 

presented. In Section 3, a description of the study area is provided. In Section 4, details 

related to the implementation of the proposed approach are presented. In Section 5, the 

evaluation method is provided. In Section 6, the estimation models to be compared are 

presented. In Section 7, the results obtained by applying the proposed approaches are 

presented and discussed. Finally, in Section 8, the conclusions of this work are presented. 

 



 7

2. ANFIS 

2.1 Basic fuzzy terminology 

Fuzzy set theory was first developed by Zadeh (1965). It is primarily used to deal with 

uncertain and imprecise knowledge. It can be thought of as an extension of the traditional 

crisp set theory. Let A be a crisp set. A individual x from a universal set X is determined 

either to be a member of A or a non-member of A. This can be expressed by  

( ) : {0,1}A x Xμ →                                                                                                       (1) 

Crisp set theory using Boolean logic cannot be used to represent vague concepts such as 

the terms large, medium and small. This can be overcome by using fuzzy logic which 

extends the range of true values to all real numbers in the interval between 0 and 1. Fuzzy 

logic can be best understood using set membership where the membership values 

represent the degrees with which each object is associated with the properties that are 

distinctive to the collection. Formally, a fuzzy set A is defined as a collection of objects 

with membership values between 0 (complete exclusion) and 1 (complete membership). 

Membership grade of each element in X is determined through a membership function 

Aμ  which maps the elements of an universe of discourse X to the unit interval [0, 1], that 

is 

: [0,1]A Xμ →                                                                                                             (2) 



 

 8

By using approximate reasoning, a fuzzy logic description can be used to effectively 

model the uncertainty and nonlinearity of a system.  

Suppose one of the input variables to a fuzzy system is the catchment area, and the value 

of the variable is translated into membership values of three fuzzy sets large, medimum, 

and small as displayed in Figure 1.  The type of membership functions represented in 

Figure 1 is the Gaussian membership function. The Gaussian membership function has 

the following form: 

2

2
1

),,(
⎟
⎠
⎞

⎜
⎝
⎛ −

−

= σσ
cx

ecxGaussian                                                                                  (3) 

The function has two parameters c and σ . As the values of the parameters change, the 

membership functions vary accordingly, thus exhibiting various forms of membership 

functions. Other frequently used membership functions include triangular, trapezoidal 

and bell membership function. 
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Figure 1. Typical Gaussian membership functions 

 

2.2 ANFIS Architecture 

The proposed ANFIS model is a multilayer artificial neural network-based fuzzy system. 

A typical architecture of an ANFIS, in which a circle indicates a fixed node, whereas a 

square indicates an adaptive node, is shown in Figure 1. In this connectionist structure, 

the input and output nodes represent the catchment descriptors and the flood quantile, 

respectively, and in the hidden layers, there are nodes functioning as membership 

functions (MFs) and rules. This eliminates the disadvantage of a normal feedforward 

multilayer network, which is difficult for an observer to understand or to modify (Jang, 
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1993). For simplicity, we assume that the examined FIS has two inputs and one output. 

For a first-order Sugeno fuzzy model, a typical rule set with two fuzzy “if-then” rules can 

be expressed as follows: 

Rule 1:       If x is A1 and y is B1, then 1111 ryqxpf ++=  (4) 

Rule 2:       If x is A2 and y is B2, then 2222 ryqxpf ++=  (5) 

where x and y are the two crisp inputs, and Ai and Bi are the linguistic labels associated 

with the node function. As indicated in Figure 2, the system has a total of five layers. The 

functioning of each layer is described as follows. 

Π

Π

Σ

1w

2w

11 fw

22 fw

 

Figure 2. Architecture of the ANFIS 

 

Layer 1: All the nodes in the first layer are adaptive nodes which means that the outputs 

of the nodes depend on the parameters pertaining to these nodes.  Each node corresponds 
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to a linguistic label which has a membership function 
iAμ  or 

iBμ . The output of a node in 

this layer specifies the degree to which the given input satisfies the membership function.  

The node function of a node i can be expressed by 

)(1 xO
iAi μ= ,   for i =l, 2 (6) 

)(
2

1 yO
iBi −

= μ ,   for i =3, 4 (7) 

In this paper, membership functions 
iAμ  and 

iBμ are chosen to be Gaussian-shaped with 

maximum equal to 1 and minimum equal to 0. Parameters in this layer are referred to as 

premise parameters. 

Layer 2: Nodes in this layer are labeled Π, whose output represents a firing strength of a 

rule. The node generates the output (firing strength) by cross multiplying all the incoming 

signals: 

)()(2 yxwO
ii BAii μμ ×== , i = 1, 2.  (8) 

Layer 3: Every node in this layer is a fixed node labeled N. The ith node calculates the 

ratio between the ith rule's firing strength to the sum of all rules' firing strengths: 

21

3

ww
w

wO i
ii +
== , i = 1, 2.  (9) 

The outputs of this layer are called normalized firing strengths. 
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Layer 4: Every node i in this layer is an adaptive node with a node function: 

)(4
iiiiiii ryqxpwfwO ++== , (10) 

where {pi, qi, ri} is the parameter set of this node. These parameters are referred to as 

consequent parameters. 

Layer 5: The single node in this layer is a fixed node labeled Σ , which computes the 

overall output by summing all incoming signals: 

∑
∑

∑ ==

i
i

i
ii

i
ii w

fw
fwO5

1  (11) 

There are two major phases for implementing the ANFIS for specific applications: the 

structure identification phase and the parameter identification phase. The structure 

identification phase involves finding a suitable number of fuzzy rules and fuzzy sets and 

a proper partition feature space. The parameter identification phase involves the 

adjustment of the premise and consequence parameters of the system. More detailed 

descriptions of the two phases are provided in the following two sections. 

2.3 Parameter indentification using hybrid learning algorithm 

During the learning process, the premise parameters in the layer 1, {c ,σ }, and the 

consequent parameters in the layer 4, {p, q, r}, are tuned until the desired response of the 

FIS is achieved. The two frequently used training methods are the back-propagation (BP) 

algorithm (Bishop, 1995) and the hybrid learning algorithm (Jang, 1993). In this paper, 
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the hybrid learning algorithm, which combines the least squares method (LSM) and the 

BP algorithm, is used to rapidly train and adapt the FIS. This algorithm converges much 

faster since it reduces the dimension of the search space of the original BP algorithm 

(Jang, 1993). 

When the premise parameters are fixed, the overall output can be expressed as a linear 

combination of the consequent parameters. The output f can then be written as:  

 

222222111111

222211112
21

2
1

21

1

)()()()()()(

)()(

rwqywpxwrwqywpxw

ryqxpwryqxpwf
ww

wf
ww

wf

+++++=

+++++=
+

+
+

=
          (12) 

Equation (12) is linear in the consequence parameters p1, q1, r1, p2, q2, and r2. 

The hybrid learning algorithms of ANFIS consist of the following two parts (Jang, 1993): 

(a) the learning of the premise parameters by back-propagation and (b) the learning of the 

consequence parameters by least-squares estimation. In the forward pass of the hybrid 

learning algorithm, functional signals go forward untill layer 4 to calculate each node 

output. The nonlinear or premise parameters in the layer 2 remain fixed in this pass. The 

consequent parameters are identified by the least squares estimate. In the backward pass, 

the error rates propagate backward from the output end towards the input end, and the 

premise parameters are updated by the gradient descent. Jang, et al., (1997) provided the 

detailed description and the mathematical background of the hybrid learning algorithm. 
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2.4 Structure identification using subtractive Clustering 

Defining the fuzzy sets and fuzzy rules is a necessary step in the design of fuzzy systems. 

If the training database is very large and data is of good quality and have good coverage 

of the feature space, using more linguistic labels to define the fuzzy sets and having more 

fuzzy rules will enable the fuzzy system to have better generalization capability. 

However, if the database is small, which is a common problem in flood frequency 

analysis, deriving a large rule base from the training data can easily overfit the system 

and cause it to lose the capability of generalization. Too many rules may also consume 

large computation time. Thus an effective partition of the input space is required to 

decrease the number of rules. The subtractive clustering algorithm (Chiu, 1994) is 

introduced in this paper to provide dimension reduction in the fuzzy system. The 

algorithm can be used to generate a fuzzy system with the minimum number of rules 

required to distinguish the fuzzy qualities associated with each of the clusters.  

By using the subtractive clustering algorithm, the catchments in a study area can be 

divided into different clusters (hydrological regions). Thus each cluster exhibits certain 

characteristics of the system to be modeled. By projecting the clusters into the input 

space which is the physiographical space defined by the input variables, the antecedent 

part of the fuzzy rules can be defined. The consequent part of the fuzzy rules can then be 

estimated using the least-squares method (Chiu, 1994).  

Subtractive clustering is based on a measure of the density of data points in the feature 

space (Chiu, 1994). The idea is to find regions in the feature space with high densities of 

data points. The point with the highest number of neighbours is selected as centre of the 
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cluster. The data points within a prespecified fuzzy radius are then removed, and the 

algorithm looks for a new point with the highest number of neighbours. This continues 

until all data points are examined. 

Given a collection of n data points { }nxx K,1 , the subtractive clustering algorithm 

considers each data point as a potential cluster center. A density measure at a data point xi 

is defined as 

∑
=

−−=
n

j

rxx
i

ajieD
1

)2//( 22

         (13) 

where the cluster radius ra is a positive constant. Thus, a data point that has many 

neighbouring data points will have a high potential of being a cluster center. The radius ra 

defines a neighbourhood. Data points outside this radius have little effect on the density 

measure. The choice of ra plays an important role in determining the number of clusters. 

Large values of ra  will generate a limited number of clusters, while small values of ra will 

generate a large number of clusters.  

After the density measure of each data point has been calculated, the first cluster 

center is chosen to be the data point with the highest density measure. Suppose 
1cx is the 

point selected and 
1cD  is its density measure. Then, the density measure for each data 

point xi  is revised by the formula 

 
22

1 )2//( bci

i

rxx
cii eDDD −−−=  (14) 
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where rb is a positive constant. Note that the data points near the first cluster center 
1cx  

will have significantly reduced density measures, so that they are unlikely to be selected 

as the next cluster center. The constant rb is usually greater than ra to prevent closely 

spaced cluster centers. Generally rb is specified as 1.5 times of ra. After the density 

measure for each data point is revised, the next cluster center 
2cx  is selected, and all of 

the density measures for data points are revised again. A good stopping criterion 

developed by Chiu (1994) can be used to automatically determine the number of clusters. 
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3. STUDY AREA 

The ANFIS approach has been applied to the hydrometric station network of southern 

Quebec, Canada. Hydrometric stations meeting the following three criteria are selected:  

(1) To get reliable at-site estimation, a historical flood record of 15 years or longer 

is required.  

(2) The gauged river should present a natural flow regime.  

(3) The historical data at the gauging stations must pass the tests of homogeneity, 

stationarity and independence.  

The number of selected stations is 151. They are located between 45°N and 55°N. The 

area of these catchments ranges from 200 2km  to 100000 2km . The locations of these 

hydrometric stations are shown in Figure 3. 
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Figure 3. Hydrometric stations across the province of Quebec, Canada. 

 

Three types of data, physiographical, meteorological, and hydrological data are used in 

this study. The physiographical and hydrological data were extracted from the ministry of 

the environment of Quebec (MENVIQ) hydrological database and from the topographic 

digital maps of Quebec. Meteorological variables were obtained using interpolated 

historical data from the MENVIQ meteorological network across the province of Quebec.  

Five variables including three physiographical variables and two meteorological variables 

are selected in this work based on the previous study by Chokmani and Ouarda (2004). 

The three physiographical variables are area, mean basin slope (MBS), and the fraction of 
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the basin area covered with lakes (FAL). And the two meteorological variables are annual 

mean total precipitations (AMP) and annual mean degree-days over 0°C (AMD). The 

summary statistics of these variables are presented in Table 1.  

Table 1. Descriptive statistics of hydrological, physiographical and 
meteorological variables 

 

Variables Min Mean Max STD 

MBS [%] 0.96 2.43 6.81 0.99 

FAL [%] 0.00 7.72 47.00 7.99 

AMP [mm] 646 988 1534 154 

AMD [degree-day] 8589 16346 29631 5385 

AREA[km2] 208 6255 96600 11716 

Q10 [m3/s] 54 698 5649 829 

Q50 [m3/s] 62 851 6643 986 

Q100 [m3/s] 64 912 7013 1048 

 

At-site flood quantile estimation for all the gauging stations in the study area was 

extracted from the database compiled by Kouider et al. (2002). For each site, the most 

appropriate statistical distribution was identified and fitted to the historical record to 

estimate at-site flood quantiles for a number of different return periods. The scatter plots 

between the quantiles and the selected physiographical and meteorological variables are 

shown in Figure 4.  
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Figure 4. Scatter plot of site characteristics and flood quantiles 
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4. IMPLEMENTATION 

The ANFIS is simulated using the Matlab Fuzzy Logic Toolbox. The initial parameters of 

the ANFIS are identified using the subtractive clustering method. However, the 

parameters of the subtractive clustering algorithm still need to be specified. The 

clustering radius is the most important parameter in the subtractive clustering algorithm 

and is optimally determined through a trial and error procedure. By varying the clustering 

radius ra between 0.1 and 1 with a step size of 0.01, the optimal parameters are sought by 

minimizing the root mean squared error obtained on a representative validation set. 

Clustering radius rb is selected as 1.5 ra.  Default values are used for other parameters in 

the subtractive clustering algorithm. 

Gaussian membership functions are used for each fuzzy set in the fuzzy system. 

The number of membership functions and fuzzy rules required for a particular ANFIS is 

determined through the subtractive clustering algorithm. Parameters of the Gaussian 

membership function are optimally determined using the hybrid learning algorithm. Each 

ANFIS is trained for 100 epochs. 
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5. EVALUATION METHOD 

To assess the performance of each regional flood frequency analysis model, the following 

five indices are used: the Nash criterion (NASH), the root mean squared error (RMSE), 

the relative root mean squared error (RMSEr), the mean bias (BIAS), and the relative 

mean bias (BIASr). The indices are computed according to the following equations: 
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where n is the total number of sites being modeled, iq  is the at-site estimation for site i, 

iq̂  is the estimation obtained from the regional flood frequency model for site i,  and q  is 

the mean of at-site estimation of the n sites. 
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The jackknife cross-validation procedure is used to assess the model performance. In this 

procedure, for each catchment in the study area, its flood records are temporarily 

removed from the database, thus it is assumed to be “ungauged”. Then each regional 

flood frequency analysis model is calibrated using the data of the remaining sites. 

Regional estimates can be obtained for the “ungauged site” using the calibrated models. 

They are then evaluated against its at-site estimates.  
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6. METHODS FOR COMPARISON 

Aside from the ANFIS method, two other approaches are considered in this paper : the 

artificial neural networks and the nonlinear regression method. Both approaches treat the 

entire study area as a hydrological region. 

6.1 Artificial Neural Networks 

In this paper, the Multilayer perceptron (MLP) ANN model is selected to model the 

relationship between flood quantiles and catchment descriptors. MLP represents the most 

commonly used and well researched class of ANNs in hydrology and many other 

domains. The actual MLP adopted in this paper consists of an input layer, one hidden 

layer, and an output layer. The input layer accepts values of the input variables. The 

output layer provides the estimation. Layers lying between the input and output layer are 

called hidden layers. Based on the performance on a representative validation set, five 

neurons are used in the hidden layer of the ANN. The tan-sigmoid transfer function is 

used in the hidden layer and the linear transfer function is used in the output layer. Inputs 

(catchment descriptors) are standardized before feeding to the ANNs. A log 

transformation is used for the output (flood quantiles) of the ANN. The Levenberg-

Marquardt algorithm (Hagan and Menhaj, 1994) is used for ANN training. This algorithm 

is more efficient than the basic back propagation (BP) algorithm. The regularization 

technique (Bishop, 1995) which penalizes model complexity is used to stop the ANN 
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training. Readers are suggested to refer to Shu and Burn (2004) for more detailed 

information on the model structure and training algorithm of the ANN model. 

6.2 Nonlinear Regression 

Parametric regression methods have been widely used for obtaining regional flood 

estimates. By using these methods, the relationship between the flood quantile QT and the 

catchment characteristics are assumed to be the power-form function (Thomas and 

Benson, 1970) which has the following form:  

 31 2
1 2 3

n
T nQ ax x x xθ θθ θ= K .......................................................................................(20) 

where iθ is the ith model parameter, a is the multiplicative error term and n is the number 

of catchment characteristics.  

Solving equation (20) using linear regression techniques generally requires linearizing the 

power-form model by a logarithmic transformation to the form. However, the estimation 

of the linearized model is theoretically unbiased in the logarithmic domain, but will be 

biased in the real flow domain (McCuen et al., 1990). Using nonlinear regression (NLR) 

methods, model parameters can be directly estimated by minimizing the estimation error 

in the actual flow domain. Nonlinear regression, with a properly selected objective 

function, can generally provide more accurate estimates than linear regression (Pandey 

and Nguyen, 1999; Grover et al., 2002).  
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In this paper, the NLR method is selected to compare with the proposed ANFIS 

approach. The objective function of the NLR is selected to minimize the difference 

between the observed and predicted flow as suggested by Grover et al. (2002) 
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where iTQ ,  and iTQ ,
ˆ  are, respectively, observed and predicted flood statistics at site i.   
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7. RESULTS AND DISCUSSION 

The ANFIS approach proposed in this paper, the ANN approach and the NLR approach 

used for comparison purposes are applied to the study area database. The results obtained 

using the jackknife validation procedure are presented in Table 2.  

Table 2. Cross-validation Results 

 Hydrological 
variables 

 

ANFIS 

 

ANN 

 

NLR 

NASH q10 0.85 0.83 0.79 

 q50 0.83 0.81 0.77 

 q100 0.82 0.80 0.75 

RMSE [m3/s.km2] q10 316 338 377 

 q50 396 423 475 

 q100 437 463 520 

RMSEr [%] q10 57 53 61 

 q50 62 58 67 

 q100 64 60 70 

BIAS [m3/s.km2] q10 18 57 28 

 q50 20 59 34 

 q100 20 75 36 

BIASr [%] q10 -8 -8 -9 

 q50 -12 -9 -11 

 q100 -14 -10 -12 

 

The three models are evaluated based on the five indices described in Section 5. The 

NASH criterion provides overall assessment of the quality of estimation. Models with 
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NASH values close to 0.8 are generally acceptable, while models with NASH values close 

to 1 are deemed to produce near perfect estimation. The NASH values for the ANFIS and 

ANN models are all over 0.8 which indicates that both types of models achieved 

acceptable results. The NASH values of the ANFIS model are higher than those of the 

ANN model, which indicates that the overall quality of estimation of the ANFIS model is 

better than the ANN model. The NASH values for the NLR model are significantly lower 

than those obtained by the ANFIS and ANN models.  The NASH values for the NLR 

model are all below 0.8 which indicates that quantile estimates obtained using the NLR 

model are of poor quality.  

The prediction accuracy of a model in absolute and relative scale is assessed using RMSE 

and RMSEr respectively. The RMSE of the estimates computed by the ANFIS model is 

the lowest among three models. However the RMSEr of the ANFIS model is larger than 

those computed using the ANN model. Both the ANFIS and ANN models are showing 

better performances in these two indices than the NLR model. 

The magnitude of systematic overestimation or underestimation of a model is evaluated 

using the BIAS and BIASr indices. The BIAS index provides the evaluation in the 

absolute scale. The results indicate that the three models generally overestimate flood 

quantiles. Based on the BIAS index, the ANFIS model is the least biased model, while the 

ANN is the most biased model. The BIASr index provides the measurement of bias in the 

relative scale; the results indicate that the three models generally underestimate flood 

quantiles. Based on the BIASr index, the ANN model is the least biased model, and the 

ANFIS and NLR have slightly higher biases than the ANN model.  
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The regional estimates using the jackknife validation procedure for flood quantiles Q10, 

Q50, Q100 using the ANFIS, ANN and NLR methods are shown in Figure 5, Figure 6 

and Figure 7 respectively. From these figures, we can observe that the estimation error 

and bias tend to increase with the return period. All models tend to provide less biased 

estimates for the sites with Q10 below 2200 m3/s, Q50 below 2500 m3/s and Q100 below 

3000 m3/s. However, for sites with Q10 over 2200 m3/s, Q50 over 2500 m3/s and Q100 

over 3000 m3/s, all three models tend to underestimate their flood quantiles. These sites 

represent the sites with the largest basin areas in the study area. The number of these sites 

accounts only for about 5% of the total sites, while the range of flood quantiles of these 

sites occupies the top 60% of the entire range of flood quantiles at the study area. Thus, 

correctly estimating these sites requires models with strong extrapolation capabilities. 

Nonparametric models like the ANFIS model and the ANN model are known to have a 

good descriptive ability but a limited predictive capacity (extrapolation).  

The overall performance of the ANFIS model is better than the ANN model at larger 

sites, however the ANFIS model underperforms the ANN model for a number of sites 

with flood quantiles under 1000 m3/s. This is mainly due to the choice of clustering 

radius ra. Estimates of the flood quantiles at these sites can be significantly improved if ra 

is reduced to around 0.56, however the best overall performance of the ANFIS model can 

be found if ra is in the range [0.68, 0.72].  

The outperformance of the ANFIS approach over the NLR can be explained by the 

following two aspects. First, the ANFIS approach is capable to capture the feature of each 

individual hydrological region in the study area, while the NLR method treats the whole 

study area as a large hydrological region. The subtractive clustering algorithm used in the 
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ANFIS approach can identify a number of initial clusters (regions) and fuzzy rules that 

are used to capture the feature of each hydrological region. These clusters and rules are 

adjusted during the ANFIS training phase to improve the system performance. Second, 

the ANFIS approach requires no assumption on the underlying function. This provides 

the system the flexibility to approximate any arbitrary functions that may exist in the 

feature space. 
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Figure 5. Jackknife estimation using the ANFIS approach 
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Figure 6. Jackknife estimation using the ANN approach 
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Figure 7. Jackknife estimation using the NLR approach 
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8. CONCLUSIONS 

In this paper, the methodology of using ANFIS for flood quantile estimation at ungauged 

sites is presented. The ANFIS approach provides a mechanism for integrating the two 

major steps, regionalization and estimation, in the regional flood frequency analysis into 

one system. Fuzzy rules and fuzzy sets in the ANFIS capture and store the regional 

information. The training algorithm tunes the system parameters over the entire data 

space according to the hybrid learning rules. Thus sharing and exchanging information 

between different hydrological regions are possible during the learning phase. This 

capability to model the interaction between different hydrological regions is one of the 

major advantages of the ANFIS approach over the traditional regional flood frequency 

analysis procedures where the regions once formed are mutually exclusive in the flood 

estimation step.  

The ANFIS approach provides a general framework that combines two techniques, the 

ANNs and fuzzy systems. The ANFIS model provides nonlinear modeling capability and 

requires no assumption of the underlying model. By utilizing the fuzzy techniques, the 

linguistic relationship between the input and output can be expressed using the fuzzy 

rules.  Unlike the initialization of an ANN, which may require several rounds of random 

selection, the initialization of an ANFIS can be performed using the one pass subtractive 

clustering algorithm. Through the ANN training, the ANFIS model tends to obtain 

missing fuzzy rules by drawing conclusions through the extrapolation of existing data. 

These rules could be unrealistic or simply untrue, and thus lead to inaccurate estimation. 
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A possible solution for this problem could be to supplement the fuzzy rule base obtained 

from observed data with rules specified by domain experts. 
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