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Abstract: Biophysical parameter retrieval using remote sensing has long been utilized for crop
yield forecasting and economic practices. Remote sensing can provide information across a large
spatial extent and in a timely manner within a season. Plant Area Index (PAI), Vegetation Water
Content (VWC), and Wet-Biomass (WB) play a vital role in estimating crop growth and helping
farmers make market decisions. Many parametric and non-parametric machine learning techniques
have been utilized to estimate these parameters. A general non-parametric approach that follows a
Bayesian framework is the Gaussian Process (GP). The parameters of this process-based technique
are assumed to be random variables with a joint Gaussian distribution. The purpose of this work is
to investigate Gaussian Process Regression (GPR) models to retrieve biophysical parameters of three
annual crops utilizing combinations of multiple polarizations from C-band SAR data. RADARSAT-2
full-polarimetric images and in situ measurements of wheat, canola, and soybeans obtained from the
SMAPVEX16 campaign over Manitoba, Canada, are used to evaluate the performance of these GPR
models. The results from this research demonstrate that both the full-pol (HH+HV+VV) combination
and the dual-pol (HV+VV) configuration can be used to estimate PAI, VWC, and WB for these
three crops.

Keywords: Plant Area Index (PAI); Vegetation Water Content (VWC); Wet-Biomass (WB); Gaussian
Process (GP); regression; RADARSAT-2; SMAPVEX16-MB

1. Introduction

Farmers and agricultural service providers require reliable information on crop
conditions and productivity throughout the cultivation period. The crop conditions and
their productivity are directly related to the crop biophysical parameters such as Plant
Area Index (PAI), Wet Biomass (WB), and Vegetation Water Content (VWC). Moreover,
estimation of these biophysical parameters also helps in agricultural production monitoring
and crop yield forecasting [1–4].

Remote sensing technologies play a vital role in monitoring crop conditions from
emergence to harvest. While optical imagery can be used to track crop growth, these data
are only useful when cloud cover does not interfere with image acquisitions. With a goal
of overcoming the challenges associated with the presence of cloud cover, increasingly
Synthetic Aperture Radar (SAR) data are being investigated to determine the potential of
this technology for agricultural applications and annual crop monitoring [5–7]. In addition
to the all-weather imaging capability of SARs, these sensors are also sensitive to the
geometric and dielectric properties of targets [8–10]. SARs propagate energy at longer
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microwave wavelengths, and the intensity of scattering is determined by structural
characteristics and water present in the target.

Earlier studies have shown that crop biophysical parameters can be modeled from
SAR backscatter because of the sensitivity of electromagnetic (EM) wave to vegetation
canopies [11–18]. In the past 20 years, data from several satellite-based SARs operating at
C-band (e.g., ERS-1/2, ENVISAT, RADARSAT-1 and -2, RISAT-1, Sentinel-1a, and -1b) [19],
L-band (e.g., ALOS and ALOS-2) [20], and X-band (e.g., TerraSAR-X, etc.) [21] have been
utilized for agricultural monitoring.

Physical and semi-empirical models have been utilized in several studies to estimate
crop biophysical parameters, including Leaf Area index (LAI), canopy water content,
and biomass [22–25]. These models help characterize the soil and vegetation contribution
to the SAR backscatter. The water cloud model (WCM) is a semi-empirical radiative
transfer model which has gained significant popularity in the retrieval of biophysical
parameters [26–31]. Nonetheless, the inversion of the WCM model can be problematic due
to its ill-posed nature [16].

In this regard, several machine learning regression algorithms (MLRAs) have been
utilized to retrieve bio and geophysical parameters from both optical [32–37] and
SAR [38–41] data. In particular, machine learning algorithms attempt to find a linear or a
non-linear relationship among the features (e.g., linear polarizations) and the target (e.g.,
PAI, WB, etc.). Among these MLRAs, various non-parametric machine learning regression
algorithms like Decision Trees, Artificial Neural Networks (ANNs), and kernel methods
have been studied. These algorithms can successfully apply non-linear transformations to
capture an optimum relationship among the features and the target variables.

Kernel-based methods have delivered promising results in vegetation parameter
retrieval. Kernel functions quantify the similarity between the input features based on target
features. Moreover, the number of hyper-parameters are less and can perform flexible non-
linear mapping with minimum tuning. In addition, these methods can handle strong non-
linear dependencies among the features and the target variables. In this context, Support
Vector Machines (SVM) have been widely studied for data classification. Support Vector
Regression (SVR) is a counterpart of SVM, which is utilized for diverse regression analysis.

Another emerging powerful kernel-based regression method that has shown impressive
results in earth observation data analysis is the Gaussian Process Regression (GPR) [42,43].
Gaussian Processes (GPs) resemble a Gaussian distribution defined by its mean and
covariance functions in feature space. Unlike other kernel-based methods, GPR follows a
Bayesian framework for the entire training period with some a-priori knowledge. In remote
sensing, estimation of the biophysical parameters utilizing the backscatter coefficients is
regarded as an inverse modelling problem. A statistical inversion method such as GPR
can predict a biophysical parameter of interest utilizing the SAR backscatter coefficients
obtained from the satellite acquisitions. Even though other physical inversion models exist,
statistical inversion models such as GPR are easier to train.

Analysis of earth observation data is done on a larger scale, both spatially and
temporally. In the case of agricultural applications, the datasets cover the entire phenological
stages of the crops. Thus the presence of a temporally representative dataset of varied
crop types can prove to be beneficial for a probabilistic machine learning approach such
as GPR. Unlike other MLRAs, GPR can provide the mean accuracies with the uncertainty
measures of the retrieved biophysical parameters [44]. The uncertainty interval (predictive
variance) can give us an idea about the existence of representative data in the training
phase. A higher uncertainty indicates the absence of representative data in the training
dataset. Therefore, the motivation behind the research presented here is the competitive
performance of GPs with respect to other MLRAs and to integrate scattering from multiple
C-band SAR polarizations in GPR to estimate these vital crop parameters.

The biophysical parameters examined in this study have been measured over various
phenological crop stages. Biophysical parameters like Plant Area Index (PAI), Leaf Area
Index (LAI), and biomass tend to follow an exponential pattern if temporal transition
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analysis is performed [45]. Hence the quantification of these parameters can be achieved
with a non-linear technique like GPR. In this regard, GPR can be a convenient approach.
In this work, GPR has been implemented to retrieve the biophysical parameters, including
Plant Area Index (PAI), Wet-Biomass (WB), and Vegetation Water Content (VWC) of
wheat, canola, and soybeans. In addition to this, the in situ measurements collected
during the SMAPVEX16-MB campaign and backscatter from RADARSAT-2 data are
studied. Combinations of the linear polarizations are considered predictors to retrieve
these biophysical parameters. The manuscript has been organized as follows. Section 2
describes the study area and datasets. In the methodology, Section 3, the Gaussian Process
Regression algorithm and the data preparation strategy are detailed. Furthermore, in the
results and discussion, Section 4, the sensitivity of the linear polarization and the temporal
correlation between the backscatter coefficients and biophysical parameters are estimated.
This section also presents the results from the estimation of the biophysical parameters
along with a comparative analysis of GPR with two other regression algorithms; Support
Vector Regression (SVR) and Random Forest Regression (RFR). Conclusions are provided
in Section 5.

2. Study Area and Dataset

The study area is located at 49°34′21.5′′N, 97°55′43.1′′W South-West of Winnipeg,
Manitoba in Canada. An overview of the study area can be seen in Figure 1. The test area
has an extent of 26 km× 48 km. Several RADARSAT-2 images were acquired over this
test area during the Soil Moisture Active Passive Validation Experiment 2016 Manitoba
(SMAPVEX16-MB) [46,47]. The RADARSAT-2 acquisitions covered most of the fields
sampled during the SMAPVEX16-MB campaign [48].

Figure 1. Pauli RGB image of RADARSAT-2 acquired on 17 July during the SMAPVEX16 campaign
in Manitoba (Canada). Fields sampled during the experiment are indicated, and the layout of the
sampling design is indicated for one field.

The site has a sharp divide in soil textures. Clay and fine loam soils account for ≈76%
of this study domain, while coarse loam and sand soils account for ≈14%. Major annual
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crops grown in this area are spring wheat, soybeans, canola, and corn, which account for
more than 90% of the area. Field data were collected during two Intensive Observation
Periods (IOPs). The first IOP was conducted from June 08–20 during early vegetative
growth. The second IOP was held during July 10–22, leading up to maximum biomass
accumulation. The field photographs indicating various vegetative growth stages of the
annual crops are shown in Figure 2.

13 June 2016 20 June 2016 9 July 2016 19 July 2016

W
h

e
at

C
an

o
la

So
yb

e
an

Figure 2. Field conditions of wheat, canola and soybeans during the SMAPVEX16-MB campaign [29].

2.1. Sampling Strategy

During the field campaign, a total number of 50 fields of various crops were selected
for sampling. The nominal field size in this study area was 800 m× 800 m. In each field,
soil moisture and vegetation sampling was conducted as shown in Figure 1. Soil moisture
was measured at 16 sampling points arranged in two parallel transects, with each transect
containing eight sampling points. Sampling points were separated by approximately 75 m,
and each transect was separated by 200 m. Vegetation sampling was performed at three
locations (i.e., points 2, 11, 14 in the first week and 3, 10, 13 in the second week of each
IOPs) out of 16 sampling locations. Plant Area Index (PAI), biomass, and plant height were
measured at these six sampling locations.

2.2. SAR Data Processing

RADARSAT-2 full polarimetric (HH, HV, VV) data were acquired in Fine Quad Wide
Swath (FQ7W) mode and with incidence angles ranging from 24.98° to 28.32°. Four
single-look complex (SLC) scenes acquired on 15 June 2016, 23 June 2016, 9 July 2016,
and 17 July 2016 were preprocessed to generate the 3× 3 polarimetric covariance matrix
C. Subsequently, 1 (range) × 2 (azimuth) multi-looking was applied to obtain a square
pixel of 10 m. The refined Lee filter with a window size of 5× 5 was used to reduce speckle.
The details of the RADARSAT-2 data and in situ data are given in Table 1.
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Table 1. Specifications of RADARSAT-2 data acquisitions and in situ measurements used in the
present study.

Acquisition Date Day of
Year (DOY)

Beam
Mode

Incidence Angle
Range (Deg.)

In-Situ
Measurement Window

15 June 2016 167 FQ7W 24.98–28.32 13 June, 15 June
23 June 2016 175 FQ7W 24.98–28.32 18 June, 20 June, 27 Jun
9 July 2016 191 FQ7W 24.98–28.32 6 July, 11 July, 12 July
17 July 2016 199 FQ7W 24.98–28.32 17 July, 20 July, 21 July

3. Methodology
3.1. Gaussian Process Regression

Gaussian Process Regression (GPR) belongs to the class of kernel-based methods in
machine learning due to its flexibility to utilize diverse kernels depending on the types
of data under analysis. In remote sensing applications, different kernel-based methods
like Support Vector Machine (SVM), Relevance Vector Machine (RVM) [49] and GPR have
been investigated for biophysical parameters retrieval in the literature. Among them,
GPR [42] has shown promising results in comparison to other non-linear non-parametric
methods. In the present study, we discuss the comparison between SVR and GPR methods.
Gaussian Processes (GPs) are non-parametric probabilistic approaches used for regression
and classification problems. Like a Gaussian distribution, a Gaussian Process is defined
by its mean function and covariance (kernel) function. The kernel quantifies the similarity
among the features utilized by GPR to predict the biophysical parameters. A Bayesian
framework is used to train the GPs.

3.1.1. Notations

Gaussian Processes (GPs) can be explained in different ways, one of which is the
function space approach. As defined in [50] a Gaussian Process can be defined as a
collection of random variables, a finite number of which follows a joint normal distribution.
The GPs follow a Bayesian framework and assume a prior distribution over the possible set
of functions. The available data are then used to update its belief about the most suitable
function that fits the data. The prior and the likelihood are assumed to follow a Gaussian
distribution. As such, the aim is to learn a function f which will be able to predict the
unknown biophysical parameters (target variables) y from a set of input features, x which
in our case are the linear polarizations. An additive noise model y = f (x) + ε, has been
assumed, where the noise follows a standard normal distribution with 0 mean and variance
σn, ε v N (0, σ2

n). Thus the joint distribution of the training target values y and the unknown
functions denoted with an asterisk f∗ is given by,(

y
f∗

)
v N

(
0,
(

K + σ2
n I K∗

KT
∗ K∗∗

) )
(1)

where the terms K signifies the co-variance matrix between the observed feature values
xi and xj with elements k(xi, xj), K∗ denotes the co-variance matrix between the observed
feature values and the test feature values with elements k(xi, x∗) and finally the K∗∗
represents the matrix containing the variances between the test features with elements
k(x∗, x∗). If the dataset has N training points then the matrix K is a N×N matrix. Similarly
if there are N∗ test data points then the K∗ is a N × N∗ matrix. The role of the co-variance
matrix is explained in the next section.

3.1.2. Kernel Functions

A similarity measure is a very crucial aspect when it comes to learning-related
algorithms. Therefore, covariance functions or kernels functions play a vital role in Gaussian
Processes. Test points closer to the observed points perform better during the prediction
phase. The N × N Gram matrix is said to be a covariance matrix if its elements are given
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by k(xi, xj) where k is a covariance function. The gram matrix needs to be a positive
semi-definite matrix to be considered a covariance matrix. Co-variance functions can be
categorized into stationary, dot-product, non-stationary covariance functions. The role
of these covariance or kernel functions is to capture the underlying linear and non-linear
relationships among the features. During this study, we applied both linear and non-linear
kernels have individually to understand their performances on the features. We utilized
combinations to check their inherent characteristics. A homogeneous linear or dot-product
kernel is represented by,

k(xi, xj) = xi · xT
j (2)

and a squared exponential kernel is represented by,

k(xi, xj) = σ2
f exp

(
−
∥∥xi − xj

∥∥2

2l2

)
(3)

The Radial Basis Function (RBF) kernel has two hyper-parameters σf known as RBF
variance and l known as the length scale of RBF, which are optimized during the training
phase as discussed in Section 3.1.4. Our analysis demonstrated that the combination of
linear and RBF kernels resulted in a relatively better retrieval accuracy than a homogeneous
linear or non-linear RBF kernel. From the result, it was evident that the linear combination
of those two kernels adequately captured the underlying linear and non-linear pattern of
the data. Hence, in this study, we use a combination of a linear or dot product kernel, a non-
linear RBF kernel, and a zero-mean Gaussian additive noise to retrieve the biophysical
parameters;

k(xi, xj) = xi · xT
j + σ2

f exp

(
−
∥∥xi − xj

∥∥2

2l2

)
+ σ2

nδij (4)

where δij represents a Kronecker delta function.

3.1.3. Prediction

The posterior predictive distribution over the most suitable functions for the dataset
is obtained by conditioning out the known data and the unseen observations from the
posterior distribution. Thus the predictive distribution of the Gaussian Process is given by,

f∗ | X, y, X∗ v N ( f̂∗, Σ∗) (5)

where the mean of this predictive distribution f̂∗ gives the point estimate of the target
variable which we are trying to retrieve, and the covariance Σ∗ indicates the uncertainty
estimate of the retrieved biophysical parameter. The advantage of obtaining the uncertainty
estimate makes GPs preferable as a prediction model because it indicates the model’s
performance in predicting unknown data. The following expressions give the mean and
variance of the predictive distribution,

f̂∗ = KT
∗ [K + σ2

n I]−1y (6)

Σ∗ = K∗∗ − KT
∗ (K + σ2

n I)−1K∗ (7)

The mean of the predictive distribution is a linear combination of the observed targets
and not inputs and thus GPs are often called as linear smoother not linear predictor .

3.1.4. Optimization

An important aspect of Gaussian Process regression models is their kernel hyper-
parameters. These parameters assist in providing proper shape and fitting the functions to
the data in the functions space. Correct estimation and tuning of these hyper-parameters
are vital in preparing the powerful Gaussian Process models to be exploited to their full
extent. Choosing a proper co-variance function and optimizing these hyper-parameters
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falls under the category of model selection problem. Co-variance functions like a squared
exponential kernel function as mentioned in Equation (3), can be represented using two
hyper-parameters l and σf , where l is the length scale of the kernel function and σf is the
RBF kernel variance. In an additive noise model, we assume a Gaussian distributed noise.
The kernel hyper-parameters (l, σf ) along with noise variance given by σn must also be
optimized for a particular noisy dataset. A common approach in Gaussian Process model
selection problems for optimizing hyper-parameters is to maximize the log of marginal
likelihood or the evidence of the process. The log marginal likelihood is expressed as,

log p(y | θ, σn) = logN ( y | 0, K + σ2
n I) (8)

In the above expression, θ represents the set of all the model hyper-parameters that
require optimization. The log marginal likelihood is not generally convex in a Gaussian
Process; thus, multiple initializations may be necessary, which becomes time-consuming
and may lead to local minima. Therefore a gradient-based approach is used to save time
and to improve efficiency.

3.2. Data Preparation

This study used in situ measurements from various wheat, canola, and soybean
fields to train and validate the model. The datasets consist of the field measurements
collected during the Intensive Observation Periods (IOPs) in June and July. Specifically,
measurements collected close in time to the SAR acquisitions (15 June, 23 June, 9 July,
and 17 July) were used. The data from all four dates were randomly split into training
(70%) and validation (30%) data sets. The training and the test dataset consists of the linear
polarizations (HH, HV, VV) as the features and PAI, WB, VWC as the target variables.

3.2.1. Data Skewness Analysis

The backscatter coefficients obtained from the processed RADARSAT-2 images and
the in situ measurements of the biophysical parameters do not follow a standard normal
distribution. This may result from the random distribution of crops over the study area
and the non-normal growth curve over the season. The skewness of the data affects the
performance of statistical models, particularly those models that assume that the data
follow a normal distribution. In skewed data, the points in the tail region act as outliers
and degrade the model’s performance. In these cases, it is necessary to transform the
raw data to bring the underlying distribution close to a Gaussian or normal distribution.
Various techniques are utilized for data transformation in machine learning and to deal
with non-normal distributed data sets.

In our study, the features (HH, HV, VV) and the target variables (PAI, WB, VWC) for
all three crops types are skewed. Skewness in the data has been reduced by applying a
Box-Cox transformation [51]. The skewness values of each of the linear polarizations before
and after the transformation are presented in Table 2 for PAI for wheat, canola, and soybean
crops and Table 3 for WB and VWC. After the transformation, skewness is reduced for
features and the target variables, making them suitable as predictors and target variables for
evaluating the machine learning model. The λ value mentioned in Tables 2 and 3 indicates
the power to which each data is raised. The Box-Cox transformation is first applied on the
training data to obtain the optimum value of λ between −5 and 5. The optimum λ values
are then utilized to transform the test dataset.
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Table 2. Initial and final skewness of linear polarizations and PAI before and after Box-Cox
transformation.

Crop Variables Initial
Skewness

λ
Values

Final
Skewness

Wheat

HH 1.293 −0.013 2.8× 10−5

HV 2.437 −0.569 5.6× 10−2

VV 1.222 −0.379 3.7× 10−2

PAI −0.270 1.120 −1.9× 10−1

Canola

HH 0.898 −0.122 1.2× 10−2

HV 1.995 0.200 5.9× 10−2

VV 0.515 0.220 −3.7× 10−2

PAI 0.246 0.519 −1.9× 10−1

Soybean

HH 1.090 −0.310 3.2× 10−2

HV 1.550 −0.311 5.7× 10−5

VV 0.698 0.009 −2.0× 10−3

PAI 0.819 0.149 −8.5× 10−2

Table 3. Initial and final skewness of linear polarizations, WB and VWC before and after Box-Cox
transformation.

Crop Variables Initial
Skewness

λ
Values

Final
Skewness

Wheat

HH 1.108 0.027 −4.1× 10−4

HV 1.789 −0.365 2.1× 10−2

VV 1.192 −0.494 6.2× 10−2

WB 0.150 0.754 −1.2× 10−1

VWC 0.311 0.693 −7.5× 10−2

Canola

HH 0.675 0.179 −1.9× 10−2

HV 1.325 0.305 3.6× 10−2

VV 0.869 0.252 −2.7× 10−2

WB 0.089 0.644 −2.1× 10−1

VWC 0.069 0.673 −2.1× 10−1

Soybean

HH 0.859 −0.034 4.0× 10−3

HV 1.548 −0.398 7.8× 10−2

VV 0.909 0.004 −5.2× 10−4

WB 1.552 0.042 −1.4× 10−2

VWC 1.567 0.043 −1.5× 10−2

3.2.2. Experimental Design

The Gaussian Process Regression model has been developed with the RADARSAT-2
measured backscatter intensities and the in situ measured crop parameters as the response.
GPR has been modeled using the GPy library [52]. It is a Gaussian Process framework
written in Python, developed by the Sheffield machine learning group. Subsequently,
an experimental setup is designed to build the GPR models with different predictor
combinations. The experiment has been designed with different co-pol and cross-pol
combinations of backscatter intensities. The different predictor combinations considered
for the experiment are HH+HV, HV+VV, HH+VV, and HH+HV+VV. However, the target
variables (crop parameters) remain the same for each experiment and for all the crops
during the training phase. The trained GPR models are utilized during the prediction
phase to estimate the biophysical parameters for the validation dataset. The GPR model
hyper-parameters which are tuned to achieve high precision and accuracy are: l, σf and σn.
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The hyper-parameters have been discussed in Section 3.1.2. A scaled conjugate gradient-
based approach with 1000 iterations is used to obtain the optimized values of these hyper-
parameters.

This research also conducted a comparative analysis between GPR, SVR, and RFR. SVR
and RFR were implemented using the open-source Python Scikit-learn packages. SVR is a
generalized version of a Support Vector Machine (SVM) [53] designed for regression-based
problems [54]. Similar to GPR, it is also a kernel-based method utilized in the literature to
estimate biophysical parameters. In the case of SVR, the model hyper-parameters which
are tuned during optimization are Kernel (the type of kernel to be used by the algorithm),
Gamma (controls the influence of the decision boundary), and C (regularization parameter).
The optimized values of these hyper-parameters have been obtained using a cross-validated
Random Search. A k-fold cross validation technique was implemented with k being the
number of folds was specified as 10. The cross-validation technique is a powerful approach
towards preventing overfitting.

Random Forest Regression (RFR) is a tree-based ensemble technique that uses bagging
or bootstrap aggregation to average the predictions from multiple decision tree models [55].
This approach helps in reducing variance and chances of high error. The hyper-parameters
of the RFR model include: n_estimators (number of decision trees), max_depth (maximum
depth of each decision tree), min_samples_split (minimum number of samples required to
split an internal leaf node) and min_samples_leaf (minimum number of samples required to
be at a leaf node). These hyper-parameters were obtained from a k-fold cross-validated
random search on a range of possible values. Besides random search the two very sensitive
hyper-parameters n_estimators and max_depth were analyzed utilizing Out Of Bag score
(OOB score).

The efficiency of the models is assessed using Pearson-correlation coefficient (ρ) and
error estimates including Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)
for every experimental setup and for each individual crop.

4. Results and Discussions

This section describes the important considerations for an operational crop monitoring
application. The sensitivity of the backscatter coefficients to the condition of the crops
on each acquisition date is first assessed. Next, the correlation among the backscatter
coefficients and the vegetation biophysical parameters (PAI, WB, and VWC) is examined
to understand variations in scattering due to changes in crop growth stages and canopy
structures and the impact of incidence angle over the entire observation period. A GPR
model was used to estimate the biophysical parameters of wheat, canola, and soybeans.
Following the steps described in Sections 3.1 and 3.2. A comparative analysis between GPR,
SVR, and RFR is also presented based on retrieval accuracies for all the crops.

4.1. Sensitivity Analysis of HH, HV, VV to Crop Development

The temporal variation of the backscatter coefficients on a linear basis (i.e., HH, HV,
VV) are plotted in Figure 3 as violin plots for the three crop types. The plots illustrate the
distribution of the sample points across all observation periods. Each violin plot comprises
a Kernel Density Estimate (KDE) plot and a box plot. Within the KDE plot lies the box
plot that represents the median (white dot) and the inter-quartile range (darker line) for
the particular backscatter coefficient. A violin plot captures the distribution of the sample
points across different backscatter coefficient values and identifies the presence of outliers
and a multi-modality if present in the data.
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(a)

(b)

(c)
Figure 3. The distribution of backscatter coefficients: (a) HH, (b) HV, and (c) VV for an individual
crop type on each acquisition date is represented using the violin plots. The plots for each crop are
differentiated with red, green, and blue colours. Please note the box plots within the violin plots
represent the minimum, the median (white dot), the inter-quartile range (the dark box), and the
maximum of the backscatter coefficient.

4.1.1. Wheat

Temporal variability of HH, HV, VV backscatter intensities for wheat is shown in
Figure 3a–c, respectively. On the 15 June, wheat is in its early tillering stage. The median HH
backscatter value on 15 June is −8.27 dB. This high return in the HH backscatter is due to
low vegetation cover at this early development stage. Consequently, the backscatter return
is largely influenced by the soil surface. Between the 15 and 23 of June, HH backscatter
for wheat shows an increasing trend. On 23 June, the median value of HH backscatter
is −7.85 dB. At this phenological period, wheat advances from its tillering stage towards
booting through stem elongation stages. As the density of the crop increases, the radar
wave interacts more with the horizontal portion of the leaf, causing more HH backscatter
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return. In the first week of July, wheat reaches its early flowering, and HH backscatter
declines to −10.55 dB during this period as the canopy volume increases. This reduction
may be due to attenuation in the upper crop canopy by the wheat heads. On 17 July,
when wheat reaches its early dough stage, backscatter increases to −9.71 dB. As the crop
advances towards maturity and ripening, wheat kernels begin to dry, and overall canopy
water content declines. During this period, the KDE plot has a longer tail towards lower
values of HH (<−12 dB). The rate of senescence or dry down will be impacted by many
factors, including the timing of seeding and soil properties. This longer tail during this
phenological period suggests variations in senescence among these wheat fields.

At the time of tillering, the wheat canopy cover is still sparse, and with a limited
volume to create random scattering, the HV response is low (−16.67 dB). A bi-modal
distribution of HV backscatter for wheat can be seen during 15 June, most likely due to
two different sources of scattering. Some wheat canopies have started to boot, while others
remain at the tillering stage. After June, the crop progresses towards its dough stage and
maturity around 17 July. HV backscatter for wheat increases to −15.65 dB. With increased
canopy volume, multiple scattering from the wheat heads causes HV backscatter to increase.
The KDE plot for 17 July shows a flat distribution indicating an equal distribution of HV
backscatter responses around the median.

On 15 June, the median of VV backscatter is higher around−9.80 dB. As the phenology
progresses from booting towards flowering, VV backscatter declines from −11.56 dB
on 23 June reduces to −12.95 dB on 9 July. During this period, the volume fraction
of the vegetation starts to increase. This increase in canopy volume results from the
accumulation of leaves and lengthening of the stems. With an increase in attenuation
from the predominantly vertical structure of the wheat stems, the VV backscatter is
reduced [56,57]. On 17 July, there is an observed increase in VV backscatter to −11.67 dB a
result of the increase in biomass during the dough stage.

4.1.2. Canola

Canola is at its leaf development stage during the early phenological period (15 June).
HH backscatter during this period is high (−5.53 dB), likely due to a dominance of
scattering from the soil given the low canopy cover at this early stage of canola development.
After 15 June, the crop progresses from its leaf development stage towards inflorescence
emergence. As the crop height increases and the canopy cover progresses, the soil
contribution to the SAR backscatter is reduced. HH backscatter during this period declines
from −5.53 dB to −6.04 dB. Around 9 July, as the canopy volume increases, the incident
radar wave is depolarized by the complex canopy structure of the canola. This further
reduces HH backscatter to −9.02 dB on 9 July. Canola reaches its early pod development
stage on 17 July, and HH backscatter increases by 1.28 dB.

The median HV backscatter response is −14.42 dB on 15 June. The canopy is less
developed during its leaf development stage, more soil is exposed, and greater scatter
originates from the soil. This variation in scattering is evident in the long left tail of the KDE
plot of HV backscatter. As the crop progresses towards inflorescence emergence around
23 June, cross-polarization backscatter increases from −14.42 dB to −13.59 dB during this
period. The formation of pods in the canola crop creates a complex geometric structure and
increases in the volume of the canopy. During this phenology stage, around 17 July HV
backscatter increases to −12.49 dB.

During the leaf development stage of canola around 15 June, VV backscatter was
approximately −5.84 dB. As the crop develops, buds and flowers emerge VV backscatter
declines sharply. As seen in Figure 3c, VV backscatter reaches a minimum of −10.10 dB
during the flowering stage around 9 July. The buds and the flowers, which have a
small structure, prevent the scattering of the underlying canopy, thus decreasing VV
backscatter [15,58]. On 17 July, the stem of the canopy plant had a greater volume than
the flowers. VV backscatter response increases from −10.10 dB to −8.40 dB as the vertical
structure of the canopy begins to dominate.
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4.1.3. Soybean

Soybeans and canola have comparable sensitivities to HH backscatter. On 15 June,
soybeans are beginning to develop leaves, and backscatter in the HH polarization is
−9.72 dB. Between 15 June and 23 June, leaf development progresses towards the fifth
trifoliate stage [59] and HH backscatter declines to −10.18 dB. As the side shoots begin
to form, scattering from the soybean canopy increases. On 19 July, soybeans reached
the flowering stage. HH backscatter increases by 4.07 dB during this period, as evident
from Figure 3a. During 15 June and 17 July, HH has a bi-modal distribution, and on
9 July, backscatter has a distribution with a comparatively longer tail indicating outliers
towards lower HH (<−14 dB) values. These outliers may be due to the variations in growth
stages among fields depending on the time of seeding and uneven growth due to different
soil properties. Earlier seeded fields would present larger canopies and greater canopy
volume scattering.

During the leaf development stage of soybean, HV backscatter is lower with a median
backscatter of −20.78 dB on 15 June. A sparse canopy attenuates little of the incident
waves and allows for greater scattering from the soil. The crop progresses towards
pod development and flowering stage from 23 June to 17 July. With a more complex
canopy structure, random scattering events within the canopy increase. On 9 July, the HV
backscatter for soybeans is −20.26 dB. Cross polarization backscatter on 17 July for the
soybean canopies increases to −13.84 dB due to an accumulation of biomass and reduction
in scattering from the soil [15].

VV backscatter during the leaf development stage of soybean is high. The median
VV backscatter response is around −9.99 dB. As pods develop on the soybean plants, VV
backscatter falls by −1.36 dB, reaching a minimum on 9 July as evident from Figure 3c.
A dense canopy structure prevents any backscatter return from the soil until the crop begins
to form flowers and pods (around 17 July) that VV backscatter increases by 4.22 dB.

4.2. Correlation Analysis: Backscatter vs. Biophysical Parameters

Correlation analysis assists in deciphering the impacts of changing biophysical and
phenological states on SAR backscatter. First, we analyzed the correlation for each crop for
each date individually. Correlation between the backscatter coefficients and the biophysical
parameters for 15 June, 23 June, 9 July, and 17 July are symbolized as ρ15

σo , ρ23
σo , ρ9

σo and ρ17
σo ,

respectively. In addition, the overall correlation (ρo
σo ) between the linear polarization and

the biophysical parameters was computed by considering all the sample points from all the
dates altogether.

4.2.1. Wheat

Correlation among the backscatter coefficients and biophysical parameters for wheat
are listed in Table 4. The significant correlations at 95% confidence level are highlighted in
bold. When correlations are run on each date separately, the results are inconsistent among
all biophysical parameters. Correlations are growth-specific, and it is only when the analysis
is run using all dates of data that significant correlations are reported for all polarizations
and biophysical parameters. The one exception is HV backscatter and PAI. Correlations are
negative, indicating a decrease in scattering at higher biomass accumulations, suggesting
greater attenuation. HH has a significant but negative correlation with PAI as the wheat
advances from early tillering to booting stage. Correlation between HH backscatter and
PAI for wheat on 15 June (ρ15

HH) is −0.63. when PAI varies from 0.83 m2 m−2 to 5.2 m2 m−2

(Table A1). After 15 June, as the canopy volume increases correlation between HV and PAI
increases. On 23 June PAI varied between 2.95 m2 m−2 to 7.7 m2 m−2 and correlation with
HV backscatter increases to −0.73. Wheat reached its dough stage on 17 July. HV shows a
positive correlation with PAI during this phenological period of wheat. At the dough stage
(17 July), only HV is correlated with PAI (0.49). VV backscatter has a higher correlation
with PAI in the initial phenological stages of wheat. During early tillering VV backscatter
had a correlation (ρ15

VV) of −0.59 increasing at booting stage (ρ23
VV) to −0.68. When all the
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sample points are considered from all observation dates, HH and VV had correlations with
PAI of −0.57 and −0.69.

Correlations between HH backscatter and WB and VWC increase from tillering
(15 June) to booting stages (23 June). WB for wheat on 15 June varied between 0.43 kg m−2

and 3.45 kg m−2 and VWC varied between 0.36 kg m−2 and 2.99 kg m−2 as documented
in Table A1. During booting (23 June) biomass and water content further increased with
WB between 0.78 kg m−2 and 3.59 kg m−2 and VWC between 0.67 kg m−2 and 3.01 kg m−2.
Correlations with HH backscatter are negative (−0.69) for WB and−0.67 for VWC. On 9 July,
the wheat is flowering and HV backscatter is correlated with WB (−0.26) and VWC
(−0.29). The correlation of VV scattering and WB is slightly higher (−0.31). At flowering,
correlations are for the most part, not statistically significant. When sample points from all
the observation dates are pooled, HH and VV backscatter have a higher correlation with
WB and VWC when compared with HV backscatter.

Table 4. Pearson correlation (ρ) between biophysical parameters and linear-polarizations (HH, HV,
VV) for wheat. Statistically significant correlations at 95% confidence level are shown in bold.

σo ρ15
σo ρ23

σo ρ9
σo ρ17

σo ρo
σo

PAI
HH −0.63 −0.35 −0.18 0.26 −0.57
HV −0.12 −0.73 −0.39 0.49 0.05
VV − 0.59 −0.68 −0.29 0.12 −0.69

WB
HH −0.08 −0.69 −0.26 −0.16 −0.51
HV −0.01 −0.19 −0.26 0.06 −0.23
VV −0.03 −0.65 −0.31 0.06 −0.47

VWC
HH −0.09 −0.67 −0.20 −0.07 −0.47
HV −0.01 −0.18 −0.29 0.13 −0.24
VV −0.03 −0.63 −0.29 0.13 −0.46

4.2.2. Canola

As evident from Table 5 backscatter and biophysical parameters are not significantly
correlated when analyzed for individual dates. The only exception is HH backscatter and
PAI on 15 June when PAI is between 0.39 m2 m−2 and 1.79 m2 m−2 when the leaves of canola
are beginning to develop. At this early stage, the soil has little cover (Table A1). Despite
the rapid growth of the canola canopy throughout the experiment (PAI from 0.16 m2 m−2 to
8.33 m2 m−2, WB from 0.21 kg m−2 to 4.47 kg m−2 and VWC from 0.20 kg m−2 to 3.90 kg m−2)
backscatter is not correlated with these parameters measured on individual dates. It is only
when all data are pooled that correlations are significant. When sampling points from all
the observation periods are considered, HH and VV backscatter showed a significantly
higher correlation with PAI when compared with HV backscatter. In addition, HH and VV
backscatter showed a significant correlation with biophysical parameters WB and VWC in
contrast to HV backscatter.
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Table 5. Pearson correlation (ρ) between biophysical parameters and linear-polarizations (HH, HV,
VV) for canola. Statistically significant correlations at 95% confidence level are shown in bold.

σo ρ15
σo ρ23

σo ρ9
σo ρ17

σo ρo
σo

PAI
HH 0.55 −0.30 −0.21 0.09 −0.51
HV 0.27 0.38 0.31 −0.01 0.47
VV 0.28 −0.12 0.01 0.02 −0.48

WB
HH 0.26 0.56 −0.06 −0.43 −0.55
HV 0.43 0.51 −0.20 −0.64 0.13
VV −0.04 0.41 −0.55 −0.10 −0.58

VWC
HH 0.26 0.56 −0.10 −0.48 −0.54
HV 0.41 0.52 −0.24 −0.66 0.12
VV −0.03 0.40 −0.57 −0.14 −0.57

4.2.3. Soybeans

Soybeans are a broadleaf crop and in this region of Canada are typically seeded by
the third week of May and harvested in early September [60]. In June, soybeans are in an
early vegetative stage with initial leaves developing, and as a result, the soil has a major
contribution to overall scattering. On 15 June, most soybean fields are in the unifoliate to
the third trifoliate stage. During this stage PAI varies between 0.07 m2 m−2 to 0.94 m2 m−2.

Backscatter coefficients did not show any significant correlation with PAI on 15 June.
After 15 June, soybean crops advanced into the fifth trifoliate stage. HV backscatter shows
a higher correlation with PAI during this phenological period. On 23 June, the correlation
of HV backscatter with PAI increases to 0.55. The fifth trifoliate stage of soybean is followed
by pod development at the beginning of July. PAI during this period varied between
0.27 m2 m−2 to 5.70 m2 m−2. It is evident from Table 6 that the correlation between HV and
VV backscatter and PAI increases during this period. When the overall correlation between
backscatter coefficients and PAI were analyzed, HV backscatter had a higher correlation
with PAI when compared with HH and VV backscatter.

Table 6. Pearson correlation (ρ) between biophysical parameters and linear-polarizations (HH, HV,
VV) for soybean. Statistically significant correlations at 95% confidence level are shown in bold.

σo ρ15
σo ρ23

σo ρ9
σo ρ17

σo ρo
σo

PAI
HH −0.09 0.09 0.26 0.03 0.39
HV 0.23 0.55 0.56 0.32 0.64
VV −0.25 −0.08 0.47 0.26 0.31

WB
HH 0.34 0.11 −0.01 −0.09 0.38
HV −0.01 0.54 0.54 0.56 0.77
VV 0.23 −0.06 0.09 0.26 0.34

VWC
HH 0.33 0.10 −0.01 −0.09 0.37
HV −0.01 0.56 0.54 0.56 0.76
VV 0.21 −0.08 0.09 0.26 0.33

WB varies between 0.02 kg m−2 and 1.63 kg m−2 covering the entire phenological
period of soybean development. Among the backscatter coefficients, HV significantly
correlates with WB as the crop progresses from its fifth trifoliate stage towards flowering.
A similar trend can be seen while analyzing the correlation between HV backscatter
and VWC. An overall correlation analysis between the backscatter coefficients and the
biophysical parameters WB and VWC indicates that HV backscatter has the highest
correlation. HH and VV backscatter showed similar sensitivity towards WB and VWC.

The correlation between the biophysical parameters of the crops and the backscatter
coefficients vary depending upon the phenological stages of the crops. This occurs
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because the radar backscatter returns are highly influenced by the canopy structure, soil
characteristics, crop growth stage, and radar incidence angle.

4.3. Biophysical Parameter Estimation

The GPR model inversion utilizes dual-pol (HH+HV, HV+VV, and HH+VV) and
full-pol (HH+HV+VV) combinations of backscatter intensities as predictors to the model.
The retrieval accuracy of the models for PAI, WB, and VWC are assessed for wheat, canola,
and soybean using the validation dataset.

4.3.1. Wheat

The GPR inversion methodology evaluates the retrieval accuracy of PAI, WB, and VWC.
The in situ measured PAI varied from 0.83 m2 m−2 to 8.80 m2 m−2, covering early tillering
to dough stages. The performance of the GPR model varies for different polarization
combinations, as shown in Figure 4. Among the dual-pol combinations, the HV+VV
outperformed HH+HV and HH+VV combinations.

As presented in Figure 4g the correlation between in situ PAI and estimated PAI
for the HV+VV combination is higher than the HH+HV and HH+VV combinations.
The correlation for the HV+VV combination is 0.78. In comparison, the HH+HV dual-
polarization combination results in a correlation coefficient of 0.75 and for HH+VV, a
coefficient of 0.64. When HV+VV is used with the GPR model, the root mean square error
for PAI decreases by 5.8%. When HH+VV are used, RMSE declines by 17%. In Figure 4 the
red dotted line represents the best fit line between the in situ and estimated biophysical
parameter.

An improvement in retrieval accuracy is achieved using all polarizations for PAI
estimations. The model showed a 6.4% increase in correlation between in situ PAI and
estimated PAI when all polarizations are used. With these three polarizations as predictors
in the GPR model, RMSE decreases by 9.8%. When PAI exceeds 7 m2 m−2 and plants
reach the early flowering and dough stages, plant area is underestimated. In contrast,
an overestimation is observed for PAI values less than 4 m2 m−2 when the plant is in
the early tillering stage. A comparatively better estimation is reported for PAI values
between 4 m2 m−2 and 7 m2 m−2 as the plant progresses from the booting stage towards the
flowering stage. In summary, the GPR model, which includes either a dual-pol combination
of HV+VV or a full pol combination of HH+HV+VV, could produce accurate estimates of
PAI over the entire phenological period.

In the case of WB, the ground measured values varied from 0.43 kg m−2 to 5.9 kg m−2

as shown in Table A1. WB retrieval with a dual-pol combination of HH+HV and HV+VV
showed comparable results. A saturation in the estimation of WB is evident towards
the end of the heading stage of the wheat crop. A reduction of 2.4% in RMSE and 9.5%
in MAE is evident when all three polarizations are used as compared to an HV+VV
dual-pol combination. A previous experiment also used a dual-polarization HH and HV
combination to retrieve the biomass of wheat using data from RADARSAT-2 [28].

VWC impacts the intensity of scattering from vegetation, and this biophysical
parameter is important in determining crop stress and water needs. Measures of VWC
were determined through drying and weighing of crop biomass, with VWC ranging
between 0.36 kg m−2 to 4.86 kg m−2. HV+VV had the highest correlation among the
dual-pol combinations when comparing in situ measured and model estimated VWC.
An increase of 2.8% to 4.1% in the correlation coefficient was achieved utilizing the dual-pol
HV+VV combination when compared with other dual-pol combinations. When all three
polarizations were used, the errors associated with the estimation of water content were
reduced (RMSE (0.68 kg m−2) and MAE (0.56 kg m−2)).
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Figure 4. Wheat: Estimated vs. in situ PAI for (a) HH+HV+VV, (d) HH+HV, (g) HV+VV, (j) HH+VV
polarization combinations respectively. Estimated vs. in situ WB for (b) HH+HV+VV, (e) HH+HV,
(h) HV+VV, (k) HH+VV polarization combinations respectively. Estimated vs. in situ VWC for (c)
HH+HV+VV, (f) HH+HV, (i) HV+VV, (l) HH+VV polarization combinations respectively.

A two-tailed t-test was implemented to check the significance of the correlation
between the estimated biophysical parameters of wheat and their in situ measurements at
a 95% confidence level. As evident from Table 7 the biophysical parameters estimated by
the GPR model show a significant correlation for all the polarization combinations.

A comparative analysis between GPR, Support Vector Regression (SVR), and Random
Forest Regression (RFR) is provided in Table 8 for all wheat biophysical parameters. It is
evident from our previous results in Figure 4 that in addition to the full-pol combination,
the dual-pol combination of HV+VV is able to retrieve these biophysical parameters.
Considering that HV+VV yielded promising results in estimating all biophysical parameters,
this dual-polarization combination is used to compare the performance of these three
machine learning algorithms.
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Table 7. Statistical significance of correlation coefficient (ρ) between estimated and in situ biophysical
parameters at 95% confidence level for each linear polarization combinations in case of wheat.

Linear Polarization Combinations ρ p-Value

PAI

HH+HV+VV 0.83 2.67× 10−7

HH+HV 0.75 3.95× 10−16

HV+VV 0.78 3.80× 10−6

HH+VV 0.64 5.19× 10−4

WB

HH+HV+VV 0.66 3.93× 10−7

HH+HV 0.65 5.94× 10−7

HV+VV 0.64 9.99× 10−7

HH+VV 0.67 1.65× 10−7

VWC

HH+HV+VV 0.63 1.46× 10−6

HH+HV 0.57 1.68× 10−5

HV+VV 0.60 4.76× 10−6

HH+VV 0.63 1.23× 10−6

In the case of wheat biophysical parameter estimation, GPR performed better than SVR
and RFR in terms of error estimates (RMSE, MAE), correlation coefficient (ρ), and coefficient
of determination (R2). In estimating PAI, SVR had a comparatively better performance
than RFR in terms of error estimates and correlation. The GPR model showed a 24.32%
decrease in RMSE relative to the RFR model and a 19.42% decrease in RMSE with respect
to the SVR model. The correlation between in situ PAI and model estimated PAI increased
by 27.86% with the GPR relative to the RFR and 23.80% when compared to the SVR model.
In contrast, the RFR had a comparative performance to GPR in estimating WB. A similar
performance was observed while retrieving VWC.

GPR delivered better estimates of the biophysical parameters, which might be due
to the self-explanatory kernel. A combination of a linear kernel and a non-linear squared
exponential kernel can capture the underlying non-linearity among the HH, VV, and HV
polarizations and the biophysical parameters better than other tree-based regression
algorithms.

Table 8. Comparing performance of GPR, SVR and RFR for estimating biophysical variables of wheat
utilizing a dual-pol (HV+VV) combination. Statistical measures of GPR are highlighted in bold for
each biophysical parameter.

Algorithm RMSE MAE ρ R2

PAI
GPR 1.12 0.93 0.78 0.61
SVR 1.39 1.09 0.63 0.40
RFR 1.48 1.19 0.61 0.36

WB
GPR 0.83 0.63 0.64 0.41
SVR 0.92 0.76 0.54 0.30
RFR 0.86 0.72 0.60 0.36

VWC
GPR 0.69 0.55 0.60 0.37
SVR 0.74 0.60 0.49 0.25
RFR 0.68 0.56 0.59 0.35

4.3.2. Canola

Canola is a broadleaf plant that has a unique plant and canopy structure. As evident
from the in situ measurements, seeding of the canola was completed by the end of May.
Thus in the initial weeks of June, the crop was primarily in its period of vegetative growth.
The crop reached its flowering stage between the last week of June and early July. Pod
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development began mid-July with the ripening of seeds with senescence occurring at
the end of July until the second week of August. The in situ measured PAI for canola
varied between 0.16 m2 m−2 and 8.33 m2 m−2 covering the four observation periods. When
canola reaches its flowering stage the PAI values are comparatively higher (<6 m2 m−2).
As indicated in Figure 5 when all three linear polarizations are used, underestimation of
PAI occurs when compared to retrievals using only two polarizations.
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Figure 5. Canola: Estimated vs. in situ PAI for (a) HH+HV+VV, (d) HH+HV, (g) HV+VV, (j) HH+VV
polarization combinations respectively. Estimated vs. in situ WB for (b) HH+HV+VV, (e) HH+HV,
(h) HV+VV, (k) HH+VV polarization combinations respectively. Estimated vs. in situ VWC for (c)
HH+HV+VV, (f) HH+HV, (i) HV+VV, (l) HH+VV polarization combinations respectively.

Underestimation is likely due to the saturation of the C-band radar backscatter
due to this crop’s dense canopy structure during pod development. Canola has large
and broad leaves that are formed relatively close to the ground. A dense canopy with
randomly oriented stems and pods causes a significant random scattering within the
canopy. Pacheco et al. [61] reported a four-fold increase of HH/VV differential reflectivity
as canola advanced from its stem elongation stage towards the flowering stage. HV+VV
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provides a comparatively better estimate relative to the other dual-pol (HH+HV; HH+VV)
combinations among the dual-pol combinations. HH+VV underestimated PAI values to
a greater degree (<6 m2 m−2). Inclusion of the HV cross-polarization channel in the dual-
pol combinations (HH+HV and HV+VV) captured the random scattering driven by the
complex structures and large biomass associated with the canola. Correlation between the
in situ and estimated We found PAI for the dual-pol HV+VV combination to be 0.90. This
is comparable to the correlation (0.91) obtained using the full-pol combination. This result
illustrates the value of the HV+VV combination as a predictor in estimating PAI.

The ground measured WB for canola varied between 0.218 kg m−2 and 5.032 kg m−2

for the entire observation period from 15 June to 17 July 2016. On 15 June, the majority
of canola fields had low vegetation cover with VWC varying between 0.206 kg m−2 and
4.353 kg m−2. A significant increase in WB and VWC values occurs as the crop progresses
from its initial leaf development and stem elongation stage towards flowering and pod
development. During the pod development stage of canola, the WB varies in the range from
1.803 kg m−2 to 5.032 kg m−2 as observed on 9 July, and from 2.605 kg m−2 to 4.475 kg m−2

as observed on 17 July. Similarly VWC varied between 1.555 kg m−2 and 4.353 kg m−2 on
9 July and 2.245 kg m−2 to 3.902 kg m−2 on 17 July. The linear polarization combinations
underestimated WB and VWC during this observation period. The reason behind this
underestimation may be due to the saturation of the C-band signal due to a dense
canopy [15]. Overestimation of these parameters is evident in the early leaf development
stages on 15 June.

Among dual-pol combinations, HV+VV (RMSE = 0.97 kg m−2, MAE = 0.86 kg m−2

and ρ = 0.86) performed better in retrieving WB and VWC in comparison to the other
dual-pol combinations of HH+HV (RMSE = 0.99 kg m−2, MAE = 0.89 kg m−2 and ρ = 0.85)
and HH+VV (RMSE = 1.24 kg m−2, MAE = 1.12 kg m−2 and ρ = 0.64). An improvement
is observed in retrieving PAI, WB, and VWC of canola using the HH+HV+VV full-pol
combination with lower RMSE and MAE and higher correlations.

The statistical significance of the correlation between the estimated biophysical
parameters and their in situ measurements in the case of canola is shown in Table 9.
The p-values obtained from the t-test show that the biophysical parameters estimated by
the GPR models for each linear polarization combination are significantly correlated with
their in situ measurements.

Table 9. Statistical significance of correlation coefficient (ρ) between estimated and in situ biophysical
parameters for canola at 95% confidence level for each linear polarization combination.

Linear Polarization Combinations ρ p-Value

PAI

HH+HV+VV 0.91 6.50× 10−9

HH+HV 0.89 5.10× 10−8

HV+VV 0.90 2.53× 10−8

HH+VV 0.83 3.33× 10−6

WB

HH+HV+VV 0.87 3.00× 10−5

HH+HV 0.85 6.35× 10−5

HV+VV 0.86 3.28× 10−5

HH+VV 0.64 1.03× 10−2

VWC

HH+HV+VV 0.84 7.39× 10−5

HH+HV 0.82 1.73× 10−4

HV+VV 0.91 2.34× 10−6

HH+VV 0.54 3.66× 10−2

Following from the comparative analysis between GPR, SVR, and RFR as shown in
Table 10 GPR performed comparatively better in retrieving canola biophysical parameters.
As evidenced by the lower RMSE and MAE error estimates and higher correlation (ρ).
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Interestingly, in the case of canola, RFR outperformed SVR while estimating all the
biophysical parameters. SVR resulted in higher RMSE in comparison to both GPR and
RFR. RMSE decreases by 9% when comparing the error estimate between RFR and GPR
for retrieval of canola PAI. Similarly, a reduction of 31.29% in RMSE occurs when GPR
is applied instead of SVR. The coefficient of determination (R2) is an essential statistical
measure that indicates the goodness of fit of the model. When GPR retrieves PAI, R2

increases 2.53% relative to the RFR model and 9.49% compared to the SVR model. Similarly,
SVR underperforms in retrieving WB and VWC relative to both GPR and RFR. Errors of
estimation (RMSE) for canola WB using SVR increased 20.61% when compared with GPR
and 12.5% when compared with RFR.

Table 10. Comparing performance of GPR, SVR and RFR for estimating biophysical variables of
canola using dual-pol (HV+VV) combination. Statistical measures of GPR are highlighted in bold for
each biophysical parameter.

Algorithm RMSE MAE ρ R2

PAI
GPR 1.01 0.76 0.90 0.81
SVR 1.47 1.18 0.86 0.74
RFR 1.11 0.85 0.89 0.79

WB
GPR 0.97 0.86 0.86 0.75
SVR 1.17 0.99 0.73 0.53
RFR 1.04 0.88 0.76 0.58

VWC
GPR 0.88 0.79 0.91 0.83
SVR 1.04 0.90 0.71 0.52
RFR 0.94 0.79 0.73 0.53

4.3.3. Soybeans

Soybeans are legumes that have a planophile canopy architecture. With maturity,
the orientation of this crop canopy structure becomes more random. The canopy structure
is comprised of trifoliate leaves attached to each stem node, secondary stems, and randomly
oriented leaves. The ground measured PAI varied from 0.01 m2 m−2 to 5.7 m2 m−2, covering
leaf development to flowering stages. Earlier in June, the crop was in its vegetative
growth stage. By mid-June (June 15), soybeans had progressed to the leaf development
stage. The in situ measurements during this period show lower PAI ranging between
0.07 m2 m−2 and 0.94 m2 m−2, WB varying between 0.02 m2 m−2 and 0.13 m2 m−2 and
VWC between 0.01 m2 m−2 and 0.11 m2 m−2. This is the second trifoliate stage of soybeans
with a less random canopy structure. Soil has a major contribution to radar backscatter
during this phenological stage because of smaller canopy closure [59]. The biophysical
parameter retrieval results for soybean with dual-pol and full-pol combinations are shown
in Figure 6. For PAI < 1.5 m2 m−2, in general PAI estimates have low errors although some
overestimation is observed. These overestimations are likely due to the higher contribution
from the soil to SAR backscatter.

As the crop progresses from its leaf development stage towards inflorescence emergence,
flowering, and pod development, PAI, WB, and VWC increase. The flowering and
pod initiation began at the end of July with PAI values varying between 0.25 m2 m−2

to 4.18 m2 m−2 as of 17 July. When retrieving PAI using dual-pol combinations, HH+HV
and HV+VV outperformed plant area estimates using all three polarizations. The error
estimate and correlation coefficient for HH+HV are found to be 0.70 m2 m−2 and 0.82
respectively. The statistical measures are similar to those of the HV+VV combination. In the
case of HV+VV, an error of 0.69 m2 m−2 and correlation of 0.82 was obtained, indicating
that either dual-polarization combination can accurately estimate the Plant Area Index
of soybeans.
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Only a slight improvement in the retrieval results is observed when all polarizations
are used. An RMSE estimate of 0.68 m2 m−2 and a correlation of 0.83 was obtained utilizing
the full-pol combination. The dual-pol HH+VV combination performed poorly when
results were compared to the dual polarization combinations which included the cross
polarization or to results using all linear polarizations. These findings are supported by
the error estimates (RMSE = 1.16 m2 m−2 and MAE = 0.80 m2 m−2) along with a correlation
coefficient of 0.37 (Figure 6). Estimating soybean PAI with HH+VV significantly
underestimated PAI > 2.5 m2 m−2.
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Figure 6. Soybeans: Estimated vs. in situ PAI for (a) HH+HV+VV, (d) HH+HV, (g) HV+VV, (j)
HH+VV polarization combinations respectively. Estimated vs. in situ WB for (b) HH+HV+VV, (e)
HH+HV, (h) HV+VV, (k) HH+VV polarization combinations respectively. Estimated vs. in situ VWC
for (c) HH+HV+VV, (f) HH+HV, (i) HV+VV, (l) HH+VV polarization combinations respectively.

During the initial vegetative stage (June 15) of soybeans, WB varied between
0.02 kg m−2 to 0.134 kg m−2 and VWC varied between 0.016 kg m−2 to 0.11 kg m−2 due
to a less dense canopy. As the crop progressed towards pod development, an increase in
both WB and VWC is evident from in situ measurements. As flowering begins, the dense
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canopy structure creates more random scattering. The retrieval results of WB and VWC
are shown in Figure 6. HV+VV provides similar performance in estimating WB and
VWC to a three polarization combination that includes the additional HH polarization
(HH+HV+VV). It is interesting to note that a higher correlation of 0.84 and lower RMSE of
0.33 kg m−2 was also observed for HV+VV. Without the HV polarization (HH+VV option),
WB and VWC significantly underestimate biophysical parameters at higher canopy values
(WB > 1 kg m−2 and VWC > 1 kg m−2).

As discussed in Table 11 the correlations obtained between the model estimated
biophysical parameters and the in situ soybean measurements are highly significant in the
majority of cases. The correlation obtained for WB and VWC using linear polarizations HH
and VV is less significant at a 95% confidence level. A very high p-value in both scenarios
indicates no significant correlation between estimated and in situ values of both of these
biophysical parameters.

Table 11. Statistical significance of correlation coefficient (ρ) between estimated and in situ biophysical
parameters at 95% confidence level for each linear polarization combinations in case of soybean.

Linear Polarization Combinations ρ p-Value

PAI

HH+HV+VV 0.83 1.17× 10−8

HH+HV 0.82 1.64× 10−8

HV+VV 0.82 1.47× 10−8

HH+VV 0.37 3.93× 10−2

WB

HH+HV+VV 0.80 3.79× 10−6

HH+HV 0.79 6.03× 10−6

HV+VV 0.84 5.91× 10−7

HH+VV 0.22 3.18× 10−1

VWC

HH+HV+VV 0.79 7.30× 10−6

HH+HV 0.79 6.07× 10−6

HV+VV 0.77 1.87× 10−5

HH+VV 0.20 3.53× 10−1

As presented in Table 12, GPR outperforms SVR and RFR while retrieving soybean PAI
with HV+VV. Relative to RFR, the RMSE for GPR is decreased by 36.11% and is reduced by
42.97% when compared to SVR. In addition, the correlation between estimated and in situ
PAI is higher for GPR (ρ = 0.82) relative to SVR (ρ = 0.57) and RFR (ρ = 0.62). In contrast,
when retrieving wet biomass and water content of soybeans, the three regression algorithms
performed similarly. A higher coefficient of determination of (R2 = 0.70) quantifies the
ability of a GPR model to fit the observed data better than SVR (R2 = 0.60) and RFR
(R2 = 0.57).

Table 12. Comparing performance of GPR, SVR and RFR for estimating biophysical variables of
soybeans using the dual-pol (HV+VV) combination. Statistical measures of GPR are highlighted in
bold for each biophysical parameter.

Algorithm RMSE MAE ρ R2

PAI
GPR 0.69 0.56 0.82 0.67
SVR 1.21 0.85 0.57 0.32
RFR 1.08 0.82 0.62 0.39

WB
GPR 0.33 0.21 0.84 0.70
SVR 0.35 0.22 0.78 0.60
RFR 0.35 0.22 0.76 0.57

VWC
GPR 0.29 0.18 0.77 0.59
SVR 0.31 0.19 0.77 0.59
RFR 0.30 0.19 0.76 0.58
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4.4. Limitations and Scope for Future Research

Until now, biophysical parameters like Leaf Chlorophyll content (LCC), Canopy
Chlorophyll Content (CCC), and LAI have been retrieved utilizing Gaussian Process
Regression (GPR) from optical datasets. The reflectance information obtained from optical
datasets is sensitive towards the biochemical properties of the targets but not to their
geometry. On the other hand, SAR data which uses microwave signals are sensitive to
the dielectric and geometry of the targets. In this aspect, the present study aims to utilize
backscatter information obtained from SAR data to retrieve the biophysical parameters of
three crops. A probabilistic approach can help overcome the limitations of explainability
and interpretability of machine learning models. Thus, proposing a GPR model has
been considered for the present research to retrieve the continuous natured biophysical
parameters. It is evident from the results that GPR shows promising performance in
achieving the intended objective.

Despite the promising performances of GPR, we should not overlook its certain
underlying limitations. The standard GPR model does suffer from the scalability problem
towards large datasets. As the computational complexity of GPR increases by O(n3) so
how the proposed GPR model performs in retrieving biophysical parameters for a much
larger dataset will be worth researching. Another important observation in the case of
Gaussian Processes is that uncertainty among test data is higher in those regions where
training data is low. During the late maturation to harvest stage, change in biomass and
PAI is not significant, so during these periods, SAR response saturates. In that aspect, GPR
may show high uncertainty while predicting test data belonging to those phenological
periods.

In the present study, backscatter intensities from the 3× 3 polarimetric covariance
matrix C have been utilized to retrieve the biophysical parameters of three crops. It will be
worth noting that several polarimetric descriptors do exist in the literature, which can be
utilized as features along with the backscatter coefficients and their ratios to retrieve these
biophysical parameters. However, in such a scenario, finding the most relevant feature
of a GPR model utilizing an isotropic RBF kernel may not be enough. Instead of using a
single lengthscale across all the input features, separate length scales for each dimension
can help us understand the importance of each feature in retrieving the target parameters.
This approach is called Automatic Relevance Determination (ARD).

5. Conclusions

Considering the existing and proposed Synthetic Aperture Radar (SAR) satellite
missions end users have access to an increasing volume of SAR data. These sensors
will become an essential source of information to support large-scale crop monitoring
if one can develop methods to estimate indicators of crop productivity throughout the
cropping season accurately. Biophysical parameters including Wet-Biomass (WB), Plant
Area Index (PAI), and Vegetation Water Content (VWC) are indicative of crop development,
productivity, and health. While various physical and semi-empirical models have been
developed to retrieve these biophysical parameters, these approaches are computationally
expensive, and retrievals can be ill-posed, limiting their application. In comparison,
machine learning regression algorithms have proven robust given sufficient training. These
approaches are computationally less expensive and are more stable.

In this study, a GPR model has been proposed to retrieve three biophysical parameters,
PAI, WB, and VWC, for three annual crops, namely wheat, canola, and soybeans. Data
collected during the Soil Moisture Active Passive Validation Experiment 2016, held in
Manitoba (Canada) (SMAPVEX16-MB) and RADARSAT-2 full polarimetric data, were used
to calibrate and validate the GPR model. As a kernel-based method, the model utilizes
a kernel to quantify similarity within sample points. The kernel is a linear combination
of a linear and a non-linear (RBF) kernel. Being a probabilistic approach, GPR gives us a
mean estimate of the target biophysical parameter and provides us with an uncertainty
estimate (predictive variance). The self explainable kernel helps capture the linear and
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non-linear relationship between the backscatter coefficients and the biophysical parameters.
A combination of HH+HV+VV had the highest correlation and lowest error estimates
from the results while retrieving all crop parameters. Excluding the HH polarization,
a dual-pol combination of HV+VV also showed promising results. GPR successfully
retrieves the three crops’ biophysical parameters, delivering higher accuracies than other
regression algorithms, specifically Support Vector Regression (SVR) and Random Forest
Regression (RFR).

This research indicates that a Gaussian Process Regression model can retrieve
biophysical parameters for annual crops like wheat, canola, and soybeans. This algorithm
holds considerable promise for monitoring crop development using SAR data. Of particular
interest, crop biophysical parameters can be estimated using two linear polarizations,
as long as one of those polarizations is the HV cross-polarization. Given these results,
the GPR model will be of interest to upcoming dual-pol SAR missions such as the NASA-
ISRO Synthetic Aperture Radar Mission (NISAR) and the existing Copernicus Sentinel-1
SAR missions to map and monitor crop production.
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Appendix A

Table A1. Temporal variations of Plant Area Index (PAI) (m2 m−2) , Wet-Biomass (WB) (kg m−2) and
Vegetation Water Content (VWC) (kg m−2) for wheat, canola and soybean at different dates.

15 June 23 June 9 July 17 July

Wheat

Phenology Tillering stage Booting stage Early flowering stage Early dough stage
PAI 0.83–5.20 2.95–7.70 4.37–7.72 5.13–8.80
WB 0.43–3.45 0.78–3.59 2.02–5.90 1.51–4.26

VWC 0.36–2.99 0.67–3.01 0.97–4.86 0.97–3.05

Canola

Phenology Leaf development Inflorescence emergence Flowering stage Pod development
PAI 0.39–1.79 0.16–6.12 1.82–6.35 3.64–8.33
WB 0.21–1.99 0.78–3.79 1.80–5.03 2.60–4.47

VWC 0.20–1.84 0.71–3.51 1.55–4.35 2.24–3.90

Soybean

Phenology Leaf development Fifth trifoliate stage Pod development Flowering stage
PAI 0.07–0.94 0.01–0.55 0.27–5.70 0.25–4.18
WB 0.02–0.13 0.03–0.42 0.07–1.45 0.13–1.63

VWC 0.01–0.11 0.03–0.36 0.06–1.26 0.11–1.33
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