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Abstract: Active fires are devastating natural disasters that cause socio-economical damage across
the globe. The detection and mapping of these disasters require efficient tools, scientific methods,
and reliable observations. Satellite images have been widely used for active fire detection (AFD)
during the past years due to their nearly global coverage. However, accurate AFD and mapping
in satellite imagery is still a challenging task in the remote sensing community, which mainly uses
traditional methods. Deep learning (DL) methods have recently yielded outstanding results in remote
sensing applications. Nevertheless, less attention has been given to them for AFD in satellite imagery.
This study presented a deep convolutional neural network (CNN) “MultiScale-Net” for AFD in
Landsat-8 datasets at the pixel level. The proposed network had two main characteristics: (1) several
convolution kernels with multiple sizes, and (2) dilated convolution layers (DCLs) with various
dilation rates. Moreover, this paper suggested an innovative Active Fire Index (AFI) for AFD. AFI
was added to the network inputs consisting of the SWIR2, SWIR1, and Blue bands to improve the
performance of the MultiScale-Net. In an ablation analysis, three different scenarios were designed
for multi-size kernels, dilation rates, and input variables individually, resulting in 27 distinct models.
The quantitative results indicated that the model with AFI-SWIR2-SWIR1-Blue as the input variables,
using multiple kernels of sizes 3 × 3, 5 × 5, and 7 × 7 simultaneously, and a dilation rate of 2,
achieved the highest F1-score and IoU of 91.62% and 84.54%, respectively. Stacking AFI with the three
Landsat-8 bands led to fewer false negative (FN) pixels. Furthermore, our qualitative assessment
revealed that these models could detect single fire pixels detached from the large fire zones by taking
advantage of multi-size kernels. Overall, the MultiScale-Net met expectations in detecting fires of
varying sizes and shapes over challenging test samples.

Keywords: active fire; deep learning; active fire index; multi-size kernels; Landsat-8 imagery

1. Introduction

Fire is one of the most devastating natural hazards, causing significant damage to
human property and infrastructure [1]. In recent years, forest fires have had irreversible
effects around the world, such as the recent fires in Canada (2016) [2], Australia (2019) [3],
and California (2020) [4]. According to the Food and Agriculture Organization (FAO)
report, in 2015 about 98 million hectares of forest were affected by fire. These forests were
mainly in tropical regions, where fire engulfed at least 4% of the total forest area [5]. In
2018, a massive fire in California covering approximately 18,000 km2 killed 100 people and
caused financial damage worth nearly USD 2 billion [6]. The accident happened again
in 2020 in the same state, and burned approximately 17,000 km2 [7]. Such catastrophic
and deadly fires frequently occur around the world. One of the key ways to control and
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monitor fires is to pinpoint their exact location, which can play a significant role in fire
extinguishing operations. Using images/videos from terrestrial/aerial/satellite systems
and implementing computer vision techniques such as image/video processing can be one
of the best means for mapping fire extent [8–10].

Terrestrial-based systems are appropriate tools for early fire detection, which use
optical and infrared (IR) cameras [11]. However, due to these systems’ lack of global
coverage, satellite datasets covering almost the entire Earth to monitor active fires are one
of the best alternative options. Various spaceborne sensors have been used for AFD [12].
In the past decade, the earth observations (EO) from two multispectral imaging sensors,
namely a moderate resolution imaging spectroradiometer (MODIS) and a visible infrared
imaging radiometer suite (VIIRS), have been frequently employed for AFD [13]. The VIIRS
sensor on the Suomi National Polar-orbiting Partnership (S-NPP) satellite incorporates
fire-sensitive channels, including a dual-gain high-saturation temperature channel at 4 µm,
enabling AFD and characterization [14]. For example, Schroeder et al. [15] implemented and
validated an algorithm for AFD using middle/thermal IR (M/TIR) bands of VIIRS images
with 375 m of spatial resolution. Their results showed that VIIRS 375 m datasets could
provide more coherent fire maps than MODIS 1 km fire products. Terra and Aqua satellites
carry MODIS sensors as part of the National Aeronautics Space Administration (NASA) EO
systems. These sensors have a revisit time of 1–2 days and capture data in 36 spectral bands
ranging in wavelengths from 0.4 to 14.4 µm and at varying spatial resolutions (2 bands
at 250 m, 5 bands at 500 m, and 29 bands at 1 km) [16]. Thanks to their daily temporal
resolution, they play a crucial role in thermal sensing of land surface [17] and AFD [18]. For
instance, Giglio et al. [17] validated the Collection 5 and 6 Terra MODIS fire products. They
deliberated the modifications of Collection 6 compared to its previous version. Additionally,
Parto et al. [18] employed a change detection approach to investigate the significant changes
in forest features using the MODIS Normalized Difference Vegetation Index (NDVI) and
thermal bands for real-time fire detection. Moreover, He et al. [19] proposed a method to
eliminate the solar radiation and thermal path radiance received by the MODIS observations
in the MIR band. The results demonstrated a reduction in errors associated with AFD.

Geostationary satellites are another widely used EO source for AFD and monitor-
ing [20]. They have a high temporal but low spatial resolution. Himawari-8, a new
generation of Japanese geostationary weather satellites operated by the Japan Meteoro-
logical Agency, has been used for AFD tasks. For example, Jang et al. [21] proposed a
threshold-based forest fire detection algorithm based on Himawari-8 datasets over South
Korea. Forest fire candidate pixels were initially identified, then the false alarms were
removed using the random forest model followed by a post-processing phase. The results
indicated the better capability of the suggested framework against the previous methods.
Furthermore, Xie et al. [22] presented a spatiotemporal contextual model (STCM) for forest
fire detection using Himawari-8 data. The results revealed the higher accuracy of the
proposed method compared to the traditional contextual and temporal algorithms.

One of the essential purposes of fire control is to detect the accurate location and extent
of the fire. Despite the widespread use of the abovementioned satellites, they have a coarse
spatial resolution that causes uncertainty in AFD. Thus, spaceborne sensors with a higher
spatial resolution, such as Landsat-8, should be used. Recently, many algorithms have
been developed for AFD using Landsat-8 images [23]. AFD algorithms for the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor were the basis
for developing the first fire detection methods in Landsat images [24]. In Landsat images,
the probability of saturation of the pixels around the fire is relatively high, especially where
highly reflective surfaces such as buildings are present. However, this problem was partially
offset in Landsat-8 [15]. In the last five years, three AFD algorithms have been developed
by Schroeder et al. [25], Murphy et al. [26], and Kumar et al. [24], yielding satisfactory
results. The first two used thresholds on the reflectance of the SWIR1, SWIR2, and NIR
bands, separately considering the day and night data. In contrast, the third algorithm
used the Red band instead of the NIR. It should also be noted that these thresholds were
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determined with a series of statistical tests on a large number of fire pixels used to detect
pixels with a very high fire probability.

Machine learning methods, in particular deep learning (DL), have been successfully
applied in solving challenging tasks such as regression and classification problems [27,28],
object detection [29], and semantic segmentation [30]. Many instances of implementing
DL methods for AFD in unmanned aerial vehicles (UAVs) and terrestrial datasets [13].
However, only a few studies have focused on using these methods for AFD in satellite
imagery [31,32]. Most previous AFD algorithms in satellite imagery have been based
on fixed thresholds, contextual methods, multi-temporal approaches, and non-thermal
IR methods using multi-sensor data [12]. These methods’ main problem is their low
generalizability in complex terrain and illumination conditions. One of the main reasons
for not using DL methods for AFD in satellite imagery in previous studies was the lack of a
suitable dataset.

Thanks to the release of the large-scale dataset for AFD by de Almeida et al. [33], this
paper proposed a deep encoder–decoder network, namely “MultiScale-Net”, for pixel-level
localization of active fire in Landsat-8 imagery. This study developed a high-performance
CNN architecture for AFD to identify individual fire pixels and even single ones detached
from a large fire zone. In MultiScale-Net, we used convolution kernels with different sizes
and dilated convolution layers (DCLs) with varying dilation rates to solve the challenges
associated with changing the fire’s size and shape. The contributions of the present study
are as follows:

1. Developing a novel DL network for multi-scale AFD based on an efficient, sophisti-
cated CNN architecture.

2. Introducing a new index for AFD to improve MultiScale-Net performance in extracting
high-level features.

3. Using convolution layers with multi-size kernels and different dilation rates to facili-
tate multi-scale AFD.

4. Assessing the performance of the proposed network using test samples with some chal-
lenges such as multi-size/shape fires (e.g., large fire zones alongside strip-shaped/single-
pixel fires).

2. Remote Sensing Imagery
2.1. Landsat-8 Active Fire Dataset

A new large-scale dataset for AFD was recently published by De Almeida et al. [33].
This dataset contained image patches of 256 × 256 pixels, depicting the wildfires in several
locations around the world, and was extracted from the Landsat-8 images from August
to September 2020. The patches are 10-band, 16-bit TIFF images, with channels b1 to b11
excluding b8 (panchromatic channel) with 30 m of spatial resolution. Since all these patches
have the same size, i.e., 256 × 256 pixels, the size of each image patch on the ground is
7680 by 7680 m. Three algorithms explained in detail in the references [24–26] produced
the corresponding ground truth datasets. We selected the intersection between the three
generated ground truths. As suggested in [33], we only used the SWIR2, SWIR1, and Blue
bands in this study (Figure 1).

There was a significant class imbalance between fire and non-fire pixels in the dataset,
with approximately 99% of the pixels being non-fire. We chose patches with the highest fire
pixels compared to the most imbalanced samples in the dataset. Finally, 144 image patches
were selected from the available dataset and split into 70% for training and validation
(100 image patches) and 30% for testing (44 image patches). Test samples were selected
considering the most significant challenges of AFD, such as changes in the size and shape
of the fire in the image scene, the presence of clouds, and single fire pixels detached from
the fire area. The training samples were from all five continents (Asia, Europe, Africa,
Oceania, and the Americas) to adapt MultiScale-Net with different geographical, climatic,
atmospheric, and illumination conditions.
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Figure 1. (a–c) RGB, (b–d) False color (SWIR2, SWIR1, and Blue) of Landsat-8 images from the
reference dataset.

2.2. Data Augmentation

Data augmentation is essential for training a DL network to improve generalization
and reduce overfitting, especially when labeled or training data is limited [34]. There
are many ways to reinforce training samples, one of the most popular of which is the
flipping method. Using this method, the network will become resistant to the changes in
direction and rotation. This augmentation method is easy to implement and has proven
helpful in datasets such as CIFAR-10 and ImageNet [35]. In this study, we used horizontal,
vertical, and horizontal-vertical flipping. As a result, the training samples quadrupled to
400 image patches.

3. Deep Multiple Kernel Learning

The proposed architecture is an efficient CNN for spectral-spatial feature extraction
from remote sensing images. Moreover, an innovative index was used to extract semantic
features related to active fire in the network inputs. A simple data augmentation technique
was also used to compensate for the lack of training samples. According to Table 1, several
configurations were considered based on different network parameters. For example,
B3K35D1 represents a case where we used three bands, two kernels with sizes 3 and 5, and
a dilation rate of 1. In total, we defined 27 different configurations. Figure 2 shows the
scenarios experimented on within this study.

Table 1. Different architecture parameters to configure MultiScale-Net.

Configuration Parameters Input Values Abbreviation

Input feature(s)
SWIR2 + SWIR1 + Blue + AFI B4

SWIR2 + SWIR1 + Blue B3
AFI B1

Kernel size
(3, 3) K3

(3, 3) + (5, 5) K35
(3, 3) + (5, 5) + (7, 7) K357

Dilation rate
(1, 1) + (1, 1) D1
(1, 1) + (2, 2) D2
(1, 1) + (3, 3) D3
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3.1. Active Fire Index

Fire detection methods are mainly based on the analysis of thermal and spectral bands.
Previous research [25] shows that Band 7 of the Landsat-8 sensor (i.e., SWIR2) is sensitive
to fire radiation. In this study, an index for AFD was proposed, namely Active Fire Index
(AFI), which can be computed using Equation (1).

AFI =
ρ7

ρ2
(1)

where ρ7 and ρ2 represent the SWIR2 and Blue values in Landsat-8 images, respectively.
According to Equation (1), three essential characteristics of AFI can be stated. Firstly, it
is appropriate to highlight the fire from the background (see Figure 3) due to its high
reflectance in SWIR2 and relatively low reflectance in the Blue spectral ranges. The second
characteristic is removing smoke, a disturbing factor in AFD often present in the fire region
in satellite images. Smoke has a high reflectance in the Blue spectral range while slightly
reflecting in the SWIR2 band [36]. This difference in spectral behavior causes the AFI
value to be low in the smoke-contaminated pixels (Figure 3, third row). The third is the
removal of possibly present clouds in the image scene. The presence of clouds is one
of the challenging problems in AFD [37]. The most common method to deal with this
problem is cloud masking. Improper cloud masking can hide actual fire pixels at the cloud
boundary [38]. Due to the higher reflectance of the cloud in the visible spectral region
compared to SWIR2 [39], the AFI value is low in the cloud-contaminated pixels (Figure 4).
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Although the proposed index is computationally straightforward, it has an excellent
performance in separating the active fire from the background (see Figure 3). However,
it has an undesirable performance on a few occasions, e.g., when bright non-fire objects
have a high reflectance in the SWIR2 and a low reflectance in the Blue spectra (Figure 4,
second row).

3.2. Network Architecture

The proposed method’s architecture is a fully convolutional framework in which
the output is a pixel-by-pixel map with the same size as the input image. The proposed
network differs from previous AFD architectures in satellite imagery [33], which used a
simple U-Net. In the proposed architecture, a combination of convolution features with
different kernel sizes was implemented for improving the accuracy of AFD. The idea was to
use features extracted at various scales from multi-size kernels to provide local and general
properties. The feature maps of the lower-level encoder layers retained more spatial details,
leading to more precise boundaries. Higher-level features were extracted in the deeper
convolution layers. Subsequently, the max-pooling layers down-sampled the extracted
feature maps in the encoder part.

In contrast, the decoder part up-sampled the feature maps by deconvolution layers.
Concatenation links transferred the extracted feature maps to the corresponding decoder
from the encoder. This operation resulted in the generation of more meaningful features.
In addition to kernels with different sizes, DCLs were employed to extract multi-scale
fires in conditions with variable sizes in the image scene. Dilated convolutions add a new
parameter to convolutional layers known as the dilation rate. This parameter introduces
a distance between values in a convolution kernel. A 3 × 3 kernel with a dilation rate
of 2 has the same field of view as a 5 × 5 kernel but removes every other column and
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row from a 5 × 5 kernel. In this study, dilation rates of 1, 2, and 3 were tested in the
second convolution layer in each block (the dilation rate in the first layer of each block was
considered constant 1). Our proposed method has the following characteristics:

1. The proposed DL architecture has a network depth of 5 (network length).
2. It takes advantage of a new approach that includes convolutional kernels with differ-

ent sizes for the training process.
3. DCLs with different dilation rates are employed.
4. Batch normalization and dropout are used, which play an essential role in preventing

over-fitting [40].
5. A binary cross-entropy loss function is utilized. Moreover, the “glorot_uniform”

method initializes the network [41].

Figure 5 shows one of the most complex configurations used in MultisScale-Net.
Different configurations based on using DCLs with different dilation rates in the second
layer, simultaneous employment of kernels with different sizes, and different scenarios of
network input variables were examined (see Figure 2).

The proposed network consists of an encoder part and a decoder part. The encoder
part carries out five convolution blocks. It consists of repeated applications of two 3 × 3,
5 × 5, 7 × 7 convolutional layers with two paddings. Each convolution follows a batch
normalization (BN) layer and rectified linear units (ReLU) activation function. Moreover,
each convolution block is followed by 2 × 2 max-pooling for down-sampling with the
stride of 2. The number of feature channels is doubled after each block. The decoder
branch corresponds to the encoder and consists of four transposed convolution layers.
Every block in the decoder branch consists of a 3 × 3 deconvolution with the stride of 2,
a concatenation with the corresponding feature maps from the encoder, and two 3 × 3,
5 × 5, 7 × 7 convolutions followed by ReLU activation and BN layer. The number of
feature channels is halved after each up-sampling process. A 1 × 1 convolution with a
Softmax activation function is employed as a classifier at the final layer, followed by a
binary cross-entropy (BCE) loss function.

The BCE loss function compares each predicted probability with the actual class’s out-
put, 0 or 1 (in binary classification). The calculated score then determines the probabilities
based on the distance from the expected value. This score shows how the predicted values
are close to or far from the actual value. In order to minimize this score in the training
process, one should update the network parameters with high accuracy [39]. For binary
segmentation, the BCE is used, which is defined as follows:

BCE(y, ŷ) = − 1
n

n

∑
i=1

(yi log(ŷ) + (1 − yi) log(1 − ŷ)) (2)

that ŷ is the probability of fire class, and 1 − ŷ is the probability of non-fire class. Then
denotes the number of pixels, and yi is the pixel label.

All scenarios were designed and trained using the Keras library on the Google Colab
platform, utilizing a Tesla T4 GPU with a batch size of 15 for 200 epochs. Moreover, the
adaptive moment estimation (Adam) method was used to optimize the trainable network
parameters. In this method, the learning rate, beta-1, beta-2, and epsilon were chosen as
10−4, 0.9, 0.999, and 10−8, respectively.
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Table 2 shows the output size, kernel sizes, activation functions, and different types
of concatenations in the encoder and decoder part of MultiScale-Net, respectively. The
MultiScale-Net employs three types of concatenations that combine features with high
abstraction ability, and they are as follows:

• Intra-block concatenations fuse feature maps from the first and second convolution
layers with the same kernel size in each block.

• Inter-block concatenations fuse feature maps generated by convolution layers with
varying kernel sizes from distinct blocks.

• Inter-branch concatenations fuse feature maps from the encoder and the decoders’
transposed convolution blocks.

Table 2. MultiScale-Net configuration.

Encoder Decoder

Layer Output Layer Output

Conv. 3 × 3 + BN + ReLU 256 × 256 × 16
Transposed Conv. 3 × 3

Inter-branch Concatenation
32 × 32 × 128
32 × 32 × 896

Conv. 3 × 3 + BN 256 × 256 × 16
Intra-block Concatenation + ReLU 256 × 256 × 32

Conv. 5 × 5 + BN + ReLU 256 × 256 × 16 Conv. 3 × 3 + BN + ReLU 32 × 32 × 128
Conv. 5 × 5 + BN 256 × 256 × 16 Conv. 3 × 3 + BN 32 × 32 × 128

Intra-block Concatenation + ReLU 256 × 256 × 32 Intra-block Concatenation + ReLU 32 × 32 × 256

Conv. 7 × 7 + BN + ReLU 256 × 256 × 16 Conv. 5 × 5 + BN + ReLU 32 × 32 × 128
Conv. 7 × 7 + BN 256 × 256 × 16 Conv. 5 × 5 + BN 32 × 32 × 128

Intra-block Concatenation + ReLU 256 × 256 × 32 Intra-block Concatenation + ReLU 32 × 32 × 256

Inter-block Concatenation
Max-pooling. 2 × 2

256 × 256 × 96
128 × 128 × 96

Conv. 7 × 7 + BN + ReLU 32 × 32 × 128
Conv. 7 × 7 + BN 32 × 32 × 128

Intra-block Concatenation + ReLU 32 × 32 × 256

Inter-block Concatenation 32 × 32 × 768

Conv. 3 × 3 + BN + ReLU 128 × 128 × 32
Transposed Conv. 3 × 3

Inter-branch Concatenation
64 × 64 × 64

64 × 64 × 448
Conv. 3 × 3 + BN 128 × 128 × 32

Intra-block Concatenation + ReLU 128 × 128 × 64

Conv. 5 × 5 + BN + ReLU 128 × 128 × 32 Conv. 3 × 3 + BN + ReLU 64 × 64 × 64
Conv. 5 × 5 + BN 128 × 128 × 32 Conv. 3 × 3 + BN 64 × 64 × 64

Intra-block Concatenation + ReLU 128 × 128 × 64 Intra-block Concatenation + ReLU 64 × 64 × 128

Conv. 7 × 7 + BN + ReLU 128 × 128 × 32 Conv. 5 × 5 + BN + ReLU 64 × 64 × 64
Conv. 7 × 7 + BN 128 × 128 × 32 Conv. 5 × 5 + BN 64 × 64 × 64

Intra-block Concatenation + ReLU 128 × 128 × 64 Intra-block Concatenation + ReLU 64 × 64 × 128

Inter-block Concatenation
Max-pooling. 2 × 2

128 × 128 × 192
64 × 64 × 192

Conv. 7 × 7 + BN + ReLU 64 × 64 × 64
Conv. 7 × 7 + BN 64 × 64 × 64

Intra-block Concatenation + ReLU 64 × 64 × 128

Inter-block Concatenation 64 × 64 × 384

Conv. 3 × 3 + BN + ReLU 64 × 64 × 64
Transposed Conv. 3 × 3

Inter-branch Concatenation
128 × 128 × 32
128 × 128 × 224

Conv. 3 × 3 + BN 64 × 64 × 64
Intra-block Concatenation + ReLU 64 × 64 × 128

Conv. 5 × 5 + BN + ReLU 64 × 64 × 64 Conv. 3 × 3 + BN + ReLU 128 × 128 × 32
Conv. 5 × 5 + BN 64 × 64 × 64 Conv. 3 × 3 + BN 128 × 128 × 32

Intra-block Concatenation + ReLU 64 × 64 × 128 Intra-block Concatenation + ReLU 128 × 128 × 64

Conv. 7 × 7 + BN + ReLU 64 × 64 × 64 Conv. 5 × 5 + BN + ReLU 128 × 128 × 32
Conv. 7 × 7 + BN 64 × 64 × 64 Conv. 5 × 5 + BN 128 × 128 × 32

Intra-block Concatenation + ReLU 64 × 64 × 128 Intra-block Concatenation + ReLU 128 × 128 × 64
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Table 2. Cont.

Encoder Decoder

Layer Output Layer Output

Inter-block Concatenation
Max-pooling. 2 × 2

64 × 64 × 384
32 × 32 × 384

Conv. 7 × 7 + BN + ReLU 128 × 128 × 32
Conv. 7 × 7 + BN 128 × 128 × 32

Intra-block Concatenation + ReLU 128 × 128 × 64

Inter-block Concatenation 128 × 128 × 192

Conv. 3 × 3 + BN + ReLU 32 × 32 × 128
Transposed Conv. 3 × 3

Inter-branch Concatenation
256 × 256 × 16
256 × 256 × 112

Conv. 3 × 3 + BN 32 × 32 × 128
Intra-block Concatenation + ReLU 32 × 32 × 256

Conv. 5 × 5 + BN + ReLU 32 × 32 × 128 Conv. 3 × 3 + BN + ReLU 256 × 256 × 16
Conv. 5 × 5 + BN 32 × 32 × 128 Conv. 3 × 3 + BN 256 × 256 × 16

Intra-block Concatenation + ReLU 32 × 32 × 256 Intra-block Concatenation + ReLU 256 × 256 × 32

Conv. 7 × 7 + BN + ReLU 32 × 32 × 128 Conv. 5 × 5 + BN + ReLU 256 × 256 × 16
Conv. 7 × 7 + BN 32 × 32 × 128 Conv. 5 × 5 + BN 256 × 256 × 16

Intra-block Concatenation + ReLU 32 × 32 × 256 Intra-block Concatenation + ReLU 256 × 256 × 32

Inter-block Concatenation
Max-pooling. 2 × 2

32 × 32 × 768
16 × 16 × 768

Conv. 7 × 7 + BN + ReLU 256 × 256 × 16
Conv. 7 × 7 + BN 256 × 256 × 16

Intra-block Concatenation + ReLU 256 × 256 × 32

Inter-block Concatenation
Dropout

256 × 256 × 96
256 × 256 × 96

Conv. 3 × 3 + BN + ReLU 16 × 16 × 256

Conv. 1 × 1 + Softmax 256 × 256 × 2

Conv. 3 × 3 + BN 16 × 16 × 256
Intra-block Concatenation + ReLU 16 × 16 × 512

Conv. 5 × 5 + BN + ReLU 16 × 16 × 256
Conv. 5 × 5 + BN 16 × 16 × 256

Intra-block Concatenation + ReLU 16 × 16 × 512

Conv. 7 × 7 + BN + ReLU 16 × 16 × 256
Conv. 7 × 7 + BN 16 × 16 × 256

Intra-block Concatenation + ReLU 16 × 16 × 512

Inter-block Concatenation 16 × 16 × 1536

Total number of trainable parameters: ~45 M

3.3. Accuracy Metrics

In the field of AFD, due to the destructive nature of fire, determining the exact extent
of the fire and recognizing the fire pixels in Landsat-8 satellite images is essential. Therefore,
the criteria used to assess accuracy are very important. In this study, four accuracy criteria—
Precision (P), Sensitivity (S), F1-score (F), and intersection over union (IoU or I)—were
considered. The precision, also called the correctness in the remote sensing literature, is
the ratio of predicted fire pixels that are actual fire. The sensitivity, also called recall, is the
ratio of actual fire pixels correctly detected. The F1-score is defined as the harmonic mean
of the two criteria, precision and sensitivity, the optimality of which indicates the balance
between these two criteria [42]. However, due to the possibility of imbalance between fire
and non-fire classes, additional criteria need to be calculated to understand the model’s
actual performance, as precision can be misleading in an unbalanced dataset. Therefore,
we also used IoU, known as Jaccard Index (JI) [43]. The IoU metric is a standard criterion
for semantic segmentation, which indicates the ratio of correctly segmented pixels as fire
to total numbers of ground reference pixels. The criteria described above can be obtained
from the following equations (TP: true positive, FP: false positive, and FN: false negative):

Precision =
TP

TP + FP
(3)
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Sensitivity =
TP

TP + FN
(4)

F1-score = 2 × (Precision × Sensitivity)
(Precision + Sensitivity)

(5)

IoU =
TP

TP + FP + FN
(6)

where TP represents the number of fire pixels in the fire class, FP represents the number
of fire pixels in the non-fire class, and FN indicates the number of non-fire pixels in the
fire class.

4. Results and Discussion

In this study, due to the usage of many different configurations for AFD, the accuracy
criteria in different scenarios were first examined. Then, the visual outputs of the best
models were displayed.

4.1. Accuracy Assessment of AFD

The statistical accuracy assessment of the AFD with 27 models using four accuracy
metrics is summarized in Table 3. Based on the input variables (i.e., B1, B3, and B4) that are
mentioned in Table 1, we evaluated the accuracy criteria in three scenarios:

• B3 scenario: The highest precision, sensitivity, F1-score, and IoU are associated with the
K3D1 (P = 95.71%), K35D3 (S = 93.93%), K35D1 (F = 91.45%), and K35D1 (I = 84.24%)
models, respectively, in this scenario.

• B4 scenario: In this scenario, the best precision, sensitivity, F1-score, and IoU are related
to the K3D2 (P = 92.51%), K35D1 (S = 92.52%), K357D2 (F = 91.62%), and K357D2
(I = 84.54%) models, respectively.

• B1 scenario: In this scenario, the best precision, sensitivity, F1-score, and IoU are asso-
ciated with the K35D1 (P = 94.5%), K357D2 (S = 92.49%), K357D2 (F = 91.11%), and
K357D2 (I = 83.67%) models, respectively.

Table 3. Quantitative results of AFD in all scenarios by MultiScale-Net over test samples (P: precision,
S: sensitivity, F: F1-score, and I: IoU). The highest accuracy metrics of each scenario (B3, B1, and B4) are
in bold and the overall best results are underlined.

Configuration Scenarios Accuracy Metrics (%)

Input Kernel Size Dilation
Rate P S F I

B3

K3
D1 95.71 86.16 90.68 82.96
D2 89.48 92.18 90.81 83.17
D3 93.42 86.97 90.08 81.95

K35
D1 91.06 91.83 91.45 84.24
D2 93.65 86.89 90.14 82.06
D3 88.02 93.93 90.87 83.28

K357
D1 92.26 89.78 91 83.49
D2 94.01 87.08 90.41 82.51
D3 95.29 84.05 89.32 80.7

Average 92.54 88.76 90.53 82.71
Best Model K3D1 K35D3 K35D1 K35D1
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Table 3. Cont.

Configuration Scenarios Accuracy Metrics (%)

Input Kernel Size Dilation
Rate P S F I

B1

K3
D1 93.25 85.35 89.12 80.38
D2 87.8 90.04 88.91 80.04
D3 90.58 88.53 89.54 81.07

K35
D1 94.5 83.42 88.61 79.56
D2 91.77 89.25 90.49 82.64
D3 93.63 84.54 88.85 79.95

K357
D1 93.59 85.22 89.21 80.52
D2 89.76 92.49 91.11 83.67
D3 92.63 80.21 85.97 75.4

Average 91.94 86.56 89.09 80.35
Best Model K35D1 K357D2 K357D2 K357D2

B4

K3
D1 91 89.56 90.27 82.27
D2 92.51 87.96 90.18 82.12
D3 92.05 84.15 87.92 78.54

K35
D1 89.95 92.52 91.22 83.86
D2 92.49 88.92 90.67 82.93
D3 92.18 89.05 90.59 82.79

K357
D1 90.51 92.39 91.44 84.23
D2 91.72 91.52 91.62 84.54
D3 91.63 90.91 91.27 83.94

Average 91.56 89.66 90.58 82.79
Best Model K3D2 K35D1 K357D2 K357D2

These statistical results show that the proposed method extracts and integrates infor-
mative high-level features from the network inputs and thus produces fire masks that are
very similar to ground truth in all scenarios. The simultaneous use of kernels with different
sizes in MultiScale-Net has resulted in satisfactory consequences because ten models used
multi-size kernels out of the top 12 models. Moreover, dilation rates of 1 and 2 had better
impacts than 3. In other words, eleven models out of the top 12 models used dilation rates
of 1 or 2. Further analysis about the influence of multi-size kernels and dilation rate in AFD
by MultiScale-Net are assessed in Section 4.5.

4.2. Qualitative Evaluation of MultiScale-Net

According to Equation (6), the IoU is equal to 1 if both FP and FN are equal to zero.
In other words, the DL network should not have any misdetection. Therefore, IoU is a
strict metric, and for visual output maps, the models with the highest IoU were selected
(i.e., B1K357D2, B3K35D1, and B4K357D2). The binary output maps of the selected models
are shown in Figure 6. All three models have detected active fire locations with relatively
satisfactory accuracy. There is no significant difference between their outputs. The slight
differences were frequently seen in locations where the extent of the fire ranges from a wide
area to a single pixel. In such circumstances, the B4K357D2 outperformed the other models,
and the number of FNs in this model’s outputs was reduced (e.g., samples (a), (i), and (j) in
Figure 6). Furthermore, all three models chosen from the MultiScale-Net perform better in
the situation of fire strips than single-pixels detached from the fire zones (e.g., samples (d),
(e), and (h) in Figure 6). However, the MultiScale-Net is robust enough to alter the size and
shape of the fire in the image scene.
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model generated the closest map to the ground truth, although there was a gap between 
the two fire zones in the other two cases. 

Figure 6. The results of AFD using the three best models of MultiScale-Net for some challenging test
samples (a–j). White and black pixels indicate the TP and TN, respectively. Red pixels indicate the
FN, and green pixels demonstrate FP. False-color: SWIR2 + SWIR1 + Blue.

The sample (j) (Figure 6) had more visual distinction between fire and background than
the other samples, with fewer fire-like objects in the image scene. The number of FPs in this
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sample’s output map of B1K357D2, B3K35D1, and B4K357D2 was 3, 2, and 0, respectively.
In contrast, all three models’ output maps contained many FN pixels. Therefore, it can be
argued that, while decreasing the complexity of image conditions for AFD has resulted in
fewer false alarms (i.e., FP pixels), it has also resulted in the MultiScale-Net being negligent.
Many fire pixels, particularly those on the boundary between fire and background, were
misclassified as non-fire (i.e., FN pixels) by the MultiScale-Net.

Most AFD errors happened in the large fire zones’ peripheral pixels. However, in rare
situations, non-fire pixels surrounded by a large fire region were detected as fire pixels
by the MultiScale-Net (i.e., FP pixels) (sample (b) in Figure 6). This misdetection is most
likely owing to the extremely high temperature of the surrounding fire pixels (i.e., TP
pixels) and their influence on the spectral reflectance of the inside pixels (i.e., FP pixels).
In certain instances, the fire zone’s center may be incorrectly classified as non-fire (see
Figure 7). In some test samples, the pixel saturation issue was seen visually, so that it also
involved producing ground truth in this dataset (i.e., the algorithms developed in [24–26]).
In Figure 7, the digital number values of pixels in the SWIR2 band, seen in green, are
minimal or even zero in some of these pixels. As mentioned in the introduction, one of the
sensitive bands for AFD is SWIR2, and its value is zero in the green pixels in this image.
Visually, and given the fire extent in this image, these pixels might be saturated. Again, the
B4K357D2 model is more similar to the ground truth.
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Figure 7. Pixel saturation issue in AFD in Landsat-8 images.

It should be mentioned that given the nature of fire, especially its appearance in
satellite images with limited spatial resolution and the significant effect of the Earth’s
atmosphere, such visual interpretations may be accompanied by inaccuracy. Figure 8
shows minor differences between network predictions in different models in another test
sample of the dataset. The primary distinction was where the two fire zones meet. The
B4K357D2 model generated the closest map to the ground truth, although there was a gap
between the two fire zones in the other two cases.
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4.3. Qualitative Assessment of MultiScale-Net in Severe Cloud Condition

One of the significant challenges in AFD is the presence of many clouds in the image
scene. As a result, in some studies, cloud masking was applied prior to fire detection.
Moreover, the few fire pixels make it challenging to identify them in the image. In this
study, however, these challenging issues were considered (i.e., severe cloud conditions and
the low number of fire pixels) to assess the performance of the best-selected models from
the previous steps. Figure 9 shows that the two models, B4K357D2 and B3K35D1, have
the same performance and are somewhat different from ground truth, but the B1K357D2
model performs differently from the previous two models with more disagreement with
ground truth. It can be seen that it is visually difficult to distinguish the fire pixels from
non-fire, and there is much uncertainty. All three models have false positive (FP) pixels; the
pixels are detected fire but are actually non-fire in the ground truth.
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Both models, B3K35D1 and B4K357D2, detected a single pixel of fire surrounded by
multiple cloud pixels, as shown in Figure 10, while the B1K357D2 model was unable to
do so. This result demonstrates that concurrent use of multi-size kernels and selecting
the appropriate input scenario (i.e., B3 and B4) in the MultiScale-Net could extract the
spectral-spatial features associated with active fire, allowing even a single pixel of fire
surrounded by non-fire pixels to be correctly detected.
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4.4. Effect of Adding AFI to the three Landsat-8 Bands

This study presented a new indicator, AFI, for AFD in Landsat-8 imagery. The B4
scenario offered the best F1-score and IoU in which the AFI and the three Landsat-8 bands
were stacked. Of course, several kernels with different sizes or different dilation rates may
have influenced the obtained results. Thus, the results in different configurations of each
scenario (B1, B2, and B3) were averaged.

As is clear from Table 3, the highest average values for IoU, F1-score, and sensitivity
were associated with the B4 scenario. However, in the case of the precision criterion, the
highest mean value was associated with the B3 scenario. Even the average precision in the
B1 scenario was better than in B4. Since the best accuracy in B1 was about 2% higher than
in B4, the average value may have increased due to this high maximum value. Therefore,
the number of TP, FP, and FN pixels should be analyzed more attentively. As is clear from
Figure 11, the number of FN pixels in the B4 scenario was less than the other two cases,
while the number of FP pixels in the B3 scenario was less than the others. In the field
of AFD, FN pixels are fire pixels identified as non-fire by the network. FN pixels can be
dangerously misleading in terms of fire extinguishing operations. However, FP pixels are
non-fire pixels identified as fire by the network, which is considered a “false alarm” in
crisis management.

On the other hand, the addition of AFI increased the number of TP pixels in the
B4 scenario compared to the other two scenarios. The lower precision in B4 compared
with the B3 scenario was due to the higher FP pixels. Nevertheless, in criteria such as
sensitivity, where the FN pixels play the primary role instead of FPs (see Equation (4)), the
B4 scenario offered outstanding performance. Moreover, in most of the test samples, the B4
scenario was more in line with ground truth (as in Figures 7 and 8), but in severe cloudy
conditions with a few fire pixels in the scene, there was no difference in the results (as
in Figures 9 and 10). Therefore, our innovative index helped separate active fire from the
background by stacking it with three other bands (SWIR2, SWIR1, and Blue). Although
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using the AFI as the sole input of the network did not lead to better results than the other
two scenarios, it led to fewer FP pixels than in B4.
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4.5. Effect of Multi-Size Kernels and DCLs

Multi-size kernels have achieved decent results in building extraction [44] and cloud/cloud
shadow segmentation [45]. This study used this technique to extract the fire’s extent better and
discriminate between fire and other objects with high reflectivity in the SWIR2 band. According
to Table 3, all the 12 best models utilized multi-size kernels, except for two models. These
two cases had the best precision, while the other ten models had the best scores in the other
criteria. One of the test samples was selected to visually analyze the AFD performance of
the multi-size kernels. Considering a specific input variables scenario (i.e., B4) and a constant
dilation rate (i.e., D2), the MultiScale-Net output was compared in regards to multi-size kernels
(see Figure 12). One of the challenges in AFD is the change in the fire scale in an image scene
where the fire size varies from a few pixels to large clusters in different parts of the image. As
is clear in Figure 12, K357 outperformed the other two kernel scenarios (i.e., K3 and K35) and
was relatively robust to changes in fire size.

The DCLs were used in deep neural networks to extract features with different scales.
In this study, DCLs with dilation rates of 1, 2, and 3 were used to enhance AFD and deal
with the challenge associated with fire size change. As is clear from Table 3, only one of the
top models used a dilation rate of 3. Of the remaining eleven top models, six had a dilation
rate of 2, while the other five had a dilation rate of 1. However, it should be noted that
increasing the dilation rate from 1 to 2 improved accuracy in some cases but not always.

The number of FPs, FNs, and TPs in different scenarios was investigated to evaluate
further the influence of multi-size kernels and DCLs on the performance of MultiScale-Net
(Figure 13). As shown in Figure 13, K35D1, K3D1, and K35D2 had the lowest FPs in the B1,
B3, and B4 input variables scenarios, while K357D2, K35D3, and K35D1 had the lowest FNs,
respectively. As a result, it can be approximately deduced that using multi-size kernels,
particularly two kernels with sizes of 3 and 5 (i.e., K35), produced minor defects in AFD
compared to a kernel with a constant size of 3. However, in higher dilation rates (especially
rate 3), DCLs did not significantly increase AFD accuracy. Although, in some circumstances,
the dilation rate of 2 effectively reduced FPs and FNs. These outcomes agreed with the
statistical results in Section 4.1 (see Table 3).
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4.6. Comparison Analysis

Previous studies in AFD have primarily relied on thresholding certain spectral bands
and the analysis of image pixel statistics, with just a few studies employing deep CNNs due
to the lack of a massive training dataset. These networks have many trainable parameters
that require many labeled samples for proper estimation. To our knowledge, De Almeida
et al. [33] provided the first large-scale dataset for AFD. Our study’s primary distinction was
in developing a new efficient CNN architecture and experimenting with different network
input types. Our main objective was to create a high-performance CNN architecture for
AFD that is more robust against fire size and shape.

However, the main goal of their research was to prepare and publish a large-scale
dataset for AFD through DL algorithms and to demonstrate the potential of these methods
for AFD. Their study relied only on the U-Net, one of the most widespread and straight-
forward CNNs available for segmentation and classification tasks in the remote sensing
community. On the other hand, our study employed convolution kernels with multi-
ple sizes and DCLs with varied rates. The feature maps produced from the multi-scale
convolution layers were concatenated into each convolution block to provide high-level
features that allowed the MultiScale-Net to detect active fires with reasonable accuracy.
Furthermore, our proposed method was resistant to active fire size change due to multi-size
kernels and, in some instances, DCLs with varying rates. U-Net, on the other hand, lacks
all of these characteristics.

Moreover, adding the introduced AFI to the Landsat-spectral bands as inputs to the
models resulted in the extraction of more informative features and enhanced network
performance in AFD. De Almeida et al. [33] considered two scenarios for U-Net input vari-
ables, including three and ten Landsat-8 spectral bands. In contrast, our study considered
three scenarios for network input types (i.e., B1, B3, and B4). Another notable distinction
between the two studies is using different CNN training and testing scenarios. The U-Net
10c (ten bands of Landsat-8 image as input), U-Net 3c (three bands of Landsat-8 image as
input), and U-Net 3c light (similar to U-Net 3c, but with just a quarter of the number of
convolution kernels in each layer) were utilized in their study. Moreover, as ground truths
data, binary fire masks based on the three sets of conditions described in [24–26] were
employed individually, with voting and intersection between them (five types in total),
resulting in 15 different training scenarios. The output maps were also compared to the
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manually annotated data during the testing phase. However, the MultiScale-Net was eval-
uated in 27 different scenarios in terms of network architecture (such as the simultaneous
use of kernels of different sizes -K3, K35, K357- and DCLs with variable dilation rates -D1,
D2, D3-) and input variables (B1, B3, and B4).
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Figure 13. The number of FPs and FNs over all the test samples by different models with various
kernel sizes and dilation rates in MultiScale-Net.

5. Conclusions

Active fires are among the most harmful hazards impacting wildlife and ecosystems.
With the development of artificial intelligence technology, DL methods have made great
strides in computer vision and image processing. This study proposed the deep CNN
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“MultiScale-Net” for AFD using Landsat-8 imagery. The developed CNN benefited from
two significant differences compared with the early DL networks: (1) The employment of
convolution kernels with different sizes simultaneously in each convolution layer; (2) The
utilization of dilated convolution layers with different dilation rates. The main advantages
of the proposed CNN can be summarized in three aspects:

I. Geographically diverse training samples from five different study areas across the world
made the network robust against different geographical and illumination conditions.

II. MultiScale-Net showed satisfactory performance in extracting different-sized fires
in the challenging test samples.

III. This study proposed AFI, a new innovative indicator for AFD, derived from the SWIR2
and Blue bands. Multiscale-Net uses AFI as an input feature to increase accuracy.

Scenario-based analyses of quantitative and qualitative experimental results were
carried out. A total of 27 models were examined based on changing three scenarios: input
variables (B1, B3, and B4), multi-size kernels (K3, K35, and K357), and dilation rates (D1, D2,
and D3). Most of the best models were the ones that used multi-size kernels and stacked
AFI with three Landsat-8 bands as the input features. In some samples, using a dilation
rate of 2 improved the quantitative results, but 3 was inefficient. The highest precision,
sensitivity, F1-score, and IoU scores were 95.71%, 93.93%, 91.62%, and 84.54%, respectively,
when testing on the 40 samples. Among the input feature scenarios, B4 (AFI stacked with
three Landsat-8 spectral bands) had the highest mean sensitivity, F1-score, and IoU scores
of 89.66%, 90.57%, and 82.79%, respectively. This scenario had the least FN pixels among
the other scenarios, which is a desirable asset for fire extinguishing operations because this
misdetection can cause irreversible damage. Qualitative investigations also revealed that
using multi-size kernels makes the MultiScale-Net more robust against changes in patterns
and size of the active fire in the image. The multi-size kernels in the B4 scenario enhanced
the MultiScale-Net performance where major fire zones meet. The MultiScale-Net was
tested in samples containing clouds and single fire pixels detached from major fire zones,
with satisfactory outcomes.

This study was a new step in using DL techniques for AFD in satellite imagery, which
has received less attention in previous studies. The findings of this study can be used to
manage and control fires effectively and reduce their damage. Due to the independence of
our proposed method on the thermal bands, future studies could investigate the potential
of Sentinel-2 data for AFD with higher spatial and temporal resolution. Moreover, the
processing time of the proposed method can be evaluated in cloud platforms such as
Google Earth Engine (GEE).
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