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In Leishmania, genetic exchange has been experimentally demonstrated to occur in the
sand fly vector and in promastigote axenic cultures through a meiotic-like process. No
evidence of genetic exchange in mammalian hosts have been reported so far, possibly
due to the fact that the Leishmania species used in previous studies replicate within
individual parasitophorous vacuoles. In the present work, we explored the possibility that
residing in communal vacuoles may provide conditions favorable for genetic exchange for
L. mexicana and L. amazonensis. Using promastigote lines of both species harboring
integrated or episomal drug-resistance markers, we assessed whether genetic exchange
can occur in axenic cultures, in infected macrophages as well as in infected mice. We
obtained evidence of genetic exchange for L. amazonensis in both axenic promastigote
cultures and infected macrophages. However, the resulting products of those putative
genetic events were unstable as they did not sustain growth in subsequent sub-cultures,
precluding further characterization.

Keywords: genetic exchange, Leishmania, host-pathogen relationship, macrophage, drug resistance,
intracellular pathogen
INTRODUCTION

Protozoan parasites of the genus Leishmania are the causative agents of a spectrum of diseases
known as leishmaniasis that range from self-healing cutaneous lesions to destructive
mucocutaneous infections and visceral pathologies. Leishmania has a distinct life cycle which
consists of two specific environments. The first is that of the sand fly insect vector in which the
parasites multiply within the alimentary tract under the promastigote form and the second is
the infected mammalian or human hosts where the parasites replicate as amastigotes within the
phagolysosomal compartment of host phagocytes. Currently, there are 20 known species of
parasites that are associated with human disease. However, there is still a considerable amount
of debate of whether this diversity is due to recombinational events or due to gradual accumulation
of mutations during clonal division (Tibayrenc and Ayala, 2013; Rougeron et al., 2017).

In eukaryotic pathogenic organisms, sex is one of the main mechanisms that allows the spread of
pathogenicity, resistance, and virulence genes (Heitman, 2010). Due to very strong linkage
disequilibrium observed in Leishmania, it has been argued that the reproductive mode of
Leishmania is predominantly clonal (Tibayrenc and Ayala, 2013). However, there is much
evidence indicating that genetic exchange is part of the biology of Leishmania parasites, as
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evidenced by the occurrence of hybrids in nature. These natural
hybrids were described at the intraspecific level for L. tropica, L.
donovani, L. infantum, and L. brasiliensis (Chargui et al., 2009;
Rougeron et al., 2009; Gelanew et al., 2014; Rogers et al., 2014;
Iantorno et al., 2017). There were also reports of hybrids that
originated from crosses between parasites of the Viannia
subgenus, such as L. braziliensis and L. guyanensis, which are
one of the most common ones described (Bonfante-Garrido et al.,
1992; Belli et al., 1994; Dujardin et al., 1995; Banuls et al., 1997;
Cupolillo et al., 1997; Delgado et al., 1997; Banuls et al., 1999;
Torrico et al., 1999; Nolder et al., 2007; Cortes et al., 2012; Jennings
et al., 2014; Kato et al., 2016; Kato et al., 2019). Natural hybrids
were also reported for Leishmania species of the Leishmania
subgenus such as L. major and L. arabica, L. major and L.
infantum, as well as L. donovani and L. infantum (Evans et al.,
1987; Kelly et al., 1991; Ravel et al., 2006; Volf et al., 2007; Odiwuor
et al., 2011; Seblova et al., 2015; Cortes et al., 2019).

Using two strains of L. major harboring distinct integrated
drug-resistance markers, Akopyants and colleagues
experimentally demonstrated the existence of genetic exchange
in the invertebrate stage of the parasite (Akopyants et al., 2009).
By infecting sand flies and dissecting them 13–16 days post-
infection, the double drug-resistant progeny of this cross was
further demonstrated to be actual genomic hybrids by
confirming the presence of at least one set of allelic markers
from each parent (Akopyants et al., 2009). In another study from
the same group, it was further shown that crosses in the
invertebrate stage between L. major parasites coming from 4
distinct geographical locations are able to produce hybrid
progeny, which also suggests that there are no intraspecies
barriers when it comes to exchanging genetic information
(Inbar et al., 2013). Another interesting finding, was that
hybrid formation was observed in both the natural P. duboscqi
vector and in the unnatural but permissive L. longipalpis and, by
isolating the parasites from infected sand flies 3–18 days post-
infection, it was further ruled out that genetic exchange takes
place between parasites when they are in the nectomonad form
(Inbar et al., 2013). In addition, a study based on microscopy and
flow cytometry allowed to visualize evidence of genetic exchange
between two strains of L. donovani expressing two different
fluorescent molecules (RFP and GFP) which were present in
the same vector (P. perniciosus or L. longipalpis) and gave rise to
yellow promastigote progeny; however, these putative hybrids
could not be recovered from the sand flies and grown in culture
for further analyses (Sadlova et al., 2011). There was also a study
which demonstrated hybrid formation in sand flies between two
L. infantum strains expressing different fluorescent as well as
different drug-resistance markers (Calvo-Alvarez et al., 2014)
and another paper demonstrated formation of hybrid parasite
strains in sand flies between two entirely different species,
namely L. major and L. infantum (Romano et al., 2014).
Finally, the ability of L. tropica to exchange genetic
information in an intraspecific manner in an infected insect
vector as well as in axenic culture has also been recently
demonstrated using whole genome sequencing (Inbar et al.,
2019; Louradour et al., 2020).
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Despite the fact that hybrid parasites could be isolated both in
nature and in laboratory conditions from infected sand flies and
axenic cultures, the mechanism by which they reproduce is still
poorly understood. This is partially due to the fact that this is not
an obligate mode of reproduction of the parasite; however, recent
genome sequencing data from 44 hybrids generated between and
within L. infantum, L. tropica, and L. major suggest that
Leishmania reproduces via a meotic-like mechanism (Inbar
et al., 2019). Apart from one study using L. major (Akopyants
et al., 2009), it is still not widely known whether or not genetic
exchange can occur within an infected mammalian host,
although there is a study that has shown previously by DNA
quantification that infected macrophages could harbor 4N
amastigotes suggesting that genetic exchange is possible in
mammalian host cells (Kreutzer et al., 1994). Here, we
explored the possibility of intraclonal and interspecific genetic
exchange among parasites of the L. mexicana complex, which
unlike other Leishmania species, replicate in spacious communal
vacuoles that may provide an environment favorable to genetic
exchange (Case et al., 2016).
MATERIALS AND METHODS

Ethics Statement
All animal handling was performed in accordance with the
protocols 1806–01 and 1806–02, which were approved by the
Comite ́ Institutionel de Protection des Animaux of the INRS-
Centre Armand-Frappier Santé Biotechnologie. These protocols
respect procedures on animal practice as instructed by the
Canadian Council on Animal Care, described in the Guide to
the Care and Use of Experimental Animals.

Plasmids and Constructs
The plasmid pLaLPG2-HYG from which the LPG2::DHYG
targeting construct was used to create Hygromycin B-resistant
parasites was kindly provided by Drs. Valeria M. Borges and
Leonardo Paiva Farias (Fiocruz Bahia - Instituto Gonçalo Moniz,
Brazil) (Figure 1). The plasmid pCR2.1-L.d-rDNA-pr-
aIRNEOaIR-GFP from which the Ld-rDNA-NEO-GFP
targeting sequence was used to create G418-resistant parasites
was kindly provided by Dr. Barbara Papadopoulou (Université
Laval, Canada) (Figure 1). The plasmid pKS-NEO-DsRed was
provided by Dr. David L. Sacks (National Institute of Allergy and
Infectious Diseases, USA) (Kimblin et al., 2008). The pLeish-
HYG-GFP construct was created the following way: a SacI
fragment containing the GFP gene was excised from the
plasmid pXG-GFP+ (Ha et al., 1996), blunted, and inserted
into the EcoRV site of pLeish-HYG (unpublished), yielding
pLeish-HYG-GFP.

Parasites
Both L. amazonensis LV79 (MPRO/BR/72/M1841) and L.
mexicana (MNYC/BZ/62/M379) were passaged in mice to
maintain their virulence. Amastigotes recovered from ear
dermis lesions of infected C57BL/6 mice were differentiated
December 2020 | Volume 10 | Article 607253
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into promastigotes in Leishmania medium (M199-1X (Sigma)
with 10% heat-inactivated fetal bovine serum (FBS), 100 mM
hypoxanthine, 3 mM biopterin, 40 mM HEPES at pH 7.4, 5 mM
hemin, 1 mM biotin, and Penicillin-Streptomycin) in a 26°C
incubator. For the generation of L. amazonensis LPG2/
LPG2::DHYG and L. mexicana LPG2/LPG2::DHYG, log-phase
L. amazonensis and L. mexicana promastigotes were
electroporated with the LPG2::DHYG targeting construct
(excised as a 2.6-kb EcoRVI-HindIII-BglI fragment from
pLaLPG2KO-HYG) in 0.2 cm electroporation cuvettes, at 0.45
kV and 500 µF of high capacitance as previously described in
similar protocols (Descoteaux et al., 1994; Turco et al., 1994).
After electroporation, promastigotes were grown in drug-free
Leishmania medium for 24 h. Following this incubation, L.
amazonensis LPG2/LPG2::DHYG parasites were selected in the
presence of 35 µg/ml Hygromycin B (Sigma) and L. mexicana
LPG2/LPG2::DHYG parasites were selected in the presence of 70
µg/ml Hygromycin B (Sigma) respectively. For the generation of
L. amazonensis +/SSU::NEO-GFP, L. amazonensis promastigotes
were electroporated with the L.d-rDNA-NEO-GFP targeting
construct (excised as a 4.25-kb BstXI fragment from pCR2.1-
L.d-rDNA-pr-aIRNEOaIR-GFP). After electroporation, the
parasites were grown in drug free medium for 24 h and then
grown in Leishmania medium containing 20 µg/ml G418 (Life
Technologies). L. amazonensis NEO-DsRede parasites were
obtained by electroporating L. amazonensis promastigotes with
the plasmid pKS-NEO-DsRed. Parasites were grown in drug free
medium for 24 h and then grown in medium containing 20 µg/
ml G418. The same method was used to obtain L. mexicana pKS-
NEO-DsRede and they were maintained in Leishmania medium
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
containing 40 µg/ml of G418. L. amazonensis HYG-GFPe
promastigotes were generated by electroporating L.
amazonensis with the plasmid pLeish-HYG-GFP. Parasites
were grown in drug-free medium for 24 h and then grown in
medium containing 35 µg/ml Hygromycin B

Mammalian Cell Culture
Bone marrow-derived macrophages (BMM) were differentiated
from the bone marrow of 6- to 8-week old C57BL/6 mice as
previously described (Descoteaux and Matlashewski, 1989).
BMM were differentiated for 7 days in complete DMEM
[containing L-glutamine (Life Technologies), 10% v/v heat
inactivated fetal bovine serum (FBS) (Life Technologies), 10
mM HEPES (Bioshop) at pH 7.4, and penicillin-streptomycin
(Life Technologies)] supplemented with 15% v/v L929 cell-
conditioned medium (LCM) as a source of macrophage
colony-stimulating factor-1. To render the BMM quiescent
prior to experiments, cells were transferred to tissue culture-
treated 6- or 24-well plates or T25 tissue culture flasks for 24 h in
complete DMEM without LCM. The cells were kept in a
humidified 37°C incubator with 5% CO2. The number of
macrophages used per container are as following: 2.2 X 106

BMMs per well of a 6-well plate, 0.3 X 106 BMMs per well of 24-
well plate and 25 X 106 BMMs in T-25 flasks.

Transwell Experiments
For genetic exchange transwell experiments, donor parasites (L.
amazonensis NEO-dsRede) were relocated to the insert chamber
containing 0.4 µm pores in a polycarbonate membrane
(Corning) and the recipient parasites (L. amazonensis LPG2/
A B

FIGURE 1 | Generation of drug-resistant Leishmania parasites. (A) L.d-rDNA-NEO-GFP and LPG2::DHYG targeting constructs were used for the integration into the
ribosomal RNA locus or in one allele of LPG2, respectively. For the L.d-rDNA-NEO-GFP construct, the NEO-GFP resistance cassette (white and gray boxes) was inserted in
the SmaI site of the ribosomal RNA locus (black rectangle). The dashed lines delimit the regions of recombination between the target genes and targeting constructs. Arrows
indicate orientation. (B) PCR products for drug resistance markers HYG and NEO of L. amazonensis and L. mexicana parental strains. The size of HYG and NEO resistance
genes is 1,029 and 503 bp long, respectively. The pLeish-HYG-GFP and the pKS-NEO-DsRed constructs were used as controls for the HYG and NEO genes, respectively.
L.a. LV79 WT is a DNA sample used to show that our wild type parasites do not harbor any drug-resistance markers in their genomes. L. amazonensis LPG2/LPG2::DHYG,
L. amazonensis +/SSU::NEO-GFP, L. mexicana LPG2/LPG2::DHYG and L. amazonensis NEO-DsRede are controls used to validate the presence of HYG and NEO resistance
genes. No DNA sample was loaded as negative control. M, molecular DNA ladder; H, Hygromycin; N, G418.
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LPG2::DHYG) were added to the wells. The plates were then
either incubated at 26°C or pre-incubated at 34°C for 4 h, as done
previously (Hassani et al., 2011), and then transferred to 26°C.
The parasites were collected at 24, 72, 96, and 120 h post-
incubation. Each parental stain was equally divided into 3 wells
of a 6-well plate and were grown in the presence of antibiotics.
Two wells were used as controls containing either 35 µg/ml of
Hygromycin B or 20 µg/ml of G418 and the last well contained
both drugs in the medium. The parasites were kept in such
conditions up to 3 weeks. Each parental strain was also grown
separately and were under the same conditions as a control.

Parasite Co-Culture Experiments
As described (Louradour et al., 2020), stationary phase
promastigotes of two parental strains were mixed and
distributed into 96-well plates up to a total volume of 100 µl in
each well. One million parasites of each strain were added in the
wells. Three days later, each co-culture from the 96-well plate
was transferred to a single well of a 24-well plate containing 900
µl of Leishmania medium containing either 35 µg/ml
Hygromycin B and 20 µg/ml G418 if both parental strains
were L. amazonensis or 60 µg/ml Hygromycin B and 40 µg/ml
G418 if one of the parental strains was L. amazonensis and the
other was L. mexicana. Each line was cultured individually in
Leishmaniamedium supplemented with either Hygromycin B or
G418 or both drugs as controls. When double drug-resistant
parasite cultures were growing in wells (growth was observed
between 19 and 28 days), the cells were passaged in Leishmania
medium at a dilution of 1:10. DNA was then extracted from
double drug-resistant parasites and was used for PCR reactions.

In Vitro Infections
Metacyclic promastigotes were isolated from promastigote
cultures in the late stationary phase by means of a density
gradient centrifugation (Spath and Beverley, 2001). Specifically,
2 ml of 40% w/v Ficoll PM400 (GE healthcare) were added to the
bottom of ta 15 ml tube, followed by a 5 ml layer of 10% Ficoll
PM400 in M199-1x and topped by late stationary phase
promastigotes resuspended in 5 ml of DMEM with no FBS
(Arango Duque et al., 2019). Metacyclic promastigotes were
collected from the DMEM-10% Ficoll interphase after spinning
the gradient for 10 min. The percentage of isolated metacyclic
parasites from the interphase generally varied from 12–18% of
the input population. Metacyclic promastigotes were then
opsonized with the serum of C57BL/6 mice for 30 min,
washed 3 times with PBS and resuspended in cold complete
DMEM (cDMEM). The parasites were then fed to macrophages
adhered in T-25 flasks (Sarstedt) (Ratio 3:1 for single infections,
ratio 6:1 for mix infections). The cells were then incubated at 4°C
for 10 min (Arango Duque et al., 2019) to synchronize
phagocytosis. The internalization of parasites was triggered by
transferring the cells to 34°C (Arango Duque et al., 2019). Two
hours post-internalization, the cells were washed three times
with warmed cDMEM to remove non-internal ized
promastigotes. Infected BMM were incubated for 120 and
192 h. Next, the amastigotes were isolated from infected
macrophages by resuspending those in cDMEM containing
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
0.05% of SDS. Shortly, the macrophages resuspended in 2ml of
cDMEM containing SDS are incubated at 37°C for 3 min. Then,
the resulting supernatant is resuspended in 10 ml of cDMEM
and spun at 3,000 rpm. After the spin, the supernatant was
discarded. The amastigotes were resuspended in Leishmania
medium and separated into 3 separate conditions. The
conditions were: Leishmania medium containing 20 µg/ml of
G418 or Leishmania medium containing 32 µg/ml of
Hygromycin B or Leishmania medium containing both drugs.
The parasites were left for incubation at 26°C for up to 3 weeks to
select for double drug-resistant parasites. If applicable, the
double drug-resistant parasites were passaged at a dilution of
1/10 and their DNA was then extracted and was used for PCR
reactions. Double drug-resistant parasites were also passaged in
infected BMM for 3 days as well. For parasite survival, cells were
washed with PBS and fixed and stained with fixative and staining
solutions of the Hema 3 stain set (Fisher Scientific). This process
was done for 2, 48, 120, and 192 h timepoints.

Alternatively, the infections were done in 6-well plates instead
of T-25 flasks. Three wells were used for mixed infection for each
timepoint (120 and 192 h) and two wells were reserved for
infection with each parental strain alone. Once the amastigotes
were obtained, they were plated in 96-well plates in 100 µl of drug
free Leishmania medium as described in the parasite co-culture
section. The amastigotes were plated at 5 million parasites per
well. Three days later, each well was transferred to a well of 24-
well plate that contained 900 µl with antibiotics. Pure parental
cultures were used as controls as previously described. If
applicable, the double drug-resistant parasites were passaged at
a dilution of 1/10 and their DNA was then extracted from double
drug-resistant parasites and was used for PCR reactions.

In Vivo Infections and Parasite Recovery
C57BL/6 mice (6–8 weeks old) were infected with 1 X 105

metacyclic promastigotes (5 X 104 of each line) of either L.
amazonensis LPG2/LPG2::DHYG + L. amaz +/SSU::NEO-GFP or
L. mexicana LPG2/LPG2::DHYG + L. amaz +/SSU::NEO-GFP into
the ear dermis with an insulin syringe (29 G). Mice infected
separately with each line were used as controls. At 9 weeks post-
infection, mice were euthanized under CO2 asphyxiation and by
cerebral dislocation as well. The infected ears were then collected
and disinfected in 70% ethanol for 10 min and air dried for 10 min.
Then, they were separated into dorsal and ventral leaflets and cut up
into small pieces with surgical scissors. The cut-up ears were loaded
in 2.0 ml tubes containing zirconium beads (Benchmark Scientific
Inc.) and resuspended in 1 ml of Leishmaniamedium and vortexed
for a 1 min and 30 s. The resulting suspension was then transferred
to 100 µm cell strainers placed over 50 ml Falcon tubes and filtered
to isolate the amastigotes. The remaining tissue in the cell strainer
was smashed with a sterile 10 ml syringe plunger and washed two
times with Leishmania medium. The resulting cell suspension was
spun at 3,200 RPM at 4°C for 10 min. The amastigotes were then
separated in three T-25 flasks and left in unconditioned Leishmania
medium for 24 h. Lastly, the antibiotics were added to each flask
according to each condition and were incubated at 26°C for three
weeks. The conditions were Hygromycin only, G418 only or
both drugs.
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DNA Extraction and PCR Confirmation of
Double-Resistant Parasites
For genotyping analyses, total DNA was extracted from parasites
by using a phenol/chloroform treatment as previously described
(Medina-Acosta and Cross, 1993). All of the PCR amplifications
were done in 50 µl total volume containing 100 ng of parasite
DNA and 10pmol of each primer. The following primer pairs
were used: for Hygromycin B 5’-ATGAAAAGCCTGA
ACTCACC-3’ (Forward), 5’-CTATTCCTTTGCCCTCGG-3’
(Reverse) that were previously described (Romano, 2014); for
G418 5’CCACGACGGGCGTTCCTTGCGCAGCTGTGC-3’
(Forward), 5’-GTCAGCCCATTCG CCAAGCTCTTCAGC-3’
(Reverse) which were custom made. The resulting DNA
products were then verified by electrophoresis on 1.2%
Agarose gel and subsequently viewed by staining the samples
with ethidium bromide.

Live Microscopy
BMMs were platted at the bottom of 6 well-plate with a coverslip
attached to the bottom of the wells. The cells were kept in the
34°C incubator for 24 h without LCM to render them quiescent.
They were then infected with metacyclic parasites of each line
separately as a positive control or with a combination of two.
Non-infected cells were used as a negative control. The samples
were then viewed with 63X objective lens LSM780 system
confocal microscope (Carl Zeiss microimaging). The images
were taken and processed with the ZEN 2012 Software (Carl
Zeiss) and subsequently mounted into the figures via Adobe
Photoshop 2019.
RESULTS

Generation of Drug-Resistant Strains of
L. amazonensis and L. mexicana
To investigate the possibility that formation of hybrids and genetic
exchange may occur among parasites of the L. mexicana complex,
we used L. amazonensis LV79 and L. mexicana M379 expressing
either episomal or integrated genes encoding resistance to
Hygromycin B (HYG) or to G418 (NEO). To this end, we
generated one line of L. amazonensis and one line of L.
mexicana in which the HYG resistance gene was integrated in
one allele of the LPG2 gene (L. amazonensis LPG2/LPG2::DHYG
and L. mexicana LPG2/LPG2::DHYG) (Figure 1A), one line of L.
amazonensis in which a NEO-GFP construct was integrated into
the ribosomal RNA locus (L. amazonensis +/SSU::NEO-GFP)
(Figure 1A), one line of L. amazonensis and one line of L.
mexicana with an episomal NEO-DsRed plasmid (L.
amazonensis NEO-DsRede and L. mexicana NEO-DsRede), and
one line of L. amazonensiswith an episomalHYG-GFP plasmid (L.
amazonensis HYG-GFPe). We confirmed the presence/absence of
both resistance genes in each line by PCR analysis using specific
primers against HYG and NEO (Figure 1B), and we ensured that
these drug-resistant recombinant parasites retained the ability to
infect and replicate within bone marrow-derived macrophages
(BMMs) over a period of 196 h (Figure 2).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Drug Resistance is not Transferred in
In Vitro Cultures of Promastigotes in
the Absence of Cell-To-Cell Contact
Evidence indicate that DNA can be transferred from cell-to-cell
through extracellular vesicles (Elzanowska et al., 2020). In
addition, erythrocytes infected with Plasmodium falciparum
can transfer parasite DNA to other infected cells via the release
of extracellular vesicles (Regev-Rudzki et al., 2013). Whereas no
such mechanism has been described in Leishmania, it was
recently reported that the Leishmania RNA virus 1 (LRV1)
exploits the Leishmania exosomal pathway as a mode of
transmission from one promastigote to another (Atayde et al.,
2019). This led us to verify the hypothesis that extracellular
vesicles released in the culture medium may serve as a vehicle to
transfer genetic material, including episomes harboring a drug-
resistance gene among promastigotes. To this end, we used
transwells (0.4 µm pores) to physically separate L. amazonensis
NEO-DsRede promastigotes from L. amazonensis-LPG2/
LPG2::DHYG promastigotes. We incubated the transwell plates
either at 26°C or we pre-incubated them at 34°C for 4 h and then
transferred the plates to 26°C. Such a transient increase in
temperature has been previously shown to enhance the
secretion of extracellular vesicles by Leishmania promastigotes
(Hassani et al., 2011). Promastigotes co-incubated in transwells
at either 26 or 34°C were collected after 24, 72, 96, and 120 h and
assessed for their capacity to grow in the presence of both
hygromycin and G418. Both L. amazonensis-NEO-DsRede and
L. amazonensis-LPG2/LPG2::DHYG were viable and resistant to
G418 and hygromycin, respectively, up to 120 h of co-incubation
in the transwells. However, no double drug-resistant parasites
were recovered from 9 independent experiments performed in
FIGURE 2 | Survival of parental strains within infected macrophages. BMMs
were infected with metacyclic serum-opsonized promastigotes of L.
amazonensis and L. mexicana parental strains (L. amazonensis LPG2/
LPG2::DHYG, L. mexicana LPG2/LPG2::DHYG, L. amazonensis +/SSU::NEO-
GFP, L. amazonensis NEO-DsRede) for 2, 48, 120, and 196 h. Bars
represent mean ± SE of three representative experiments performed in
triplicate in bone marrow derived murine macrophages. Parasites were
counted in 100 macrophages and quantified by light microscopy.
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triplicate, indicating that exchange of genetic information
through extracellular vesicles among L. amazonensis
promastigotes, if it occurs, is a very rare event.

Genetic Exchange Among L. amazonensis
and L. mexicana Promastigotes in Axenic
Cultures
A recent study revealed that some strains of L. tropica, but not L.
major, form hybrids in promastigote axenic cultures (Louradour
et al., 2020). This finding prompted us to evaluate the occurrence
of genetic crosses among L. amazonensis and L. mexicana
promastigotes in in vitro co-cultures. Following the
experimental protocol described by Louradour et al. we co-
cultured combinations of stationary phase promastigotes with
integrated drug-resistance genes as depicted in Table 1
(Louradour et al., 2020). We also performed co-culture
experiments using promastigotes harboring episomes (Table
1). Each co-culture was distributed into 96-well plates in drug-
free medium. Three days later, the parasites were transferred into
24-well plates and cultured in selective medium (hygromycin B
and G418) and left for up to 40 days in a 26°C incubator.
Individual single drug-resistant lines were used as controls and
had gone through the same process. After 40 days of incubation,
we did not obtain double drug-resistant parasites except
for the co-cultures of L. amazonensis-LPG2/LPG2::DHYG and
L. amazonensis-NEO-DsRede (Table 1). We obtained
promastigote populations resistant to both G418 and
hygromycin B in 3 separate wells. However, only one out of 3
grew sufficiently to allow for DNA isolation and PCR analysis,
which revealed the presence of both HYG and NEO genes
(Figure 3). However, we were unable to further characterize
these double-drug-resistant parasites as they perished in
subsequent sub-cultures. These results suggest that genetic
exchange in axenic cultures among those two drug-resistant
lines may occur and results in transient/unstable double drug-
resistant promastigotes.

Unstable Genetic Exchange in Infected
Macrophages
The fact that L. amazonensis and L. mexicana replicate within
communal parasitophorous vacuoles led us to verify the
possibility that these intracellular replicative niches provide
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
conditions propitious for genetic exchange. To this end, we
infected BMMs with the following four combinations of drug-
resistant parasites: L. amazonensis LPG2/LPG2::DHYG + L.
amazonensis +/SSU::NEO-GFP ; L. amazonensis LPG2/
LPG2::DHYG + L. amazonensis NEO-DsRede; L. mexicana
LPG2/LPG2::DHYG + L. amazonensis +/SSU::NEO-GFP, and L.
mexicana LPG2/LPG2::DHYG + L. amazonensis NEO-DsRede.
Similar to single infection, parasites in mixed infections
replicated up to 192 h post-infection and induced the
formation of communal PVs (Figure 4A). To confirm that
these communal PVs harbored both drug-resistant Leishmania
lines, we performed live cell imaging on BMMs co-infected with
either L. amazonensis HYG-GFPe + L. amazonensis NEO-DsRede
or L. amazonensis HYG-GFPe + L. mexicana NEO-DsRede. In
both cases, we observed the two drug-resistant parasite lines
within the same communal vacuoles, at 48 and 72 h post-
infection (Figure 4B). At 120 and 192 h post-infection, we
lysed the infected BMM and cultured the recovered parasites
in medium containing hygromycin B and G418 in a similar
fashion as the axenic parasite cultures done in plates. As shown
in Table 2, we failed to recover any double drug-resistant
parasites from these co-infection experiments. Next, we
modified our experimental approach to perform co-infection
experiments on a larger scale, with the following 3 combinations
of drug-resistant promastigotes: L. amazonensis LPG2/
LPG2::DHYG + L. amazonensis +/SSU::NEO-GFP , L.
amazonensis LPG2/LPG2::DHYG + L. amazonensis NEO-
DsRede, and L. mexicana LPG2/LPG2::DHYG + L. amazonensis
+/SSU::NEO-GFP (Table 3). We co-infected BMMs with each
combination and we used each individual drug-resistant line as
controls. Out of a total of 28 infections, we obtained double drug-
resistant parasite populations out of 2 separate infections, which
arose from the co-infections with L. amazonensis LPG2/
LPG2::DHYG + L. amazonensis +/SSU::NEO-GFP (Table 3).
We detected the presence of both NEO and HYG drug-
resistance genes in these double drug-resistant parasite
populations by PCR analysis (Figure 5). We were able to
TABLE 1 | Crosses used in axenic cultures.

Crosses in axenic cultures No. of wells
with crosses

% Yield of double
drug-resistant parasites

L. amaz LPG2/LPG2::DHYG ×
L. amaz +/SSU::NEO-GFP

192 0/192 (0%)

L. amaz LPG2/LPG2::DHYG ×
L. amaz NEO-DsRede

192 3/192 (1.56%)

L. mex. LPG2/LPG2::DHYG ×
L. amaz +/SSU::NEO-GFP

96 0/96 (0%)

L. mex LPG2/LPG2::DHYG ×
L. amaz NEO-DsRede

96 0/96 (0%)
Demonstrates the number of wells tested and percentage of isolated double drug-
resistant parasites.
FIGURE 3 | Molecular genotype characterization of double drug-resistant
parasites isolated from axenic cultures. PCR amplification of genes encoding
antibiotic resistance. The size of HYG and NEO resistance genes is 1,029 and
503 bp long. The pLeish-HYG-GFP and the pKS-NEO-DsRed constructs
were used as controls for the HYG and NEO genes, respectively. L.a. LV79
WT is a DNA sample used to show that our wild type parasites do not
express any drug-resistance markers. L. amazonensis LPG2/LPG2::DHYG
and L. amazonensis NEO-DsRede are controls used to validate the presence
of HYG and NEO resistance genes within the appropriate parental strains. No
DNA sample was loaded as negative control.
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maintain one of this double drug-resistant population in culture
for 3 weeks; however, after the third week, this population lost
the NEO resistance gene and has ultimately perished afterwards
(Figure 5A). For the second occurrence of double drug-resistant
parasites, we isolated 3 separate populations which contained
both the HYG and NEO genes as assessed by PCR analysis
(Figure 5B), whereas the third population had only the HYG
resistance gene and died upon further passages (Figure 5B). The
two double drug-resistant populations were maintained for a
week and died upon additional passages. These results suggest
that genetic exchange may take place in infected macrophages
and result in transient/unstable double drug-resistant parasites.

Absence of Detectable Genetic Exchange
in In Vivo Infections
To determine whether mammalian hosts provide an
environment favorable for genetic exchange for the species of
the L. mexicana complex, we inoculated mice into the ear dermis
with two combinations of single drug-resistant parasites, namely
L. amazonensis LPG2/LPG2::DHYG + L. amazonensis +/SSU::
NEO-GFP and L. mexicana LPG2/LPG2::DHYG + L.
A

B

FIGURE 4 | Survival of mating crosses within infected macrophages and visualization of both parental strains within the same vacuole. (A) BMMs were infected with
metacyclic serum-opsonized promastigote crosses of L. mexicana complex parental parasite strains (L. amazonensis LPG2/LPG2::DHYG + L. amazonensis +/SSU::
NEO-GFP; L. amazonensis LPG2/LPG2::DHYG + L. amazonensis NEO-DsRede; L. mexicana LPG2/LPG2::DHYG + L. amazonensis +/SSU::NEO-GFP for 2, 48,
120, and 196 h. Bars represent mean ± SE of three representative experiments performed in triplicate in bone marrow derived murine macrophages. Parasites were
counted in 100 macrophages and quantified by light microscopy. Macrophages were stained with HEMA 3 kit. Representative pictures from each cross are shown.
(B) Live microscopy analysis of L. amazonensis and L. mexicana parasite strains expressing different fluorescent markers. Representative pictures of both parental
strains within the same communal vacuole at 48 and 72 h are shown. LV79-GFP, L. amazonensis HYG-GFPe; LV79-DsRed, L. amazonensis NEO-DsRede; M379-
DsRed, L. mexicana NEO-DsRede.
TABLE 2 | Crosses used in in vitro infections done in wells.

Crosses 120 h post-infection No. of wells
with crosses

% Yield of double
drug-resistant parasites

L. amaz LPG2/LPG2::DHYG ×
L. amaz +/SSU::NEO-GFP

89 0/89 (0%)

L. amaz LPG2/LPG2::DHYG ×
L. amaz NEO-DsRede

34 0/34 (0%)

L. mex. LPG2/LPG2::DHYG ×
L. amaz +/SSU::NEO-GFP

63 0/63 (0%)

L. mex LPG2/LPG2::DHYG ×
L. amaz NEO-DsRede

63 0/63 (0%)

Crosses
192 h post-infection

No. of wells
with crosses

% Yield of double
drug-resistant parasites

L. amaz LPG2/LPG2::DHYG ×
L. amaz +/SSU::NEO-GFP

72 0/72 (0%)

L. amaz LPG2/LPG2::DHYG ×
L. amaz NEO-DsRede

72 0/72 (0%)

L. mex. LPG2/LPG2::DHYG ×
L. amaz +/SSU::NEO-GFP

69 0/69 (0%)

L. mex LPG2/LPG2::DHYG ×
L. amaz NEO-DsRede

66 0/66 (0%)
Demonstrates the number of wells tested and percentage of isolated double drug-
resistant parasites.
December 2020 | Volume 10 | Article 607253

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Telittchenko and Descoteaux Genetic Exchange in Leishmania amazonensis
amazonensis +/SSU::NEO-GFP (Table 4). Mice infected with
single drug-resistant lines were used as a control. Nine weeks
post-infection, we recovered parasites from lesions and we
cultured them in the presence of either hygromycin B, G418,
or both. As shown in Table 4, we recovered each single drug-
resistant line that was co-inoculated or inoculated alone as
controls. However, we did not succeed in isolating double
drug-resistant parasites from cutaneous lesions, indicating that
genetic exchange does not occur to a detectable level within the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
mammalian host for Leishmania species residing in communal
parasitophorous vacuoles.
DISCUSSION

For decades, the occurrence of natural Leishmania hybrids has
been described among clinical and field isolates, indicating that
genetic exchange is part of the biology of these parasites.
Experimental genetic crosses among Leishmania cells were
initially reported to occur exclusively in the sand fly vector
(Akopyants et al., 2009; Sadlova et al., 2011; Inbar et al., 2013;
Calvo-Alvarez et al., 2014; Romano et al., 2014; Inbar et al.,
2019). However, recent evidence revealed that experimental
genetic crosses also occur in axenic promastigote cultures,
indicating that mating competent forms are present in these
populations (Louradour et al., 2020). The fact that studies on the
experimental generation of hybrids have been performed with
Leishmania species living in tight individual parasitophorous
vacuoles may have precluded the detection of genetic exchange
within mammalian host cells. In this study, we sought to
determine whether genetic exchange occurs among species of
the L. mexicana complex, which replicate within communal
parasitophorous vacuoles. Using promastigotes expressing
drug-selectable markers, we obtained evidence of intraclonal
genetic exchange for L. amazonensis in both axenic
promastigote cultures and infected macrophages. However, the
resulting products of those genetic events were unstable as they
did not sustain growth in subsequent sub-cultures.

The study of experimental genetic exchange in Leishmania
consists in mixing strains carrying distinct drug-resistance
markers and/or fluorescent markers integrated into their
genomes and the subsequent selection and analysis of double
drug-resistant parasites (Akopyants et al., 2009; Sadlova et al.,
2011; Inbar et al., 2013; Calvo-Alvarez et al., 2014; Romano et al.,
2014; Inbar et al., 2019; Louradour et al., 2020). Whole genome
sequencing revealed that these double drug-resistant parasites are
full genomic hybrids predominantly resulting from a mechanism
resembling meiosis (Inbar et al., 2019). Whether other forms of
genetic exchange take place in Leishmania had not received much
attention. Hence, we tested whether the transfer of genetic material
can occur without direct contact between Leishmania
promastigotes, as previously reported for P. falciparum via cell-
derived extravesicular vesicles (Regev-Rudzki et al., 2013). Our
TABLE 3 | Crosses used in in vitro infections done in flasks.

Cross No. of infections No. of times parent
1 was isolated

No. of times parent
2 was isolated

No. of times double
drug-resistant parasites

were isolated

% Recovery

L. amaz LPG2/LPG2::DHYG ×
L. amaz +/SSU::NEO-GFP

14 14 14 2 14%

L. amaz LPG2/LPG2::DHYG ×
L. amaz NEO-DsRede

10 10 10 0 0%

L. mex. LPG2/LPG2::DHYG ×
L. amaz +/SSU::NEO-GFP

4 4 4 0 0%
December 2020 | Volume 10 | A
Data includes the number of mating crosses executed in flasks and parasite strains that were isolated from each infection. Percentage indicates the total number of times that double-drug
resistant parasites were isolated.
A

B

FIGURE 5 | Molecular genotype characterization of double drug-resistant
parasites isolated from in vitro infections. PCR amplification of genes encoding
antibiotic resistance. The size of HYG and NEO resistance genes is 1,029 and
503 bp long. The pLeish-HYG-GFP and the pKS-NEO-DsRed constructs were
used as controls for the HYG and NEO genes, respectively. L.a. LV79 WT and
L.a. PH8 WT is a DNA sample used to show that our wild type parasites do not
express any drug-resistance markers. L. amazonensis LPG2/LPG2::DHYG, L.
amazonensis +/SSU::NEO-GFP are controls used to validate the expression of
HYG and NEO resistance genes within the appropriate parental strains. No DNA
sample was loaded as negative control. (A) PCR amplification of resistance
genes of the first double drug-resistant parasite population. Population was
maintained for 3 weeks until it lost one of the resistance genes and perished.
PCRs of double drug-resistant parasites represent the presence of both genes
on weeks 1, 2, and 3 (B) PCR amplification of resistance genes of the second
occurrence of double drug-resistant parasites. Three populations were isolated
(Pop 1–3). Two of the population were found to be double-drug resistant and
one was not.
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attempts to detect the transfer of an episome from one line of L.
amazonensis to another in transwell experiments were
unsuccessful, suggesting that physical contact is required for
genetic exchange among Leishmania promastigotes. Our results
also suggest that in contrast to the Leishmania virus LRV-1
(Atayde et al., 2019), episomal DNA is not transferred through
extracellular vesicles or other released material.

The recent report that genetic crosses take place in axenic
cultures of L. tropica (Louradour et al., 2020) prompted us to
explore the possibility that genetic exchange occur among L.
amazonensis and L. mexicana promastigotes in axenic cultures.
In contrast to the L. tropica strains used by Louradour and
colleagues (Louradour et al., 2020), we obtained only a few
populations of double drug-resistant L. amazonensis
promastigotes which turned out to be unstable. The fact that
those populations did not sustain sub-cultures precluded further
analyses. Clearly, not all species or strains of Leishmania are
equal in terms of capacity to generate mating-competent forms
in vitro. Hence, whereas Louradour and colleagues were
successful in recovering hybrids from L. tropica axenic co-
cultures, no hybrids were obtained when both parental strains
were L. major (Louradour et al., 2020). In the case of L.
amazonensis, it is possible that strains other than the one we
used are more efficient in generating mating-competent forms in
axenic cultures. Future studies will be aimed at investigating this
important issue.

It is well established that hybrid formation among Leishmania
promastigotes takes place in the sand fly (Akopyants et al., 2009;
Sadlova et al., 2011; Inbar et al., 2013; Calvo-Alvarez et al., 2014;
Romano et al., 2014; Inbar et al., 2019; Louradour et al., 2020).
Failure to detect genetic exchange in the mammalian host
suggests that amastigotes do not generate mating competent
forms or that they are less prone to recombination. It is also
possible that the phagolysosomal environment is not as
conducive to genetic exchange as the sand fly midgut.
However, it was reported previously that amastigotes undergo
nuclear fusion within infected macrophages suggesting that
genetic exchange may indeed be possible within infected hosts
(Kreutzer et al., 1994). Alternatively, the fact that the Leishmania
species used so far to study genetic exchange replicate within
individual parasitophorous vacuoles (L. major, L. tropica, L.
donovani, L. infantum) may have limited the probabilities of
genetic exchange among amastigotes. With this in mind, we
hypothesized that replication within a communal vacuole may
provide amastigotes with conditions propitious to genetic
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
exchange, as reported for Chlamydia (Jeffrey et al., 2013). The
recovery of double-drug resistant promastigote populations from
macrophages co-infected with L. amazonensis LPG2/
LPG2::DHYG + L. amazonensis +/SSU::NEO-GFP and the
detection of both the HYG and NEO genes in these cultures
suggest that intraclonal genetic exchange may occur within
communal parasitophorous vacuoles. However, the inability to
grow these L. amazonensis double drug-resistant populations
over several passages and to clone double drug-resistant parasites
precluded further characterization of these progeny and thus
determine whether or not these parasites were genuine hybrids.
Previous studies revealed that not all hybrid progeny is as viable
as their parental counterparts. Hence, Sadlova et al. observed L.
donovani hybrids in infected sand flies, but all of their attempts
to grow them in culture have failed. This led to the conclusion
that although L. donovani parasites are able to exchange genetic
information, the hybrids produced were not viable (Sadlova
et al., 2011). Finally, there was also a report which explored the
possibility of genetic exchange between L. major and L. turanica
in infected sand flies; however, it was reported that such events
do not take place between these parasite species (Chajbullinova
et al., 2012).

As described for L. major (Akopyants et al., 2009), we were
unable to recover double drug-resistant parasites from mice co-
infected with L. amazonensis and L. mexicana. However, based
on our results with in vitro infections, we cannot rule out that
genetic exchange do not take place in mammalian hosts infected
with those species/strains. An important factor to consider is the
number of in vivo infections we performed. Indeed, studies on
genetic exchange done in the insect vector required hundreds of
sand flies to be infected. Hence, Akopyants et al. used 102 sand
flies to study genetic exchange between L. major parasites,
Sadlova et al. infected 121 sandflies to study this phenomenon
for L. donovani, whereas Romano et al. used 446 sandflies to
study these events among strains of L. infantum (Akopyants
et al., 2009; Sadlova et al., 2011; Romano et al., 2014). Another
important factor to take into consideration is the ability of the L.
amazonensis and L. mexicana strains we used in our study to
generate mating competent forms, as evidenced in the study of
Louradour and colleagues using L. tropica and L. major
(Louradour et al., 2020).

In summary, we provide evidence of possible intraclonal
genetic exchange among L. amazonensis parasites in axenic
cultures and within mammalian host cells. However, the
double drug-resistant parasites obtained in our studies were
TABLE 4 | Crosses used in in vivo infections.

Cross No. of infected mice No. of times parent
1 was isolated

No. of times parent
2 was isolated

No. of times double
drug-resistant parasites

were isolated

% Recovery

L. amaz LPG2/LPG2::DHYG ×
L. amaz +/SSU::NEO-GFP

13 13 13 0 0%

L. mex. LPG2/LPG2::DHYG ×
L. amaz +/SSU::NEO-GFP

6 6 6 0 0%
December 2020 | Volume 10 | A
Data includes the number of infected mice with each cross and parasite strains that were isolated from each infection. Percentage indicates the total number of times that double drug-
resistant parasites were isolated.
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unstable and could not be further characterized. Future studies
will be required to identify strains of L. amazonensis and L.
mexicana with higher capacity to generate mating competent
forms and use these strains for studies in macrophages and in
mice on a larger scale.
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