# **Supplementary Material**

for the manuscript

### Fluoride-controlled riboswitch-based dampening of gene expression for

### cloning potent promoters

Vesta Korniakova<sup>1</sup>, Aurélie Devinck<sup>1</sup>, Marie-Christine Groleau<sup>1</sup>, Eric Déziel<sup>1</sup> and Jonathan Perreault<sup>1</sup>

<sup>1</sup> INRS - Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada,

To whom correspondence should be addressed:

Phone: 450-687-5010 x4411, fax: 450-686-5301, e-mail: jonathan.perreault@iaf.inrs.ca

Key words: plasmid, reporter, promoter, regulatory region, fluoride riboswitch, *Burkholderia*, *Pseudomonas*, *E. coli*, luciferase, toxicity, cloning, induction, repression, translation fusion

## Table of contents

| Table S1. List of oligonucleo                                           | otides used in this study.                                                                                       | 4           |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------|
| Table S2. Plasmids used in t                                            | his study                                                                                                        | 10          |
| Table S3. Strains used in this                                          | s study                                                                                                          | 12          |
| Figure S1: Inactive mutant t <i>lux</i> overexpression lethality        | ransformants of the $P_{S7}$ ribosomal promoter- <i>lux</i> construct may ind<br>in <i>E. coli</i> DH5 $\alpha$  | icate<br>15 |
| Figure S2: Secondary struct                                             | ures of fluoride riboswitches used in this study                                                                 | 17          |
| Figure S3: Sequence of the o                                            | optimized cloning area of pVK-f- <i>lux</i>                                                                      | 18          |
| Figure S4. Testing chloride t                                           | to look for potential osmolarity effects                                                                         | 20          |
| Figure S5: Transformation o                                             | f heat-shocked E. coli is possible in high fluoride concentrations.                                              | 21          |
| Table S4. P <sub>S7</sub> promoter clone                                | ing sequencing results                                                                                           | 22          |
| Figure S6. Double riboswitc                                             | h constructs full time course                                                                                    | 23          |
| Figure S7: Regulation thresh<br>E264 and in <i>E. coli</i> SM10λp       | nolds of the <i>B. thailandensis</i> fluoride riboswitch in <i>B. thailandensi</i>                               | is<br>25    |
| Figure S8: Fluoride has little                                          | e effect on expression with the metZ 5'UTR in B. thailandensis                                                   | 26          |
| Table S5. pVK-f2- <i>lux</i> (P1 + specifications in <i>E. coli</i> DH5 | <i>B. thai</i> F RS- <i>lux</i> ) plasmid production and <i>lux</i> expression<br>5α and <i>E. coli</i> SM10λpir | 27          |
| Quantifying plasmid produc                                              | tion in <i>E. coli</i> strains DH5 $\alpha$ and SM10 $\lambda$ <i>pir</i>                                        | 27          |
| Potent promoter cloning bot                                             | tleneck in <i>lux</i> hints at reporter gene toxicity                                                            | 28          |
| Figure S9: <i>P. syringae</i> fluori expression and variability ac      | de riboswitch activity in <i>E. coli</i> DH5α reveals oscillating <i>lux</i> cross transformant strains          | 29          |
| Quick User Manual for pVK-f                                             | -lux                                                                                                             | 30          |
| References                                                              |                                                                                                                  | 34          |

# Table S1. List of oligonucleotides used in this study.

| Part name                    | Oligonucleotide<br>name | Sequence 5'-3' <sup>1,2</sup>                                                                                                                                                                                  | PCR<br>oligonucleotides<br>and template                                      | Backbone used for<br>cloning this part and<br>other necessary<br>parts <sup>3</sup>                                                                                                                                                                            |
|------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AaRI restriction             | site deletion in mi     | ni-CTX-lux                                                                                                                                                                                                     |                                                                              |                                                                                                                                                                                                                                                                |
| <i>luxC</i> Aarl<br>deletion | VK45_F<br>VK77_R        | AACGAAGCAGGTGAGGAGCCCACCTGC <b>G</b> TGACTAAAAAAA<br>TTTCATTCATTATTAACGG<br><u>CGACGTGATGAAGGTACACACATCTGCC</u> AAGTGGTTGATTA<br>AATTCCACACC <b>C</b> GCATTTG                                                  | PCR (170322 3.<br>luxC tube 3):<br>VK45_F/VK77_R/(<br>mini-CTX- <i>lux</i> ) | mini-CTX- <i>lux</i> digested<br>with XcmI/SwaI (with<br>SwaI fragment and P <sub>S7</sub><br>+ RBS strategy 1) or<br>mini-CTX- <i>lux</i> digested<br>with BsaAI/SwaI (with<br>SwaI fragment and P <sub>S7</sub><br>+ RBS strategy 2)                         |
| Swal<br>fragment             | VK43_F<br>VK76_R        | <u>GGCAGATGTGTGTACCTTCATCACG</u><br><u>CACCTTTTAATGCTAACGCATCTCGATATTT</u> AAATGATGAC                                                                                                                          | PCR (170323<br>Swal):<br>VK43_F/VK76_R/(<br>mini-CTX- <i>lux</i> )           | mini-CTX- <i>lux</i> digested<br>with Xcml/Swal (with<br><i>luxC</i> Aarl deletion and<br>P <sub>S7</sub> + RBS strategy 1)<br>or mini-CTX- <i>lux</i><br>digested with<br>BsaAI/Swal ( <i>luxC</i> Aarl<br>deletion and P <sub>S7</sub> +<br>RBS strategy 2 ) |
| Backbone for P               | 1 + 5'-AGGAGT-3' F      | RBS                                                                                                                                                                                                            |                                                                              |                                                                                                                                                                                                                                                                |
| VK145                        | VK145                   | AAAGTTACAGGCCAGGAACCACGTACCATGGCCTGCAGGA<br>GTACTGCGAATCCTCCGTCGATCCGGGCGGCCGGCGCGATG<br>AGAACAGGGTTGAAGGACTGCGGAAGGAGCAGCACGATG<br>GACGCTCTGTGACAATTCGAGCTCTGGAAGCTGGCTAC <u>GTG</u><br>AACTTCAACCGTAACCACAAC | gBlock                                                                       | Ppu21I digested<br>180222-3-3 (P1.2)                                                                                                                                                                                                                           |
| 5′ non transcrik             | ped + 5'UTR region:     | S                                                                                                                                                                                                              |                                                                              |                                                                                                                                                                                                                                                                |

| P <sub>S7</sub> + RBS v1 | VK47_F  | <u>GAAATTACCCCCATTAA</u> ATGGATGGCAAATACAGGCTTATGT | PCR (170322                     | mini-CTX-lux digested         |
|--------------------------|---------|----------------------------------------------------|---------------------------------|-------------------------------|
|                          |         | CTATACAGCTAGCC                                     | XcmlpMLS7):                     | with Xcml/Swal (with          |
|                          | VK48_R  | CACGCAGGTGGGCTCCTCACCTGCTTCGTT                     | VK47_F/VK48_R/(p                | <i>luxC</i> AarI deletion and |
|                          |         | TTTTCAGTTGGAGC                                     | MLS7)                           | Swal fragment)                |
| P <sub>S7</sub> + RBS v2 | VK068_F | CATAATTATGACGAAAGTTACAGGCCAGGAACCACGTAGTC          | PCR (1700203                    | mini-CTX- <i>lux</i> digested |
|                          |         | AGAATCTG                                           | Bs/pM):                         | with BsaAl/Swal (with         |
|                          |         |                                                    | VK68_F/VK48_R/(P                | luxC Aarl deletion and        |
|                          |         |                                                    | <sub>s7</sub> + RBS strategy 1) | Swal fragment)                |
| P1 + 5'-                 | VK110_F | AAAGTTACAGGCCAGGAACCAC                             | PCR (171201 5 D.):              | G1C7 digested with            |
| AGGAGT-3'                | VK144_R | <u>CCGTTAATAATGAATGAAATTTTTTTAGT</u> CATGCAGGTGAGT | VK110_F/VK144_R                 | BsaAl/Aarl                    |
| RBS v1                   |         | ACTCCTGCAGGC                                       | /(VK112)                        |                               |
| P1 + 5'-                 | VK162_F | CCATGGCCTGCAGGAGTACTCACCTGCATGACTAAAAAAAT          | VK162_F +                       | 08143-6 digested              |
| AGGAGT-3'                |         | TTCATTCATTATTAACGG                                 | VK163_R                         | with Scal/Aarl                |
| RBS v2                   | VK163_R | <u>CCGTTAATAATGAATGAAATTTTTTTAG</u> TCATGCAGGTGAGT |                                 |                               |
|                          |         | ACTCCTGCAGGCCATGG                                  |                                 |                               |
| P1 + B.thai F            | VK112   | AAAGTTACAGGCCAGGAACCACGTAGTCAGAATCTGATTTT          | gBlock                          | G1C7 digested with            |
| RS                       |         | CTATATATTTGTTATTTACATCGTCATAACACAAAAATATAAGA       |                                 | BsaAl/Aarl                    |
|                          |         | AGCAAGTGTTGGTACGACCAGTTCGCAAGATAGTTAAACAG          |                                 |                               |
|                          |         | CAACTTAAGTTGAAATTACCCCCATTAAATGGATGGCAAATA         |                                 |                               |
|                          |         | CCAGGTCCTAGGGAGCTCGAATTCACGAACCCAGTTGACAT          |                                 |                               |
|                          |         | AAGCCTGTTCGGTTCGTAAACTGTAATGCAAGTAGCGTATG          |                                 |                               |
|                          |         | CGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCAGCG           |                                 |                               |
|                          |         | GTGGTAACGGCGCAGTGGCGGTTTTCATGGCTTGTTATGAC          |                                 |                               |
|                          |         | TGTTTTTTGTACAGTCTATGCCTCGGGCATCCAAGCAGCAA          |                                 |                               |
|                          |         | GCGCGTTACGCCGTGGGTCGATGTTTGATGTTATGGAGCAG          |                                 |                               |
|                          |         | CAACGATGTTACGCAGCAGGGCAGTCGCCCTAAAACAAAG           |                                 |                               |
|                          |         | TTAGGCAGCCGTTGTGCTGGTGCTTTCTGATAGTTGTTGTG          |                                 |                               |
|                          |         | GGGTAGGCAGTCAGAGCTCGATTTGCTTGTCGCCATAATAG          |                                 |                               |
|                          |         | ATTCACAAGAAGGATTCGACCCGGGCCATGGCCTGCAGGA           |                                 |                               |
|                          |         | GTACTCGCCCGGCATCGCGTACAATCCGCGGCTACCGGAGA          |                                 |                               |
|                          |         | TGGCATGCCTCCGTACAACCGCCGGCGAGCCGGCTGATGAT          |                                 |                               |
|                          |         | GCCTACGCGTTCCTGGGTGCAGGAGGTCGTAGGCCATCCGT          |                                 |                               |

|                                         |              | GACAAGCGGCGTCCTGCCGCCCAGGTTTGATGTCCTGTCGA<br>ATCTGGAAATTCATGAAACGTCTGCACACTCTCGAGCCCGT<br>CGCGGCGCTCGCGCATCTGTGCCGCTGGCTCGCGCTGTCG<br>GCCGTCGTCGGCGTGCTCGCCGCCGCCTCGGCATCCGCGCTCTT |                                                   |                                        |
|-----------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------|
|                                         |              | CATCCGTGGCTGCTGTGGCTGCTGCCGCGCGCGCGCGCGC                                                                                                                                           |                                                   |                                        |
| <i>B. thai metK</i><br>promoter +       | VK149_F      | CGCTCTGTGACAATTCGAGAAAGCCGCTATAATACGGGCTT<br>CCTCTGGAAGCTGGCTACG                                                                                                                   | VK149_F<br>+VK150_R                               | P1.0 (pVK145)<br>digested with Eco53KI |
| 5'-AGGAGC-3'<br>RBS <sup>4</sup>        | VK150_R      | CGTAGCCAGCTTCCAGAG<br>GAAGCCCGTATTATAGCGGCTTT<br>CTCGAATTGTCACAGAGCG                                                                                                               |                                                   |                                        |
| <i>metK</i> IGR—<br>from <i>B. thai</i> | VK126_F      | AAAGTTACAGGCCAGGAACCACGTACCATGGCCTGCAGGA<br>GTACTGCGAATCCTCCGTC                                                                                                                    | (PCR: 20171023<br>PCR tube 2):                    | G1C7 digested with<br>BsaAl/Aarl       |
|                                         | VK109_R      | CTGGCCGTTAATAATGAATGAAATTTTTTTAGTATAATCGTTT<br>GCCACGTTC                                                                                                                           | VK126_F/VK109_R<br>/(gDNA <i>B.thai</i><br>E264)  |                                        |
| 5' non transcrik                        | ped region   |                                                                                                                                                                                    |                                                   |                                        |
| P1 integron promoter                    | VK164_p4.6_F | <u>CCCATTAAATGGATGGCAAATACCAGGTCCTAGGGAGCTC</u> G<br>AATTCACGAACCCAGTTG                                                                                                            | PCR (180724 P4.6<br>A):                           | 08143-6 digested with Csil/Ncol        |
|                                         | VK165_p4.6_R | <u>AGTACTCCTGCAGGCCATGG</u> CCCGGGTCGAATCCTTC                                                                                                                                      | VK164_p4.6_F/VK1<br>65_p4.6_R/((VK11<br>2 gBlock) |                                        |
| P1 integron                             | VK110_F      | AAAGTTACAGGCCAGGAACCAC                                                                                                                                                             | PCR (180724 P0.2                                  | G1C7 digested with                     |
| promoter—                               | VK175_R      | <u>CCGTTAATAATGAATGAAATTTTTTTAGT</u> CATGCAGGTGAGT                                                                                                                                 | C):                                               | BsaAl/Aarl                             |
| no additional<br>RBS                    |              | ACTGCAGCTGCCATGGCCCGGG                                                                                                                                                             | VK110_F/VK175_R<br>/(VK112 gBlock)                |                                        |
| P <sub>S7</sub> promoter                | VK158_p4.2_F | <u>CCCATTAAATGGATGGCAAATACCAGGTCCTAGGGAGCTC</u> A<br>CAGGCTTATGTCTATACAG                                                                                                           | PCR (180724 P4.2<br>A):                           | 08143-6 digested<br>with Csil/Ncol or  |
| 5'1170                                  | VK159_p4.2_R | AGTACTCCTGCAGGCCATGG<br>TTG                                                                                                                                                        | VK158_p4.2_F/VK1<br>59_p4.2_R/(plasmi<br>d pMLS7) | P4.1_1 digested with<br>Csil/Ncol      |

| P. syr F RS         | VK151 (P4.1)  | <u>CCATGGCCTGCAGGAGT</u> ACTTTTGGACAGACCTAGCTAAGA   | gBlock                    | 08143-6 digested |
|---------------------|---------------|-----------------------------------------------------|---------------------------|------------------|
|                     |               | TCGGCGCATTGGAGATGGCATTCCTCCATTAACAAACCGCT           |                           | with Scal/Aarl   |
|                     |               | GCGCCCGTAGCAGCTGATGATGCCTACAGAAACCTGATCAA           |                           |                  |
|                     |               | ACCAGGTCTGTAGGCGTTCGCGCTTAGAATCCCTTCTTTGG           |                           |                  |
|                     |               | TCAGGCCCACTTATTTTTGTGGCTGGCCAAATGTCTAAATT           |                           |                  |
|                     |               | TCGACGACCTGAACAACTCGACTTACTGCCCTATATAGCGAA          |                           |                  |
|                     |               | ATGGCTTGCGCTTGCTGGTCTTGTAGCTCTTTTGGCAGGCT           |                           |                  |
|                     |               | CTGCTTCTGCGTTATTCCTGCTTTCTTTGGATCATGCCACCCA         |                           |                  |
|                     |               | GTGGCGAGAAACCCATCCCTGGGTAATCTGGCTCCTGCCAG           |                           |                  |
|                     |               | TGGCCGGCTTTGTCACCTGCATGACTAAAAAATTTCATTCA           |                           |                  |
|                     |               | TTATTAACGG                                          |                           |                  |
| metX 5'UTR—         | VK169_F       | CCATGGCCTGCAGGAGTACTCGGCGATGCTCGGAAAG               | PCR (180724 P2.2          | 08143-6 digested |
| from <i>B. thai</i> | VK171_R       | <u>CCGTTAATAATGAATGAAATTTTT</u> TTAGTCATGCCGATCGATT | H):                       | with Scal/Aarl   |
|                     |               | CCATTCG                                             | VK169_F/VK171_R           |                  |
|                     |               |                                                     | /(gDNA B.thai             |                  |
|                     |               |                                                     | E264)                     |                  |
| E.coli thiM         | VK194_F       | <u>CCATGGCCTGCAGGAGT</u> ACTCCTCTGCGATTTATCATCG     | PCR (16.190105            | 08143-6 digested |
| ТРР                 | VK209_R       | <u>CCGTTAATAATGAATGAAATTTTT</u> TTAGTGATCAGGTCGACT  | P5.1 A):                  | with Scal/Aarl   |
| riboswitch          |               | TGCATAG                                             | VK194_F/VK209_R           |                  |
|                     |               |                                                     | /(gDNA <i>E.coli</i> K12) |                  |
| B.thai thiC RS      | VK196_F       | <u>CCATGGCCTGCAGGAGT</u> ACTATCGTGTGCGCTTGC         | PCR (17.190105            | 08143-6 digested |
|                     | VK210_R       | <u>CCGTTAATAATGAATGAAATTTT</u> TTTAGTGATGGGGTTGGCG  | P5.2 D):                  | with Scal/Aarl   |
|                     |               | TTCATG                                              | VK196_F/VK210_R           |                  |
|                     |               |                                                     | /(gDNA <i>E.coli</i> K12) |                  |
| <i>B.thai</i> mini- | VK198_F       | <u>CCATGGCCTGCAGGAGT</u> ACTTACTTCCGCTGCCCGGGGACG   | PCR (18.190105            | 08143-6 digested |
| ykkC RS             | VK211_R       | <u>CCGTTAATAATGAATGAAATTTT</u> TTTAGTGATCCACAGCCAA  | P5.3 A):                  | with Scal/Aarl   |
|                     |               | GGC                                                 | VK198_F/VK211_R           |                  |
|                     |               |                                                     | /(gDNA <i>B.thai</i>      |                  |
|                     |               |                                                     | E264)                     |                  |
| P. aeruginosa       | RN_0079_PA14  | CCATGGCCTGCAGGAGTACTCGCCCCGTCCTAGGGGA               | PCR:RN_0079_PA1           | 08143-6 digested |
| PA14 yybP-          | _rs_fw        |                                                     | 4_rs_fw/RN_0079.          | with Scal/Aarl   |
| ykoY RS             | RN_0079.1_PA1 | CTGGCCGTTAATAATGAATGAAATTTTTTAGTTTCCGCGAG           | 1_PA14_cds_rev/(          |                  |
|                     | 4_cds_rev     | GGCAACG                                             | gDNA P.aeruginosa         |                  |

|                           |                          |                                                    | PA14)                                     |                     |
|---------------------------|--------------------------|----------------------------------------------------|-------------------------------------------|---------------------|
| B. cereus F RS            | VK180_F                  | <u>CCATGGCCTGCAGGAGT</u> CTATATGTAATAATTATAG       | 08143-6 digested                          |                     |
| + <i>B.thai</i> F RS      | VK181 R                  | GTACGCGATGCCGGGCGAGTACTCTCTTTAAATAGCTTGCTC         | VK180_F/VK183_R                           | with Scal           |
|                           |                          | CTGCAGGAGTACTGCGCCGCGCGCGCGACCGAAAAGGCGT           | /(VK187)                                  |                     |
|                           | VK187                    | GATACGATGGGGCCTTGCGTCGATTTGATTTCAGCTTGCGG          |                                           |                     |
|                           |                          | ACGCGGGGCAACCCGAAACAGCTAAAGCGAAGGCCGGCG            |                                           |                     |
|                           |                          | AGCAGCGCCATGCCGGCCCGAGTCGATAGCTGCTCCGCAC           |                                           |                     |
|                           |                          | ACCAAGCCCGCTGATGCCGACGCATGAGCGGGCAAAAAGT           |                                           |                     |
|                           |                          | TGGTCTGCGCATTCGCCGCGCGCGCGCGCGCGGCGATGCG           |                                           |                     |
|                           |                          | CTTGAAAACGGACACCTGCATGACTAAAAAAATTTCATTCA          |                                           |                     |
|                           |                          | TATTAACGGGATCCCATGGCCTGCAGGAGTCTATATGTAATA         |                                           |                     |
|                           |                          | ATTATAGGCGATGGAGTTCGCCATAAACGCTGCTTAGCTAAT         |                                           |                     |
|                           |                          | GACTCCTACCAGTATCACTACTGGTAGGAGTCTATTTTTTG          |                                           |                     |
|                           |                          | AGCAAGCTATTTAAAGAGAGTACTTTTGGACAGACCTAGCT          |                                           |                     |
|                           |                          | AAGATC                                             |                                           |                     |
| B.thai metZ               | VK178_F                  | <u>CGAAAGTTACAGGCCAGGAACCAC</u> GTACCATGGCCTGCAG   | PCR (7.190102 A):                         | G1C7 digested with  |
| 5'UTR                     |                          | GAGTACTGCGCCGCGCGCGCGAC                            | VK178_F/VK179_R                           | BsaAl/Aarl          |
|                           | VK179_R                  | <u>CCGTTAATAATGAATGAAATTTT</u> TTTAGTCATGCAGGTGTCC | /(gDNA <i>B.thai</i>                      |                     |
|                           |                          | GTTTTCAAGCGCATCG                                   | E264)                                     |                     |
| P <sub>s7</sub> N.europea |                          |                                                    |                                           |                     |
| Template                  | AD_TWIST_P <sub>s7</sub> | CCATTAAATGGATGGCAAATACCAGGTCCTAGGCTGGCA            | Amplify with                              | Mini-CTX-lux digest |
|                           |                          | GCGGTAATAGCGGTGGTGGCCGGAATCGCCGGTGCTGTC            | AD123 and AD124, $direct with Yrred H / $ | with XmaJI/ Scal    |
|                           |                          | GAGTAAGTGGTCACCCGACCAGGCTGGTAAGTCGTTAG             | digest with Amaji /                       |                     |
|                           |                          | GGATGAATCGGGTTAGTTGGTGGCCGCGGGGCTAAAAG             | Scal                                      |                     |
|                           |                          | TTAGCTCCAACTGAAAAGTTAAAGGAAGAAACCCATGGC            |                                           |                     |
|                           |                          | CTGCAGGTATAGTGAAGATAAGGAGATGGTGTTCCTCCTT           |                                           |                     |
|                           |                          | TTGAAGAAACCGCAGCCGTTTAGCGCTGCTGATGACGCC            |                                           |                     |
|                           |                          | TACAGGACCTGACCTTCGTTAGGGCTGTAGGCCGTTCGTG           |                                           |                     |
|                           |                          |                                                    |                                           |                     |
|                           |                          |                                                    |                                           |                     |
| Amplified tem             | AD123                    |                                                    | $\Delta D123/124$ to am                   |                     |
| plate                     |                          |                                                    | nlify twist template                      |                     |
| P.5.00                    | AD 124                   |                                                    | piny twist template                       |                     |
| Sequencing                | AD123                    | CCATTAAATGGATGGCAAATACCAGGT                        |                                           |                     |

| [ | AD112 | GGGCTCGAGAGTGTGCAGAC | AD123/112 for se- |  |
|---|-------|----------------------|-------------------|--|
|   |       |                      | quencing          |  |

<sup>1</sup>Gibson assembly overlaps are underlined.

<sup>2</sup>Mutations in reference to the template are in bold.

<sup>3</sup>Constructs were visualised and designed using Genome Compiler (<u>http://www.genomecompiler.com/</u>).

<sup>4</sup> AGGAGC RBS from the *metK* IGR was taken from CP000086 *Burkholderia thailandensis* E264 chromosome (1204819...204824).

## Table S2. Plasmids used in this study.

| Plasmid                          | Description/associat                 | Source     | Cloning procedure                                         |
|----------------------------------|--------------------------------------|------------|-----------------------------------------------------------|
|                                  | ed part name                         |            |                                                           |
| mini-CTX- <i>lux</i> (Becher and | Integration vector                   | AF251497   | n/a                                                       |
| Schweizer, 2000)                 | with a restriction-                  |            |                                                           |
|                                  | site-modified lux                    |            |                                                           |
|                                  | gene cluster                         |            |                                                           |
|                                  | ( <i>luxCDABE</i> ) from             |            |                                                           |
|                                  | Xenorhabdus                          |            |                                                           |
|                                  | <i>luminescens</i> ; Tc <sup>R</sup> |            |                                                           |
| pMLS7 (Lefebre and Valvano,      | Expression vector                    | Addgene    | n/a                                                       |
| 2002)                            | with constitutive                    | plasmid #  |                                                           |
|                                  | promoter of the S7                   | 32056      |                                                           |
|                                  | ribosomal protein                    |            |                                                           |
|                                  | gene                                 |            |                                                           |
|                                  | from Paraburkholder                  |            |                                                           |
|                                  | ia sp. strain LB400                  |            |                                                           |
| pG1C7                            | mini-CTX- <i>lux</i> with            | This study | GA from numerous parts including the S7 promoter sequence |
|                                  | 56nt insertion to                    |            | from pMLS7 (contact authors for more details if needed).  |
|                                  | ribosomal promoter                   |            |                                                           |
|                                  | S7 from pMLS7, <i>luxC</i>           |            |                                                           |
|                                  | ATG:GTG, and Aarl                    |            |                                                           |
|                                  | site deletion in <i>luxC</i> .       |            |                                                           |
| pP1.0                            | Backbone for P1 +                    | This study | GA of Ppu21I digested 180222-3-3 (P1.2) and VK145 gblock. |
|                                  | 5'-AGGAGT-3' RBS                     |            |                                                           |
| pVK-f2- <i>lux</i> (p08143-6)    | P1 + <i>B. thai</i> F RS             | This study | GA of BsaAI and AarI digested G1C7 backbone and and VK112 |
|                                  |                                      |            | gblock.                                                   |
| pP1.1                            | B. thai metK                         | This study | GA of Eco53KI digested P1.0 (pVK145) backbone and         |
|                                  | promoter + 5'-                       |            | oligonucleotides VK149_F +VK150_R                         |
|                                  | AGGAGC-3' RBS                        |            |                                                           |

| p180222-3-3 (pP1.2)         | metK IGR— from B.<br>thai                 | This study | GA of BsaAI and Aarl digested G1C7 backbone and PCR product of VK126_F/VK109_R/(gDNA <i>B.thai</i> E264).                       |
|-----------------------------|-------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------|
| pVK-f- <i>lux</i> (pP4.1_1) | P1 + <i>P. syr</i> F RS                   | This study | GA of Scal/Aarl digested 08143-6 backbone and VK151 gblock.                                                                     |
| pP2.2-2                     | P1 + <i>metX</i> 5'UTR                    | This study | GA of Scal/Aarl digested 08143-6 backbone and PCR product of VK169_F/VK171_R/ (180724 P2.2 H).                                  |
| pP5.6                       | <i>P. aeruginosa</i> PA14<br>yybP-ykoY RS | This study | GA of Scal/Aarl digested 08143-6 backbone and PCR product of RN_0079_PA14_rs_fw/RN_0079.1_PA14/(gDNA <i>P.aeruginosa</i> PA14). |
| pP4.72                      | B.cereus F RS +<br>B.thai F RS            | This study | GA of Scal digested 08143-6 backbone and PCR product of VK180_F/VK183_R/(VK187).                                                |
| pP6.3                       | <i>B.thai metZ</i> 5'UTR                  | This study | GA of BsaAI and AarI digested G1C7 backbone and PCR product of VK178_F/VK179_R/(gDNA <i>B.thai</i> E264).                       |

## Table S3. Strains used in this study.

| Strain                                                                                      | Lab catalogue           | Description                                                                                                           | Source          |
|---------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------|
| <i>E. coli</i> DH5α (Chen et al., 2018)                                                     | B1A4                    | Used for transformation of<br>plasmid constructs                                                                      | NCBI:txid668369 |
| <i>E. coli</i> SM10λpir (Simon et al., 1983)                                                | B1A5                    | Used for conjugating plasmid<br>constructs with<br><i>Burkholderia</i> sp. strain E264<br>and for luminescence assays | BCCM: LMBP 3889 |
| <i>B. thailandensis</i> E264 (Kim et al., 2005)                                             | B1A7                    | Used for transformation of<br>plasmid constructs                                                                      | NCBI:txid271848 |
| <i>E. coli</i> DH5α/pG1C7                                                                   | 170404GAC7              | Obtained from GA transformation test                                                                                  | This study      |
| <i>E. coli</i> DH5α/P1 + <i>B. thai</i> F RS                                                | B1B3; p08143-6          | Reporter strain used for<br>luminescence assays                                                                       | This study      |
| <i>E. coli</i> SM10λpir/P1 + <i>B. thai</i> F<br>RS                                         | B1B5; p08143-6          | Reporter strain used for<br>luminescence assays                                                                       | This study      |
| B. thailandensis E264/ P1 + B.<br>thai F RS                                                 | B1B7; p08143-6          | Reporter strain used for luminescence assays                                                                          | This study      |
| <i>E. coli</i> DH5α/ <i>B. thai metK</i><br>promoter + 5'-AGGAGC-3' RBS                     | B1G5;p P1.1-1           | Obtained from GA transformation test                                                                                  | This study      |
| <i>E. coli</i> SM10λpir/ <i>B. thai metK</i> promoter + 5'-AGGAGC-3' RBS                    | B3B9; pP1.1-1-1         | Obtained from GA transformation test                                                                                  | This study      |
| <i>B. thailandensis</i> E264/ <i>B. thai</i><br><i>metK</i> promoter + 5'-AGGAGC-<br>3' RBS | B3F9;p P1.1-1-2         | Obtained from GA transformation test                                                                                  | This study      |
| E. coli DH5α/metK IGR                                                                       | B1D3; p180222-3-3/pP1.2 | Reporter strain used for luminescence assays                                                                          | This study      |
| E. coli SM10λpir/metK IGR                                                                   | B1D6; p180222-3-3/pP1.2 | Reporter strain used for luminescence assays                                                                          | This study      |

| B. thailandensis E264/metK<br>IGR                                  | B1E8; p180222-3-3/pP1.2 | Reporter strain used for<br>luminescence assays | This study |
|--------------------------------------------------------------------|-------------------------|-------------------------------------------------|------------|
| <i>E. coli</i> DH5α/P1 + <i>P. syr</i> F RS strain 1               | B1I6; pP4.1-1           | Reporter strain used for<br>luminescence assays | This study |
| <i>E. coli</i> DH5α/P1 + <i>P. syr</i> F RS strain 2               | B1I7; pP4.1-2           | Reporter strain used for<br>luminescence assays | This study |
| <i>E. coli</i> DH5α/P1 + <i>P. syr</i> F RS strain 3               | B1I8; pP4.1-3           | Reporter strain used for<br>luminescence assays | This study |
| <i>E. coli</i> SM10λpir/P1 <i>+ P. syr</i> F<br>RS                 | B3D5; pP4.1-2-1         | Obtained from plasmid transformation test       | This study |
| B. thailandensis E264/P1 + P.<br>syr F RS                          | B3I2; pP4.1-2-1-1       | Reporter strain used for<br>luminescence assays | This study |
| <i>E. coli</i> DH5α/P1 + <i>metX</i> 5'UTR                         | B3E2; pP2.2-2           | Reporter strain used for luminescence assays    | This study |
| <i>E. coli</i> SM10λpir/P1 + <i>metX</i><br>5'UTR                  | B4A4; pP2.2-2-1         | Reporter strain used for<br>luminescence assays | This study |
| B. thailandensis E264/P1 +<br>metX 5'UTR                           | B4B1; pP2.2-2-2-1       | Reporter strain used for<br>luminescence assays | This study |
| E. coli DH5α/P. aeruginosa<br>PA14 yybP-ykoY RS                    | B4G4; pP14-1            | Obtained from GA transformation test            | This study |
| <i>E. coli</i> SM10λpir/ <i>P. aeruginosa</i><br>PA14 yybP-ykoY RS | B5E1; pP5.6-1_1         | Obtained from plasmid transformation test       | This study |
| B. thailandensis E264/P.<br>aeruginosa PA14 yybP-ykoY RS           | B7C1; pP5.6-1_1-1       | Obtained from plasmid transformation test       | This study |
| E. coli DH5α/B. cereusr F RS +<br>B.thai F RS                      | B4E4; pP4.72-1          | Obtained from GA transformation test            | This study |
| E. coli DH5α/B.thai metZ 5′UTR                                     | B4C7; pP6.3-1           | Obtained from GA transformation test            | This study |
| <i>E. coli</i> SM10λpir/ <i>B.thai metZ</i><br>5'UTR               | B5C9; pP6.3-1_1         | Obtained from plasmid transformation test       | This study |

| B. thailandensis E264/B.thai | B7A9; pP6.3-1 1-1 | Obtained from plasmid | This study |
|------------------------------|-------------------|-----------------------|------------|
| <i>metZ</i> 5'UTR            | 1                 | transformation test   |            |

(A) C1 C2 C3 L1 C4 C5 C6 L2 C7 CtI-CtI







### Figure S1: Inactive mutant transformants of the $P_{S7}$ ribosomal promoterlux construct may indicate lux overexpression lethality in *E. coli* DH5 $\alpha$ .

(A)Verification of a cloning and transformation experiment by PstI restriction enzyme digestion of plasmids extracted from *E. coli* clones transformed with a GA reaction of a XcmI/Swal digested mini-CTX-*lux* backbone and 3 fragments forming a P<sub>S7</sub> -RBS-*luxC* insert for downstream reporter assays. Ctl-is the original mini-CTX-*lux* plasmid digested with PstI (linearized plasmid, expected size: 12,538 bp) and Ctl is undigested mini-CTX-*lux*. Expected product sizes of a PstI digestion of a successful assembly should yield 12,439 bp and 973 bp products. PCR-amplified assembly fragments (with GA overlaps) were 907 bp (P<sub>S7</sub> + RBS v1), 1162 bp (*luxC* Aarl deletion), and 139 bp (Swal fragment) and linearized backbone was 11311 bp (**Table S1**). The 7 clones obtained from the experiment are labelled C1-C7. Ladders are designated as L1 (100 bp DNA Ladder from NEB) and L2 (1 kb DNA Ladder from NEB) with indicated size for most relevant bands. Sequencing results were further obtained for C6 and C7 as they revealed expected sized bands (red arrows).

(**B**) Verification of a cloning and transformation experiment by Pstl restriction enzyme digestion of plasmids extracted from *E. coli* clones transformed with a Gibson Assembly reaction of a BsaAI/Swal digested mini-CTX-*lux* backbone and 3 fragments forming a P<sub>S7</sub> -RBS-*luxC* insert for downstream reporter assays. PCR-amplified assembly fragments were 1057 bp (P<sub>S7</sub> + RBS v2), 1162 bp (*luxC* Aarl deletion), and 139 bp (Swal fragment) and linearized backbone was 11178 bp (**Table S1**). Expected

product sizes of a PstI digestion of a successful assembly should yield a 12439 bp and a 973 bp product. The 3 clones obtained from the experiment are labelled C1-C3. Ctl- is the original mini-CTX-*lux* plasmid digested with PstI (expected size: 12538 bp) and Ctl is undigested mini-CTX-*lux*. Ladders are designated as L1(100 bp DNA Ladder from NEB), L2(1 kb DNA Ladder from NEB). No sequencing results were further obtained as these results indicate misassembly of fragments.

(C) Clones 6 and 7 of the Gibson assembly attempts of the P<sub>57</sub>-RBS-*luxCDABE* yielded misassembled constructs for which the former had a point mutation of G334T of the *luxC* sequence (not shown), and the latter had a 56 nt insert in the P<sub>57</sub> promoter, as amplified from pMLS7, between C13 and T14, and a point mutation at position 285 (in red). The 850 bp promoter sequence was analysed using BPROM<sup>8</sup> and the elements of the three predicted promoters are noted including the -35 and -10 conserved promoter boxes, the Transcription Start Site position (TSS), and position of the oligonucleotides from the crp Transcriptional Factor binding site (TF) (in black). The Linear discriminant function (LDF) of each predicted promoter is also noted. Nucleotide Blast alignment results of the 56 nt insert are also presented. Nucleotide BLAST search hits of the 56 nt insert sequence against *Escherichia coli* K-12 are presented in the red box.



### Figure S2: Secondary structures of fluoride riboswitches used in this study.

The secondary structures of the four riboswitches described in this manuscript is pictured. Stems and pseudoknots are as annotated in (Baker et al., 2012 and Ren et al., 2012). The start codon is represented as a green AUG for riboswitches with presumed (but unconfirmed) translational mechanism. Grey shading highlights the portion of sequence presumed to be an expression platform based on a Rhoindependent transcriptional terminator.

| GACG<br>CTGC<br>5,                         |                                               | T T A C A<br>A A T G T<br>5,015 | G G C C<br>C C G G<br>5,020               | A G G A A<br>T C C T T<br>5,025<br>GA ove      | C C A C G 1<br>G G T G C A<br>5,030<br>Ppu211<br>BsaAl<br>rlap 1b | known O<br>TAGTC<br>ATCAG<br>5,035             | A G A A<br>T C T T<br>5,040               | TCTG<br>AGAC<br>5,0                      | АТТІ<br>ТААА<br>45                           | <b>T C T A</b><br><b>A G A 1</b><br>5,050 | <b>A T A T A</b><br><b>T A T A T</b><br>5,055 | <b>TTTG</b><br><b>AAAC</b><br>5,060 | AAT<br>5                        | <b>T T T A</b><br><b>A A A T</b><br>,065 | C A T C<br>G T A G<br>5,070               | G T C A<br>C A G T<br>5,075               | TAACAC<br>ATTGTG<br>5,080                         |
|--------------------------------------------|-----------------------------------------------|---------------------------------|-------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|------------------------------------------|----------------------------------------------|-------------------------------------------|-----------------------------------------------|-------------------------------------|---------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------------|
| <b>A A A A</b><br>T T T T T<br>5,085       | A T A T A<br>T A T A<br>5,09                  | A A G A A<br>T T C T T<br>0 5,0 | GCAA<br>CGTT<br>95 5                      | G T G T T<br>C A C A A<br>,100 5,<br>Csil •    | G G T A C G<br>C C A T G G<br>,105 5,1<br>O Xmall                 | GACCA<br>CTGGT<br>110 5,<br>Sacl               | GTTC<br>CAAG<br>,115<br>• O               | G C A A<br>C G T T<br>5,120<br>P1 integn | GATA<br>CTAT<br>5,125                        | GTTA<br>CAAT<br>5 5,1<br>oter • prom      | AACA<br>TTGT<br>130                           | G C A A<br>C G T T<br>5,135         | 5,140                           | A A G T<br>T T C A<br>5,1                | T G A A<br>A C T T<br>45                  | ATTA<br>TAAT<br>5,150                     | C C C C C A<br>G G G G G G T<br>5,155             |
| ΑΑΤΤ                                       | 5,165                                         | 5,170                           | <b>T T T A</b><br>5,175                   | T G G T C<br>5,180<br>Csil                     | C A G G A<br>5,185                                                | 5,190<br>5,190<br>GA overla                    | C G A G<br>5,19<br>Sacl                   | СТТА<br>95 5                             | AGTG<br>5,200                                | 5,205                                     | 5,210                                         | AACT<br>5,2                         | <b>GTA</b><br>215               | T T C G<br>5,220                         | <b>G A C A</b><br>5,225                   | A G C C<br>5,2                            | <b>A A G C A T</b><br>30                          |
| <b>A A C T O</b><br><b>T T G A</b><br>5,24 | <b>БТАА</b><br>САТТ<br>0 5,                   | ACGTT<br>245                    | G T A G<br>C A T C<br>5,250               | <b>C G T A T</b><br><b>G C A T A</b><br>5,255  | G C G C T C<br>C G C G A G<br>5,260                               | C A C G C<br>G T G C G<br>5,265                | <b>A A C T</b><br><b>T T G A</b><br>5,270 | G G T C<br>C C A G<br>5,275              | CAGA<br>GTCT<br>5,2                          | АССТ<br>Т G G A<br>280                    | <b>TGAC</b><br><b>ACTG</b><br>5,285           | С G A A<br>G C T T<br>5,290         | <b>G C G</b><br>5,2             | AGCG<br>TCGC                             | G T G G<br>C A C C<br>5,300               | <b>T A A C</b><br><b>A T T G</b><br>5,305 | G G C G C A<br>C C G C G T<br>5,310               |
| G T G G G<br>C A C C G<br>5,315            | <b>G G G T</b><br><b>G C C A</b><br>5,320     | ТТТСА<br>А А А G Т<br>5,325     | T G G C<br>A C C G<br>5,3                 | <b>ТТ G T T</b><br><b>А А С А А</b><br>30 5,33 | <b>АТБАСТ</b><br>ТАСТБА<br>85 5,340                               | <b>СААА</b><br>0 5,34                          | <b>ТТТТ</b><br>А А А А А<br>45 5,         | G T A C<br>C A T G<br>,350               | A G T C<br>T C A G<br>5,355                  | ТАТО<br>АТАС<br>5,360                     | G G A G<br>5,3                                | 6 6 6 6 6<br>65                     | ATC<br>TAG<br>5,370             | C A A G<br>G T T C<br>5,375              | CAGC<br>GTCG<br>5,3                       | AAGC<br>TTCG<br>80 5                      | <mark>G C G T T A<br/>C G C A A T</mark><br>5,385 |
| C G C C G<br>G C G G G<br>5,               | G T G G<br>C A C C<br>395                     | G T C G A<br>C A G C T<br>5,400 | <b>T G T T</b><br><b>A C A A</b><br>5,405 | TGATG<br>ACTAC<br>5,410                        | ТТАТСО<br>ААТАСО<br>5,415                                         | G A G C A<br>C T C G T<br>5,420                | G C A A<br>C G T T<br>5,425               | CGAT<br>GCTA<br>5,4                      | G T T A<br>C A A T<br>30                     | <b>CGC</b><br>GCGT<br>5,435               | G C A G<br>C G T C<br>5,440                   | G G C A<br>C C G T<br>5,44          | GTC<br>CAG<br>5 5               | G C C C<br>C G G G<br>(450               | <b>T A A A</b><br><b>A T T T</b><br>5,455 | A C A A<br>T G T T<br>5,460               | A G T T A G<br>T C A A T C<br>5,465               |
| G C A G C<br>C G T C C<br>5,470            | сс <u>с</u> т<br><u>ссст</u><br>5,47          | TGTGC<br>ACACG<br>5 5,4         | Т G G T<br>А С С А<br>80 5                | <b>G C T T T</b><br>C G A A A<br>,485 5        | СТ G A T A<br>G A C T A 1<br>,490 5,4                             | <b>А G T T G</b><br>Т <b>С А А С</b><br>495 5, | T T G T<br>A A C A<br>,500                | G G G G<br>C C C C<br>5,505              | TAGO<br>ATCO<br>5,510                        | GTCA<br>5,3                               | GTCT                                          | GCTC<br>CGAG<br>5,520<br>Sacl       | G A T<br>C T A<br>5,525         | T T G C<br>A A C G<br>5,5                | AACA                                      | CGCC<br>GCGG<br>5,535                     | <b>A T A A T A</b><br><b>T A T T A T</b><br>5,540 |
| P1 integro<br>G A T T C<br>C T A A C       | n promoti<br>C A C A<br>G T G T<br>5,550      | A G A A G<br>T C T T C<br>5,555 | GATT<br>CTAA<br>5,560                     | <b>C G A C C</b><br>G C T G G<br>5,565         | No<br>C G G G C C<br>G C C C G G<br>5,570                         | OI • O<br>CATGG<br>GTACC<br>5,575<br>Nool      | SdaI •<br>G G A C<br>5,58<br>Sd           | CAGG<br>GTCC<br>30 5                     | Scal •<br>A G T A<br>T C A T<br>5,585<br>Sca | GAAA<br>5,590                             | Friboswitch                                   | CAGA<br>GTCT<br>5,0                 | e • ncRN<br>A C C T<br>G G A    | A O<br>A G C T<br>T C G A<br>5,605       | <b>AAGA</b><br><b>TTCT</b><br>5,610       | P.syrin<br>T C G G<br>A G C C<br>5,6      | qae O<br>CGCATT<br>GCGTAA<br>15                   |
| fluoride                                   | ihoswite                                      | <b>h</b>                        |                                           |                                                | -                                                                 | G                                              | iA overla                                 | GA ove<br>p 2                            | rlap 3                                       |                                           |                                               |                                     |                                 |                                          | Post-r                                    | boswitch                                  | equenc O                                          |
| G G A G<br>C C T C<br>5,62                 | A T G G<br>T A C C<br>5 5,                    | <b>G T A A G</b><br>630         | CTCC<br>GAGG<br>5,635                     | <b>A T T A A</b><br><b>T A A T T</b><br>5,640  | САААС<br>G Т Т Т G G<br>5,645                                     | <b>G C T G</b><br><b>G C G A C</b><br>5,650    | C G C C G<br>G C G G<br>5,655             | C G T A<br>G C A T<br>5,660              | GCAG<br>CGTC<br>5,0                          | G A C 1<br>665                            | <b>T G A T</b><br><b>A C T A</b><br>5,670     | G C C T<br>C G G A<br>5,675         | ACA<br>TGT<br>5,60              | <b>G A A A</b><br>C T T T<br>30          | C C T G<br>G G A C<br>5,685               | A T C A<br>T A G T<br>5,690               | AACCAG<br>TTGGTC<br>5,695<br>Call                 |
| G T C T C<br>C A G A C<br>5,700            | G T A G<br>C A T C<br>5,705                   | G C G T T<br>C G C A A<br>5,710 | C G C G<br>G C G C<br>5,71                | СТТА G<br>G A A T C<br>15 5,72                 | A A T C C C<br>T T A G G C<br>10 5,72                             | СТТСТ<br>БААБА<br>5 5,73                       |                                           | TCAG<br>AGTC<br>,735                     | G C C C<br>C G G G<br>5,740                  | ACT<br>TGA<br>5,74                        |                                               |                                     | oltage-q<br>TGG<br>ACC<br>5,755 | CTGG<br>GACC<br>5,760                    | CCAA<br>GGTT<br>5,7                       | ATGT<br>TACA                              | CTAAAT<br>GATTTA                                  |
|                                            |                                               |                                 |                                           |                                                |                                                                   |                                                |                                           | pres                                     | sumed                                        | RBS                                       |                                               | GUG s                               | v<br>tart co                    | A ) (<br>don                             | 3 ) Q                                     | ≥ M ><br>5                                | S > K >                                           |
| TTCG<br>AAGC<br>5,                         | ACGA<br>TGCT<br>780                           | G G A C T<br>5,785              | A C A A<br>T G T T<br>5,790               | C T C G A<br>G A G C T<br>5,795                | C T T A C 1<br>G A A T G A<br>5,800                               | 5,805                                          | <b>TATA</b><br><b>ATAT</b><br>5,810       | TAGC<br>ATCG<br>5,8                      | <b>G A A A</b><br><b>C T T T</b><br>15       | 5,820                                     | 5,825                                         | G C T T<br>C G A A<br>5,830         |                                 | G G T C<br>C C A G<br>,835               | T T G T<br>A A C A<br>5,840               | AGCT<br>TCGA<br>5,845                     | C T T T T G<br>G A A A A A C<br>5,850             |
| GCAG                                       |                                               | TGCTT                           | CTGC                                      | GTTAT                                          | тсство                                                            | CTTTC                                          | TTTG                                      | 20<br>GATC                               | ATGO                                         | CACO                                      | CAGT                                          | GGCG                                | AGA                             | AACC                                     | CATO                                      | сста                                      | GGTAAT                                            |
| C G T C (<br>5,855<br>A                    | <b>G A G</b><br>5,86<br><b>G &gt; S</b><br>35 | ACGAA<br>0 5,8<br>> A >         | GACG<br>65 5<br>S A                       | СААТА<br>,870 5,<br>                           | AGGACO<br>875 5,0<br>F L                                          | GAAAG<br>880 5,<br>>L>S                        | A A A C<br>,885<br>2 L<br>45<br>1ucC      | CTAG<br>5,890<br>D<br>AaRI site          | TACO<br>5,895<br>H                           | G T G G<br>5 5,9<br>A → T<br>• CDS €      | <b>GTCA</b><br>900 50                         | CCGC<br>5,905<br>₩ >                | 5,910<br>R ) E                  | ттсс<br>5,9<br>: ) Т                     | GTAG<br>15<br>> H ><br>55                 | GGAC<br>5,920<br>P ∑ V                    | C C A T T A<br>5,925<br>√                         |
| C T G G (<br>G A C C (                     | стсс<br>6 А G G<br>5,935                      | T G C C A<br>A C G G T<br>5,940 | G T G G<br>C A C C<br>5,945               | C C G G C<br>G G C C G<br>5,950                | ТТТ G Т C<br>А А А С А C<br>5,955                                 | <b>C A C C T</b><br><b>G T G G A</b><br>5,960  | GCAT<br>CGTA<br>5,96<br>Aarl              | G A C T<br>C T G A<br>5555               | <b>A A A A</b><br><b>T T T T</b><br>5,970    | 5,975                                     | ТТСА<br>А А А G Т<br>5,980                    | AAGT<br>5,9                         | A T T A<br>F A A T<br>985       | T T A A<br>A A T T<br>5,990              | C G G C<br>G C C G<br>5,995               | CAGG<br>GTCC<br>6,0                       | Т Т <u>G</u> A A A<br>A A C T T T<br>00           |
| 1) W<br>60                                 | L>                                            | L > P                           | >v>                                       | A > G<br>65                                    | > F > V                                                           | > T ><br>Type II                               | C > M<br>70                               | ) T                                      | ) к )<br>С                                   | GA overl                                  | I > S<br>5<br>ap 4                            | > F >                               | I>                              | 1 >                                      | N > G                                     | > Q >                                     | V > E >                                           |

### Figure S3: Sequence of the optimized cloning area of pVK-f-*lux*.

Nucleotide parts are designated by different colours: grey areas are sequences of unknown function, including the pre-riboswitch sequence (5591...5612) and the post-riboswitch sequence (5686...5753) naturally found directly upstream and downstream, respectively, of the fluoride riboswitch in *P. syringae.;* turquoise is the P1 integron promoter (5196...5570); purple is the *P. syringae* fluoride riboswitch (5613...5570); orange is a portion of the gene encoded downstream of the *P. syringae* fluoride riboswitch (5754...5956) with an additional Aarl Type IIS recognition site (5957...5963 with blue arrow below sequence); and yellow is the original *luxC* sequence (starting at position 5964). Restriction enzyme recognition sites intended for adding or swapping parts are annotated. GA overlaps for parts design are annotated in dark grey for promoter swapping, using either MCS1 (GA overlap 1a) or an upstream BsaAl RE site (GA overlap 1b) and MCS2 (Gibson overlap 2), and in black for 5'UTR swapping, using MCS2 (GA overlap 3) and Aarl RE site (GA overlap 4). Image was put together using Genome Compiler software.



### Figure S4. Testing chloride to look for potential osmolarity effects.

Bacteria with cloned reporters were cultured in presence of various concentrations of chloride to ensure that the observed effect could not be induced by other ions or general osmolarity effects. No major effect was observed on expression (luminescence, RLU), as pictured in figure above for *E. coli* SM10  $\lambda$ pir or on growth (inset). This is a representative assay picked from numerous assays performed with different combinations of fluoride and chloride concentrations and, while in some cases there appeared to be some Cl<sup>-</sup> -mediated modulation (which we have not assessed as significant however), the fold induction from Cl<sup>-</sup> was always less than 30% (typically less than 10%), much less than the fold induction from fluoride. We hypothesize, this might be due to some indirect effects with regards to how Cl<sup>-</sup> may affect F<sup>-</sup> availability, but we did not explore this further.



# Figure S5: Transformation of heat-shocked *E. coli* is possible in high fluoride concentrations.

Transformation plates of GA reactions of the P1 integron promoter or the P<sub>S7</sub> promoter upstream of the *B. thailandensis* fluoride riboswitch controlled *lux* operon (**Table S1**: P1 integron promoter and P<sub>S7</sub> promoter, respectively), performed at different concentrations of fluoride into *E. coli* DH5 $\alpha$  (**A**) or *E. coli* SM10 $\lambda$ pir (**B**) after an overnight incubation at 37°C. Selection plates are of LB agar and are supplemented with 15 µg/mL tetracycline. Negative controls, of transformations with digested backbone only are also shown (**C**).

| Transformation<br>fluoride<br>conditions<br>(mM) | Strain              | Number of<br>successfully<br>sequenced<br>clones | Number of clones<br>containing 56 nt<br>addition and C:T<br>mutation in the<br>P <sub>S7</sub> promoter | Number of<br>clones with a<br>gap instead of<br>the promoter<br>sequence | Number of<br>clones with<br>an unrelated<br>sequence<br>instead of P <sub>S7</sub> |
|--------------------------------------------------|---------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 0                                                | E. coli             | 7                                                | 3                                                                                                       | 3                                                                        | 1                                                                                  |
|                                                  | SM10λpir            |                                                  |                                                                                                         |                                                                          |                                                                                    |
| 0                                                | <i>Ε. coli</i> DH5α | 9                                                | 2                                                                                                       | 2                                                                        | 5                                                                                  |
| 10                                               | <i>Ε. coli</i> DH5α | 10                                               | 1                                                                                                       | 6                                                                        | 3                                                                                  |
| 15                                               | <i>Ε. coli</i> DH5α | 4                                                | 4                                                                                                       | 0                                                                        | 0                                                                                  |

# Table S4. P<sub>S7</sub> promoter cloning sequencing results













### Figure S6. Double riboswitch constructs full time course.

(A) Growth curves of *E. coli* DH5 $\alpha$  and *B. thailandensis* E264 cultures with varying concentrations of fluoride.

(B) and (C) *Lux*/OD over a 48h time-course regulation by the *Nitrosomonas europea* fluoride riboswitch with an expression platform (presumably) transcriptional cloned upstream of the *B. thailandensis* fluoride riboswitch used in the other constructs. Pre culture (LB) and expression media (0.5X MM) was supplemented with antibiotics as described in materials and methods.

(**D**) Total luciferase expression over the entire time course (from time 0 to 48h), calculated from triplicates for each concentration. Inset represents fold induction (FI).

While 61 mM fluoride does seem to induce expression (as much as 34 folds), the expression remains extremely low because it is strongly repressed by default and is compared to a value close to 0 luminescence, thus artificially inflating the FI. For *B. thailandensis* readings at 61 mM fluoride (as well as concentrations from 0 to 8 mM) the error bars that go into negative luminescence units illustrates how close we are to the time points, i.e. that many time points have a luminescence lower than that of the blank controls (media without bacteria).



# Figure S7: Regulation thresholds of the *B. thailandensis* fluoride riboswitch in *B. thailandensis* E264 and in *E. coli* SM10λpir.

(A) Lux/OD over a 42h time-course regulation by the *B. thailandensis* fluoride riboswitch in *E. coli* SM10 $\lambda$ pir for a range of fluoride concentrations between 0 and 62.5mM. Pre culture (LB) and expression media (0.5X MM) was supplemented with tetracycline (15 µg/ml).

(B) *Lux*/OD over a 42h time-course regulation by the *B. thailandensis* fluoride riboswitch in *B. thailandensis* E264 for a range of fluoride concentrations between 0 and 62.5mM. Pre-culture (LB) and expression media (0.5X MM) was supplemented with tetracycline (25  $\mu$ g/ml), gentamicin (50  $\mu$ g/ml), and polymyxin (15  $\mu$ g/ml).

Bottom graphs represent growth curves of strain cultures. The data points in a. represent single values while the data points in b. represent the means and standard deviations of triplicate values. All samples were measured on the same 96-well microplate run. Triplicate values for the *B. thailandensis* fluoride riboswitch construct in *E. coli* SM10 $\lambda$ pir exist on other microplate runs and yield similar results (not shown).



# Figure S8: Fluoride has little effect on expression with the *metZ* 5'UTR in *B. thailandensis*.

We used the 5'UTR of the gene *metZ* (involved in methionine metabolism) as a negative control. As can be seen from the curves, whether in MgCl<sub>2</sub> or MgSO<sub>4</sub>, no induction is observed with increasing concentrations of fluoride. Similarly, calculating fold induction (bottom) on the cumulative luminescence over the 48h of culture shows no significant change.

# Table S5. pVK-f2-*lux* (P1 + *B. thai* F RS-*lux*) plasmid production and *lux* expression specifications in *E. coli* DH5 $\alpha$ and *E. coli* SM10 $\lambda$ pir.

Luciferase activity values and growth data were obtained from an 41h microplate incubation of 200  $\mu$ L cultures containing the P1+*B. thai* F RS-*lux* construct (pVK-f2-*lux*) in presence of 3.91 mM fluoride, previously shown to be too low to induce riboswitch-mediated regulation. Values represent the means and standard deviations of triplicate results.

| Strain                     | Plasmid<br>production<br>(total ng) <sup>1</sup> | Peak<br>Lum<br>(RLU) <sup>2</sup> | OD <sub>600</sub> at<br>Peak<br>Lum | Peak<br>Lum/OD <sub>60</sub> | Average<br>Lum | Average<br>OD <sub>600</sub> | Average<br>Lum/OD <sub>600</sub> | Fitness (OD <sub>600</sub><br>Plateau value) |
|----------------------------|--------------------------------------------------|-----------------------------------|-------------------------------------|------------------------------|----------------|------------------------------|----------------------------------|----------------------------------------------|
| <i>E. coli</i><br>SM10λpir | 4910 ± 175                                       | 10,400<br>±100                    | 0.31<br>±0.01                       | 33,700<br>±400               | 5100<br>±100   | 0.33<br>±0.014               | 125 ±2                           | 0.305 ±0.003                                 |
| <i>Ε. coli</i> DH5α        | 6820 ± 403                                       | 2,120<br>±90                      | 0.39<br>±0.03                       | 5,400<br>±300                | 1500<br>±20    | 0.38<br>±0.03                | 32 ±2                            | 0.405 ±0.018                                 |

<sup>1</sup>Extracted from a 4.5 mL culture of 0.7 OD<sub>600</sub>, details below in "Quantifying plasmid production in *E. coli* strains DH5 $\alpha$  and SM10 $\lambda$ pir"

<sup>2</sup>Both strains were tested on the same microplate during the same run.

### Quantifying plasmid production in *E. coli* strains DH5 $\alpha$ and SM10 $\lambda$ *pir*

20 mL of liquid Luria Broth supplemented with 15  $\mu$ g/mL tetracycline was inoculated in a 50 mL falcon tube with *E. coli* DH5 $\alpha$ /P1 + *B. thai* F RS or *E. coli* SM10 $\lambda$ pir/P1 + *B. thai* F RS and incubated O/N at 37°C on a shaker. OD<sub>600</sub> measurements were taken from each inoculation after vortexing and both cultures were diluted to an OD<sub>600</sub> of 0.7 in a volume of 15 mL. 4.5 mL of each culture was used for plasmid extraction with the Genaid kit and plasmid concentrations were measured using a Nanodrop. Each extraction was repeated three times.

### Potent promoter cloning bottleneck in *lux* hints at reporter gene toxicity

Cloning of the *B. thailandensis* E264 *metK* RBS sequence, 5'-AGGAGC-3', was attempted downstream of the S7 ribosomal protein gene promoter (P<sub>S7</sub>) from *Paraburkholderia xenovorans* strain LB400 (recently renamed *Paraburkholderia xenovorans*), using two different 3-fragments Gibson Assembly design strategies, one of which had the P<sub>S7</sub>+RBS fragment adapted for an XcmI/Swal digested mini-CTX-*lux* backbone and the other which had the P<sub>S7</sub>+RBS fragment adapted for a BsaAI/Swal digested mini-CTX-*lux* backbone (**Table S1**). Vector assembly restriction enzyme digestion results suggested that 7 of the 9 obtained clones contained misassembled constructs (**Figure S1A and C**). The two vector assemblies containing correctly sized inserts were sequenced and revealed mutations which are suspected to have rendered clones non-luminescent.

#### A 56 nt sequence consisting of 5'-

AACTGGGTTCGTGCGAGCTCATCGATTTCGTTCCACTGAGCGTCAGACCCCGTAGA-3', inserted between C13 and T14 of the P<sub>S7</sub> promoter from pMLS7 (Lefebre and Valvano, 2002) and a point mutation of C285T of the promoter sequence was present in one of the clones, while the other clone contained a point mutation of G334T of the *luxC* sequence, modifying a glycine to a cysteine. Nucleotide BLAST analysis of the 56 nt insert against *Escherichia coli* K-12 revealed many possible origins (**Figure S1B**). We suspect this insertion and point mutation somehow blocked transcription from the P<sub>S7</sub> promoter, or inactivated *luxC* as other clones obtained in experiments described in this paper also contained the same sequence characteristics (**Table S4**). It is important to note, that the P<sub>S7</sub> sequence used for our cloning experiments is identical to the one annotated in pMLS7, however the beginning 25 bp of this sequence is absent from the originating host species *Paraburkholderia xenovorans* 28strain LB400, and thus the reoccurring insertion site in our experiments for the 56 additional nucleotides may not be present in the host species. Because only clones with mutations/insertions were obtained from the GA, we believe that the correct clones were not viable due to reporter gene toxicity.

Moreover, GA cloning into the same *lux* containing backbone was attempted for another potent promoter + RBS combination. The P1 integron promoter, previously shown to be an optimal potent constitutive promoter for single copy expression of fluorescent reporter genes in *Burkholderia* spp (Su et al., 2014) was amplified with the RBS sequence of 5'-AGGAGT-3' directly downstream with appropriate Gibson assembly overhangs which had been tested to work for other constructs (**Table S1: P1 + 5'-AGGAGT-3' RBS v1 and v2**). However, no clones containing the correct assembly were obtained. An attempt to clone P1 alone, which contains a potential RBS (5'-AGGATT-3') 11 nts upstream of *luxC* in-frame ATG, was also unsuccessful (**Table S1: P1 integron promoter—no additional RBS**).

The *B. thailandensis* E264 *metK* RBS sequence was successfully cloned into the lux backbone with the full original 5' non-transcribed region, containing the native *metK* promoter, as well as the 5'UTR (**Table S1:** *metK* **IGR**— from *B. thai*). Equally 5'-AGGAGC-3' was successfully cloned into the *lux* backbone in combination with only the native 5' non transcribed region of *metK* (**Table S1:** *B. thai metK* promoter + 5'-AGGAGC-3' RBS).



# Figure S9: *P. syringae* fluoride riboswitch activity in *E. coli* DH5α reveals oscillating *lux* expression and variability across transformant strains.

RLU/OD<sub>600</sub> (left) and growth curves (right) for a 52h, a 34h and 49h time-course expression assay of pVK-f-*lux* constructs in *E. coli* DH5 $\alpha$ /P1 + *P. syr* F RS strain 1 (A), *E. coli* DH5 $\alpha$ /P1 + *P. syr* F RS strain 2 (**B**), and in *E. coli* DH5 $\alpha$ /P1 + *P. syr* F RS strain 3 (**C**) respectively. Luciferase expression portrays the variability of regulation across transformants. *Lux* expression is shown in presence of 0, 7.8 and 15.6 mM fluoride. Pre-culture (LB) and expression media (0.5X M9-MM) was supplemented with tetracycline (15 µg/ml). The data points represent the means and standard deviations of triplicate values measured on the same 96-well microplate run.

# Quick User Manual for pVK-f-lux

# (P1 + *P. syringae* fluoride riboswitch + *lux*)

Updated 2020-07-01

Vesta Korniakova

#### Intro: Why Use This Plasmid?

This plasmid is useful for down-regulating the *lux* operon through translation regulation via the fluoride riboswitch from *Pseudomonas syringae*. This is useful when you do not know why cloning/transformation or conjugation has been unsuccessful for your construct. A possible reason for your problem may be that the promoter which you are attempting to clone upstream of the *luxCDABE* cassette is too strong and is causing toxicity in your host bacteria, due to overexpression of lux. This modified version of the integration vector mini-CTX-*lux*, named pVK-f-*lux* contains an extra layer of regulation (the fluoride riboswitch) between the promoter and *luxCDABE*. In the absence of fluoride, *lux* is down-regulated by at least a factor of 2 in *Escherichia coli* DH5 $\alpha$ . If maximal up-regulation is required, fluoride can be added to the growth media. In *E. coli* DH5 $\alpha$ , fluoride concentrations between 7.8 and 15.6 mM, caused the strongest up-regulation effect while in *Burkholderia thailandensis* E264, the strongest effect was achieved with a 31 mM fluoride concentration. Growth curves at these concentrations, both in *E. coli* DH5 $\alpha$  and in *B. thailandensis* E264 were moderately affected and should be monitored for individual experiments.

#### **Plasmid Contents**

This mini-CTX-lux modified plasmid contains:

1. P1 integron promoter flanked by 2 added multiple cloning sites (3 restriction sites on each side of promoter; MCS1: CsiI, XmaJI and SacI; MCS2: NcoI, SdaI and ScaI)

2. *P. syringae* fluoride riboswitch, flanked by 22 nt of upstream sequence and 271 nt of downstream sequence containing the beginning of the gene naturally downstream of the riboswitch (encoding a voltage-gated chloride channel family protein) in fusion with *luxC*, including a type IIS restriction enzyme site (AarI) between the two (without interrupting the fused ORFs).

3. *luxC* has an optimized codon for alanine for *B. thailandensis* E264, at position 7044...7046 nt. This was done to remove the AarI restriction site present in the original mini-CTX-*lux* plasmid, in order to relocate the AarI site upstream of *luxC*. Preliminary tests show no side effects of this mutation.

The key features and the pVK-f-*lux* map are presented in **Figure 1**. Additionally, the nucleic acid and amino acid sequence is shown in **Figure S2**.

### **Cloning Strategies**

For swapping out the P1 integron promoter for a different promoter

Digest plasmid upstream of P1 integron promoter with either: XmaJI or SacI.

Digest plasmid downstream of P1 integron promoter with: NcoI, SdaI or ScaI.

For swapping the riboswitch out for a different RNA regulatory element:

Digest plasmid upstream of the fluoride ribowitch with: ScaI, SdaI or NcoI.

Digest plasmid downstream of the fluoride ribowitch with: AarI.

For swapping out the P1 integron promter and the fluoride riboswitch using one RE:

Digest plasmid upstream of the P1 integron promoter and downstream of the fluoride riboswitch with: CsiI. Note that with this option translational fusion is not possible.

\*Important detail: AarI will cut after the 4<sup>th</sup> nt. of the original *luxC*, so make sure to add back 1 nt to reestablish the correct reading frame of *luxC*. Compare your design and make sure it contains the beginning of the original *luxC* amino acid sequence: M-T-K-K-I-S-F and ends with a stop codon. For translational fusion, the M start codon should be omitted however, to instead use the first codons of the coding sequence relevant to the regulatory element under study. This design was intentional as during Gibson Assembly cloning it allows screening for colonies containing plasmids that have re-ligated without the insert, as the exonuclease will chew back any 5' overhangs thus rendering original sequence re-ligation unlikely. The re-ligated plasmid colonies which do not contain the insert will have lost the required reading frame of *luxC* and will not be luminescent.

#### Useful tips

1. All of these enzymes use the same digestion buffer for promoter swapping: CsiI, XmaJI, SacI, NcoI and SdaI (10X FastDigest Buffer).

2. All of these enzymes use the same digestion buffer for RNA regulatory element swapping: Scal and AarI (Fisher 10X Buffer AarI, AjiI, Bpu10I, PasI, ScaI).

3. If you want to mix and match different promoters and regulatory RNA elements (5'UTRs) for different modular constructs see below for tried-and-true Gibson Assembly (GA) overlaps.

Note that the underlined sequence is the recognition site of the restriction enzyme (RE) used corresponding either to the left or right cutter and bold sequence is not part of the GA overlap but is a recommended addition in order to re-introduce either the RE recognition site, the *luxC* original sequence, or both in the final construct. The *luxC* start codon is in bold and in italics. Spacing indicates the frame to match for proper *luxC* expression. If primer length is limiting the right GA overlap does not require the suggested re-insertion of the AarI RE site nor the beginning nucleotides of *luxC*. Do make sure to add 1 nt back instead of the latter in order to ensure the

correct reading frame of *luxC*. For translational fusions, it is preferable to delete the start codon to avoid the possibility that translation initiation might occur at this site rather than at the intended start codon more relevant for the system being studied.

a. Use left cutter SacI RE, and right cutter NcoI RE, for swapping promoters. The left and right GA overlaps to use, as they would appear in a 5' to 3' PCR-amplified insert fragment are shown on the left and right side of the insert sequence (N<sub>n</sub>): 5'-ACCAGGTCCTAGG<u>GAGCTC</u>[N<sub>n</sub>]<u>CCATGG</u>CCTGCAGGAGTACT-3'.

If needed, a unique BsaAI RE recognition site is located further upstream of the P1 promoter and may also be used as a left cutter. For a BsaAI RE (outside the MCS1)-cut backbone, the left GA overlap to use is shown below: 5'-AAAGTTACAGGCCAGGAAC<u>CACGTA[Nn]-3'</u>.

b. Use left cutter ScaI RE and right cutter AarI RE for swapping regulatory RNA elements. The left and right GA overlaps to use, as they would appear in a 5' to 3' PCR-amplified insert fragment are shown on the left and right side of the insert sequence (N<sub>n</sub>): 5'- CCATGGCCTGCAGG<u>AGTACT[N<sub>n</sub>]C ACC TGC ATG ACT AAA AAA ATT TCA TTC ATT ATT AAC GG-3'.</u>

The above recommendations will allow to use the same GA insert design for all constructs, using the same GA overlaps instead of re-designing the overlap sequences necessary for each construct if cloning in a non-sequential manner.

4. Easy restriction digestion verification was envisioned with this plasmid. Cutting the P1 integron promoter out with SacI and NcoI will yield a 328 and a 49 bp band because there is a SacI site within the P1 promoter. Cutting out the fluoride riboswitch with ScaI and AarI will yield a 380 bp band. Bands (328 bp or 380 bp band), although faint, should be visible as long as 150 ng of digestion reaction is loaded into a small well (15-well comb for small 6x10cm agarose gel tray).

Examples of the above cloning strategies are represented in a flow chart for convenience.

### **Cloning flow chart**

### 1. Cut the plasmid with the corresponding restriction enzymes.

To swap out the promoter, cut with SacI and NdoI

To swap out the ncRNA, cut with ScaI et AarI



5. Conjugate in B.thailandensis E264

### References

- Becher, A., and Schweizer, H.P. (2000). Integration-proficient *Pseudomonas aeruginosa* vectors for isolation of single-copy chromosomal lacZ and lux gene fusions. *Biotechniques* 29, 948-950, 952.
- Chen, J., Li, Y., Zhang, K., and Wang, H. (2018). Whole-Genome Sequence of Phage-Resistant Strain *Escherichia coli* DH5alpha. *Genome Announc* 6.
- Simon, R., Priefer, U., and Pühler, A. (1983). A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. *Bio/Technology* 1, 784–791. doi:10.1038/nbt1183-784.
- Kim, H.S., Schell, M.A., Yu, Y., Ulrich, R.L., Sarria, S.H., Nierman, W.C., and Deshazer, D. (2005). Bacterial genome adaptation to niches: divergence of the potential virulence genes in three *Burkholderia* species of different survival strategies. *BMC Genomics* 6, 174.
- Lefebre, M.D., and Valvano, M.A. (2002). Construction and evaluation of plasmid vectors optimized for constitutive and regulated gene expression in *Burkholderia cepacia* complex isolates. *Appl Environ Microbiol* 68, 5956-5964.