Use of Proximal Soil Sensing to Delineate Management Zones in a Commercial Potato Field in Prince Edward Island, Canada

A. Lajili ^{1,2}, A.N. Cambouris¹, K. Chokmani², I. Perron¹, B.J. Zebarth³, A. Biswas⁴ and V.I. Adamchuk⁵

¹Quebec Research and Development Centre (RDC), Agriculture & Agri-Food Canada (AAFC), Quebec City, Canada, ²INRS-ETE National Institute Research, Quebec City, Canada ³Fredericton RDC, AAFC, Fredericton, Canada, ⁴University of Guelph, Guelph, Canada, ⁵McGill University, Ste. Anne de Bellevue, Canada

ABDELKARIM.LAJILI@ete.inrs.ca

Introduction

- Soil management zones (MZs) are areas with homogenous soil properties (Cambouris et al., 2014).
- MZs allow for site-specific management of agricultural inputs to increase profitability of crop production, improve product quality, and protect the environment (Adamchuk et al., 2004).
- Proximal soil sensors, which include geophysical instruments to map apparent soil electrical conductivity (EC_a), have been used to characterize the spatial variation of soil properties and to delineate MZs (Adamchuk et al., 2015).

Objective

To compare the efficiency of two proximal soil sensing systems for delineating MZs in a commercial potato field in Prince Edward Island, Canada.

Materials and methods

Experimental site and soil sampling design

- Springfield West, Prince Edward Island (PEI), Canada;
- 8.1-ha commercial field under potato (Solanum tuberosum L.) production;
- Triangular grid design : 30 m X 30 m spacing;
- 104 soil samples (0–0.15 m) : Mehlich-3 extractable P and K;
- 23 soil samples (0–0.15 m) : soil particle size.

Proximal soil sensing (PSS) systems

PSS systems	Veris 3100	DUALEM 21-S		
Model	Veris Technologies Inc., model 3100, Salina, KS, USA	DUALEM. Inc., model 21-S, Milton, Ontario, Canada		
Method	Galvanic contact resistivity	Electromagnetic induction		
Selected depth of investigation	0-30 cm	0-40 cm		
Data collection	Parallel transects spaced approximately 10 m apart at 1 Hz rate			

Statistical analysis

- Pearson correlation analysis: EC_a (Veris & DUALEM) and selected soil physicochemical properties;
- Total within-zone variance reduction: optimal number of MZs;
- ANOVA to validate the MZs.

Results & discussion

Strong to moderate spatial structure (≤ 75%) for soil properties and EC_a measurements (Cambardella et al., 1994)

Pearson correlation analysis

	Ver	is	DUA	LEM
Veris	-		0.80	***
DUALEM	0.80	***		-
Soil test Phosphorus	0.22	*	0.20	*
Soil test Potassium	0.34	***	0.33	***
Clay	0.84	***	0.74	***
Sand	-0.83	***	-0.63	***
* ** ***. cian	ificant	at 0.05	0.01.0	+ 0 001

- *, **, ***: significant at 0.05, 0.01 et 0.001 respectively
- Significant correlations between Veris and DUALEM;
- Significant correlations between EC_a and selected soil physicochemical properties

Optimum number of MZs

- within-zone Highest total variance reduction: 2 MZs
- 2 MZs \rightarrow Veris \rightarrow reduction of 65 %
- 2 MZs → DUALEM → reduction of 66 %

- The two MZs delineated by the Veris and DUALEM showed significant differences for the soil EC_a, soil test P, soil test K, sand and clay content.
- High ECa management was associated with greater clay content and soil test P and K. An opposite pattern was observed for the areas with the lowest soil EC_a values.
- Low ECa MZ, with lower clay content, may be susceptible to water deficits and may require site-specific irrigation in MZ₁.
- The higher soil test P and K in MZ₁ may allow a reduction in fertilizer application of 45 kg P_2O_5 ha⁻¹ and 40 kg K_2O ha⁻¹.

Conclusions

- The delineation of the study field into two MZs reduced a large part of the total variance.
- The Veris and DUALEM systems were both effective in delineating MZs.
- Site-specific nutrient and irrigation management could be implemented on this field.

Acknowledgements

The authors would like to thank Agriculture & Agri-Food Canada for their financial support and Sarah-Maude Parent and Claude Lévesque for their field work and laboratory support.

References

- Adamchuk VI, Hummel J, Morgan M & Upadhyaya S (2004). Comput Electron Agric 44(1):71-91.
- Adamchuk V, Allred B, Doolittle J, Grote K & Viscarra Rossel R (2015). NRCS. USDA Handbook 18.
- Cambardella C, Moorman T, Parkin T, Karlen D, Novak J, Turco R & Konopka A (1994). Soil Sci Soc Am *J.* 58(5):1501-1511.
- Cambouris A, Zebarth B, Ziadi N & Perron I (2014). Potato Res 57(3-4):249-262.