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Abstract: Global crop mapping and monitoring requires high-resolution spatio-temporal information.
In this regard, dual polarimetric Synthetic Aperture Radar (SAR) sensors provide high temporal and
high spatial resolutions with large swath width. Generally, crop phenological development studies
utilized SAR backscatter intensity-based descriptors. However, these descriptors are derived either
from the covariance matrix elements or from the eigendecomposition. Therefore, this approach fails
to utilize the complete polarization information of the scattered wave. In this study, we propose
a target characterization parameter, θxP that utilizes the 2D Barakat degree of polarization and the
elements of the covariance matrix. We also propose an unsupervised clustering scheme using θxP

and the scattering entropy, HxP. We utilize time-series Sentinel-1 data of canola and wheat fields over
a Canadian test site to show the sensitivity of θxP to the development of crop morphology at different
phenological stages. During the initial growth stages, θxP values are low due to the low vegetation
density. In contrast, at advanced phenological stages, we observe decreased values of θxP due to the
appearance of complex canopy structure. Similarly, the effectiveness of the unsupervised HxP/θxP

clustering plane is also evident from the temporal clustering plots. This innovative clustering
framework is beneficial for the operational use of Sentinel-1 SAR data for agricultural applications.

Keywords: Sentinel-1; polarimetry; dual-pol; crop characterization; phenology; unsupervised classification

1. Introduction

Identification and monitoring of crop phenological stages are essential factors in
agriculture for estimating crop production. In this context, Synthetic Aperture Radar (SAR)
data have been extensively used, especially for crop classification [1,2], yield estimation,
and biophysical parameter retrieval [3–5], formulation of vegetation indices [6,7] and
descriptors [8]. Moreover, SAR sensors have high spatial resolution and all-weather
imaging capability. The scattered SAR signal is significantly affected by the geometry
of crop canopy, underlying soil roughness, and dielectric properties of both crop and
soil. In addition to the acquisition wavelength, polarization and angle of incidence have
a significant influence on the received information [9,10]. Over agricultural fields, crop
biophysical parameters impact SAR backscatter, particularly at advanced vegetative stages.
Soil roughness and moisture remain the governing factors for SAR backscatter response
during initial growth periods [11].

In particular, Sentinel-1 dual-pol images provide opportunities for crop classification
and biophysical retrieval-related applications. Sentinel-1 also provides large swaths and
lower data volumes due to reduced polarimetric dimensionality [12]. In the literature,
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dual-pol intensity parameters are widely used for crop type identification [1,13–19]. The
existing studies also extend to retrieval of crop biophysical parameters [4,20,21] and crop
phenology monitoring [22,23].

For dual polarimetric HH-HV or VV-VH data, Cloude et al. [24] proposed an eigen-based
decomposition technique. In this technique, the 2 × 2 covariance matrix is decomposed into
two orthogonal eigenvectors that are further utilized to derive a target characterization
parameter. This average scattering angle α is obtained from the two orthogonal polarization
states weighted by their respective pseudo probabilities obtained from the eigenvalues.
The target scattering entropy HxP is obtained from the pseudo probabilities. This target
characterization parameter and HxP are further utilized to propose an unsupervised
clustering scheme. Similarly, Ainsworth et al. [25] proposed another characterization
parameter, θ, utilizing an eigen-based technique. The parameter is related to the cross, σ◦XY
and co-pol, σ◦XX ratios. In addition, θ and HxP are used to propose a clustering technique for
scattering target identification. In their study, the clustering plane consists of eight zones
that represent different scattering characteristics.

Sugimoto et al. [26] provided a comparison between polarimetric parameters obtained
from dual and full polarimetric SAR data. They reported a high 2D correlation between the
parameters derived from the full-pol H/α decomposition and the dual-pol (HH+VV) H/α
decomposition. For the full polarimetric data, the analysis was performed using model-
based three [27], and four [28] component decompositions. Several other descriptors were
introduced for diverse applications: clustering [29], maritime applications [30,31], etc.

To monitor the growth of vegetation, different vegetation indices, such as the Radar
Vegetation Index (RVI) [32], Dual-Pol SAR Vegetation Index (DPSVI) [33], and Dual-pol
Radar Vegetation Index (DpRVI) [34], can be derived. In general, these descriptors capture
the randomness from the complex crop canopy to describe their phenological stages. Apart
from these, machine learning models have shown promising results for crop biophysical
parameter estimation [22,35,36]. It was observed from these studies that the cross-pol ratio
is the most important parameter for vegetation studies. Nasrallah et al. [37] utilized the
Gaussian function on the time series SAR data to find the date of significant phenology
stages for wheat. Wali et al. [38] analyzed the sensitivity of the temporal backscatter for
rice crops using the line regression technique. Similarly, the interferometric phase for
identifying wheat phenological stages is observed in a study by Schlund et al. [39].

Usually, polarimetric parameters have been suitably attributed to the physical properties
of the crop canopy [40–42], and have therefore helped monitor crop phenology. Recently,
Dey et al. [43,44] proposed a model-free target characterization parameter using full, compact
and dual co-pol data [22]. This parameter utilizes the Barakat degree of polarization [45] and
elements of the coherency matrix to characterize diverse target types. In their study, it was
shown that this parameter enhanced the target characterization capability as compared to
the α parameter.

Motivated by this work, we derive a target characterization parameter for dual-
pol SAR data in this study. This parameter jointly utilizes the 2D Barakat degree of
polarization and the elements of the covariance matrix. Therefore, this parameter, θxP,
captures the additional scattering information which the other existing descriptors might
miss. Alongside this, we also propose an unsupervised clustering technique using θxP and
entropy, HxP parameters. We utilize θxP and the clustering scheme to analyze the temporal
variation of canola and wheat over a Canadian test site derived from Sentinel-1 C-band
SAR data.

2. Methodology
2.1. Study Area and Dataset

The test site in Canada is located in southern Manitoba (49°40′32′′N, 97°59′57′′S). This
is one of the Canadian Joint Experiment for Crop Assessment and Monitoring (JECAM)
test sites. Nominal field sizes range from 20–30 hectares to 50–60 hectares, with wheat,
soybean, canola, and corn as major annual crops. The land under permanent grassland
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is < 5 %. The in-situ measurements were conducted during Soil Moisture Active Passive
Validation Experiment 2016 Manitoba (SMAPVEX16-MB) campaign. Figure 1 shows the
location of the test site and the distribution of canola and wheat fields.

Canola
Wheat

Manitoba

Figure 1. Map of the study area showing the locations of the canola and wheat fields over the
Manitoba province of Canada.

The in-situ measurement campaign was carried out from June to July 2016 over
50 different fields. The measurement period mainly consisted of two temporal windows:
8 June to 22 June and 8 July to 22 July 2016. Within this temporal extent, most crops
advanced from early to advanced phenological stages achieving peak biomass. The nominal
size of each field is approximately 800 m× 800 m. Vegetation sampling, which includes
biomass, Plant Area Index (PAI), and plant height, was performed in three points for each
field. Crop biomass was collected via destructive sampling. A 0.5 m × 0.5 m square was
placed over the canopy for canola and wheat. All above-ground biomass was collected
by cutting all vegetation at the soil level within the square. The PAI was measured with
hemispherical digital photos. In this technique, a camera with a fisheye lens captures
photos of the crop canopy with the camera positioned at least 50 cm above or below the
canopy. Details of the in-situ biophysical parameters (viz. PAI, Dry biomass and VWC)
of Canola and Wheat are provided in Appendix A.3. One can find further details on the
sampling schema in the SMPAVEX16-MB field report [46].

2.2. SAR Data Pre-Processing

We acquired the Terrain Observation with Progressive Scans SAR (TOPSAR) mode
Level-1 Sentinel-1 Interferometric Wide (IW) swath Single Look Complex (SLC) data over
the test site. To this SLC configuration, the swath length is ≈250 km and the spatial
resolution is 5 m× 20 m. The whole IW swath is divided into three sub-swaths (IW1, IW2,
and IW3) with nine bursts in the azimuth direction. Hence, prior to application, these
images are pre-processed with standard correction steps [47].

The Sentinel-1 images are ingested in the SNAP 8.0 platform. Following this, the
sub-swaths and bursts are selected based on the test site location, and the state vectors are
updated with the Sentinel-1 precise orbit file. The images are then radiometrically calibrated.
As we are interested in generating the complex covariance C2 matrix information, and hence,
we need to extract both amplitude and phase values. Due to this reason, the calibration
output is set to complex output values.
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All Sentinel-1 images are then back-geocoded using the Sentinel-1 Back Geocoding operator.
This operation essentially co-registers the temporal images with sub-pixel accuracy. We utilize
the SRTM 1Sec Grid as the Digital Elevation Model (DEM). Subsequently, the Sentinel-1 TOPS
deburst and merge operations are performed to produce a single SLC image. The stack of
images is then clipped within the in-situ measurement location to reduce the data volume
and increase the computation speed.

These image subsets are multi-looked with a factor of 4 in range and 1 in azimuth
directions to generate a square pixel. The final pixel resolution is ≈ 15 m. Finally, these
multi-looked images are used to generate covariance elements images. A 5× 5 boxcar
filter is applied to further reduce the speckle information within the images. Next, the
baseline information is deleted from the metadata, and the covariance images are exported
in the PolSARpro format. Here, please note that the covariance elements have ensembled
information that helps in applying the second-order statistics.

Then, we compute the target characterization parameter, θxP using the PolSARtools
software in the QGIS platform [48]. Subsequently, we geocode the images with UTM
projected coordinate system. We further analyzed the in-situ measurement locations and
extracted target characterization parameters from the geocoded products. From several
Sentinel-1 images acquired during the campaign, four dual-polarization (VV and VH)
C-band Sentinel-1 Single Look Complex (SLC) data were selected for use in this study
(Table 1). The selection of Sentinel-1 datasets was based on acquisition dates that were near
coincident with in-situ measurement periods.

Table 1. Specification for Sentinel-1 data acquired for the Canadian test site.

Acquisition
Date

Beam
Mode

Incidence Angle
Range (Deg.) Orbit az (m)×rg (m)

13 June 2016 IW 30.22–32.47 Ascending 15× 15
7 July 2016 IW 30.22–32.47 Ascending 15× 15
19 July 2016 IW 30.22–32.47 Ascending 15× 15
24 August 2016 IW 30.22–32.47 Ascending 15× 15

2.3. Target Characterization Parameter

The scattering vector for a dual-polarized SAR data are represented as, kd = [SXX SXY]
T ,

where X and Y correspond to either horizontal (H) or vertical (V) polarization states. Using
these scattering vectors, we define the 2× 2 covariance matrix as

C2 = 〈kd · k∗Td 〉 =
[
〈|SXX |2〉 〈SXXS∗XY〉

〈SXYS∗XX〉 〈|SXY|2〉

]
(1)

where 〈·〉 denotes ensemble average, and T denotes vector transpose. We define the
elements of the 2× 2 matrix as, C11 = 〈|SXX |2〉, C22 = 〈|SXY|2〉 and C12 = 〈SXXS∗XY〉.

Similar to the conventional degree of polarization, the 2D Barakat degree of
polarization [49] given in Equation (2) (0 ≤ mxP ≤ 1) also characterizes the state of
polarization (or purity) of an EM wave. For a completely polarized EM wave, mxP = 1 and
for a completely unpolarized EM wave, mxP = 0. In between these two extreme cases, the
EM wave is said to be partially polarized, 0 < mxP < 1:

mxP =

√√√√1− 4|C2|(
Tr(C2)

)2 , (2)

where | · | is the determinant of a matrix and Tr is the trace of a matrix. Let us consider two
auxiliary quantities defined as

tan η1 =
C11

mxP Span
and tan η2 =

C22

mxP Span
, (3)
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where η1 and η2 are two free variables, and Span = C11 + C22. The quantity
C11

mxP Span
indicates the co-polarized scattering power with respect to the total polarized power, while

C22

mxP Span
indicates the cross-polarized scattering power with respect to the total polarized

power. Furthermore, using a simple relationship, we obtain:

tan θxP = tan(η1 − η2)

=
mxP Span (C11 − C22)

C11 C22 + m2
xP Span2 .

(4)

where θxP ∈ [−45°, 45°].
The eigen-decomposition of C2 can be expressed as

C2 = U2ΣU−1
2 , (5)

where Σ is a 2× 2 diagonal matrix with non-negative real elements, λ1 ≥ λ2 ≥ 0, which
are the eigenvalues of C2, and U2 is 2× 2 unitary matrix, where ui’s are the unit orthogonal
eigenvectors. We define the pseudo probabilities, pi, in terms of the eigenvalues as

pi =
λi

∑2
k=1 λk

, (6)

which we then use to define the scattering entropy as

HxP = −
2

∑
k=1

pk log2(pk). (7)

The degree of polarization mxP characterizes the degree of coherence of partially
polarized waves. In contrast, the entropy HxP describes the degree of statistical disorder
associated with partially polarized waves. The parameter θxP describes the scattering
characteristics of a target. Therefore, in this work, these parameters provide information
about the growth stage or phenology of crops.

2.4. HxP/θxP Bound

The feasible regions in the HxP/θxP plot is represented by the bounding curves, Curve
I (C2(I)) and Curve II (C2(I I)) as shown in Figure 2 and is given as

C2(I) =
1

1 + k

[
1 0
0 k

]
, θmax

xP = tan−1
(

k2 − 2 k + 1
k2 − k + 1

)
(8)

C2(I I) =
1

k + 1

[
k 0
0 1

]
, θmin

xP = − tan−1
(

k2 − 2 k + 1
k2 − k + 1

)
(9)

where k ∈ [0, 1] denotes the scattering amplitude ratio, and therefore, θxP ∈ [−45°, 45°].
One can observe from Equation (4) that when:

• mxP = 0 (i.e., when there exists no polarization structure in the scattered EM wave),
then θxP = 0° characterize random scattering from targets.

• mxP = 1, and θxP = 45°, characterize coherent scattering from deterministic targets
(i.e., trihedral or dihedral).

• mxP = 1, and θxP = −45°, characterize cross-polarized scattering from complex targets.

Therefore, θxP ∈ [−45°, 45°] characterizes diverse scattering-type information in
between these extreme cases, and hence it is suitable to characterize scattering-type
information from various targets.
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Figure 2. Feasible region of HxP/θxP plane bounded by two curves (Curve I and Curve II). θxP is
represented in the angular direction and HxP is represented in the radial direction. The non-feasible
scattering region is shaded in gray.

2.5. Example of Variation of α̂ and θxP

In dual polarimetry, Cloude proposed a target characterization parameter, α ∈ [0°, 90°]
using the eigendecomposition approach [24]. In order to compare this with the proposed
θxP ∈ [−45°, 45°], we have rescaled α to α̂ = 45°− α, where both α̂ and θxP vary from −45°
to 45°.

To show the efficacy of θxP over α̂, we have considered three different land cover types,
i.e., urban, oriented urban, and vegetation from the VV-VH data extracted from a full-pol
C-band RADARSAT-2 data. The variations of θxP and α̂ over these targets are shown in
Figure 3. One can note from Figure 3 that the median value of α̂ over orthogonal urban
area is approximately 35°. In contrast, the median value of θxP is approximately 42°. The
degree of polarization over the area is approximately 0.91. This high degree of polarization
essentially confirms the nearly coherent scattering characteristics of the target. In this
regard, θxP better characterizes the target to be coherent than α̂.

Figure 3. Variations of θxP and α̂ for different scattering target from RADARSAT-2 data over San
Francisco, CA, USA.
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However, over oriented urban area, we observe a large variation of both θxP and α̂.
This large variation might be due to the diversity in the polarization randomness due to the
orientation of buildings to the radar line of sight and orientation in the azimuth direction.
Over vegetation surfaces, we observe a partially polarized scattered wave that consists of a
major coherent part and a significant incoherent part. The coherent part might be due to the
direct scattering from the nearly smooth soil surface, while the incoherent part is due to the
scattering from the volume media. In this case, θxP also correctly characterizes the coherent
contribution of the target during scattering as compared to α̂. A α̂− θxP plot for RADARSAT-
2 data over San-Francisco in VV-VH mode is shown in Appendix A.1. Therefore, from
these analyses, we can observe the enhancement of target scattering characterization using
θxP. Thus, θxP can be further utilized to characterize different phenological stages of diverse
crop types.

2.6. Unsupervised Clustering Zones over Vegetative Surface

In this study, we are interested in observing the changes in the scattering mechanisms
over different phenological stages of crops. One should note that, for natural targets,
C11 ≥ C22 almost always, and hence, θxP ∈ [0°, 45°]. Let us now characterize mxP and θxP
for a few particular scattering scenarios:

• For a pure diffused target, mxP = 0, implies, θxP = 0°.
• For pure or point scatterer, mxP = 1 and η2 = 0°, implies θxP = 45°.
• Infeasible scattering: C11 = C22 and mxP = 1.

Therefore, in terms of vegetation development, for a highly random vegetative
structure, mxP ≈ 0 and θxP ≈ 0°. However, a slightly rough soil surface acts like a
Bragg scatterer, and hence mxP ≈ 1 and θxP ≈ 45°.

The variations of θxP and mxP over bare field and vegetative field types are shown in
Figure 4. It can be noted that θxP and mxP are highly sensitive with the canopy structure.
Interestingly, we observed that the sensitivity is much higher for the highly erectophile
crop structures such as canola, corn, and wheat. In contrast, the sensitivity is low for the
soybean crop. This high sensitivity of θxP might be due to the volume decorrelation with
an increased canopy structure.

In this study, we utilize the θxP and HxP parameters to propose a new unsupervised
clustering scheme to describe the target scattering behavior. The overall clustering scheme
consists of 12 zones: Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11, and Z12. These divisions
of the HxP/θxP plane are based on certain scattering symmetry assumptions. In particular,
the scattered Stokes vector,

−→
S s is a function of the target property, represented in terms of

the Kennaugh matrix, K and the transmitted Stokes vector,
−→
S t. Moreover, the two Stokes

vectors are related as
−→
S s = K

−→
S t. Furthermore, one can note that

−→
S s is also a function

of the scattering order (n) [50]. Thus, the definition of scattering entropy, H [51,52] can be
expressed in terms of n. Following this, we can observe that H increases with increasing
n. For example, H = 0 for n = 0; H ≈ 0.3 for n = 1; H ≈ 0.5 for n = 2, and, H ≈ 0.7 for
n = 3. However, for n > 3, change in H is insignificant. Therefore, following this trend
in the variation of the entropy, we divided the radial axis HxP into four sub-sections by
considering the values: 0.3, 0.5, and 0.7. An illustration of the HxP/θxP clustering plane
with the zones is shown in Figure 5.
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Figure 4. Variations of θxP and HxP for bare field conditions and fully developed crops. These
measurements are derived over in-situ fields.

Figure 5. Twelve clustering zones in the HxP/θxP plane.

3. Results and Discussion

In this section, we analyze the temporal dynamics of crops using the proposed dual-
polarimetric descriptors. Furthermore, we utilize the proposed clustering framework to
assess the phenological stages of the two crops, i.e., canola and wheat, from the C-band
Sentinel-1 dual-pol SLC SAR data.
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3.1. Canola

The spatio-temporal changes of θxP are shown in Figure 6. The temporal variations
of θxP and mxP are shown in Figures 7 and 10. For temporal analysis, we considered
48 sampling points from three fields (Field No. 206, 208 and 224). We plot the variations
of the proposed SAR descriptors with respect to the phenological changes of canola at
different dates.

(a) 13 June (b) 7 July (c) 19 July (d) 24 August

Figure 6. Temporal variation of θxP over the study area. The dates are (a) 13 June, (b) 7 July, (c) 19 July and (d) 24 August.

According to the in-situ information, canola was sown at the end of May. Hence,
during June, the phenological stage of canola was bounded within the early to mid
vegetative stage. In this regard, it is worth mentioning that canola is a broad-leaf crop with
comparable leaf size to the wavelength of C-band SAR (≈5.6 cm). Therefore, due to the
formation of dense rosette near the soil surface, the leaf structure considerably affects the
SAR backscatter values. Thus, due to the high dynamic variations of crop morphology,
canola is of particular interest in SAR research.

Figure 7. Temporal variation of θxP and mxP over the canola fields.

From Figure 7, we can observe that, on 13 June, the median value of mxP ≈ 0.78. This
high value of mxP typically suggests high polarized scattered components from canola
fields. This trend might be due to the low vegetation density in the fields. From the
in-situ information, we observe that the canola was in the stem elongation stage during
this time. Consequently, low biomass and low Plant Area Index (PAI) are evident at this
period. Moreover, the vertical crop structure slightly attenuated the transmitted vertical
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(V) polarization. Hence, we observe a median value of θxP ≈ 40°. Apart from this, the low
depolarization in the scattered wave might be due to the scattering from leaves and canopy
structures combined.

Furthermore, Figure 8 provides information about the different morphological
characteristics of canola at this particular period. We observe that the points from these
canola fields are mainly distributed in two separate zones: Z4 and Z7 in Figure 8a. This
information typically infers that, during 13 June, the crop density in some canola fields
was low. As a result, low entropy pure scattering was evident from those fields (Z4). In
contrast, other fields had comparatively dense foliage structures, which increased scattering
randomness increased (Z7). From in-situ measurement, we observe that fields 206 and 208
had higher PAI and biomass values than field 224. In field 224, most canola crops were at
the leaf development stage. In addition, we observe a point in the Z1 region and points
in the Z10 zone, indicating more advanced phenological stages. These variations from Z1
to Z10 reflect the differences in sowing dates for canola, and, consequently, differences in
crop emergence and development among fields early in the season.

(a) 13 June (b) 7 July (c) 19 July (d) 24 August

Figure 8. Temporal variation of clusters on HxP/θxP plane over the canola fields. The dates are (a) 13 June, (b) 7 July, (c) 19
July, and (d) 24 August.

On 7 July, canola crops reached their flowering stage. During this time, we can observe
a sudden drop in the θxP and mxP values. The median value of mxP ≈ 0.44. This sudden
decrease in the scattered polarization structure is due to the development of flowers, stems,
and branches. During this time, the high attenuation of the V-polarized transmitted wave
also lowered the θxP value. Furthermore, the generation of high cross-polarization due to
the complex crop canopy structure also aided in lowering θxP values. During this time, the
median value of θxP is approximately 20°.

Similar changes in the clustering zones are evident from Figure 8b. We observe a
shift of clustering zone from Z4 and Z7 to Z11. The formation of the dense cluster in Z11
indicates high randomness in the scattered wave due to the complex flower and branch
structures. Moreover, during the flowering and early pod development stages, the leaf
density drastically reduces. Canola crops drop their leaves during this period of pod and
seed development. However, this dense cluster in Z11 also suggests that the number of
flowers per plant was high, and the health of the crop was good. On the other hand, we
observe some points in the comparatively low entropy region, Z10.

On 19 July, small changes in θxP and mxP are observed as compared to 7 July. This
effect might be due to the existence of a similar complex canopy structure due to which
the depolarization is evident in the scattered wave. During this early to the mid-pod
development stage, ramified stems and seeds appear. In the early stage, seeds remain watery
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and translucent, while seeds reach maximum dry weight at the advanced stage. Therefore,
depending upon this particular phenomenon, changes in the scattering mechanisms might
be observed. However, during the satellite acquisition, most fields reached the early to
mid-stage of pod development. As a result, the variance in θxP is low during this time. The
median value of θxP is ≈18°, while the median of mxP is approximately 0.4.

We also observe the accumulation of HxP/θxP cluster in Z11 region in Figure 8c.
During this time, the complex vegetation canopy structure increased the randomness in
the scattered wave. Consequently, we observe a marginal increase in HxP compared to
7 July. However, as stated earlier, most of the fields reached the early to mid-stage of pod
development, and thus we observe the majority of the point cloud in the Z11 region.

Subsequently, on 24 August, we observe an increase in θxP values. Similarly, the
increase in mxP suggests that the polarized component in the scattered wave has increased
during this period. This increase in the values of θxP and mxP might be due to the changes
in the canopy moisture content. However, during this period, high variance in the data is
evident. During this period, the median value of θxP is approximately 34°, while the median
value of mxP is approximately 0.58. In Figure 8d, we observe three distinct zones; Z7, Z10,
and Z11. This phenomenon is due to the harvest of canola crops. The post-harvest residue
might have generated marginal depolarization in the scattered wave. The percentages of
pixels at each date are shown in Table 2.

Table 2. Temporal variation in the percentage of data points in each zone for different phenology
stages of canola. The zones with high percentages of points at a particular phenology stage are
highlighted in bold.

Dates Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12
13 June 2.0 0.0 0.0 58.0 0.0 0.0 35.4 0.0 0.0 4.6 0.0 0.0
7 July 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.2 91.6 2.2

19 July 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.2 93.8 0.0
24 August 0.0 0.0 0.0 0.0 0.0 0.0 12.6 0.0 0.0 64.6 22.8 0.0

3.2. Wheat

In this section, we analyse the temporal variation of θxP and mxP over wheat fields.
Wheat is an edible cereal grass with an erectophile canopy structure. Over the test site,
sowing of wheat was performed during the beginning of May. This study has considered
three wheat fields (Field No. 233, 220, 62) for the temporal evaluation. The temporal
patterns of θxP and mxP are shown in Figure 10. Alongside this, we represent the dynamic
behaviour of unsupervised clusters in Figure 9.

On 13 June, wheat crops reached the tillering stage. This stage starts with the
appearance of tillers and ends with mature leaf sheaths. During this time, the crop density
remains low. As a result, the scattered wave remains significantly polarized. It can be
observed from Figure 10 that the median value of mxP during this period is 0.78. This
essentially indicates that approximately 78 % of the scattered wave is completely polarized,
while approximately 22 % is depolarized. This marginal depolarization effect might be due
to the canopy interaction. Alongside this, the median value of θxP is ≈39°, indicating that
the target is a closely coherent scatterer. However, the high standard deviations in both
θxP and mxP represent the variations in the uneven phenological advancement within the
fields due to variations in seeding dates.

The clustering zones on 13 June are shown in Figure 9a. Like canola, we can observe
that the clusters are distributed in four distinct zones; Z4, Z7, Z10, and Z11. The existence
of these distinct zones is due to the differences in the morphological characteristics of
wheat crops. From in-situ measurements, it is observed that the plant density of Field No.
220 was low (≈100 m−2). In contrast, the plant density over Field Nos. 233 and 62 was
≈125 m−2 and ≈190 m−2, respectively. Similarly, high PAI and biomass are evident over
these two fields. As a result, a high attenuation of the transmitted wave is observed over
Field No. 233 and 62. Hence, we observe clouds of clusters at Z10 and Z11. On the other
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hand, the attenuation of the scattered wave is comparatively lower over Field No. 220.
Hence, cluster formation at Z4 and Z7 is observed in Figure 9a.

(a) 13 June (b) 7 July (c) 19 July (d) 24 August

Figure 9. Temporal variation of clusters on HxP/θxP plane over the wheat fields. The dates are (a) 13 June; (b) 7 July; (c) 19
July and (d) 24 August.

On 7 July, we observe a decrease in both θxP and mxP values due to the appearance of
more branches and leaves. The median value of θxP is around 27°, while the median value
of mxP is around 0.49. At this stage, wheat has advanced to the early flowering stage. At
this stage, flowers appear on the upper portion of the canopy layer. As a result, the dense
wheat structure and the flowers increase the multiple interactions of the EM wave. Hence,
a high proportion of depolarized components in the scattered wave is evident during this
period. Similar changes in the clusters are evident from Figure 9b. At this period, the
clusters shift to Z11 from Z4 and Z7 due to the increased scattering entropy due to the
randomness in the scattered wave by the targets. However, a cloud of clusters is seen at
Z10, which might be due to some wheat crops having late phenological development.

Figure 10. Temporal variation of θxP and mxP over the wheat fields.
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On 19 July, wheat crops advanced to the early dough stage. At this phenological
period, wheat grains appear, and it remains milky. Therefore, the dielectric property of
grains affects the scattering mechanism. Moreover, the denser wheat canopy increases
multiple scattering. As a result, the values of mxP reduce further as compared to 7 July.
Similarly, the coherent component in the scattered EM wave also reduces. The median value
of mxP is ≈ 0.37. The median value of θxP is ≈ 20°. The high variation in the values of θxP
and mxP might be due to the randomly oriented wheat stems and heads. Similar scattering
characteristics from the wheat during the dough stage are reported by Wu et al. [53]. In
particular, during this period, the scattering phenomenon occurs primarily from two parts
of the wheat canopy, i.e., thick upper canopy layer and relatively sparse lower canopy layer.

Further from Figure 9c, we can observe the formation of clusters in the Z11 region.
However, we can also observe some points in Z12 due to additional complex scattering
mechanisms from the wheat canopy subjected to partial lodging or related canopy anomalies.
It is important to note that we observe much spread of points in the Z11 zone, unlike
other phenological stages of canola and wheat. This suggests that, during this particular
phenology period, the appearance of grains and their orientations might be responsible
for breaking the reflection asymmetry condition during scattering from the wheat canopy.
Moreover, as stated earlier, the complex canopy geometry, the spatial distribution of grains,
and their random orientations increased the overall randomness in the scattered EM wave.
As a result, for the majority of the points, we observe high entropy values.

During 24 August, the harvest of wheat started. At this stage, the interaction of EM
waves mainly takes place with the soil surface and post-harvest residue. Consequently, a
reverse trend is observed in θxP and mxP values. From Figure 10, we can observe that the
median value of mxP is approximately 0.58, while the median value of θxP is approximately
34°. These values indicate the coherent component increase in the scattered EM wave from
the wheat canopy. Additionally, Figure 9d shows three different clustering zones, Z7, Z10,
and Z11, during this period. The percentages of temporal variations of clusters at different
zones are shown in Table 3. In addition, the temporal variations of θxP and α̂ are shown in
Appendix A.2. One can observe that the temporal signature of these parameters differs
for wheat and canola. Therefore, these descriptors can be efficiently utilized to distinguish
wheat and canola fields using time series data. Furthermore, it might also be possible to
distinguish these two crop fields from other land cover targets. The temporal variation of
the clusters over the cultivation area is shown in Figure 11.

(a) 13 June (b) 7 July (c) 19 July (d) 24 August

Figure 11. Images of temporal variation of clusters on HxP/θxP plane over the study area. The dates are (a) 13 June; (b) 7
July; (c) 19 July and (d) 24 August.
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Table 3. Temporal variation in the percentage of data points in each zone for different phenology
stages of wheat. The zones with high percentages of points at a particular phenology stage are
highlighted in bold.

Dates Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12
13 June 0.0 0.0 0.0 27.0 0.0 0.0 47.9 0.0 0.0 10.4 14.7 0.0
7 July 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.8 81.2 0.0

19 July 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 83.3 16.7
24 August 0.0 0.0 0.0 0.0 0.0 0.0 31.3 0.0 0.0 29.1 39.6 0.0

4. Conclusions

In this study, we propose a new polarimetric target characterization parameter,
θxP ∈ [−45°, 45°] for dual-pol Sentinel-1 Synthetic Aperture Radar (SAR) data. However,
over natural surfaces, such as vegetation, θxP ∈ [0°, 45°], where θxP = 0° denotes totally
incoherent targets and θxP = 45° denotes totally coherent targets. Utilizing the scattering
entropy parameter, HxP along with θxP, we proposed a novel unsupervised classification
scheme for dual-pol SAR data. We further utilized θxP and the classification scheme to
analyze the phenological development of canola and wheat over a Canadian test site. The
results are promising and exhibit high sensitivity with the morphological changes of the
crops at each phenological stage.

We observe a broad dynamic range of θxP from the temporal analysis of both canola
and wheat starting from their early vegetative stage to maturity and harvest stage. For
both crops, the variation of θxP within the desired phenology window is ≈ 40° to ≈ 15°.
High values of θxP during the early stages are due to the low crop density within the fields.
In contrast, the low θxP values during the flowering stage are due to the complex canopy
structure and additional appearance of flowers and grains. Moreover, we observe a trend
reversal for both canola and wheat on 24 August. This trend reversal is due to the harvest
of both crops during this period.

Within the scope of this study, we have characterized diverse crop phenological
stages in terms of the physical scattering of the electromagnetic wave. The unsupervised
classification scheme comprises twelve distinct zones, which represent these different
physical scattering mechanisms. Thus, these clustering zones are beneficial for identifying
the morphological status of the crop when a priori information is not available. Alongside
this, the clustering scheme can also capture the difference in the growth stages simultaneously.
Moreover, during the initial growth period, most of the points lay in the low entropy zones,
while those points shifted towards high entropy zones at advanced phenological stages.
This phenomenon is due to the changes in the canopy complexity with the advancement of
the crop phenological stages. We already know that the dual-pol configuration does not
have either the VV or HH polarization information. Hence, by utilizing θxP, we are unable
to uniquely characterize scattering-type information, i.e., whether it is an even-bounce
or odd-bounce mechanism. In addition, as stated earlier, if the SAR signal gets highly
saturated due to the morphological characteristics of targets, θxP might provide a similar
saturation effect. This appearance is evident during the end of flowering to maturity stages
of crops.

We can extend this study to several other crop types using different dual polarimetric
SAR sensor configurations, such as HH-HV. The proposed parameter and the clustering
framework will be valuable to analyze data from the upcoming dual-pol NASA-ISRO Synthetic
Aperture Radar Mission (NISAR) and Copernicus Sentinel SAR missions for agricultural and
environmental studies. The open-source code is available at: https://github.com/Subho07/
dual_cross_pol_theta_clustering.
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Appendix A

Appendix A.1. Relationship with Cloude’s αi’s

In this section, we derive the relationship of θxP with Cloude αi’s [54]. In this regard,
please note that

C11

Span
=

2

∑
i=1

pi cos2 αi, (A1)

where (αi)i=1,2 are the individual scattering-type parameters obtained from Cloude target
scattering vector [24]. Let us define

tan η1 =
C11

mxP Span
=

∑2
i=1 pi cos2 αi√
1−∏2

i=1 2pi

, (A2)

and

tan η2 =
C22

mxP Span
=

1−∑2
i=1 pi cos2 αi√

1−∏2
i=1 2pi

. (A3)

Therefore, using simple trigonometric formulation, we get

tan(η1 − η2) =

2 ∑2
i=1 pi cos2 αi − 1√

1−∏2
i=1 2pi

1 +

(
∑2

i=1 pi cos2 αi

)
(1−∑2

i=1 pi cos2 αi)

1−∏2
i=1 2pi

, (A4)
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further simplifying the expression of θxP given in terms of (pi)i=1,2 and (αi)i=1,2 as

tan θxP =
Num
Den

, in which

Num =

(
2

2

∑
i=1

pi cos2 αi − 1
)√

1−∏2
i=1 2pi, and

Den = 1−∏2
i=1 2pi +( 2

∑
i=1

pi cos2 αi

)(
1−∏2

i=1 pi cos2 αi

)
.

(A5)

Therefore, one can note that θxP is a function of
2
∑

i=1
pi cos2 αi, and the Barakat degree

of polarization,
√

1−∏2
i=1 2pi. We have shown the α̂ − θxP scatter plot for VV-VH

polarization modes in Figure A1. Here, α̂ = 45°− α

Figure A1. α̂− θxP plot for RADARSAT-2 data over San Francisco in VV-VH mode.

In Figure A1, the deviation of data points from the 1:1 line in the plots can be observed
in both VV-VH scatter plots. This deviation could be due to the presence of a partially
polarized EM wave that is seized by θxP through the utilization of mxP. On the contrary, α̂
misses this information that is obtained by eigen-decomposition of the covariance matrix.
One should note that for completely polarized (mxP = 1) EM wave from coherent targets,
both α̂ and θxP will either be equal to −45° or 45°.

Appendix A.2. Temporal Variations of θxP and α̂

Table A1. Temporal variations of θxP and α̂ over canola and wheat at different dates.

13 June 7 July 19 July 24 August

Canola θxP 40° 20° 18° 34°
α̂ 37° 18° 16° 32°

Wheat θxP 39° 27° 20° 34°
α̂ 37° 26° 15° 28°
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Appendix A.3. Temporal Variations of In-Situ Measurements of Crops

Table A2. Temporal variations of Plant Area Index (PAI), dry biomass (kg m−2), and Vegetation Water Content (VWC)
(kg m−2) for canola and wheat at different dates.

13 June 7 July 19 July 24 August

Canola

Phenology Leaf development Flowering stage Pod development Maturity/ harvest
PAI 1.82 ± 0.43 4.02 ± 0.62 6.32 ± 0.16 N/A

dry biomass 0.21 ± 0.08 0.43 ± 0.04 0.76±0.06 N/A
VWC 1.20 ± 0.13 5.82 ± 0.32 5.96±0.20 N/A

Wheat

Phenology Tillering stage Early flowering stage Early dough stage Maturity/ harvest
PAI 2.78 ± 0.31 5.92 ± 0.22 6.52 ± 0.11 N/A

dry biomass 0.23 ± 0.04 0.57 ± 0.02 0.98±0.07 N/A
VWC 2.21 ± 0.12 5.74 ± 0.24 6.11±0.15 N/A
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