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investigation of Machine Learning techniques and
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Abstract

Remote Sensing (RS) technology provides regular monitoring of alfalfa
farms, as a major source of forage production worldwide. Phenological
characteristics derived from time series of RS imagery provide a valuable
information source to estimate crop yield accurately. In this study, we
computed spectral vegetation indices (SVIs) from time series of Landsat 8
and PROBA-V images to extract temporal characteristics of alfalfa farms
throughout the growth periods in three consecutive years in the Moghan
plain, Iran. Then, several new spectral-temporal features were developed
based on phenological characteristics of alfalfa during the growing
season. Such features particularly describe geometry and variations of
the temporal curves and are thus invaluable in describing phenological
attributes. We conducted several feature selection methods due to the
variety of features. Machine learning (ML) methods, including ridge,
lasso, Gaussian Process Regression (GPR), Random Forest Regression
(RFR), Boosted Regression Trees (BRT), and Support Vector Regression
(�-SVR) were utilized to build inversion models in order to estimate
alfalfa yields, where the results showed satisfactory performance of GPR
using the selected features by GS (RMSE=1114.0 kg/ha), RReliefF
(RMSE=1157.7 kg/ha) and Boruta (RMSE=1210.2 kg/ha) as compared
to the complete feature dataset (RMSE=1237.4 kg/ha). Overall, the
developed phenological features coupled with feature selection methods
resulted in the appropriate performance of the ML methods in alfalfa
yield estimation.

Precision agriculture, alfalfa yield estimation, Machine Learning, Time series
images, Feature selection.
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1 Introduction

Food security is a critical issue in both developing and developed countries
(Matton et al., 2015). Accurate crop yield estimation plays an important role
in ensuring food security and agricultural management at farm level. Crop
yield estimation has been emphasized as a critical component of remote sensing
applications in agricultural studies (Atzberger, 2013; Aghighi et al., 2018).

Several techniques have been utilized for yield forecasting and estimation
(Sakamoto et al., 2013; Guan et al., 2017; Azzari et al., 2017; Huang et al.,
2016). Remotely sensed yield estimation techniques offer advantages over
other methods such as ground surveys by providing broad coverage, reasonable
accuracy, and less expense.

Remote sensing data have been repeatedly adapted to estimate crop yields
at local and regional scales (Azzari et al., 2017; Aghighi et al., 2018; Lobell
et al., 2015; Lambert et al., 2018). Yield prediction using optical remote sensing
employs methods based on spectral vegetation indices (SVIs), machine learning
(ML) techniques and crop simulation models (Chahbi et al., 2014). For instance,
SVIs extracted from remote sensing data have been utilized for forecasting maize
biomass and yield at local and regional scales with a correlation coefficient of
more than 80% (Battude et al., 2016) as well as to predict the yield of wheat
using Sentinel-2 (Zhao et al., 2020). Although SVIs derived from one or more
images show acceptable results during particular stages of the growth period,
they only use few spectral bands for yield estimation, and they may not be
efficient enough when many factors and relationships between bands must be
considered. Moreover, SVIs usually suffer from saturation effects (Xing et al.,
2020).

Crop simulation models usually combine growth models, climate data, and
SVIs to estimate crop yield. For example, different crop simulation models,
e.g. the Simple Algorithm For Yield estimate (SAFY) (Duchemin et al., 2008)
and Aquacrop (Steduto et al., 2009), coupled with time series of SVIs derived
from satellite images were employed for winter wheat yield estimation (Silvestro
et al., 2017) as well as to predict the yield and biomass of maize and sunflower
(Claverie et al., 2012). Such models demand a large amount of ground truth
data, in addition to numerous input parameters that have to be optimized and
making it a time-consuming task that adversely influences models’ performance,
especially when there is a lack of adequate field data.

On the other hand, ML techniques can employ full-spectrum simultaneously,
and they have been known as efficient methods in vegetation studies (Azadbakht
et al., 2019). ML methods have also been used to predict the yield of several
crops such as maize (Aghighi et al., 2018), wheat (Pantazi et al., 2016) and
alfalfa (Feng et al., 2020). Among various ML methods, Support Vector Machine
(SVM) and Random Forest (RF) have shown promising results in processing
large amounts of data (Ebrahimy and Azadbakht, 2019). They can capture
multivariate and nonlinear relationships between dependent and independent
variables (Azadbakht et al., 2018; Ghaseminik et al., 2021). These two ML
techniques have been employed successfully for estimating biochemical and
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biophysical properties of various crops (Verrelst et al., 2012; Durbha et al., 2007).
However, less attention has been paid to alfalfa yield estimation. ML methods
may overfit due to the curse of dimensionality in cases where the variable-to-
observation ratio is large (Aghighi et al., 2018; Van der Walt and Barnard,
2006). Additionally, combination of SVIs and ML techniques can significantly
improve remote sensing yield estimation. For instance, Aghighi et al. (2018),
Johnson et al. (2016), Pantazi et al. (2016), Feng et al. (2020), and Yu and
Shang (2018) emphasized the potential of ML techniques in combination with
SVIs for yield estimating of various crops.

As one of the significant sources of forage production globally, accurate
alfalfa yield estimation is of paramount importance. The growth stages of alfalfa
and the harvest time largely depend on several factors, such as alfalfa varieties,
production year of the given field, crop implantation and accessibility to harvest
machines (Pittman et al., 2015; Ashourloo et al., 2018; Feng et al., 2020). An
inherent characteristic of alfalfa fields is that they are generally harvested three
to seven times a year, which is not common with other crops and makes alfalfa
yield estimation challenging. To the best of our knowledge, there are few
studies about alfalfa yield estimation using remotely sensed data because of
the aforementioned specific characteristics of alfalfa during the growing season.
On the one hand, continuous monitoring of crop phenology, crop growth and
disturbances to crop growth are valuable information for yield estimation and
managing the crop production risks. This can be performed using time series of
remote sensing data. Hence, it is crucial to study alfalfa yield estimation based
on the time series of remote sensing data. On the other hand, due to the high
performance of ML techniques in handling data from different sources, they have
been effectively used to predict biochemical and biophysical properties of crops
(Aghighi et al., 2018). Therefore, this research aims to extract new features
from the time series of SVIs to describe alfalfa’s phenological characteristics by
utilizing several ML methods for alfalfa yield estimation using Landsat 8 and
PROBA-V images.

2 Materials and Methods

In this section, the study area of the current research is described, and then
ground truth data collection and the employed satellite imagery are presented.
In the following, the feature dataset developed over time series of satellite images
is presented. Large feature datasets may result in the course of dimensionality
and overfitting ML methods (Cawley and Talbot, 2010). Therefore, a set of
feature selection methods is introduced to select the most informative subset of
features while reducing the computational burden. The adopted ML methods,
namely Gaussian Process Regression (GPR), Random Forest Regression (RFR),
Boosted Regression Trees (BRT), and �-SVR, for alfalfa yield estimation are
then presented and the evaluation measures are described.

Figure 1 shows the adopted workflow for the present study, where initially
Landsat 8 and PROBA-V satellite images are acquired across the three
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Figure 1:Workflow of alfalfa yield estimation using the machine learning
methods and time series of Landsat 8 and PROBA-V images.

Figure 2:Map of Moghan study area, and a true color composite (red, near-
infrared and blue, respectively) of Landsat 8 satellite image of the study area.

consecutive years, and cloud-free images are selected to build three time series.
Then, common SVIs are calculated from the given time series, and feature
datasets are generated to describe the spectral-temporal characteristics of alfalfa
fields. A set of feature selection methods is then employed to identify the
most essential features. Adopted ML models are subsequently built using both
the entire feature dataset and the selected feature subsets using the feature
selection methods. Alfalfa yields of the combined dataset across the three years
are predicted, and the ML methods’ performance is evaluated under different
circumstances. The best subsets of features are finally introduced, and inter-
comparison among them are conducted.

2.1 Study area

Moghan Agro-industrial & Animal Husbandry Company is one of the largest
agricultural companies in the North-West of Iran with over 30 thousand hectares
of agricultural lands. It is located between the northern latitudes of 39.465 and
39.615 and the eastern longitudes of 47.548 and 48.009 (see Figure 2). The
climate of this area is semi-arid with an average annual rainfall of about 310 mm
(Hamdi Ahmadabad et al., 2021). Soils of the area are loam, silt, and clay.
Above 90% of the lands in this area are irrigated, and the rest are rain-fed lands.
The study area’s main crops are wheat (Triticum aestivum), barley (Hordeum
vulgare), alfalfa (Medicago sativa), canola (Brassica napus), cotton (Gossypium
herbaceum Linnaeus), corn (Zea mays), and sugar beet (Beta vulgaris). This
area is one of Iran’s most advanced agricultural areas, with advanced machinery,
agricultural irrigation and drainage network, and advanced harvesting machines.

2.2 Data used in the study

2.2.1 Ground data of alfalfa yield

The yields of 86, 88, and 88 alfalfa fields were respectively collected in 2014,
2015, and 2016. The field areas in the study area vary from 4 to 20 hectares,
and their alfalfa yield values range from 2,152 and 20,870 kilograms per hectare
(kg/ha). The crops were harvested by alfalfa harvesters, and the net yields were
recorded using a digital weighbridge. The yield measurements were relatively
accurate with an accuracy of 1 kg/ha. The final yields were obtained by
normalization of the accumulated yields (in kg) per area of each field (in ha).
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Table 1 Number of available cloud free satellite images in each year.
Satellite 2014 2015 2016
Landsat 8 5 11 8
PROBA-V 37 26 20

Table 2 Spectral Bands of PROBA-V.
Band Number Band Name Wavelength Center (µm) Spectral Range (µm)
1 Blue 0.464 0.440 – 0.487
2 NIR 0.837 0.772 – 0.902
3 Red 0.655 0.614 – 0.696
4 SWIR 1.603 1.570 – 1.635

The alfalfa fields’ location was recorded during a field campaign using a handheld
global positioning system (GPS) receiver with a positional error of less than 2 m.

2.2.2 Satellite data

In this study, Landsat 8 OLI and PROBA-V (see Table 2) satellite images were
employed to create the time series of various SVIs. The Landsat images were
downloaded from the US Geological Survey (USGS) LSDS Science Research
and Development (LSRD) website (https://espa.cr.usgs.gov/) and the
PROBA-V data was obtained from the ESA Product Distribution Portal
(https://www.vito-eodata.be/PDF/portal/Application.html#Home). The
spatial resolution of Landsat 8 and PROBA-V are respectively 30 and 100 m,
with the temporal resolutions being 16 and 5 days, respectively. The reason for
including PROBA-V images, in addition to the Landsat images, was that due
to the weather conditions and sky cloudiness, there were large temporal gaps
between some Landsat 8 images during the growing season. Cloud-free surface
reflectance images of the blue, green, red, Near Infrared (NIR), and Short-Wave
Infrared (SWIR) bands were used during the alfalfa growth period. All images
were obtained in geometrically and atmospherically corrected formats. In this
research, we used 42, 37 and 28 images in 2014, 2015 and 2016, respectively
(Table 1).

Figure 3 shows the acquisition times of the satellite images in the three years.
As can be seen, there is a limited number of available Landsat 8 images, and
also some gaps exist between the acquisition times of all three year datasets.
This might cause significant errors in alfalfa yield estimation, as such gaps may
occur at peaks of greenness, and thus no information can then be recorded.
An available precise map of the field boundaries was utilized to calculate field-
based spectral reflectance values from the satellite images. The mean spectral
reflectance values of all pixels located within a given field were considered for
feature development to estimate alfalfa yields.
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Figure 3:Acquisition times of the available Landsat 8 and PROBA-V satellite
images used in this study.

Figure 4:Color composites (R:Red, G:Near-infrared, B:Blue) of alfalfa farms
with various patterns on Julian Days (a) 150, (b) 170, and (c) 200 in 2014. (d)
Temporal NDVI profiles of the four alfalfa fields depicted in (a-c).

2.2.3 Developing the feature dataset

One of the main objectives of this study is to develop a new spectral-temporal
feature dataset based on alfalfa’s specific spectral characteristics during the
growing season. As previously stated, alfalfa fields are harvested periodically
(Tang et al., 2018), depending on many factors, including the cultivation year
and growing conditions. The harvesting frequency of two-/three-year-old alfalfa
fields is higher than for other fields, resulting in higher yields. These intrinsic
properties of alfalfa fields result in periodic variations of their reflectance values
throughout the cultivation years (see Figure 4), which can be illustrated using
various SVIs (Ashourloo et al., 2018). Therefore, in this research, we firstly
compute prevalent SVIs from the time series of remote sensing images. Secondly,
new spectral-temporal features are suggested based on the calculated SVIs.

Several SVIs have been developed and applied to crop yield estimation
(Bolton and Friedl, 2013; Panda et al., 2010). However, in this study, from the
spectral reflectance data obtained at different wavelengths, the commonly used
SVIs as shown in Table 3 were calculated. These include the Normal Difference
Vegetation Index (NDVI), Enhanced Vegetation Index-2 (EVI2), Optimized
Soil Adjusted Vegetation Index (OSAVI), Land Surface Water Index (LSWI),
and Simple Ratio (SR). Therefore, there are five temporal profiles called curve
henceforth, for each farm representing the indices across time. Although these
SVIs are mostly based on similar spectral bands, some differences have been
reported in the literature. For example, NDVI is saturated at high leaf area
index (LAI) levels, while EVI2 is not saturated rapidly (Gerstmann et al., 2016;
Tang et al., 2018).

An imaginary NDVI curve of an alfalfa field with three temporal peaks is

Table 3 Spectral vegetation indices used in this study.
SVI Description Reference
SR �NIR∕�Red (Tucker and Sellers, 1986)
NDVI

�NIR−�Red

�NIR+�Red
(Tucker and Sellers, 1986)

EVI2 2.5 ∗ �NIR−�Red

(�NIR+2.4∗�Red+1)
(Gitelson et al., 2003)

OSAVI 1.16 ∗ �NIR−�Red

(�NIR+�Red+0.16)
(Huete et al., 1994)

LSWI
�NIR−�SWIR

�NIR+�SWIR
(Xiao et al., 2002)
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Figure 5 A typical synthetic curve of a given alfalfa farm.

shown in Figure 5. The three temporal peaks are located at times ti, tj , tk, and
the first peak is marked at (ti, NDV I(ti)). Positive slopes of the second temporal
peak, for example, are located within the interval of [tj−u, tj], while negative
slopes of the given peak span from tj to tj+1. According to Figure 5, for a given
curve I(t), a set of features is extracted. These include the summation of the
curve values from the start (SOY) to the end (EOY) of a cultivation year (Eq.
1), number of peaks within the temporal profile (Eq. 2), summation of peak
values (Eq. 3), summation of the absolute values of slopes (Eq. 4), summation
of positive slopes (Eq. 5) and summation of areas under the entire curve (Eq.
6). Therefore, the complete feature dataset is comprised of 30 features (i.e. 5
SVIs×6 features).

Sum =
EOY
∑

t=SOY
I(t) (1)

#Peaks = Number of peaks(I(t)) (2)

SumPeaks =
#Peaks
∑

m=1
I(tpk(m)) (3)

Sum∣Slopes∣ =
EOY
∑

t=SOY
∣ Slope(I(t)) ∣ (4)

Sum+Slopes =
EOY
∑

t=SOY
Slope(I(t)) > 0 (5)

AUC = ∫

t=EOY

t=SOY
I(t)dt (6)

SumPeaks of each curve is calculated subsequent to identify all the peaks
located on the corresponding curve’s temporal profile. To this end, the
findpeaks function in Matlab (The Mathworks, Inc., Natick, MA, USA), with a
prominence of at least 0.1, was employed. Since the time interval between the
available satellite images is not equal, a 30-day interval between the peaks was
considered as the minimum time interval through comparison of the Julian days.
Sum∣Slopes∣ considers both positive and negative slope values of the temporal
curves and, then, calculates the summation of absolute values of the slopes,
whiles Sum+Slopes only takes positive slopes located on the leading edge (e.g.,
[t(j − u), t(j)] in Figure 5) of each peak on the temporal profile into account.
The latter (Sum+Slopes) represents the growth rate of alfalfa farms and can be
linked to the health status and phenological characteristics of a given farm.
For example, frequent high positive slopes in a time series is an indication of a
healthy alfalfa farm, and therefore a higher yield is expected compared to a farm
with less frequrnt high positive slopes in the time series. AUC is the sum of
areas under the temporal SVI and is calculated from SOY to EOY. As another
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feature, Sum simply calculates the summation of a given SVI value across a
cultivation year.

2.3 Feature Selection Methods

In most applications, including far too many features (input variables) does
not guarantee a learning algorithm’s success and may lead to over-fitting in
model training and, therefore, poor prediction ability. On the other hand, it
is proved that only a subset of the complete set of features can be sufficient,
because exclusion of irrelevant features that are not informative reduces the data
complexity and the computational cost on subsequent modeling steps (Guyon
and Elisseeff, 2003).

There are three categories of feature selection methods: filters, wrappers,
and embedded methods (Stańczyk, 2015). Filter methods score features prior
to modeling via considering intrinsic characteristics of features independent of a
learning method. The selected features can therefore be served as inputs to any
learning model (Roffo, 2016). Wrapper methods employ a particular learning
algorithm to evaluate the importance of a feature subset, leading to better
outcomes for the chosen algorithm but not necessarily for others. Embedded
methods are constructed by combining filter and wrapper methods and interact
with learning methods, making the selected features suitable for that learning
method (Guyon and Elisseeff, 2003).

RRelief-F is a simple and widely used feature selection method that belongs
to the filter methods and provides each feature’s weight using the nearest
neighbor approach (Stańczyk, 2015). In regression problems, the response values
are continuous, and therefore, a probability value based on the relative distance
between the predicted values of a pair of samples is adopted to assign weight to
features (Robnik-Šikonja and Kononenko, 1997).

A typical example of wrapper methods is forward feature selection based on
an iterative manner, with a bottom-up feature selection scheme, starting with
no feature and sequentially adding features that improve a learning model until
no further improvements are achieved (Marcano-Cedeno et al., 2010). In this
study, the Gram-Schmidt (GS) Orthogonalization is used in order to project the
feature space onto the response vector. After projection, the features are ranked
based on the decrease of their relevance to the response vector. The smallest
angle to the direction of maximum projection of input vectors onto the response
vector is regarded as the most relevant feature. This process is sequentially
employed until a specified number of features are selected (Stoppiglia et al.,
2003; Liu et al., 2018).

Boruta is a wrapper algorithm that trains random forest and recursively
eliminates unimportant features to find strongly or weakly important features
(Kursa et al., 2010). This algorithm generates copies of features and then
shuffles their values to remove their correlations with the response variable. A
random forest classifier is then implemented on the combination of the shuffled
copies with the original data. The original features’ importance is assessed
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against the randomized features, and only features of higher importance than
the randomized ones are reflected as important (Kursa et al., 2010).

In Recursive Feature Elimination (RFE), the best subset of features is
constructed by eliminating features recursively and then ranking them based on
evaluating the cost function changes. As a result, features with the minimum
ranking scores are eliminated. This process is repeated until either a predefined
number of features is selected or no additional features have remained (Ebrahimy
and Azadbakht, 2019; Guyon et al., 2002).

2.4 Alfalfa yield prediction using ML techniques

Advanced machine learning techniques, namely GPR, RFR, BRT, and �−SVR
were utilized to estimate alfalfa yield across three consecutive cultivation years of
2014–2016. Data samples were initially shuffled as a pre-processing step before
running the ML methods 100 times to reduce any bias regarding the order of
observations. Prior to each run, the observations were divided into training and
test data by adopting 5-fold cross-validation.

2.4.1 Ridge and Lasso Regression

Ridge regression (Hoerl and Kennard, 1970) shrinks the regression coefficients
toward zero by imposing a penalty on their size. In lasso regression (Tibshirani,
1996), however, some coefficients are exactly zero. In this study, ridge and lasso
regression were considered as benchmark. The Lagrangian forms of ridge and
lasso are as follows (Hastie et al., 2013):

�̂ridge = argmin
�

⎧

⎪

⎨

⎪

⎩

M
∑

i=1

(

yi − �0 −
p
∑

j=1
xij�j

)2

+ �
p
∑

j=1
�2j

⎫

⎪

⎬

⎪

⎭

(7)

�̂lasso = argmin
�

⎧

⎪

⎨

⎪

⎩

1
2

M
∑

i=1

(

yi − �0 −
p
∑

j=1
xij�j

)2

+ �
p
∑

j=1
∣ �j ∣

⎫

⎪

⎬

⎪

⎭

(8)

Here, � ≥ 0 is a regulization parameter that controls the shrinkage. Noticeably,
the L2 ridge penalty is replaced by the L1 lasso, resulting in nonlinear solutions
in yi.

2.4.2 Support Vector Regression

In order to minimize the loss function, Support Vector (SV) machine considers
only residuals larger than a specified threshold and thus finds the corresponding
coefficients (Hastie et al., 2013). To this end, the input space is mapped onto
a feature space of a higher dimension. Then, linear regression is performed in
this new feature space using �-insensitive loss (Vapnik, 2013; Cherkassky and
Mulier, 1998). Various kernels can be employed to adjust nonlinear boundaries
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between the features in the feature space (Hastie et al., 2013). We, implement �-
SVR, where � ∈[0,1] controls the number of support vectors and training errors
(Chang and Lin, 2002).

In this study, we use the Radial Basis Function (RBF) as a popular
kernel function. The best hyperparameters �, cost (C) and 
 were selected
through performing grid search within the intervals [0,1], [2−8, 2+8] and [2−8, 2+8],
respectively, using the e1071 library (Meyer et al., 2017) in R environment (R
Core Team, 2017).

2.4.3 Random Forest Regression

Random forests (RF) reduces the variance of the final ensemble model through
taking subsamples from input features while bootstrapping samples from the
observations in building individual weak learners (Hastie et al., 2013). Given B
the number of constructed trees T (x; �b), the final predicted value in regression
problems is obtained through calculating the average response of the entire
trees (Breiman, 2001). The minimum leaf size and the number of features at
each node of a total of 500 trees are optimised using the Bayesian optimization
algorithm (Snoek et al., 2012).

2.4.4 Boosted Regression Trees

Boosted regression trees (BRT) (Elith et al., 2008) is built through integration
of boosting (Schapire, 2003) and regression trees (Breiman et al., 1984). With
high statistical interpretability (Friedman et al., 2000), it can handle high
nonlinearities between input features. RF is reported to reduce variance in the
integrated final model, though due to bootstrapping cannot reduce bias, and
the ultimate bias is identical to that of individual trees. However, sequential
modeling of residuals throughout all BRT observations reduces both bias and
variance possible (Elith et al., 2008). In order to avoid overfitting due to a large
number of trees (James et al., 2013), its hyperparameters, namely the number
of trees, interaction depth, and learning rate, are optimized using the Bayesian
optimization algorithm (Snoek et al., 2012).

2.4.5 Gaussian Process Regression

Gaussian Process Regression (GPR) is a kernel-based non-parametric ML
method for regression problems (Lázaro-Gredilla et al., 2014; Rasmussen and
Williams, 2006). It generates a prior GPR from the training dataset, and a
posterior GPR is then generated from it (Ashourloo et al., 2016; Azadbakht
et al., 2019). GPR extracts several relationships between the input and target
variables in order to accurately describe their correlations (Williams, 1998).
In this study, hyperparameters of the squared-exponential covariance function;
namely the length-scale l, the signal variance �f and the noise variance �n are
optimized using the Bayesian optimization algorithm (Snoek et al., 2012).
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2.5 Performance Evaluation Measures

Given Table 3 and Eq. 1-6, a feature dataset consisting of 30 features
was generated, where the selected ML methods were implemented on the
observations of alfalfa yields. This process was repeated 100 times in order to
reduce the bias of random splitting. At each of these 100 runs, the whole dataset
was initially split into five equally sized folds, where a test fold was sequentially
set aside, and the four remained folds were considered to create training datasets
iteratively. Then, the test fold is changed, and a similar process is implemented
until alfalfa yields are predicted for samples in the five test folds.

Three measures, namely the coefficient of determination (R2), mean absolute
error (MAE) and the root mean square error (RMSE) are used for performance
evaluation of the ML methods. A one-factor analysis of variance (ANOVA)
(Devore and Berk, 2012) is also used to examine the statistical significance
of the results at the � =5% level. To this end, the average performance
of the ML methods is compared across either original feature dataset or
different feature subsets derived from the five feature selection (FS) methods
(Azadbakht et al., 2019). In this way, the null hypothesis is that these average
performances are similar, while at least one different performance refers to the
alternative hypothesis (see Eq. 9). In the latter case, pairwise comparison
is subsequently conducted using Tukey’s honestly significant difference (HSD)
among the scenarios to select models with significantly different performance.

⎧

⎪

⎨

⎪

⎩

H0 ∶ �i = �j ; wℎere i ≠ j

H1 ∶ at least one is different

(9)

Here, �i refers to the mean performance of the i -th ML method, based on the
evaluation measures.

3 Results and Discussion

3.1 Alfalfa yield estimation using all features

Boxplots in Figure 6 show how well the predicted alfalfa yields fit the actual
yields under 100 runs of the ML methods, in terms of the MAE and RMSE
measures. As seen, inferior performance of lasso, ridge and �-SVR is evident
in terms of both measures, exhibting the median RMSE value of about 2848.6,
2826.0 and 2889.9 kg/ha, respectively. In total, of the four ML methods, �-SVR
and RFR performed with less deviations across 100 runs, showing smaller inter-
quartile (IQR) values compared to the results of BRT and GPR. The boxplots
in Figure 6, however, show better performance of GPR and BRT with more
desirable values of upper quartile, lower quartile, and median values, followed
by RFR.

The average predicted yield values using the ML methods over 100 runs were
calculated and scattered against the actual yields of the corresponding alfalfa
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Table 4:The lower, median and upper quartiles in terms of R2 and RMSE
(kg/ha).

Quartiles
BRT GPR RFR SVR Ridge Lasso

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE
Lower quartile 0.48 2029.7 0.61 1594.4 0.48 2244.9 0.19 2855.7 0.24 2776.2 0.21 2811.6
Median 0.55 2177.9 0.67 1860.2 0.51 2311.8 0.21 2889.9 0.25 2826.0 0.23 2848.6
Upper quartile 0.62 2343.3 0.75 2020.6 0.54 2355.1 0.22 2928.2 0.27 2862.6 0.25 2886.3
IQR 0.13 313.6 0.15 426.2 0.06 110.1 0.03 72.5 0.03 86.4 0.04 74.7

Figure 6:Boxplots of the machine learning methods over 100 runs in terms of
MAE and RMSE.

farms (Figure 7). As seen, the average yield values in GPR, BRT, and RFR
exhibit solid linear correlation with the observed values, while a less consistent
correlation is evident in �−SVR, ridge and lasso. Larger deviations of the
predicted alfalfa yields from the 1:1 line indicates that lasso, ridge and �−SVR
experience higher levels of under/over-estimation of alfalfa yields at higher/lower
actual yields. It must be remarked that more significant underestimation rates of
predicted alfalfa yields are evident in lasso, ridge, �−SVR, and RFR, particularly
for higher yield values.

For performance evaluation of the ML methods, deviations of the average
predicted alfalfa yields were also calculated across farms in terms of the RMSE
measure. The calculated RMSE values for BRT, GPR, RFR, and �−SVR were
1902.9, 1237.4, 2240.3, and 2829.8 kg/ha, respectively. This obviously shows
that GPR predicted alfalfa yields, on average, with the maximum correlation
(R2=0.91) and the minimum RMSE value of 1237.4 kg/ha. As shown in Figure
3, unevenly distributed available images in each year are evident, in which
influences the combined temporal SVIs and the calculated features, and thus
the built ML models.

An ANOVA was carried out on performance of the ML methods across 100
runs in terms of the RMSE measure. The obtained p-value of smaller than 0.05
confirmed that the null hypothesis is rejected and there is at least one pair of
ML methods with significantly different performances. The results of Tukey’s
HSD test showed adjusted p-values between all pairs of ML methods smaller
than 0.05, which in turn indicates that all ML methods performed significantly
different in terms of RMSE.

Figure 7:Scatter plots of the actual versus predicted alfalfa yields (kg/ha) using
the machine learning methods and the complete feature dataset. (Red line and
dashed green line are respectively the regression line and 1:1 line.)
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Figure 8:Scatter plots of the actual and predicted alfalfa yields (in t/ha) using
GPR under different temporal gaps. (Red line and dashed green line are
respectively the regression line and 1:1 line.)

Table 5 Top ten selected features by the four feature selection methods.
Boruta GS RReliefF RFE
AUC(LSWI) AUC(EVI2) AUC(LSWI) AUC(EVI2)
AUC(NDVI) Sum(EVI2) AUC(NDVI) AUC(LSWI)
AUC(SR) Sum(LSWI) AUC(OSAVI) AUC(SR)
Sum(LSWI) Sum(NDVI) Sum(EVI2) AUC(OSAVI)
Sum(NDVI) Sum(OSAVI) Sum(LSWI) Sum(EVI2)
SumPeaks(EVI2) #Peaks(LSWI) Sum(NDVI) Sum(LSWI)
SumPeaks(LSWI) Sum∣Slopes∣(EVI2) Sum(OSAVI) Sum(NDVI)
Sum∣Slopes∣(EVI2) Sum∣Slopes∣(OSAVI) #Peaks(LSWI) SumPeaks(EVI2)
Sum+Slopes(EVI2) Sum+Slopes(EVI2) SumPeaks(LSWI) Sum∣Slopes∣(EVI2)
Sum+Slopes(SR) Sum+Slopes(OSAVI) Sum+Slopes(EVI2) Sum+Slopes(EVI2)

3.2 Alfalfa yield estimation under undesirable temporal
gaps

In order to consider undesirable temporal gaps in time series, a monthly spectral
reflectance data in the blue, red, NIR, and SWIR bands was created. We then
applied different random temporal gaps (0%, 10%, 20%, 30%, 40%, 50%) in
the dataset and calculated the spectral-temporal features in Eq. 1-6. Random
temporal gaps were applied to the dataset, since temporal gaps in satellite data
do not follow a specific pattern. Of the ML methods, GPR was applied, as
the best ML method, on the datasets to evaluate performance of the developed
features under different levels of temporal gaps. As can be seen in Figure 8,
temporal gaps of up to 50% do not significantly affect the performance of GPR in
alfalfa yield estimation. Indeed, temporal gaps of 30% and 40% result in higher
RMSE and lower R2 values as compared to the original dataset. Therefore, we
can conclude that the introduced spectral-temporal features can compensate for
undesirable temporal gaps in time series of satellite images.

3.3 Alfalfa yield estimation using the selected features

To exhibit the importance of the calculated features and examine whether a
smaller number of features can provide similar alfalfa yield predictions, we
employed Boruta, GS, RReliefF, and RFE to select the most relevant features.
Table 5 summarizes the ten most important features based on the four FS
methods.

As can be seen in Table 5, of the whole feature dataset, AUC(.) and
Sum(.) of different SVIs were selected more frequently using all of the FS
methods. The FS methods also selected features related to the slopes (either
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Figure 9:Boxplots of the machine learning methods and feature selection
techniques over 100 runs in terms of RMSE.

Figure 10:Scatter plots of the actual and predicted alfalfa yields (in t/ha) using
the machine learning methods and selected features by different feature selection
methods. (Red line and dashed green line are respectively the regression line
and 1:1 line.)

positive slopes or absolute values of the entire slopes) of temporal curves, in
addition to SumPeaks(.). Among the SVIs, LSWI and EVI2 more frequently
emerged in the selected features. The selected features can play critical roles in
describing temporal characteristics of alfalfa curves during the growing season.
For example, SumPeaks(.) refers to the summation of given SVI values placed on
the peaks extracted across the time series dataset, AUC(.) represents the area
under temporal SVI curve throughout the time series curve, and slope-based
features explain growth stages of the crop.

In total, features extracted from EVI2 and LSWI were more selected by
most of the FS methods, indicating Sum+Slopes(EVI2) and Sum∣Slopes∣(EVI2)
as the most frequently selected features of the former, while Sum(LSWI) and
AUC(LSWI) were the most common features derived from the temporal profile
of the latter. This clearly demonstrates the importance of considering the area
under the temporal SVI curves and summation of slope values of SVI curves
across time.

To evaluate the selected features, and for the sake of simplicity, only GPR,
RFR and BRT were applied on the selected features. Figure 9 shows the
RMSE measure’s boxplots for the ML methods based on the selected features
by the four FS methods. Although both RFR and BRT exhibit shorter boxplots
and thus higher performance stability, superior performance of GPR using the
selected features is evident, showing smaller values of the first, second (median),
and third quartiles. In particular, features selected by GS and RReliefF provide
smaller interquartile values using GPR, respectively 332.4 and 442.5 kg/ha.

Figure 10 shows scatter plots of the predicted versus actual alfalfa yields
through implementation of the ML methods on the feature datasets extracted
by the four FS methods. Analogous to Figures 7 and 9, GPR outperformed
both BRT and RFR using the features selected by the FS methods, with the R2

values of the linear regression equations of two circumstances with the selected
features by GS (R2=92%) and RReliefF (R2=92%) being higher than the case
of implementing this ML method on the complete feature dataset (R2=91%).

Table 6 shows the lower and upper quartiles, median and IQR metrics in
terms of R2 and RMSE values of the predicted alfalfa yields, over 100 runs,
against the actual alfalfa yields for combinations of ML-FS methods. As seen
in this table, the RMSE values of GPR using the features selected by GS,
RReliefF, and Boruta are smaller than those of implementing this ML method
on the entire feature dataset (Table 4). RFR and BRT, however, showed inferior
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Table 6:The lower, median, upper quartiles, and IQR values in terms of R2 and
RMSE values (in kg/ha) of the ML methods using the selected features by the
FS methods.

ML Method Quartiles
FS Method

Boruta GS RFE ReliefF
R2 RMSE R2 RMSE R2 RMSE R2 RMSE

BRT

Lower quartile 0.46 2239.8 0.41 2304.9 0.42 2366.5 0.42 2344.5
Median 0.50 2318.4 0.46 2394.1 0.44 2437.7 0.46 2393.7
Upper quartile 0.53 2395.5 0.50 2500.4 0.48 2479.3 0.48 2457.2
IQR 0.07 155.6 0.09 195.5 0.06 112.9 0.06 112.6

GPR

Lower quartile 0.60 1520.0 0.67 1516.3 0.56 1646.9 0.65 1461.9
Median 0.69 1810.7 0.72 1696.9 0.65 1896.2 0.71 1726.7
Upper quartile 0.78 2038.3 0.78 1848.7 0.74 2141.9 0.80 1904.4
IQR 0.18 518.3 0.11 332.4 0.18 495.0 0.15 442.5

RFR

Lower quartile 0.44 2354.5 0.47 2317.8 0.45 2335.9 0.43 2409.4
Median 0.46 2398.1 0.48 2359.4 0.47 2373.5 0.44 2430.8
Upper quartile 0.48 2432.5 0.50 2386.0 0.49 2411.7 0.45 2461.0
IQR 0.04 78.0 0.03 68.2 0.04 75.7 0.03 51.6

performances with higher RMSE values when coupled with the FS methods
compared to when implemented on the total feature dataset. Noticeably, RFR,
coupled with the FS methods, provided the least IQR values for both R2 and
RMSE measures.

Table 6 and Figure 10 also show that both GPR and RFR provide the least
average RMSE and highest R2 values using the features provided by GS, while
BRT exhibits the smallest RMSE value using the features selected by Boruta.
Among the full feature dataset, GS selected the area under the temporal curve of
EVI2 (AUC(EV I2)), summation of temporal values of SVIs (Sum(.)), number of
peaks of temporal LSWI (#Peaks(LSWI)), summation of either poisitive slopes
(Sum+Slopes(.)) or absolute values of the slopes (Sum∣Slopes∣(.)) of EVI2 and
OSAVI.

Noticeably, there was no common trend among the FS techniques in terms
of average RMSE values using the three selected ML methods. For example,
GS provided the smallest average RMSE values in both GPR and RFR, while
the minimum RMSE value for BRT occured using features selected by Boruta.
GPR, particularly coupled with GS (RMSE=1114.0 kg/ha), outperformed other
combinations of the FS techniques and ML methods. It was followed by GPR
integrated with RReliefF. Among the top 10 features provided by GS (Table 5),
Sum+Slopes(OSAVI) and Sum∣Slopes∣(OSAVI) were not selected by the other FS
methods. This fact may indicate the better performance of GPR-GS compared
to the cases that other FS methods were combined with. These two features
mainly characterize the importance of slopes of temporal SVI profiles. Moreover,
#Peaks(LSWI) and Sum(OSAVI) were common between GS and RReliefF that
provided the least average RMSE values in combination with GPR.
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Table 7:Tukey’s HSD test between the pairs of ML methods implemented on
the selected features by the FS methods in terms of the RMSE values.

BRT-Boruta BRT-GS BRT-RFE BRT-RReliefF GPR-Boruta GPR-GS GPR-RFE GPR-RReliefF RFR-Boruta RFR-GS RFR-RFE RFR-RReliefF
BRT-Boruta - 0.86 0.19 0.70 0.00 0.00 0.00 0.00 0.77 1.00 0.94 0.17
BRT-GS - 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.99
BRT-RFE - 1.00 0.00 0.00 0.00 0.00 1.00 0.67 0.98 1.00
BRT-RReliefF - 0.00 0.00 0.00 0.00 1.00 0.99 1.00 1.00
GPR-Boruta - 0.16 0.92 0.93 0.00 0.00 0.00 0.00
GPR-GS - 0.00 0.98 0.00 0.00 0.00 0.00
GPR-RFE - 0.09 0.00 0.00 0.00 0.00
GPR-RReliefF - 0.00 0.00 0.00 0.00
RFR-Boruta - 0.99 1.00 1.00
RFR-GS - 1.00 0.65
RFR-RFE - 0.98
RFR-RReliefF -

An ANOVA analysis was performed on the RMSE values obtained from the
100 times replications of the joint ML-FS methods to compare the performance
of the regression models. The p-values/F-statistics of all combinations of
ML and FS methods were smaller/larger than the significance level/critical F-
values. Therefore, the null hypothesis of similar performance of the joint ML-
FS methods, on average, was rejected and at least one of the pairs performed
significantly different at the 95% confidence level. Table 7 shows Tukey’s HSD
results for pairwise comparisons between the ML methods coupled with the FS
techniques. In this table, the adjusted p-values of smaller than 0.05 indicate
significant differences between the pairs. Noticeably, of the three ML methods,
GPR performed significantly different from both RFR and BRT, regardless of
the FS methods. On the other hand, no significant differences were found
between RFR and BRT’s performance in terms of the average RMSE values.
Moreover, according to Tables 6 and 7, GPR-RFE and GPR-GS performed
significantly different, while no significant differences were found between these
and the other combinations of GPR and FS methods.

As shown in Table 5, GS shared 40% and 60% similarity in the selected
features with Boruta and RReliefF, respectively. The higher similarity of the
latter with GS emerged in the smaller mean RMSE measure of GPR-RReliefF
than GPR-Boruta. Despite the high similarity (60%) between the selected
features using RFE and GS, Tukey’s HSD showed that their performances,
on average, were significantly different. Of the six common features between
GS and RFE, three were similar to those selected by RReliefF and Boruta.
The only features in GS that were not in common with the other FS methods
were Sum+Slopes(OSAVI) and Sum∣Slopes∣(OSAVI), which can represent the
importance of slopes of time series of OSAVI.

An ANOVA analysis was also performed between the joint GPR-FS methods
and implementations of GPR on the entire feature dataset, with no significant
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differences being emerged. Although the average performance of GPR coupled
with FS methods did not show significant improvement compared to the
complete feature dataset, yet the computational complexity was reduced.

4 Conclusions

In this study, inversion models using the ML methods were built to estimate
alfalfa yields. The proposed features mainly describe the geometrical changes
of the temporal SVIs across time, representing the phenological characteristics
of the alfalfa throughout the cultivation year. GPR outperformed the other ML
methods in alfalfa yield estimation across several farms using features extracted
from temporal profiles of different SVIs, resulting in higher R2 and lower RMSE
values across the three years.

Furthermore, various feature selection techniques were utilized to select the
most relevant features for alfalfa yield estimation. The selected features by
different feature selection methods could acceptably participate in alfalfa yield
estimation while reducing the training time of the ML methods. Of the selected
features, the area under the entire temporal SVIs and features related to the
slope of the temporal SVIs were among the most common features selected by
the four FS techniques.

Compared to the complete feature datasets, the selected features could
marginally improve alfalfa yield estimation using GPR in terms of the RMSE
measure. GPR implemented on the complete feature datasets provided the
average RMSE value of 1237.4 kg/ha, while the average RMSE values of 1114.0,
1157.7, and 1210.2 kg/ha emerged using GPR and the selected features by
GS, RReliefF, and Boruta. The introduced features in the current study can
estimate alfalfa yield for other areas and estimate the yield of other crops. This
approach can be further developed to predict alfalfa yield during the growth
period and before harvest.
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Highlights: 

 A set of spectral-temporal features is introduced to describe phenological 

characteristics of alfalfa during the cultivation year. 

 Feature selection methods were implemented to identify the most important 

variables. 

 Feature selection could acceptably increase cost-effectiveness of the alfalfa yield 

estimation procedure. 

 Long gaps between available cloud-free satellite images consistently affect the 

performance of the inversion methods. 

 Area under the whole temporal curve of spectral vegetation indices as well as 

features related to the slope of the temporal curves were among the most common 

features. 
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