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A B S T R A C T   

The variability of the river water thermal regime has important consequences on the environment and aquatic 
habitat. In 25 independent and identically distributed stations in Switzerland, local frequency analysis is used to 
quantify extreme river temperatures. Probability distributions are fitted to the data to estimate maximum water 
temperatures corresponding to different return periods. The goodness of fit of statistical distributions are eval-
uated using the Akaike and Bayesian Information Criteria. L-moment ratio diagrams are also used to validate the 
choices of appropriate candidate distributions. Results show that for high altitude stations the two-parameter 
Weibull (W2) distribution is the most adequate distribution to represent extreme river water temperatures 
while for low altitude stations the most commonly selected distributions are the Normal (N) and Inverse Gamma 
(IG). The L-moment ratio diagrams confirm the results of the local frequency analysis. These results point to the 
presence of a regional homogeneity in the thermal regime of the study area. River temperature quantiles are 
compared to know thresholds above which thermal stress occurs for a relatively ubiquitous salmonid species in 
Europe (Brown trout).   

1. Introduction 

Stream temperature is one of the most important variables in the 
study of aquatic habitats (Caissie, 2006). It has a great influence on 
water quality (Hosseini et al., 2017; Mujere and Moyce, 2018), con-
centration of chemicals (Ficklin et al., 2013; Petts, 2000), and ecosystem 
health. In addition, it affects the life cycle of many fish, including sal-
monids (Brandão et al., 2018; Jonsson and Jonsson, 2009). Climate 
change will impact seasonal and daily variations of water temperature 
(Isaak et al., 2012; Isaak and Rieman, 2013; Kwak et al., 2017; Niedrist 
et al., 2018). Deforestation, flow control, and dam construction can also 
have significant impacts on river temperatures (Caissie, 2006; Dan 
Moore et al., 2005; Maheu et al., 2016). The variability in river thermal 
regime has garnered increasing interest over the last decades from the 
hydrologic community (Ashley Steel et al., 2016; Ouellet et al., 2020). 

Many authors have focused on understanding the impacts of water 
temperature on fish growth, mortality, and on aquatic habitats in gen-
eral (Dugdale et al., 2013; Elliott and Elliott, 2010; Sun and Chen, 2014). 
Many other research studies have focused on the development of sta-
tistical models to predict stream temperature (Beaupré et al., 2020; 
Benyahya et al., 2007; Boudreault et al., 2019; Dugdale et al., 2017; St- 
Hilaire et al., 2012; Zhu et al., 2019). 

Ectotherms can survive only within a specific temperature range. In 
Switzerland, several studies have been carried out to identify the 
threshold of water temperature that generates stress or mortality of 
brown trout (Salmo trutta). For instance, Körner et al. (2008) have shown 
that water temperature above 19 ◦C can influence the concentration of 
vitellogenin (Vtg) in the plasma of brown trout. Wahli et al. (2008) 
demonstrated the relationship between fish infected by Tetracapsu-
loides bryosalmonae in Switzerland (where the present study was 
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conducted) and altitude (the lower the altitude, the higher the temper-
ature, the more infected the fish). According to Elliott (2001), the op-
timum growth rate of brown trout occurs at 13.1–13.9 ◦C, and growth 
ceases below 2.9–3.6 ◦C and above 18.7–19.5 ◦C. Several studies have 
also indicated that when temperature exceeds 15 ◦C proliferative kidney 
disease (PKD) becomes more prevalent in brown trout populations 
(Chilmonczyk et al., 2002; Strepparava et al., 2018). In addition, many 
studies have also investigated the definition of lethal temperatures. For 
instance, Elliott (1981) determined the ultimate brown trout lethal 
temperature (survival for ten minutes) to be 29.7 ± 0.36 ◦C. Further, 
Wehrly et al. (2007) focused on the definition of thermal tolerance 
limits. The upper limit of tolerance over 7 days, for example, was 23.3 ◦C 
for the maximum daily mean temperature and 25.4 ◦C for the maximum 
daily temperature. These thresholds can be used as thermal indicators in 
river ecosystems. The present study allows to characterize them in a 
probabilistic context using frequency analysis. In this initial study, we 
demonstrate how maximum daily temperature quantiles can be used as 
an indicator of stress. Temperature quantiles corresponding to low re-
turn periods (e.g. one or two years) occur relatively often, whereas those 
with higher return periods (e.g. 10 or 50 years) are more extreme and 
occur less often, on average. 

Many studies related to river temperature were conducted in 
Switzerland. They include the development of a hybrid statistical- 
physically based model to estimate the monthly mean stream tempera-
ture of ungauged rivers (Gallice et al., 2015). More recently, Michel et al. 
(2020) investigated the evolution of river temperature over the last 50 
years in 52 Swiss catchments. 

To estimate extreme thermal events and their associated return pe-
riods, local frequency analysis (LFA) of the water temperature in Swiss 
rivers was carried out. Quantile estimation depends strongly on the 
shape of the selected frequency distribution. The choice of the most 

appropriate distribution of annual maxima or peaks over a selected 
threshold has received considerable attention for other hydro-climatic 
variables. For example, Thiombiano et al. (2017) showed that the 
Generalized Pareto Distribution (GPD) is the most adequate to represent 
peaks over thresholds of precipitation series in Southeaster Canada. 
Ouarda et al. (2016) have indicated that the Weibull (W2) is the most 
widely used distribution in studies related to wind speed data analysis in 
the United Arab Emirates. Tramblay et al. (2008) indicated that the Log- 
Normal and Exponential distributions are the most adequate to account 
for the concentration of suspended sediments in North America. 

However, similar studies related to stream temperatures are scarce. 
Ouellet et al. (2010) tested eight different distributions at two water 
temperature stations in the St. Lawrence river (Canada) and found that 
the Weibull distribution had the best fit for daily maxima. Caissie et al. 
(2020) successfully fitted a GPD to a 21-year time series of exceedances 
above a threshold at a single station in Eastern Canada. Much work is 
still required to understand river temperature regimes and to identify 
the most adequate distributions to model this variable in various regions 
of the world. 

Different goodness of fit criteria are used to evaluate the adequacy of 
probability distribution functions (pdf). The most used criteria is pre-
sented in this paper are the Akaike (AIC) (Akaike, 1974) and the 
Bayesian information criteria (BIC) (Schwarz, 1978). 

An alternative method for the evaluation of the goodness-of-fit of 
statistical distributions to sets of observations are the Moment Ratio 
Diagrams and their variant L-Moment Ratio Diagrams (MRD) (Hosking, 
1990). They are commonly applied in hydro-meteorological studies (see 
for instance El Adlouni et al., 2007a; Ouarda and Charron, 2019) but 
were never used in river temperature modelling. This approach has the 
advantage of presenting the skewness and kurtosis of the station data 
and allowing for an easy comparison of the fit of several pdf on a single 

Table 1 
Probability distribution functions used in the study.  

Name Probability density function Domain No. of parameters 
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μ: location parameter. 
m: second location parameter (LN3). 
α: scale parameter. 
k: shape parameter. 
s: second shape parameter (GG). 
Γ (): gamma function. 
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graph. It also allows to analyze the fit of data from several stations on the 
same graph and to visually identify homogeneous regions. In the present 
study, LFA and MRD are used to identify the distributions that best fit 
river temperature data in Switzerland. 

This paper is organized as follows: Section 2 presents the method-
ology used to select the best distribution and to estimate quantiles. 
Section 3 presents the study area and data used for the analysis. Section 
4 provides the results and discussions, with a selection of the most 
adequate statistical distributions. Finally, conclusions and future works 
are given in Section 5. 

2. Methodology 

2.1. Local frequency analysis 

LFA is a statistical prediction approach commonly used in hydrology 
to obtain estimates of the quantiles of extreme events. Based on proba-
bilistic calculations, events’ history is used to predict frequencies of 
future occurrences (e.g. low flow, floods). In this study, LFA is applied to 
the maximum annual river water temperature in Switzerland. 

The main steps in the implementation of this procedure are:  

(i) The selection of a sample while respecting the basic statistical 
hypotheses (homogeneity, stationarity, and independence) and 
detection of outliers. 

(ii) Fitting the model to the data using the most appropriate esti-
mation method.  

(iii) Selecting the best distribution to present the data, taking into 
account the selection criteria.  

(iv) Calculation of quantiles (xT) corresponding to different return 
periods T; such that the event xT of return period T corresponds to 
the quantile of probability of exceedance 

p = 1/T = Pr(X ≥ xT).

Thus Pr(X ≤ xT) = F
(

xT; θ
)
= 1 − 1/T,

and xT = F− 1
(

1 − 1
/
T; θ

) (1)  

Where F− 1 corresponds to the inverse cumulative distribution function, 
θ is the vector of parameters, and xT is the quantile corresponding to 
return period T or probability of exceedance p = 1/T. 

2.1.1. Hypotheses testing 
It is essential to verify that the data collected respect the conditions 

of stationarity (Kendall’s test described in Mann (1945)), independence 
(Wald-Wolfowitz’s test described in Wald and Wolfowitz (1943)), and 
homogeneity (Wilcoxon’s test described in Wilcoxon (1946)). 

2.1.2. Fitting of distributions and estimation methods 
To fit a probability distribution, the sample data are sorted in order, 

and each event is assigned an empirical probability (Pi) of exceedance. 
The Cunnane formula (Cunnane, 1978) is used in the present study: 

Pi =
i − α

N + 1 − 2α (2)  

Where N represents the sample size to be studied,i is the rank of the 
observation, and α is a coefficient whose value ranges between 0 and 
0.5. 

A number of statistical distributions have been used for modeling 
different hydro-climatological extremes. Table 1 presents the most 
commonly used distributions in hydrology (El Adlouni et al., 2008; 
Farooq et al., 2018); and which are generally divided into three groups: 
the Pearson Type 3 (P3) family (Log-Pearson Type 3 (LP3), Gamma (G), 
Pearson Type 3 (P3)), the Normal (N) family (Log-Normal (LN), Normal 
(N)), and the General Extreme-Values (GEV) family (Weibull (W), 
Gumbel (EV1), Fréchet (EV2)). 

To fit statistical models to the data, different parameter estimation 
methods are available, such as the maximum likelihood (ML) method (El 
Adlouni et al., 2007b; Smith, 1985), and the method of moments (MM) 
and its variants (Ashkar and Ouarda, 1996). 

2.1.3. Goodness of fit criteria 
A number of goodness of fit criteria can be used to compare and 

select the best fitting distribution. The most commonly used ones are the 
Akaike Information Criterion (AIC) (Akaike, 1974) and the Bayesian 
Information Criterion (BIC) (Schwarz, 1978). Both criteria are based on 
the likelihood function and enable the comparison of the adequacy of a 
number of distributions for given data set. These criteria are defined as 
follows: 

AIC = − 2log(L)+ 2k (3)  

BIC = − 2log(L)+ 2klog(N) (4)  

Where L is the likelihood function, k is the number of parameters, and N 
is the sample size. 

AIC and BIC criteria have the advantage of taking into account the 
principle of parsimony, i.e. the selection of the most adequate model 
with a minimum number of parameters. The best fit corresponds to the 
lowest value of the AIC and BIC (Rao and Hamed, 2019). In the present 
study, these two criteria are used for the identification of the most 
adequate distributions for the maximum water temperature in Swiss 
rivers. 

2.2. Theoretical background on L-Moment ratio diagrams 

L-moments are linear combinations of probability weighted mo-
ments (PWM) (Hosking, 1990). The advantage of L-moments is that they 
can select a wider range of distributions. Greenwood et al. (1979) 
defined PWM as: 

βr = E{X[F(X) ]r } (5)  

where F(X) is the cumulative distribution function of a random variable 
X and βr is the rth-order PWM. 

Linear combinations of PWM can be interpreted as measures of 
location, scale and shape of the probability distribution. The rth L- 
moment λr is related to the rth PWM are defined by (Hosking, 1990) as 
follows: 

λr+1 =
∑r

k=0
p*
r,kβk, (6)  

Where 

p*
r,k = (− 1)r− k

(r
k

)(r + k
k

)

(7) 

The dimensionless L-moment ratios, L-variation τ2 (L-Cv), L-skew-
ness τ3 (L-Cs), and L-kurtosis τ4(L-Ck), are defined as follows: 

τ2 = λ2/λ1 (8)  

τ3 = λ3/λ2  

τ4 = λ4/λ2 

An important property of L-moments that makes them attractive for 
assessing goodness of fit with MRD is that if the mean of the distribution 
exists, then all L-moments exist and the L-moments uniquely define the 
distribution (Hosking and Wallis, 2005). In MRD, τ4 is generally plotted 
against τ3. Distribution functions are represented in MRD as a point, a 
curve or a zone depending on the number of shape parameter of the 
distribution (Hosking and Wallis, 2005; Ouarda et al., 2016). The pdfs 
used in the present study are illustrated in Table 1 with their domain and 
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number of parameters. Sample L-moments ratios are then plotted on the 
MRD diagram for all stations. 

L-moments are estimated from a finite sample. Let’s define X1:n ≤

X2:n ≤ ⋯ ≤ Xn:n, an ordered sample of size n, an unbiased estimator of 
the rth probability weighted moment Br can be estimated (br) as: 

br = n− 1
(
n − 1
r

)− 1 ∑n

j=r+1

(
j − 1
r

)

xj:n (9) 

The L-moments of the sample are estimated by: 

l r+1 =
∑r

k=0
p*
r,kbk, r = 0, 1, ..., n − 1. (10) 

Similar to Eq. (8) The L-moments ratios of the sample are estimated 
as follows: 

t2 = l 2/l 1 (11)  

t3 = l 3/l 2  

t4 = l 4/l 2 

Fig. 1. Spatial distribution of the water temperature stations used in this study.  

Table 2 
Physiographic characteristics of the 25 selected hydrological catchments in Switzerland.  

Basin 
number 

Name Basin area 
(km2) 

Gauging station altitude 
(m) 

Mean basin altitude 
(m) 

Glacier Cover 
(%) 

Temperature measurement 
period 

1 Birs in Münchenstein 942.92 271.23  753.26 0 1972–2019 
2 Murg in Wängi 85.03 473.78  644.18 0 2002–2019 
3 Tresa in PonteTresa 609.14 330.13  755.66 0 2002–2019 
4 Sense in Thorishaus 351.91 556.89  1068.97 0 2004–2019 
5 Allenbath in Adelboden 28.82 1346.64  1853.82 0 2002–2019 
6 Rosegbach in Pontresina 66.52 1776.69  2698.32 25.16 2004–2019 
7 Grosstalbalch in Isenthal 56.3 795.77  1802.52 4.8 2004–2019 
8 Suze in Sonceboz 127.08 653.13  1036.65 0 2004–2019 
9 Dischmach in Davos 43.67 1697.74  2368.99 1.19 2004–2019 
10 Langeten in Huttwil 60.33 610.83  760.82 0 2002–2019 
11 Riale di Roggiasca in Roveredo 8.12 1002.23  1697.22 0 2003–2019 
12 Vispa in Visp 778.22 656.47  2659.03 26.02 2002–2019 
13 Mentue in Yvonand 104 447.07  679.65 0 2002–2019 
14 Liechtensteiner Binnenkanal in 

Ruggel 
108.45 435  861.19 0 1991–2019 

15 Reitholzbach in Mosnang 2.76 728.98  789.05 0 2002–2019 
16 Glott in Rheinsfleden 417.92 360  501.97 0 1976–2019 
17 Venoge in Ecublens 207.15 393.56  678.03 0 2002–2019 
18 Rhein in Diepoldsau 6299.19 410.91  1832.81 0.55 1984–2019 
19 Worble in Ittigen 63.68 522.94  683.06 0 1988–2019 
20 Biber in Biberbrugg 31.95 831.14  1000.12 0 2002–2019 
21 Alp in Einsiedeln 46.47 895.86  1154.99 0 2004–2019 
22 Riale di Pincascia in Lavertezzo 44.28 585.70  1703.39 0 2004–2019 
23 Rom in Müstair 129.17 1241.31  2186.18 0 2002–2019 
24 Thur in Andelfingen 1709.42 361.48  775.61 0 1970–2019 
25 Muoto in Ingenbohl 314.76 439.68  1365.54 0 1974–2019  
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The sample L-moments can be used to select the distribution that best 
fits the station data, and to choose discordant and homogeneous regions. 

2.3. Discordancy test 

The discordance Di is measured as a function of L-moments and can 
be used to determine whether a station should be removed from a given 
region. Let ui = [τ2iτ3iτ4i]

T be a vector containing the ratios of L-moments 
(L-Cv, L-Cs, and L-Ck) for a site i, with the superscript T denoting the 
transposition of a vector or matrix. The group averages u and sample 
covariance matrix S are presented as follows: 

u =
1
N

∑N

i=1
ui (12)  

S =
1

N − 1
∑N

i=1
(ui − u)(ui − u)T (13)  

And 

Di =
1
3
(ui − u)TS− 1(ui − u) (14)  

Where N is the total number of sites. Note that the average of Di across 

Fig. 2. Box plots of the maximum annual water temperatures (◦C).  

Table 3 
Characteristics of the annual maximum river temperature series.  

Basin number Name Maximum (◦C) Minimum (◦C) Median (◦C) Mean (◦C) SD (◦C) CV CS CK 

1 Birs in Münchenstein  25.48  18.67  21.59 21.74 1.29  0.05  0.29  0.74 
2 Murg in Wängi  23.65  19.84  21.45 21.49 1  0.04  0.32  − 0.48 
3 Tresa in PonteTresa  30.54  25.88  27.94 28 1.19  0.04  0.13  − 0.62 
4 Sense in Thorishaus  25.37  21.84  23.5 23.65 1.06  0.04  − 0.15  − 1.16 
5 Allenbath in Adelboden  17.04  13.77  15.43 15.43 0.89  0.05  − 0.05  − 0.67 
6 Rosegbach in Pontresina  13.4  10.11  12.72 12.54 0.78  0.06  − 1.76  3.07 
7 Grosstalbalch in Isenthal  15.31  11.92  13.42 12.54 0.84  0.06  0.41  − 0.14 
8 Suze in Sonceboz  17.15  13.77  16.01 12.54 0.98  0.06  − 0.55  − 0.85 
9 Dischmach in Davos  15.4  12.78  14.35 12.54 0.74  0.05  − 0.32  − 0.8 
10 Langeten in Huttwil  20.24  12.33  18.56 12.54 1.67  0.09  − 2.35  6.08 
11 Riale di Roggiasca in Roveredo  16.32  13.89  15.28 12.54 0.78  0.05  − 0.12  − 1.56 
12 Vispa in Visp  13.9  11.46  12.94 12.54 0.56  0.04  − 0.53  0.21 
13 Mentue in Yvonand  24.83  20.14  22.51 12.54 1.38  0.06  0.03  − 1.08 
14 Liechtensteiner Binnenkanal in Ruggel  19.53  13.25  15.45 12.54 1.37  0.08  0.69  0.07 
15 Reitholzbach in Mosnang  19.49  16.18  18.09 12.54 0.93  0.05  − 0.36  − 0.87 
16 Glott in Rheinsfleden  26.88  22.33  24.66 12.54 0.87  0.03  − 0.17  0.29 
17 Venoge in Ecublens  24.26  19.69  22.73 12.54 1.33  0.05  − 0.39  − 0.97 
18 Rhein in Diepoldsau  19.74  14.46  16.53 12.54 1.2  0.07  0.53  0.26 
19 Worble in Ittigen  21.68  17.17  19.9 12.54 0.93  0.04  − 0.3  0.29 
20 Biber in Biberbrugg  23.72  18.93  21.45 12.54 1.35  0.06  − 0.23  − 0.73 
21 Alp in Einsiedeln  27.73  19.4  25.07 12.54 2.35  0.09  − 0.69  − 0.51 
22 Riale di Pincascia in Lavertezzo  20.72  16.06  18.95 12.54 1.2  0.06  − 0.62  − 0.04 
23 Rom in Müstair  15.13  12.13  14.33 12.54 0.81  0.05  − 1.2  0.55 
24 Thur in Andelfingen  27.49  20.26  25.08 12.54 1.34  0.05  − 0.67  1.48 
25 Muoto in Ingenbohl  22.12  15.09  18.64 12.54 1.74  0.09  0.003  − 0.53  
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all sites is 1. If Di exceeds 3 for a site, its data are considered to be 
inconsistent with the rest of the regional data and two possibilities 
should be investigated; Either there may be an error in the data or the 
station may actually belong to another region, or no region at all. 

3. Study area and data description 

Daily water temperature data were provided by the Swiss Federal 
Office for the Environment (FOEN). Water temperature has only been 
recorded since the 1960s. Thus, stream temperature time series are 
relatively short in most stations, varying between 15 and 49 years. The 

original raw data include 45 watersheds characterised by a wide range 
of drainage areas (from a few square kilometers to tens of thousands of 
square kilometers) as well as a wide range of elevations (between 678 m 
and 2950 m). Switzerland is characterized by a very complex topog-
raphy which results in fast changes from liquid to solid precipitation 
even on small spatial scales. The study area can be subdivided into two 
main zones with different hydrological regimes (Aschwanden and 
Weingartner, 1985; Michel et al., 2020): 

The plateau region and Jura: these areas are marked by low altitudes 
and a relatively mild climate. Precipitation falls in liquid form during 
winter and the daily air temperature does not exceed 30 ◦C during 

Fig. 3. Distributions selected by AIC criteria.  

Fig. 4. Geographic distribution of best fitted pdfs to the maximum annual stream temperatures.  
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summer. 
The Alpine region: typically subdivided into two parts, southern and 

northern Alps. The Southern Alps are characterized by medium to high 
altitudes and a climate influenced by the Mediterranean Sea. This results 
in warm winters and more precipitation in autumn. In contrast, the 
Northern Alps are characterized by very high average altitudes with 
thermal and discharge regimes that are strongly influenced by snow-
melt. In these basins, maximum flow occur between March and July, 
depending on the average altitude and the percentage of ice cover, and 
minimum flow during winter. 

The annual maximum values of water temperature were extracted 
from daily maximum water temperature series during the summer 
period (May 1 to October 31). These data were tested for stationarity 
(Mann-Kendall test), independence (Wald-Wolfowitz test), and homo-
geneity (Wilcoxon test). All 25 stations that passed the Mann-Kendall 
test also passed the tests of Wald-Wolfowitz and Wilcoxon and were 
retained for the remainder of the study. These stations are considered 
independent and identically distributed and can be used in the 

subsequent frequency analysis. The table in Appendix A illustrates the 
results of the Mann Kendall, Wilcoxon and Wald-Wolfowitz tests for the 
25 stations retained for the analysis. The locations of these watersheds 
are illustrated in Fig. 1 and their physiographic properties are summa-
rized in Table 2. The selected watersheds have spatial coverage over the 
entire study area. 

4. Results and discussions 

4.1. Descriptive statistics of data series at IID stations 

Annual water temperature maxima for the 25 selected rivers exhibit 
an important variation from one year to the next and a distinct spatial 
variation between the stations. Fig. 2 shows box plots of water tem-
perature and the regional variation can be seen between stations. 

Table 3 presents descriptive statistics of each station, including the 
maximum, minimum, median, mean, standard deviation, coefficient of 
variation (CV), the coefficient of skewness (CS), and the coefficient of 

Table 4 
Ranking of D/Ms for all stations based on the goodness-of-fit criteria.  

Criteria Number Name Rank of D/M    

1st 2nd 3rd 4th 5th 6th 

AIC 1 Birs in Münchenstein IG/ML LN2/ML G/ML G/MM N/ML LN3/ML  
2 Murg in Wängi IG/ML LN2/ML G/ML G/MM N/ML EV1/WMM  
3 Tresa in PonteTresa IG/ML G/ML LN2/ML G/MM N/ML EV1/ML  
4 Sense in Thorishaus N/ML G/ML G/MM LN2/ML IG/ML LN3/MM  
5 Allenbath in Adelboden N/ML G/ML G/MM LN2/ML IG/ML W2/ML  
6 Rosegbach in Pontresina GEV/ML W2/ML W2/MM N/ML G/ML G/MM  
7 Grosstalbalch in Isenthal IG/ML LN2/ML G/ML G/MM N/ML EV1/ML  
8 Suze in Sonceboz GEV/ML W2/ML W2/MM GEV/WMM GEV/MM N/ML  
9 Dischmach in Davos W2/ML W2/MM N/ML G/M GEV/ML G/MM  
10 Langeten in Huttwil W2/ML GEV/ML W2/MM N/ML G/ML G/MM  
11 Riale di Roggiasca in Roveredo W2/ML W2/MM N/ML G/ML G/MM LN2/ML  
12 Vispa in Visp W2/ML W2/MM N/ML G/ML G/MM LN2/ML  
13 Mentue in Yvonand G/ML G/MM LN3/MM N/ML LN2/ML IG/ML  
14 Liechtensteiner Binnenkanal in Ruggel EV1/ML EV1/WMM EV1/MM IG/ML LN2/ML G/ML  
15 Reitholzbach in Mosnang W2/ML W2/MM N/ML G/ML G/MM LN2/ML  
16 Glott in Rheinsfleden N/ML G/ML G/MM LN2/ML IG/ML GG/ML  
17 Venoge in Ecublens W2/ML W2/MM GEV/ML N/ML GEV/WMM G/ML  
18 Rhein in Diepoldsau IG/ML LN2/ML G/ML G/MM EV1/ML EV1/WMM  
19 Worble in Ittigen N/ML G/ML G/MM LN2/ML IG/ML W2/ML  
20 Biber in Biberbrugg N/ML W2/ML G/ML G/MM W2/MM LN2/ML  
21 Alp in Einsiedeln W2/ML W2/MM GEV/ML GEV/WMM P3/ML GEV/MM  
22 Riale di Pincascia in Lavertezzo W2/ML W2/MM GEV/ML GEV/MM P3/ML N/ML  
23 Rom in Müstair W2/ML P3/ML GEV/ML GG/MM P3/MM LP3/GMM  
24 Thur in Andelfingen W2/ML W2/MM GG/ML P3/ML GEV/ML P3/MM  
25 Muoto in Ingenbohl N/ML G/ML G/MM LN2/ML IG/ML GEV/ML 

BIC 1 Birs in Münchenstein IG/ML LN2/ML G/ML G/MM N/ML LN3/ML  
2 Murg in Wängi IG/ML LN2/ML G/ML G/MM N/ML EV1/WMM  
3 Tresa in PonteTresa IG/ML G/ML LN2/ML G/MM N/ML EV1/ML  
4 Sense in Thorishaus N/ML G/ML G/MM LN2/ML IG/ML LN3/MM  
5 Allenbath in Adelboden N/ML G/ML G/MM LN2/ML IG/ML W2/ML  
6 Rosegbach in Pontresina GEV/ML W2/ML W2/MM N/ML G/ML G/MM  
7 Grosstalbalch in Isenthal IG/ML LN2/ML G/ML G/MM N/ML EV1/ML  
8 Suze in Sonceboz W2/ML W2/MM GEV/ML N/ML GEV/WMM G/ML  
9 Dischmach in Davos W2/ML W2/MM N/ML G/M G/MM LN2/ML  
10 Langeten in Huttwil W2/ML GEV/ML W2/MM N/ML G/ML G/MM  
11 Riale di Roggiasca in Roveredo W2/ML W2/MM N/ML G/ML G/MM LN2/ML  
12 Vispa in Visp W2/ML W2/MM N/ML G/ML G/MM LN2/ML  
13 Mentue in Yvonand G/ML G/MM LN3/MM N/ML LN2/ML IG/ML  
14 Liechtensteiner Binnenkanal in Ruggel EV1/ML EV1/WMM EV1/MM IG/ML LN2/ML G/ML  
15 Reitholzbach in Mosnang W2/ML W2/MM N/ML G/ML G/MM LN2/ML  
16 Glott in Rheinsfleden N/ML G/ML G/MM LN2/ML IG/ML GG/ML  
17 Venoge in Ecublens W2/ML W2/MM GEV/ML N/ML G/ML G/MM  
18 Rhein in Diepoldsau IG/ML LN2/ML G/ML G/MM EV1/ML EV1/WMM  
19 Worble in Ittigen N/ML G/ML G/MM LN2/ML IG/ML W2/ML  
20 Biber in Biberbrugg N/ML W2/ML G/ML G/MM W2/MM LN2/ML  
21 Alp in Einsiedeln W2/ML W2/MM GEV/ML GEV/WMM P3/ML GEV/MM  
22 Riale di Pincascia in Lavertezzo W2/ML W2/MM GEV/ML N/ML P3/ML GEV/MM  
23 Rom in Müstair W2/ML W2/MM P3/ML GEV/ML GG/MM P3/MM  
24 Thur in Andelfingen W2/ML W2/MM N/ML GG/ML P3/ML GEV/ML  
25 Muoto in Ingenbohl N/ML G/ML G/MM LN2/ML IG/ML GEV/ML  
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kurtosis (CK). It shows that: The average water temperature varies be-
tween 12.54 and 28 ◦C. The CV are modestly low. TheCS take positive 
and negative values, suggesting that some distributions are right-skewed 
and others left-skewed. The CK show leptokurtic and platykurtic 
distributions. 

4.2. Frequency analysis 

The distributions listed in Section 2 are fitted at each station to the 
maximum annual water temperature. The two-parameter distributions 
used in this study are the (W2, N, G, EV1 and IG). These distributions are 
adopted for 92% of the data series. Fig. 3 illustrates the most adequate 
probability distributions to model extreme stream temperature series 
based on the AIC criterion. 

The W2 distribution is adopted for 40% of the data series (Fig. 3). 
The remaining 60% of the maximum water temperature series are better 
fitted with other probability distributions: 24% of the stations are fitted 
with the N distribution, 20% with the IG, 8% with the GEV and 4% with 
the G or EV1 distributions. The results are similar using the BIC criterion 
except 44% of the stations are selected with the W2 and 4% with the 
GEV. 

Fig. 4 indicates that the W2, N and IG distributions are the most 
frequently selected in the Study Area. Fig. 4 indicates also that some 
distributions are more predominant in certain regions, suggesting that it 
may be possible to identify regional distributions. In high altitude areas, 
the W2 distribution is dominant and many stations located in low to 
medium altitudes are fitted with the N distribution. There is however no 
dominant distribution in other parts of Switzerland, leading to some 
spatial heterogeneity in the selected distribution. Certain rivers that are 
close geographically, are fitted with different statistical distributions: for 
instance, the Biber in Biberbrugg river (20) with the N distribution and 
the Alp in Einsiedeln (21) with W2. 

Table 4 lists the 6 best distributions according to the AIC and BIC 
selection criteria. For each distribution, the candidate distribution/ 
method (D/M) leading to the best fit is listed. Based on AIC, W2/ML is 
the best D/M combination for 10 stations, followed by the N/ML com-
bination which is selected for six stations. IG/ML is selected as the best 
distribution for five stations. Based on BIC, W2/ML is the best D/M 
combination for 11 stations. N/ML, is the second best D/M combination 
for six stations. It is also important to note that the most widely used 
parameter estimation method for all first choices is ML. The differences 
in the performance of AIC and BIC are minor and affect only a few 

Fig. 5. Box plots of maximum temperature corresponding to different return periods.  

Fig. 6. Relation between quantiles and the average altitude of watersheds.  
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stations (shown in bold in Table 4). As mentioned earlier, there are re-
gions in which most or all stations are fitted with the same distribution. 
For instance, W2/ML dominates the high-altitude areas, apart from 
Station 6, which has GEV/ML as the best combination and W2/ML as its 
second-best choice. Therefore, we can deduce that high altitude regions 

are well fitted with W2/ML. Low and medium altitude regions are 
generally identified by N/ML (stations 5, 4, 16, 19, 20 and 25). In the 
other stations in low altitude regions, the N/ML is systematically among 
the four best options. For instance, the N/ML is the third choice in 
Station 24 (according to BIC), and in Station 15 (according to AIC and 
BIC). N/ML seems hence to be the most suitable D/M for low to medium 
altitude areas. 

4.3. Estimation of quantiles 

Extreme water temperatures limit the distribution of various species 
of fish in streams. To estimate the upper limits of thermal tolerance in a 
probabilistic framework, we use the concept of quantiles during the 
summer period corresponding to different return periods. The results of 
the maximum stream temperature quantiles corresponding to the 
selected return periods of 2, 5, 10, 20, 50, and 100 years are presented in 
Fig. 5 with boxplots. The results of the model revealed that the rivers had 
changed their thermal regimes (Fig. 5). This thermal stress is an 
important factor that explains the decline of brown trout in Switzerland 
(Burkhardt-Holm et al., 2002). Therefore, as mentioned in Section 1, the 
high water temperature also favors the emergence of diseases. As an 
illustration, PKD is associated with a seasonal increase in water tem-
perature above 15 ◦C in brown trout populations (Chilmonczyk et al., 
2002). In conformity with Fig. 5, most stations have extreme tempera-
tures that exceed this threshold even in low return periods. In addition, 
Elliott (2001) reported that brown trout achieve maximum growth at 
13.1–13.9 ◦C. According to the results of this study, this temperature is 
found in most Switzerland rivers. The lethal temperature of 29.7 ◦C is 
reached at certain stations for the 20-year return period (Elliott, 1981). 
On the other hand, thermal stress also affects energy storage levels and 
metabolic rates (Álvarez et al., 2006). Additionally, fecundity decreases 
with increasing temperature while egg size increases (Jonsson and 
Jonsson, 2009). 

In addition, it would be interesting to determine the duration of fish 

Table 5 
Results of the L moment and discordancy test.  

Basin 
number 

Name  L- 
Cv 

L-Cs L-Ck Di 

1 Birs in Münchenstein  0.71 0.04  0.16  0.65 
2 Murg in Wängi  0.57 0.04  0.11  0.74 
3 Tresa in PonteTresa  0.69 0.02  0.1  0.57 
4 Sense in Thorishaus  0.62 − 0.02  0.05  0.55 
5 Allenbath in Adelboden  0.51 0  0.09  0.14 
6 Rosegbach in Pontresina  0.39 − 0.14  0.12  1.84 
7 Grosstalbalch in Isenthal  0.47 0.06  0.13  1.67 
8 Suze in Sonceboz  0.57 − 0.1  0.05  0.74 
9 Dischmach in Davos  0.43 − 0.03  0.05  0.23 
10 Langeten in Huttwil  0.76 − 0.26  0.32  3.11 
11 Riale di Roggiasca in 

Roveredo  
0.46 − 0.02  − 0.03  2.63 

12 Vispa in Visp  0.31 − 0.03  0.07  0.52 
13 Mentue in Yvonand  0.81 0.01  0.08  0.31 
14 Liechtensteiner 

Binnenkanal in Ruggel  
0.76 0.15  0.14  2.26 

15 Reitholzbach in Mosnang  0.54 − 0.06  0.07  0.21 
16 Glott in Rheinsfleden  0.49 − 0.03  0.09  0.97 
17 Venoge in Ecublens  0.77 − 0.1  0.07  0.48 
18 Rhein in Diepoldsau  0.67 0.06  0.13  0.74 
19 Worble in Ittigen  0.53 − 0.02  0.1  0.3 
20 Biber in Biberbrugg  0.77 − 0.04  0.16  0.07 
21 Alp in Einsiedeln  1.34 − 0.28  0.23  2.54 
22 Riale di Pincascia in 

Lavertezzo  
0.68 − 0.08  0.09  0.21 

23 Rom in Müstair  0.43 − 0.13  0.12  1.36 
24 Thur in Andelfingen  0.76 − 0.04  0.12  0.06 
25 Muoto in Ingenbohl  1 − 0.01  0.12  2.09  

Fig. 7. Spatial distribution of discordancy test of the maximum water temperature.  
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exposure to high temperatures. This study showed the merit of using 
maximum water temperature quantiles as an ecological indicator. Using 
brown trout thermal requirements as an example, we demonstrated that 
the quantile and its associated return period could provide insight into 
the relative thermal risk for this species in Swiss rivers. However, our 
study did not include the notion of duration of stressful events. This 
could be done by implementing a Peaks Over Threshold approach, as 
indicated by Caissie et al. (2020). In this approach, it is possible to model 

events for which temperatures exceed a certain threshold instead of 
focusing on annual or seasonal maxima. The duration of the exceedance 
can be quantified, and the degree-days cumulated during these ex-
ceedance events can be computed. However, this approach is more 
complex and may be more difficult to implement for water resources 
managers. 

Fig. 8. Relationship between L coefficient of variation and L-skewness of maximum annual water temperatures.  

Fig. 9. L moments ratio Diagram of water temperature stations.  
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4.4. Correlation of quantiles with the mean watershed altitude 

Naturally, Fig. 6 indicates that there is a strong negative correlation 
between water temperature extremes corresponding to different return 
periods and the mean altitude of the catchments. The correlation coef-
ficient between the mean altitude and the 2-year return period quantile 
is equal to − 0.763 and with the 10-year return period quantile it is equal 
to − 0.773. Therefore, lower-altitude basins are naturally more likely to 
have higher extreme values. This may explain the relocation of brown 
trout habitat to higher altitudes and alpine rivers (Hari et al., 2006). 

4.5. Discordancy test 

The L-Cv, L-Cs, L-Ck, and the discordance (Di) values for all 25 sta-
tions are presented in Table 5. They suggest that the majority of the 
study area is homogeneous, with Di values below 3. There is only one 
station (Site 10) where Di is equal to 3.11. 

Fig. 7 illustrates the spatial distribution of the discordancy test re-
sults and Fig. 8 presents the relationship between L-Cv and L-Cs of 
maximum annual water temperatures. The Fig. 7 reveals that the low 
altitude regions (Jura and Plateau) are homogeneous, with Di < 1 for 11 
sites. The middle altitude regions are not definitively homogeneous (2 ≤
Di < 3), and they have elevated L-Cv (sites 21, 25, 14) in Fig. 8. For high 
elevation regions, there are homogeneous sites (9, 12, and 22) where Di 
< 1, and other likely homogeneous sites (1 ≤ Di < 2) for example sites (6 
and 23), and that have very low L-Cv. According to classical discordant 
measurements (Di), only station 10 is considered a discordant site. L-Cv - 
L-Cs figure also shows a certain regional aspect, as samples with the 
same distribution in LFA are grouped in the same regions. 

4.6. L-moment ratio diagram 

The method of the MRD is also used as an alternative method for 
selecting pdfs and comparing them with the distributions adopted based 
on selection criteria. Sample L-moments are measured for each water 
temperature series using Eqs. (10) and (11) and each station is repre-
sented in the MRD. The results are shown in Fig. 9 where each station is 
numbered according to its rank in Table 5. The analysis of this diagram 
leads to the following conclusions about the suitability of the pdfs to fit 
the stations sample data. the curve of W2-W3 goes through the middle of 
the scatter of stations. The majority of stations are located outside the 
LP3 domain. As illustrated in the Fig. 9 of the MRD, there are stations 
that are well fitted with W2-W3 (21, 15, 9 and 22), with GEV (8) and 
with EV1 (14). In addition, this diagram shows a clear regional clus-
tering of stations i.e. there are regions that can be considered as ther-
mally homogeneous. Stations that were fitted with the same distribution 
in LFA are identified on MRD by the same color. The majority of stations 
in red are well fitted with W2 also according to MRD and are located in 
high altitude regions, except for Station 11, which has a Di = 2.63 and is 
located far from the W2 line on the MRD. Stations in yellow are fitted 
with the normal distribution and are located in low-altitude regions. 
According to MRD, station 24 is better fitted with the N distribution, 
which is the third best choice according to the BIC criterion. Stations in 
green are fitted with IG and in the MRD they are located close to the 
LN2-LN3 curve, which is generally the second choice according to AIC 
and BIC. A high level of concordance is hence observed between the 

MRD, the AIC/BIC analysis and the discordancy test. 

5. Conclusions and future works 

AIC and BIC were used to evaluate the goodness of fit of statistical 
distributions for maximum river temperature data in Switzerland. In 
general, the lowest values of AIC and BIC are observed for distributions 
with two parameters. It was found that W2 fits properly high-altitude 
stations, while stations in lower altitude regions are well fitted with 
the N distribution. This points out to a significant level of regional ho-
mogeneity in the study area. The frequency analysis indicates high water 
temperatures for different return periods. These extreme water tem-
perature events were concomitant with fish mortality e.g. brown trout in 
Switzerland. The median value of quantiles with a 20 year return period 
exceed 19.5 ◦C, which is a thermal indicator of stress for juvenile brown 
trout, as they cease to feed above this temperature. The lower quantiles 
(e.g. with a return period of two years) could be used as an indicator of 
risk for PKD proliferation in Brown trout. These indicators could be 
adapted for the different thermal regions defined herein. 

The discordancy analysis of the station data indicates that there is 
only one site that exceeds the critical value. The MRD method was used 
to evaluate the adequacy of several pdfs to fit water temperature data. 
The conclusions based on the MRD are as follows: Visually confirms the 
existence of homogeneous regions, shows that some stations are located 
outside the LP3 boundary. The MRD plot also shows a regional pattern, 
as stations with the same distribution are often located in the same re-
gion. This also suggests that the first choice of D/M for some stations 
may not always be the best one. However, some samples were located 
far from the distributions curves. In general, MRD results are coherent 
with the outputs of the AIC and BIC selection criteria. 

Future research can focus on the development of regional frequency 
analysis models for the estimation of water temperature characteristics 
at ungauged rivers. Future efforts can also aim at the development of 
nonstationary local and regional frequency analysis models that inte-
grate information concerning climate variability and change. 
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Appendix A. Mann Kendall, Wilcoxon and Wald-Wolfowitz test results  

Basin number Name Mann Kendall Wilcoxon Wald-Wolfowitz   

Statistic P-value Statistic P-value Statistic P-value 

1 Birs in Münchenstein  1.4666  0.1425 − 0.165  0.869  0.1796  0.8575 
2 Murg in Wängi  0.7576  0.4487 − 1.059  0.2893  0.4747  0.635 

(continued on next page) 
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(continued ) 

Basin number Name Mann Kendall Wilcoxon Wald-Wolfowitz   

Statistic P-value Statistic P-value Statistic P-value 

3 Tresa in PonteTresa  0.3411  0.733 − 0.1767  0.8597  0.645  0.5189 
4 Sense in Thorishaus  − 0.3152  0.7526 0.7877  0.4309  0.5719  0.5674 
5 Allenbath in Adelboden  0.8718  0.3833 − 0.9277  0.3536  1.3491  0.1773 
6 Rosegbach in Pontresina  0.8554  0.3923 − 0.8468  0.3971  1.6842  0.0922 
7 Grosstalbalch in Isenthal  1.7559  0.0791 − 1.2077  0.2271  0.2889  0.7726 
8 Suze in Sonceboz  − 0.2251  0.8219 0.3676  0.7132  0.4398  0.6601 
9 Dischmach in Davos  0.5408  0.5886 − 0.7357  0.4619  0.7324  0.4639 
10 Langeten in Huttwil  0.5303  0.5959 − 0.4415  0.6588  0.0188  0.985 
11 Riale di Roggiasca in Roveredo  1.5907  0.1117 − 1.2028  0.229  0.6227  0.5335 
12 Vispa in Visp  0.9489  0.3426 − 1.6361  0.1018  0.0762  0.9392 
13 Mentue in Yvonand  1.7424  0.0814 − 1.1479  0.251  0.144  0.8855 
14 Liechtensteiner Binnenkanal in Ruggel  0.6004  0.5483 − 0.7342  0.4628  0.1995  0.8419 
15 Reitholzbach in Mosnang  1.1363  0.2558 − 1.0596  0.2893  0.1097  0.9127 
16 Glott in Rheinsfleden  1.5074  0.1317 − 0.6693  0.5033  0.4527  0.6508 
17 Venoge in Ecublens  0.0825  0.9343 − 0.2407  0.8098  0.642  0.5209 
18 Rhein in Diepoldsau  1.4302  0.1527 0.1096  0.9127  0.4266  0.6697 
19 Worble in Ittigen  1.0543  0.2917 − 0.4192  0.6751  0.959  0.3375 
20 Biber in Biberbrugg  0.5686  0.5696 − 0.265  0.791  0.4572  0.6476 
21 Alp in Einsiedeln  1.3707  0.1705 − 1.535  0.1248  0.0543  0.9567 
22 Riale di Pincascia in Lavertezzo  0.9455  0.3444 − 0.5293  0.5966  0.2247  0.8222 
23 Rom in Müstair  1.3193  0.1871 − 0.7703  0.4411  1.0637  0.2875 
24 Thur in Andelfingen  2.4286  0.0152 − 1.7914  0.0732  1.5311  0.1258 
25 Muoto in Ingenbohl  2.1968  0.028 − 0.6805  0.4962  0.1796  0.8575  
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Álvarez, D., Cano, J.M., Nicieza, A.G., 2006. Microgeographic variation in metabolic rate 
and energy storage of brown trout: countergradient selection or thermal sensitivity? 
Evol. Ecol. 20 (4), 345–363. 

Aschwanden, H., Weingartner, R., 1985. Die Abflussregimes der Schweiz. https://doi. 
org/10.7892/boris.133660. 

Ashkar, F., Ouarda, T.B.M.J., 1996. On some methods of fitting the generalized Pareto 
distribution. J. Hydrol. 177 (1-2), 117–141. https://doi.org/10.1016/0022-1694 
(95)02793-9. 

Ashley Steel, E., Sowder, C., Peterson, E.E., 2016. Spatial and temporal variation of water 
temperature regimes on the snoqualmie river network JAWRA. J. Am. Water Resour. 
Assoc. 52 (3), 769–787. https://doi.org/10.1111/jawr.2016.52.issue-310.1111/ 
1752-1688.12423. 
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