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Abstract: Management zones (MZs) are delineated areas within an agricultural field with relatively
homogenous soil properties, and therefore similar crop fertility requirements. Consequently, such
MZs can often be used for site-specific management of crop production inputs. This study evaluated
the effectiveness of four classification methods for delineating MZs in an 8-ha commercial potato
field located in Prince Edward Island, Canada. The apparent electrical conductivity (ECa) at two
depths from a commercial Veris sensor were used to delineate MZs using three classification methods
without spatial constraints (i.e., fuzzy k-means, ISODATA and hierarchical) and one with spatial
constraints (i.e., spatial segmentation method). Soil samples (0.0–0.15 m depth) from 104 sampling
points was used to measure soil physical and chemical properties and their spatial variation in
the field were used as reference data to evaluate four delineation methods. Significant Pearson
correlations between ECa and soil properties were obtained (0.22 < r < 0.85). The variance reduction
indicated that two to three MZs were optimal for representing the field’s spatial variability of soil
properties. For two MZs, most soil physical and chemical properties differed significantly between
MZs for all four delineation methods. For three MZs, there was greater discrimination among MZs for
several soil properties for the spatial segmentation-based method compared with other delineation
methods. Moreover, consideration of the spatial coordinates of the data improved the delineation
of MZs and thereby increased the number of significant differences among MZs for individual soil
properties. Therefore, the spatial segmentation method had the greatest efficiency in delineation of
MZs from statistical and agronomic perspectives.

Keywords: soil apparent electrical conductivity; fuzzy k-means; ISODATA; hierarchical; spatial seg-
mentation

1. Introduction

Potato (Solanum tuberosum L.) production in eastern Canada is an important contrib-
utor to the economy, yet the widely adopted uniform crop input management leads to a
reduction in productivity, sub-optimal use of resources and adverse impacts on the environ-
ment [1–4]. Consequently, producers are evaluating the potential of precision agriculture
(PA) to increase revenues and protect the environment through the site-specific manage-
ment of crop inputs [5–7]. The delineation of management zones (MZs) can make it possible
to manage spatial variability within an agricultural field by subdividing it into zones with
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more homogenous soil properties, and are of particular interest for implementation of
site-specific management of nutrients and water [8–14].

Many commercial soil proximal sensors (e.g., galvanic-contact resistivity, electro-
magnetic induction electrical conductivity, capacitively-coupled resistivity, gamma-ray
spectroscopy, ground penetrating radar) have been developed and explored in agriculture
over the two past decades. Galvanic contact resistivity proximal sensing instruments
measuring apparent electrical conductivity (ECa) are commonly used to obtain high spatial
density soil measurements that can be used for delineating MZs [7,13,15]. The effectiveness
of this technology for characterizing spatial variability of soil properties, and therefore for
delineating MZs, had been demonstrated in eastern Canada [16,17].

There are various mathematical principles that have been used to delineate MZs.
Among the available techniques for the delineation of MZs, unsupervised classification
techniques are the most commonly used [2]. The fuzzy k-means is the conventional
and most used unsupervised classification technique used for this purpose [11,12,18,19].
The concept of fuzzy classification was introduced by Ruspini [20] and the fuzzy k-means
classification method was introduced by Dunn [21]. This method has been used to delineate
MZs using ECa data alone [16], or has been used in combination with other mapped data
including soil texture [22], soil organic matter content [23], soil depth and crop yield [24],
and elevation [25].

More recently, other classification algorithms (e.g., ISODATA, hierarchical, spatial
segmentation) have been developed and may have advantages over fuzzy k-means in
terms of reduced processing time and delineation of more compact and operationally
manageable MZs for agricultural machinery. A well-known extension of k-means is called
the Iterative Self-Organizing Data Analysis (ISODATA) technique [26]. It is a simple and
quick classification algorithm-based technique [27] and does not require the introduction
of class characteristics before classification (unsupervised classifier) [28]. Several authors
have adopted the ISODATA technique to delineate MZs [2,28–30]. However, the technique
requires the variables to be normally distributed and with equal variances to cluster similar
characteristics by mean vectors and a covariance matrix [26]. Another unsupervised
classification method, called hierarchical, has also been used effectively for delineating
MZs in agricultural fields [31–33].

The three delineation methods mentioned above are based solely on the attributes of soil
data recordings and do not consider the spatial structure of the data. The development of
spatial segmentation algorithms that take the spatial constraint of the data into account has
led to their routine use in image processing in environmental applications [34,35]. However,
these segmentation algorithms have not been widely applied to PA practices [36]. The spatial
segmentation delineation method generates discrete zones, rather than classes, by taking
spatial constraint of the data into account and subdivides an agricultural field into MZs [37].
Few studies have compared MZ delineation methods in agricultural fields [2,28,31,37]. How-
ever, there is no information available in comparing the delineation methods under potato
production fields in eastern Canada, despite the contribution of the potato crop to the economy
of the region. Prince Edward Island (PEI) was chosen as a study region in eastern Canada
because of the economic importance, as well as social and historical importance, of potato
production.

The objective of this study was to compare four MZ delineation methods, specifically
three unsupervised methods (i.e., fuzzy k-means, ISODATA and hierarchical) and one
supervised method (i.e., spatial segmentation), in terms of effectiveness at delineating MZs
using ECa. A soil ECa dataset obtained using proximal soil sensing (Veris®mapping unit)
from a commercial potato field was chosen to carry out this comparison and illustrate the
performance of these data-clustering techniques. The selected field site was located in
Prince Edward Island PEI, a province in eastern Canada that produces approximately one
quarter of all Canadian potatoes, estimated in 2017 at 1.07 million tons on a harvested area
of 33,700 ha [38]. The ECa data were used in all four delineation methods. The optimal
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number of MZs was determined through variance reduction, and validation of the MZs
was carried out using the soil physical and chemical properties.

2. Materials and Methods
2.1. Experimental Site

A commercial field under intensive potato production located near Springfield West,
PEI, Canada (46◦41′ N, 64◦22′ W) was selected. The 8-ha field was under surface irrigation
using a linear ramp system. Soils at the study site belong to the Alberry series, with
a moderately coarse to coarse soil texture, a highly acidic ground moraine with good
drainage, and are classified as Orthic Humo-Ferric Podzols [39]. The slope class of the
site was classified as very gentle (2% to 5%) according to the Canadian soil classification
system [39].

2.2. Soil Sampling and Analyses

Soil sampling was carried out on 6 October 2016, following a triangular grid (Figure 1a)
with a sampling interval of 29 m (sampling density: 13 samples/ha), using a grid sampling
approach like that used by Cambouris et al. [16] and Perron et al. [17] A total of 104 point
locations were sampled at 0.0–0.15 m depth. Each soil sample was a composite of five soil
cores from 0 to 15 cm in depth, taken within a radius of 1.5 m of each sampling point using a
0.05 m diameter Dutch auger.
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Figure 1. (a) Triangular sampling grid strategy for soil and pattern of (b) soil electrical conductivity
data acquisition.

The samples were air-dried at room temperature, and ground to pass through a 2 mm
sieve. The soil pH was measured at a 1:1 soil-to-water ratio [40]. The total carbon (Total C)
and total nitrogen (Total N) contents were measured by dry combustion using a Vario Max
CN Elemental Analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Soils
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were extracted with a 1:10 soil-to-solution ratio using Mehlich-3 solution [41], and the
extract concentrations of phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg)
and aluminum (Al) were determined by inductively coupled plasma optical emission
spectroscopy (ICP-OES) (model 4300DV; Perkin Elmer, Shelton, CT, USA). One sample
out of four was analyzed to determine the soil particle size distribution using the pipette
method [42].

2.3. Soil ECa Data

On 5 October 2016, apparent soil electrical conductivity (ECa) data were acquired
using a commercial Veris-3100 galvanic contact resistivity sensor (Veris Technologies, Inc.,
Salina, KS, USA) equipped with a Garmin GPS 17x HVS sensor (Garmin International,
Olathe, KS, USA) with an accuracy of less than 1 m. This sensor was configured according
to the Wenner array using six coulter-electrodes (one pair to inject current and two pairs to
measure change in electrical potential), as described by Sudduth et al. [43] This resulted in
two depths of investigation: approximately 0.0–0.3 m (ECa30) and 0.0–1.0 m (ECa100). The
data from the sensor were acquired on parallel transects spaced approximately 7 m apart
using a 1 Hz logging frequency, which corresponds to a measurement every 2–3 m when
operating at a speed of approximately 10 km/h, giving a density of at least 245 samples/ha
(Figure 1b). Erroneous ECa data were eliminated by the exclusion of points exceeding three
standard deviations [44].

2.4. Statistical and Geostatistical Analysis

Descriptive statistical analyses (mean and coefficient of variation (CV)) were carried
out using the PROC UNIVARIATE procedure in the SAS version 9.4 statistical software
package (North Carolina, Raleigh, NC, USA) [45]. The Pearson correlation was performed
following the PROC CORR procedure in SAS [45]. To determine the relationship between
ECa and the soil physical and chemical properties, the ECa data were extracted from
5-m radius buffer zones around each soil sample created using the ArcGIS Software
“Buffer” tool [46]. Then, the “Intersect” tool was used to calculate the intersection of
the buffer zones with the data points of the ECa transects. Next, an average of the ECa
measurements was calculated for each buffer zone using the “Summarize” tool. Each buffer
zone was represented by a single ECa value and was used to examine correlations with
the soil physical and chemical properties. Finally, the PROC CORR procedure in SAS was
performed between the ECa mean at each soil sampling point and the soil properties.

The ECa data were kriged with the Ordinary Kriging Type option of the Geostatistical
Analyst tool in ArcGIS Software version 10.3 (California, USA). A better fit for the variogram
was obtained using the Spherical model with the following calibration parameter values:
10 m for the Lag size, 64 m for the Range, 0.2092 for the Nugget and 0.9748 for the Partial
sill. The uncertainty generated in the interpolation procedure was evaluated using the
“leave-one-out” cross-validation test as an indicator of the magnitude of the error and
using root mean square error (RMSE) measurements in order to more accurately assess
the reliability of the kriging maps. The lower the RMSE, the more reliable and precise the
kriging. An RMSE of 0.48 was obtained. The kriged ECa was rasterized (1 m2) and the
image produced was used with the four delineation methods to create the MZs.

2.5. Delineation of Potential Management Zones

Specific input management based on MZs is a common way of managing within-field
variability in agricultural production. The ECa-based zones were expected to be relatively
homogeneous in terms of water holding capacity, which might be linked to some soil
properties and tuber yield. There are various methods to delineate MZs, including fuzzy
k-means, ISODATA, hierarchical, and spatial segmentation. Figure 2 presents the modus
operandi for the evaluation of the delineation methods using ECa100 data to delineate
management zones (MZs) based on soil properties.
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2.5.1. Fuzzy k-Means

The fuzzy k-means method was used as a reference method in the delineation of
MZs. It was performed with the FuzME software package version 3.0 (Sydney, Australia)
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developed by Minasny and McBratney [47]. To ensure the stability of the clusters, the pro-
cess was repeated until the convergence criterion of 0.0001 was reached, or the maximum
number of iterations reached 500. The fuzziness exponent was set at the conventional value
of 1.30 [48].

2.5.2. ISODATA

The ISODATA algorithm started by attributing the data arbitrarily to different classes.
Then, through an iterative process, the algorithm changed the membership of the data
points from one cluster to another and attempted to find the optimal clusters where the
Euclidean distance between the data points and the center of the cluster was a minimum [2].
Based on the similarities between the clusters, the ISODATA algorithm can remove, split,
or merge the clusters at the end of each iteration [46,49]. The ISODATA method was carried
out using the Iso Cluster Unsupervised Classification function of the ArcGIS software
package version 10.3 (California, USA) [46]. The two default parameters, minimum class
size and sampling interval, were set at 20 and 10, respectively. This method uses “means”
vectors and “covariance” matrices to assign each cell to a cluster based on statistical
probability, hence the data should exhibit an approximately Gaussian distribution for each
cluster [2,26,50].

2.5.3. Hierarchical

The hierarchical classification is often used to cluster similar individuals. In this
technique, the individuals are successively integrated into a distance matrix calculated
from the data, to ultimately obtain a dendrogram containing the classes [31]. In this study,
the hierarchical classification is carried out using the R statistical software package version
3.4.2 (Vienna, Austria) [51]. Euclidean distance is used as the default distance for the
“dist” function. This method makes it possible to form initial clusters from the pairing
of individual points, after which the next clusters are formed by merging the preceding
pairs. The classification continues in this way until all the sub-clusters are merged into
a single cluster [52]. The hierarchical classification was carried out using the ward.D2
method [53] as a selected parameter in the “hclust” function. The appropriate number of
classes were determined after the generation of dendrogram following the hierarchical
algorithm “rec.hclut”.

2.5.4. Spatial Segmentation

Unlike the previous three methods which use mathematical proximity based only
on ECa data, the spatial segmentation method explicitly uses spatial proximity based
on ECa data and geographic coordinates data. The basic processing units of the spatial
segmentation image are pixels, and the classification of a certain number of neighboring
pixels forms primitive objects. The creation of primitive objects is an intermediate step
with the goal of obtaining the objects of interest [34]. This method makes objects spatially
continuous and automatically eliminates inclusions and small isolated areas. The spatial
segmentation method makes it possible to increase the space between uncorrelated data
using the shape and topology of the data, and to define the close relationship between
real-world objects and image objects [34].

The spatial segmentation algorithm was applied using the eCognition Developer 8.64
software package (München, Germany) [54]. The initial objects were created by beginning
to cluster pixels using the bottom-up multiresolution segmentation technique based on the
homogeneity and scale criteria [55].

User-defined settings such as color (the spectral value of the objects) and the shape
(texture) were weighted to form the heterogeneity threshold. The homogeneity criterion
( f ) was composed of two parameters: color heterogeneity (hcolour) and shape heterogeneity
(hshape), and was written as:

f = Wcolour ∗ hcolour + Wshape ∗ hshape (1)
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where Wcolour (the defined weight for colour) ε (0.1), and Wshape (the defined weight for
shape) ε (0.1).

The weights for the shape and color are complementary, and their sum is equal to 1.
In fact, the more heavily weighted the color heterogeneity, the less the shape heterogeneity
influence segmentation, and vice versa. A weight of 0.5 was selected as default parameter
for both color and shape. In addition, for shape heterogeneity, the compactness and the
smoothness values also influenced object creation:

hshape = Wcompactness ∗ hcompactness + Wsmoothness ∗ hsmoothness (2)

A weight of 0.5 was also chosen for the compactness and smoothness. A value
scale equal to 19 was chosen using the ESP tool (Estimation of Scale Parameters) of the
eCognition Developer 8.64 software package (München, Germany) [56]. The second part
of the segmentation was performed using the spectral difference segmentation technique,
which made it possible to create homogenous and larger objects.

The objects that had a spectral difference below a certain threshold were merged [29,57].
The thresholds selected in this study are as follows: 255 for two MZs; 255 and 256 for three
MZs; 240, 255 and 256 for four MZs; and 240, 251, 255 and 256 for five MZs. After large objects
were created, a classification was performed using the “assign class” function.

2.6. Determination and Validation of the Optimal Number of MZs

Variance reduction was used to determine the optimal number of MZs [2]. Using this
approach, the total within-zone variance was expressed as a percentage of the variance
for the entire field (i.e., a MZ) [16]. The inflection point of the ECa100 variance decrease
curve was estimated to determine the optimal number of MZs. After the optimal number
of MZs was selected, normality of soil properties was tested using the PROC UNIVARIATE
procedure in SAS [45]. For normally distributed parameters, an ANOVA combined with
an LSD multiple comparison test (p–value < 0.05) was performed to determine if the soil
properties varied significantly among the MZs. Non-normally distributed parameters
were analyzed using non-parametric tests (Wilcoxon and Kruskal–Wallis) in the PROC
NPAR1WAY procedure [45]. The significant differences in soil properties within the delin-
eated MZs made it possible to determine how well ECa captures the within-field spatial
variability of soil properties [10] and to evaluate the delineation efficiency for each of the
classification algorithms used.

3. Results and Discussion
3.1. Variability of Soil Properties

The coefficient of variation (CV) of the particle sizes ranged from 8% to 17% (Table 1).
Similar CV values (ranging between 3% and 24%) were also observed for all the soil chemical
properties except soil K (47%). The lowest CV (3%) was observed for soil pH. The variations
of these soil properties were comparable to the CV values obtained in a study conducted on a
medium-textured soil from New Brunswick [17,58]. The low CV value for pH measured in
the current study was similar to that measured in a field in Nova Scotia and may be due in
part to the logarithmic scale of the pH measurements [59].

The CVs of the soil ECa measurements exhibited moderate and similar variations, at
27% and 25% for ECa30 and ECa100, respectively (Table 1). These values are similar to the
CVs obtained for soil ECa measured in sandy to loamy fine sand soils in Quebec [16] and a
medium-textured soil in New Brunswick [17].
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Table 1. Descriptive statistics of the soil physical and chemical properties, and soil ECa.

Unit Depth (m) Mean SD z CV y (%)

Particle size analyses (n = 23)

Clay g/kg 0–0.15 83 14 17
Silt g/kg 0–0.15 247 40 16

Sand g/kg 0–0.15 669 54 8

Chemical analyses (n = 104)

Total C % 0–0.15 1.24 0.22 18
Total N % 0–0.15 0.99 0.20 20

pH 0–0.15 6.2 0.2 3
P mg/kg 0–0.15 199 44 22
K mg/kg 0–0.15 105 49 47
Ca mg/kg 0–0.15 641 154 24
Mg mg/kg 0–0.15 98 22 22
Al mg/kg 0–0.15 1478 237 16

Soil electrical conductivity measured by Veris (n = 1981)

ECa30
x mS/m 0–0.30 5.2 1.3 25

ECa100
w mS/m 0–1.00 5.3 1.4 27

z: Standard Deviation; y: Coefficient of variation; x: Shallow soil apparent electrical conductivity (0–0.3 m)
measured with Veris 3100; w: Deep soil apparent electrical conductivity (0–1.0 m) measured with Veris 3100.

3.2. Relationships between ECa and Soil Properties

The strongest relationships were obtained between soil ECa and soil texture. Clay and
silt were significantly positively correlated with soil ECa (0.79 ≤ r ≤ 0.84), while sand was
significantly negatively correlated with soil ECa (−0.83 ≤ r ≤ −0.82) (Table 2). Previous
studies also reported strong correlations (r > 0.60) between ECa and soil texture in Oxisol
and Inceptisol soils in a field located in Ponta Grossa, Brazil [60] and in a Rhodoxeralf soil
in a field located in southern Spain [22]. This indicates that there is a strong relationship
between soil ECa and soil texture across diverse soil types.

Table 2. Pearson correlations (r) between soil apparent electrical and soil properties.

Pearson Correlations (r)

ECa30
z ECa100

y

Particle size (0–0.15 m)

Clay 0.84 *** x 0.82 ***
Silt 0.80 *** 0.79 ***

Sand −0.83 *** −0.82 ***

Chemical properties (0–0.15 m)

Total C 0.42 *** 0.44 ***
Total N 0.35 *** 0.36 ***

pH 0.15 NS w 0.14 NS
P 0.22 * 0.25 *
K 0.34 *** 0.36 ***
Ca 0.25 ** 0.28 **
Mg 0.16 NS 0.18 NS
Al −0.26 ** −0.26 **

z: Shallow soil apparent electrical conductivity (0–0.3 m) measured with Veris 3100; y: Deep soil apparent electrical
conductivity (0–1.0 m) measured with Veris 3100; x: *, **, *** = significant at 0.05, 0.01, 0.001, respectively; w: Not
significant.

Soil ECa presented weak, but significant, correlations with all soil chemical properties
except soil pH and Mg (Table 2). The strongest positive correlations were between Total
C and ECa30 (r = 0.42) and ECa100 (0.44), between Total N and ECa30 (r = 0.35) and ECa100
(0.36), and between K and ECa30 (r = 0.34) and ECa100 (0.36). Similarly, Cambouris et al. [16]
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reported significant correlations (r = 0.23 to 0.50) between soil ECa and soil chemical
properties (P, K, Ca, Mg, and Al) under potato production in Quebec, Canada. Significant
correlations was also reported by Perron et al. [17] between soil chemical properties (P, K,
Ca, Mg, and Al) and ECa30 (r = 0.26 to 0.72) and ECa100 (r = 0.20 to 0.73) for two potatoes
fields in New Brunswick, Canada.

The two electrical signals, ECa30 and ECa100, exhibited a similar degree of correlation
with soil properties. In this study, only ECa100 was utilized to delineate the MZs with the
four methods of segmentation because the deep Veris electrical signal was more stable over
time compared to surface ECa measurements [10,61,62], likely due to greater changes in
soil water contents near the soil surface.

3.3. Reduction of Variance and Management Zone Delineation

When the number of MZs was increased from one to five, the total within-zone vari-
ance of the ECa100 measurements decreased from 100% to 6%, 7%, 9% and 19%, according to
the fuzzy k-means, ISODATA, hierarchical and spatial segmentation delineation methods,
respectively (Figure 3). Other studies also showed a large reduction in the total within-zone
variance of soil ECa when the number of MZs was increased from one to five [16].
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All the delineation methods showed the greatest decrease in the variance when the
number of MZs was increased from one to two, with an average variance reduction of
60%. From two to three MZs, the total within-zone variance of the ECa100 measurements
decreased further, by approximately 20%. For a finer partitioning (i.e., four or five MZs),
the within-zone variance reduction of the ECa100 measurements was lower and negligible.

The delineations into two and three MZs, using the three classification methods
without spatial constraints (i.e., fuzzy k-means, ISODATA and hierarchical), produced a
similar partitioning of MZs (Figure 4a–c,e–g). However, the spatial segmentation method
(Figure 4d,h) resulted in more compact MZs compared to the other classification methods
due to the spatial segmentation inherent algorithm bias.
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Figure 4. Management zones (MZs) delineated with ECa100 kriged data according to four delineation methods: fuzzy
k-means (a,e), ISODATA (b,f), hierarchical (c,g) and spatial segmentation (d,h).

A finer delineation of MZs further reduced the total field variability. However, it may
not be feasible to take advantage of this finer delineation due to the width of agricultural
equipment. Based on the magnitude of the decrease in the variance of ECa100, and the
balance between the spatial variability of the various soil properties and the need to have
operationally manageable and spatially well-distributed zones, two or three MZs appeared
to be the optimal for the field under study. When delineating the field into two or three
MZs, all the MZs generated with the different delineation methods exhibited significant
(p < 0.05) differences in soil ECa100 (Table 3).
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Table 3. Variation in mean values of soil physical and chemical properties (0–0.15 m depth) among management zones (MZ) when either two or three MZs are delineated using the four
delineation methods under study.

Number
of

MZ

Soil Properties at 0–0.15 m Depth

ECa100
y Clay Silt Sand Total C Total N pH P K Ca Mg Al

Delineation
Method mS/m g/kg g/kg g/kg % % mg/kg mg/kg mg/kg mg/kg mg/kg

2 MZ

Fuzzy
k-means

4.5 B
x 76 b 229 b 695 a 1.15 b 0.09 b 6.22 a 193 b 92 b 614 b 95 b 1523 a

6.6 a 97 a 281 a 622 b 1.36 a 0.11 a 6.26 a 210 a 128 a 687 a 105 a 1402 b

ISODATA
4.4 b 74 b 224 b 703 a 1.16 b 0.09 b 6.22 a 191 b 90 b 614 b 94 b 1527 a
6.5 a 96 a 278 a 626 b 1.35 a 0.11 a 6.26 a 211 a 127 a 680 a 105 a 1408 b

Hierarchical
4.3 b 73 b 222 b 705 a 1.13 b 0.09 b 6.23 a 193 a 92 b 614 a 95 a 1559 a
6.3 a 94 a 275 a 631 b 1.35 a 0.11 a 6.24 a 206 a 120 a 669 a 102 a 1394 b

Spatial
segmentation

4.2 b 72 b 217 b 711 a 1.12 b 0.09 b 6.22 a 194 a 90 b 604 b 94 b 1567 a
6.1 a 92 a 271 a 637 b 1.35 a 0.11 a 6.25 a 204 a 121 a 677 a 103 a 1392 b

3 MZ

Fuzzy
k-means

4.2 a 76 b 234 b 690 a 1.12 b 0.09 b 6.23 a 192 b 90 a 613 b 95 b 1562 a
5.8 b 85 b 245 b 670 a 1.34 a 0.10 a 6.26 a 198 b 111 b 639 b 100 ab 1374 b
7.8 c 101 a 293 a 606 b 1.35 a 0.11 a 6.20 a 234 a 146 c 757 a 108 a 1467 ab

ISODATA
4.2 a 73 a 217 b 710 a 1.12 b 0.09 b 6.22 a 193 b 91 a 613 b 95 b 1568 a
5.7 b 89 b 266 a 645 b 1.35 a 0.10 a 6.26 a 196 b 110 b 639 b 100 ab 1371 b
7.6 c 101 c 293 a 606 b 1.35 a 0.11 a 6.20 a 234 a 146 c 757 a 108 a 1467 ab

Hierarchical
4.3 a 73 b 222 b 705 a 1.13 b 0.09 b 6.23 a 193 b 92 b 614 b 95 a 1559 a
5.9 b 91 a 265 a 644 b 1.35 a 0.11 a 6.25 a 198 b 113 a 645 b 101 a 1463 ab
7.7 c 101 a 293 a 606 b 1.34 a 0.11 a 6.23 a 238 a 143 a 757 a 107 a 1375 b

Spatial
segmentation

4.3 a 72 a 217 b 712 a 1.10 b 0.09 b 6.20 a 196 a 90 a 609 b 94 b 1568 a
5.9 b 88 b 262 a 651 b 1.37 a 0.11 a 6.28 a 198 a 113 b 654 ab 101 ab 1385 b
8.1 c 111 c 299 a 591 c 1.32 a 0.12 a 6.21 a 224 a 149 c 749 a 111 a 1458 ab

y: Deep (0–1.0 m) soil apparent electrical conductivity measured with Veris 3100; x Means followed by the same letter are not significantly different at the 5% significance level according to the LSD test.
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A validation of the MZs with the soil physical and chemical property measurements
was carried out using ANOVA. In cases where the field was divided into two MZs, most of
soil physical and chemical properties differed significantly between MZs for all delineation
methods (Table 3). For fuzzy k-means and ISODATA, all the parameters except soil pH
differed significantly between MZs. For hierarchical, all the parameters except soil pH and P,
Ca, and Mg content showed significant differences between MZs. For spatial segmentation,
all the parameters except soil pH and P content differed significantly between MZs. Thus,
for delineation of the field into two MZs, the four delineation methods yielded similar
validation results.

Overall, for two MZs, a greater ECa100 value was characterized by greater clay, silt, Total
C and Total N contents, and lower sand and Al contents (Table 3). The P, K, Ca, and Mg
contents were also generally greater for the MZ with greater ECa100 values, although this was
not true for all delineation methods (Table 3). Thus, the high soil ECa MZ was characterized
by a finer soil texture and higher nutrient contents (Figure 4). In this regard, the delineations
into two MZs according to the four delineation methods used were all effective and yielded
similar, and in some cases identical, results. Previous studies have shown similar classification
results between the fuzzy k-means and ISODATA methods [2,28,29]. Other comparable
studies indicated a similarity between the fuzzy k-means method and the hierarchical method
in terms of their MZ delineation performance [31].

In the case when the number of MZs was increased to three, the delineation with the
spatial segmentation method identified three soil properties (clay, sand and K content)
which differed significantly among all MZs in the 0–0.15 m layer (Table 3). The delineation
into three MZs with the ISODATA algorithm exhibited two soil properties (clay and K
content) which differ significantly among all three MZs in the 0–0.15 m layer (Table 3). For
the fuzzy k-means method, only one soil property (K content) differed significantly among
all three MZs in the 0–0.15 m layer (Table 3). For the hierarchical method, no physical or
chemical property in the 0–0.15 m layer exhibited a significant difference among all three
MZs. Similar to the delineation into two MZs, there was also a significant relationship
between ECa100 and some of soil properties for delineation of three MZs. A high ECa100
was also characterized by greater clay, silt, and K contents and by lower sand content.

Overall, for three MZs, the fuzzy k-means, ISODATA and hierarchical delineation
methods exhibited similar comparison results. The spatial segmentation method (with
spatial constraints) proved to be more effective in terms of delineation into three MZs
compared to the other classification methods (without spatial constraints) as indicated
by clearer and more compact delineation of MZs and more manageable units for agri-
cultural practices (Figure 4). Conversely, the fuzzy k-means, ISODATA and hierarchical
methods sometimes yielded small isolated zones that were not operationally manageable
and clumps of outliers that had to be smoothed manually after classification. From an
agronomic standpoint, small areas where agricultural machinery cannot operate reliably
can be impractical to manage [63]. In addition, the spatial segmentation method was
the only delineation method evaluated that took the spatial constraints of the data into
account. The influence of the spatial dimension on the improvement and precision of the
MZ delineation was thus clearly visible. Furthermore, previous studies demonstrated that
the application of the spatial segmentation algorithm proved to be more effective than the
conventional fuzzy k-means classification method [35,37].

3.4. Practical Implication of MZs

For the case of delineation into two MZs, the high ECa MZ had 2% greater clay content
and 5% to 6% greater silt content than the low ECa MZ, averaged across the delineation
method. The increase in the percentage of fines in the high ECa MZ would be expected to
result in more effective retention of water and nutrients compared to the low ECa MZ. The
practice of differential irrigation could be a good strategy to compensate for the reduced
water retention at the low ECa MZ. An MZ with a low water retention can be associated
with an increased susceptibility to leaching [16]. However, although statistically significant,
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the differences in mean nutrient levels found between MZ were small and likely of limited
agronomic significance. Consequently, delineation into two MZs would have little effect
on crop fertilization under the current fertilization guidelines in PEI [64].

For the case of delineation into three MZs, it is useful to compare the MZs with the
greatest and the lowest ECa. The high ECa MZ had greater concentrations of plant nutrients
(i.e., P, K, Ca), and the differences were great enough that recommended crop fertilization
practices could differ between MZ based on the current fertilization guidelines in PEI. In
addition, the high ECa MZ had greater soil fines than the low ECa MZ and may be used as
the basis for differential irrigation management. From an agronomic standpoint for the
potato crop, the intermediate ECa MZ zone was relatively similar to the low ECa MZ, and
therefore the low and intermediate ECa MZ could receive the same fertilizer and water
management practices. Similarly, in previous studies in which three MZs were identified
based on ECa, not all three MZs were distinct in terms of recommended agricultural
practices and consequently two MZs may be grouped for practical purposes [32,65].

For this study site, delineation into two MZs would have little effect on crop fertiliza-
tion because the difference between the two MZs is small from an agronomic standpoint.
In contrast, delineation into three MZs gives the potential for two MZs (i.e., low plus
intermediate vs high soil ECa), which are distinct in terms of soil properties and can be
used as the basis for site-specific nutrient and water management.

4. Conclusions

The current study compared four delineation methods (fuzzy k-means, ISODATA,
hierarchical, and spatial segmentation) for identification of MZs in a commercial potato field
in PEI. This comparison revealed some differences in the working methodology and also in
the results for each delineation method used. For the case of delineation into three MZs, the
spatial segmentation method (with spatial constraints) proved more effective in capturing
the spatial variation in soil physical and chemical properties compared with the other
classification methods (without spatial constraints) as indicated by more parameters which
differed significantly among all three MZs. From an agronomic standpoint, the spatial
segmentation method also exhibited more compact and operationally more manageable
zones than the other methods.

Regarding data distribution, a non-Gaussian distribution of the data for the ISODATA
method can give misleading results while the fuzzy k-means and hierarchical delineation
methods do not require Gaussian distribution of the data. In terms of the ability to separate
soil properties, the spatial segmentation method had the greatest efficiency in delineation of
MZs from statistical and agronomic perspectives, and generated more visually compact MZs.
Hence, the ability of the spatial segmentation method to take the spatial dimension of the
data into account was an important factor in improving the quality of the MZ delineation.
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