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 20 

Abstract 21 

The objective of the current study is to present a comparison of techniques for the forecasting of 22 

low frequency climate oscillation indices with a focus on the Great Lakes system. A number of 23 

time series models have been tested including the traditional Autoregressive Moving Average 24 

(ARMA) model, Dynamic Linear model (DLM), Generalized Autoregressive Conditional 25 

Heteroskedasticity (GARCH) model, as well as the nonstationary oscillation resampling (NSOR) 26 

technique. These models were used to forecast the monthly El Niño-Southern Oscillation (ENSO) 27 

and Pacific Decadal Oscillation (PDO) indices which show the most significant teleconnection 28 

with the net basin supply (NBS) of the Great Lakes system from a preliminary study. The overall 29 

objective is to predict future water levels, ice extent, and temperature, for planning and decision 30 

making purposes. The results showed that the DLM and GARCH models are superior for 31 

forecasting the monthly ENSO index, while the forecasted values from the traditional ARMA 32 

model presented a good agreement with the observed values within a short lead time ahead for the 33 

monthly PDO index. 34 

 35 
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1. Introduction 38 

It is well established that low frequency Climate oscillation indices such as the El Niño-Southern 39 

Oscillation (ENSO) (Tsonis et al., 2007), and the Pacific Decadal Oscillation (PDO) (Mantua et 40 

al., 1997) indices are related to hydro-meteorological variables in a number of regions of the globe 41 

(Ouachani et al., 2013, Naizghi and Ouarda, 2017, Niranjan Kumar et al., 2016). Such relations 42 

are termed as ‘teleconnections’ (Alexander et al., 2002, Burg, 1978, Kalman, 1960, Ouachani et 43 

al., 2013, Schneider et al., 1999). For example, Rodionov and Assel  (2003) found that a substantial 44 

difference of the large-scale atmospheric circulation associated with the ENSO and PDO leads to 45 

an abnormally mild winter in the Great Lakes region.  46 

Therefore, these climate indices have been identified as remarkably good predictors of 47 

hydro-meteorological variables (Cheng et al., 2010a, Immerzeel and Bierkens, 2010, Schneider et 48 

al., 1999, Thomas, 2007, Westra and Sharma, 2010). A number of methods have been developed 49 

to forecast climate indices (Chen et al., 2004, Cheng et al., 2010a, Cheng et al., 2010b). These are 50 

mainly based on Global Climate Models (GCM) (Kirtman and Min, 2009, Schneider et al., 1999, 51 

Wu and Kirtman, 2003). However, GCM based forecasting is rather expensive, and is not always 52 

available beyond the atmospheric research community. In the current study, we propose to forecast 53 

climate indices based on time series models which are much cheaper and easier to implement than 54 

GCM-based models.  55 

The traditional autoregressive moving average (ARMA) time series model (Brockwell and 56 

Davis, 2003), the Dynamic Linear Model (DLM) (West and Harrison, 1997, Petris et al., 2009), 57 

the Generalized Autoregressive Conditionally Heteroscedastic (GARCH) model (Engle, 1982, 58 

Modarres and Ouarda, 2013a, Modarres and Ouarda, 2013b, Modarres and Ouarda, 2014) as well 59 
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as the NonStationary Oscillation Resampling (NSOR) technique developed by Lee and Ouarda 60 

(2011b) are employed to forecast climate indices. Nonlinear time series models (Fan and Yao, 61 

2003, Ahn and Kim, 2005) were also considered and omitted since we found that no significant 62 

nonlinear serial dependences are present in the considered climate indices.  63 

The scientific literature, and a preliminary study that we carried out confirmed that the NBS 64 

components of the Great Lakes can be better forecasted by incorporating the teleconnections with 65 

the forecasted climate index, especially in the case of ENSO. Thus, the primary objective of the 66 

current study is to forecast these monthly climate indices using time series models in order to 67 

incorporate them in the prediction of the NBS components of the Great Lakes system.  68 

In section 2, the introduction and mathematical description of the applied time series models 69 

are presented. The employed climate indices are explained in section 3. The performance and skills 70 

of the forecasted climate indices of ENSO and PDO are discussed in section 4 and section 5, 71 

respectively. Summary and conclusions are presented in section 6. 72 

2. Mathematical description of applied models 73 

2.1. ARMA 74 

2.1.1. Model Description 75 

Let us assume Xt to be an ARMA(p, q) process. if Xt is stationary we have for every t:  76 
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qtqttptptt ZZZXXX    ...... 1111     (1) 77 

where Zt is a white noise with zero mean (i.e. 0Z ) and variance 2

Z  (Brockwell and Davis, 78 

2003, Salas et al., 1980). Xt is said to be an ARMA(p, q) process with mean 
X if 

XtX  is an 79 

ARMA(p, q) process. Simply, Eq.(1) is also expressed as:  80 

     
tt ZBXB )()(          (2) 81 

where p

p BBB   ...1)( 1
and q

q BBB   ...1)( 1
and B is the backward shift 82 

operator. Xt in Eq.(2) is further expressed as: 83 
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. 85 

2.1.2. Parameter estimation and model selection 86 

A number of methods to estimate the parameters of the ARMA process in Eq.(1) have been 87 

developed such as Yule-Walker estimation (Yule, 1927, Walker, 1932), Burg’s algorithm based 88 

on the forward and backward prediction errors (Burg, 1978), the innovations algorithms 89 

(Brockwell and Davis, 1988), Hannan-Rissanen algorithm (Hannan and Rissanen, 1982), and 90 

maximum likelihood estimation (MLE)(Brockwell and Davis, 2003).   91 

The Yule-Walker estimation is derived by multiplying each side of Eq.(1) by Xt-j , j=0,1,…, 92 

p+q and taking the expectation. These relations of the lagged second moments (auto-covariance) 93 

up to p+q are called the Yule-Walker equation. The p+q+1 Yule-Walker equations are solved 94 

using the sample lagged second moments to estimate the parameters of the ARMA model. 95 
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In MLE, supposing that Xt is a Gaussian time series, the likelihood of )',...,( 1 nn XXX , 96 

where n is the number of records, is maximized to estimate the parameters: 97 

)'2/1exp()det()2()(
12/12

nnnn

nL XCXCψ
      (4) 98 

where )'( nnn E XXC  , ],,[ 2

Zθφψ  and )',...,( 1 pφ , )',...,( 1 qθ  and the prime )('  99 

implies the transpose. Note that the right side of Eq.(4) can be described as the function of  φ , θ , 100 

and 2

Z  (Brockwell and Davis, 2003). MLE was used to estimate the parameters of the ARMA 101 

model in the current study. 102 

The Akaike Information Criterion (AIC) was proposed by Akaike (1974) to compare models 103 

with a different number of parameters so that one can select the best model with the lowest AIC 104 

value. The criterion is written as:  105 

   ))(log(22AIC ψLnpar        (5)  106 

where npar is the number of parameters. Hurvich and Tsai (1989) introduced the bias corrected 107 

version of AIC, AICC, defined as:  108 

)1/()1(2AICAICC  parparpar nnnn     (6)  109 

2.1.3. Forecasting ARMA process 110 

Forecasting Xn+h , h>0 with the available data up to n is to find the linear combination of  [ Xn , Xn-111 

1 ,…, X1] with minimum mean squared error where h is the lead time. The h-step ahead forecast 112 

Xn+h is:  113 

][...][][...][)(ˆ
11111 qhnhnphnphnn ZZXXhX      (7) 114 
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For quantities inside [], substitute the value if known, forecast if unknown as )(ˆ khX n  for 
khnX 
, 115 

and 0 for 
khnZ 
where k=1,…,h-1. Further complete the process of the forecasting ARMA process 116 

is referred to in Brockwell and Davis (2003).  117 

2.2. GARCH  118 

Engle (1982) introduced Autoregressive conditional heteroscedastic (ARCH) models to generalize 119 

the assumption of a constant one-period forecast variance. Their GARCH (generalized ARCH) 120 

extension is due to Bollerslev (1986). The fundamental concept of the GARCH is that the current 121 

value of the variance is dependent on the past values. Thus, the conditional variance is expressed 122 

as a linear function of the squared past values of the series (Engle and Kroner, 1995). GARCH has 123 

been widely used in Econometrics, climatology, health sciences and other fields (Engle, 2002, 124 

Engle, 2001, Bosley et al., 2008, Bollerslev et al., 1992). Applications in the hydrometeorological 125 

field are relatively limited and include the work of Elek and Márkus  (2004), Ahn and Kim (2005), 126 

Wang et al. (2005), and Modarres and Ouarda (2014). The brief definition of GARCH and its 127 

forecasting procedure is presented in the following subsections.  128 

2.2.1. Definitions and representations of GARCH( qp ~,~ )   129 

A process Zt is called GARCH( qp ~,~ ) process if satisfying the following : 130 

(i) 0),|(  tuZZE ut
       (8) 131 

(ii)  222 )()(),|( ttutt BZBtuZZVar       (9)  132 

where, the parameters of the GARCH process ( , 
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The likelihood of the GARCH process is: 134 
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whereψ are all the parameters of the GARCH process. These parameters are estimated by MLE 136 

(Francq and Zakoian, 2010) based on the likelihood in Eq. (10). Note that if Zt is the residual of 137 

the ARMA process in Eq. (1) and (2), the MLE involves solving the sequential equations of all the 138 

ARMA(p,q) and GARCH( qp ~,~ ) parameters.  139 

2.2.2. Forecasting in GARCH( qp ~,~ )   140 

The Eqs. (8) and (9) can be conveniently rewritten as the following (Andersen et al., 2003, Francq 141 

and Zakoian, 2010): 142 
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  (11) 143 

where 2222 1 ttttt )σ(ησZε  , )1,0(~ Nt  and )~,~max( qpr  .  144 

In a matrix form, Eq. (11) is simplified:  145 

tmtt  )( 11

2

11

2

  eeΓΞeΞ      (12) 146 

where 
ie  is a vector such that all the components are zero except the ith component which is 1. Γ147 

is the parameter matrix in the second term of the right side of Eq. (11) and 2

tΞ is the vector in the 148 

left side of this equation. 149 
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Recursively, h-step ahead GARCH( qp ~,~ ) process is expressed as:  150 

2
1

0

111

2 ))(( t
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       (13) 151 

The h-step ahead predictor for the conditional variance from the GARCH( qp ~,~ ) process is:  152 












 
1

0

2

,

1~

0

2

,

22 )|()|(
r

i

ithi

p

i

ithihthttht ZIEIZE    (14) 153 

where It is all the available information up to time t, and  154 
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where 1 is an identity matrix. 158 

As an example, the predictor of the popular GARCH(1,1) process is illustrated:  159 
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2.3. Dynamic Linear Models 161 

2.3.1. State Space model and Dynamic Linear Models 162 

State space models consider a time series as the output of a dynamic system perturbed by random 163 

disturbances (Künsch, 2001, Migon et al., 2005). Dynamic Linear Models (DLM) represent one 164 

of the important classes of state space models (West and Harrison, 1997, Petris et al., 2009). A 165 

DLM is specified for 
tX with s variables ( 1s ) by a normal distribution for the m-dimensional 166 

state vector (
tΛ ). At time t=0, 167 
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),( 000

 CmΛ N       (17) 168 

together with a pair of equations for each time 1t , 169 

tttt VΛFX    ),0(~ V

tt N CV    (18) 170 

tttt WΛGΛ  1
  ),0(~ W

tt N CW   (19) 171 

where 
tF and 

tG are known ms  and mm matrices; 
tV  and 

tW  are mutually independent error 172 

sequences with Gaussian (normal) distribution; 
0m  and 

0C  are the initial condition of the mean 173 

and covariance of the state vector 
tΛ ; and V

tC  and W

tC represent the time dependent covariance 174 

matrices. Note that Eq.(18) is the observation equation for the model defining the sampling 175 

distribution for 
tX conditional on the quantity 

tΛ  while Eq.(19) is the evolution, state or system 176 

equation, defining the time evolution of the state vector.  177 

If the matrices 
tF and 

tG are constant for all values of t, then the model is referred to as a 178 

time series DLM (TSDLM) and if the covariance matrices V

tC and W

tC are constant for all time t, 179 

then the model is referred as a constant DLM (CDLM). In the current study, we use the constant 180 

time series DLM (TCDLM) such that FF t
, GG t

, VV

t CC  and WW

t CC  .  181 

The ARMA model in Eq.(1) is also represented by the TCDLM model as:  182 

ttX  F        (20) 183 

ttt Z 1G       (21) 184 

where  185 

] 0 0    1 [ F       (22) 186 

 '  ...     1 11  r       (23) 187 

and 188 
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G       (24) 189 

and }1,max{  qpr , 0j  for j>p and 0j  for j>q. 190 

Furthermore, the kth order polynomial trend model (Godolphin and Harrison, 1975, 191 

Abraham and Ledolter, 1983), denoted as Trend(k+1), for a univariate time series is described with 192 

the DLM also as:  193 

] 0           0    1 [ F        (25) 194 

























 1   0 ...   0  0  0 

1   1     ...   0  0 

    ...             

0    ...     1  1  0 

0    ...    0  1   1 

G       (26) 195 

and 196 

),...,( 22

1 kWW

W diag C  and 
VC = 2

V     (27) 197 

The random walk plus noise model or local level model (Petris et al., 2009) is the special 198 

case of the polynomial trend model (Trend(1)) defined by:  199 

 
ttt VX      ),0(~ 2

Vt NV     (28) 200 

ttt W 1    ),0(~ 2

Wt NW    (29) 201 

where s=m=1 and F=G=1. Also, the linear trend model, Trend(2) is presented from Eqs. (25), (26), 202 

and (27) as:  203 

] 0    1 [F         (30) 204 
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 1   1 
G        (31) 205 

and 
VC = 2

V  and ),( 22

21 WW

W diag C .  206 

The ARMA model and the polynomial trend model can be combined through the TCDLM 207 

representation, and will be denoted as Trend(k+1)-ARMA(p,q). For example, the combination of 208 

the Trend (2)-ARMA(2,0) model is:  209 

]0   1  0   1 [F        (32) 210 
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 0  0  1   1 
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G       (33) 211 

and 
VC = 2

V  and )0,,,( 222

21 ZWW

W diag C .  212 

2.3.2. Kalman filter for parameter estimation and forecasting 213 

Since all the related distributions are normal, they are completely determined by the first and 214 

second moments (i.e. mean and variance). The Kalman filter (Kalman, 1960) gives us the solution 215 

for the intricate problem of parameter estimation and forecasting for DLM. The Kalman filter 216 

(Snyder, 1985) is an algorithm for efficiently doing exact inference in a linear dynamic system. 217 

Three propositions for Kalman filter, smoothing, and forecasting are described in the following. 218 

The first and second propositions (Kalman filtering and smoothing) are employed in the parameter 219 

estimation while the third proposition (Kalman forecasting) is used for forecasting.  220 

Proposition 1 (Kalman filtering): Consider the DLM in Eqs. (18) and (19), starting from Eq.(17) 221 

let 222 
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),(| 11:11



  tttt N CmxΛ      (34) 223 

where 
1:1 tx presents the observed X  data for the time periods from 1 to t-1. 224 

Then, 225 

(i) The one-step-ahead predictive distribution of 
tΛ given

1:1 tx is normal with parameters:  226 

11:1 )|(   ttttt E mGxΛa      (35) 227 

W

ttttttt Var CGCGxΛR  

 ')|( 11:1
    (36) 228 

(ii) The one-step-ahead predictive distribution of 
tX given

1:1 tx is normal with parameters:  229 

ttttt E aFxXf   )|( 1:1
     (37) 230 

V

ttttttt Var CFRFxXQ   ')|( 1:1
    (38) 231 

(iii)  The filtering distribution of 
tΛ given

t:1x is normal with parameters:  232 

)(')|( 1

:1 ttttttttt E fXQFRaxΛm      (39) 233 

ttttttttt Var RFQFRRxΛC 1

:1 ')|(      (40) 234 

In time series analysis it is often the case that one wants to reconstruct the behavior of the 235 

system (i.e. backward estimation of all the observed states). This is called the smoothing recursion 236 

which can be stated in terms of means and variances as follows. Suppose that the observations are 237 

available up to the time period n as 
n:1x , then:  238 

Proposition 2 (Kalman smoother)  239 

If ),(~| 11:11

S

ttnt N  CsxΛ , then  240 

 ),(~| :1

S

ttnt N CsxΛ         (41) 241 

where  242 

)(')|( 11

1

11:1 





  ttttttntt E asRGCmxΛs     (42) 243 
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111

1

11:1 )(')|(   (43) 244 

As for the filtering and smoothing described in Propositions 1 and 2, the forecasting 245 

distribution can be explicitly described for the lead time h≥1 because of the normality assumption 246 

as:  247 

Proposition 3 (Kalman forecasting)  248 

(i) The distribution of 
htΛ given

t:1x is normal with parameters:  249 

)1()|()( :1   hEh thtthtt aGxΛa      (44) 250 

W

hthtthtthtt hVarh   CGRGxΛR ')1()|()( :1
   (45) 251 

where 
tt ma )0( and  tt CR )0(  252 

(ii) The distribution of 
tX given

1:1 tx is normal with parameters:  253 

)()|()( :1 hEh thtthtt aFxXf         (46) 254 

V

thtthtthtt hVarh CFRFxXQ   ')()|()( :1     (47) 255 

Note that in TCDLM, the propostions 1-3 are much simplified by FF t
, GG t

, VV

t CC   and 256 

WW

t CC  for all t. 257 

To estimate the parameters of the DLMs, MLE is applied maximizing the likelihood defined 258 

as:  259 

         







n

t

ttttt

n

t

tL
1

1

1

)()'(
2

1
log

2

1
)( fXQfXQψ    (48) 260 

where,ψ represents all the parameters in Eqs. (18) and (19). The optimization problem in Eq. (48) 261 

is solved through the Limited memory Broyden–Fletcher–Goldfarb–Shanno method for Bound-262 

constrained optimization (L-BFGS-B) method (Petris et al., 2009). This is the only method 263 
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accepting restrictions in parameter spaces. Furthermore, the Bayesian parameter estimation 264 

procedure for DLMs has been established assuming the prior distributions of the parameters (Petris 265 

et al., 2009, West and Harrison, 1997). 266 

2.4. EMD and NSOR 267 

Lee and Ouarda (2012) proposed a stochastic simulation model to adequately reproduce the 268 

smoothly varying nonstationary oscillation (NSO) processes embedded in observed data. The 269 

proposed model employed a cutting-edge decomposition technique (Huang et al., 1998, 270 

Huang and Wu, 2008), called Empirical Mode Decomposition (EMD). Also nonparametric 271 

time series models, k-nearest neighbor resampling (Lall and Sharma, 1996) and block 272 

bootstrapping, are employed. This is called NSO resampling (NSOR). The overall procedure 273 

of the EMD-NSOR prediction is:  274 

(1) Decompose the concerned time series (Xt) into a finite number of IMFs.  275 

(2) Select significant IMF components using the significance test (Wu and Huang, 2004) 276 

and subjective criteria (Lee and Ouarda, 2010b).  277 

(3) Fit stochastic time series models according to the nature of the components determined 278 

in step (2). In the current study, significant IMF components are modeled using NSOR 279 

(discussed later) and the residuals are modeled using order-1 autoregressive (AR(1)). 280 

(4) Predict the IMF components using the fitted models (NSOR and AR(1)).  281 

(5) Sum up the forecasted IMFs from each mode.  282 

A brief summary of the NSOR for the selected IMF component(s) is:  283 
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(1) A block length, LB, is randomly generated from a discrete distribution (e.g., Geometric 284 

or Poisson). A Poisson distribution is employed in the current study as in Lee and 285 

Ouarda (2010a). More information on the selection of this discrete distribution in block 286 

bootstrapping can be found in Lee (2008). The related parameter is selected using 287 

variance inflation factor (VIF) (Lee and Ouarda, 2012, Wilks, 1997) . 288 

(2) The weighted distances between the current and observed values as well as the change 289 

rates of the current and the observed values are estimated for each observed value. The 290 

variances in the change rate and the original sequences are employed as weights. Here 291 

the change rate is defined as the difference between the current value and the immediate 292 

preceding value of an IMF component. 293 

(3) The time indices of the k-smallest distances among the observed record length, where k 294 

is the tuning parameter, are estimated by Nk   as a heuristic approach (Lall and 295 

Sharma, 1996, Lee and Ouarda, 2011a). 296 

(4) One of the k time indices is selected with the weighted probability of the inverse of the 297 

order index (i.e., 1/j, j=1, 2,…, k) with unity scaling.  298 

(5) The following LB change rate values in the subsequent time of the selected index are 299 

taken and subsequently combined with the previous state to comprise the real domain 300 

values. 301 

3. Data Description 302 

For the current study, the climate indices ENSO and PDO are selected as it is known to be 303 

teleconnected with the hydro-climatological variables of the Great Lakes system (Lee and Ouarda, 304 

2010c).  A brief description of each of these climate indices is provided in the following paragraphs.  305 
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The ENSO is a climatic pattern occurring across the tropical Pacific Ocean, causing climate 306 

variability on 3~7 year periods (Alexander et al., 2002). Among various ENSO indices (Trenberth, 307 

1997), the multivariate ENSO index developed by Wolter and Timlin (1993) is employed in the 308 

current study since this is the only index that includes at least the fundamental tropical atmospheric 309 

bridges. The dataset, ranging from 1950-2009 was downloaded from 310 

http://www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/. 311 

The PDO index represents the leading principal component of sea-surface temperature 312 

anomalies in the North Pacific Ocean, polewards of 20oN. Among a number of PDO indices, the 313 

most commonly used one, developed by Mantua and Zhang and their colleagues (Mantua et al., 314 

1997, Zhang et al., 1997), was employed in the current study with the dataset ranging from 1900-315 

2009. It was downloaded from http://jisao.washington.edu/pdo/PDO.latest. 316 

 317 

4. Forecasting Monthly ENSO 318 

4.1. Preliminary analysis and application methodology for monthly 319 

ENSO index 320 

The annual and monthly time series of the employed ENSO index are presented in Figure 1(a) and 321 

(b). The monthly time series presents strong persistency as shown in Figure 1(c) while the annual 322 

time series shows weak serial dependence (only 0.285 for lag-1 autocorrelation function (ACF) 323 

during the period 1950-2009. Figure 2 indicates that the monthly statistics of the ENSO index does 324 

not show evident seasonal variations. The spectral density of the monthly ENSO index shown in 325 

Figure 1(d) illustrates this. The scatter plots in Figure 3 reveal the linear relations for different lead 326 

http://www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/
http://jisao.washington.edu/pdo/PDO.latest
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times of monthly ENSO indices. Note from this figure that the association in low values is higher 327 

than in high values through all different lead times. In turn, one can suspect the existence of 328 

heteroscedasticity (differing variance). Therefore, we also applied the GARCH model to this index. 329 

Furthermore, different orders of ARMA(p,q) models have been tested as well as the DLM and 330 

EMD-NSOR.  331 

Among others, the results of the following models are presented: 332 

(1) ARMA(1,0) 333 

(2) ARMA(4,0) 334 

(3) ARMA(7,3) 335 

(4) ARMA(8,5) 336 

(5) DLM: Trend (1)-ARMA(4,0) 337 

(6) ARMA(4,0) – GARCH(1,1) 338 

The selection of the order of the ARMA models was based on the AIC in Eq. (5). The AIC 339 

values corresponding to the various ARMA(p,q) models with p=0,…,10 and q=0,…,10 are 340 

presented in Table 1. Even though ARMA(8,5) presents the smallest AIC, other low order models 341 

with relatively small AIC values are also selected, such as ARMA(4,0) and ARMA(1,0) for 342 

comparison purposes. Note that ARMA(4,0) has the second smallest AIC value in Table 1. In 343 

DLM and GARCH models, the ARMA model should be selected as a base model. A low order 344 

ARMA model is preferred due to parsimony issues. Therefore, ARMA(4,0) is selected for the 345 

combination in DLM and GARCH models. We also tested other ARMA models with different 346 

models but the results showed no improvement over ARMA(4,0). 347 
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4.2. Results  348 

To validate the model performance, the first 40 years of record of the monthly ENSO index 349 

(1950-1989) were employed to fit the models. Then, the last 20 year of record (1990-2009) were 350 

forecasted for each month. Depending on the selected model, different numbers of predictors were 351 

used to make predictions for succeeding months. For example, for the ARMA(4,0) model, four 352 

preceding months were used as predictors. Consequently, in order to make predictions for January-353 

December 1990 (i.e. h=1,…, 12 where h is the lead time), four months from September-December 354 

1989 were used. For further details, the reader is referred to section 2. 355 

The correlation and root mean square error (RMSE) between the forecasted values and the 356 

observations were estimated. Note that higher correlations and lower RMSE values represent 357 

models with better performances. These results are presented in Table 2 and Table 3 as well as 358 

Figure 4.  359 

Figure 4(a) presents a comparison of the RMSE of the ARMA(p,q) models. The figure 360 

indicates that the higher order ARMA models (i.e. ARMA(7,3) and ARMA(8,5)) do not show 361 

significantly better performances than ARMA(4,0). The RMSE of the ARMA(4,0) model is also 362 

significantly lower than ARMA(1,0) for all lead times (h). Figure 4(b) shows that a substantial 363 

improvement in  performance is obtained with Trend(1)-ARMA(4,0) and ARMA(4,0)-364 

GARCH(1,1) models in comparison to ARMA(4,0). On the other hand, no significant difference 365 

is observed between the two models Trend(1)-ARMA(4,0) and ARMA(4,0)-GARCH(1,1). EMD-366 

NSOR presents the worst performance among all models. This result may be intuitive as the EMD-367 

NSOR model was developed mainly to characterize the long-term oscillation pattern in a series 368 

(Lee and Ouarda, 2010b), and hence does not lead to good performances for short-term forecasting. 369 
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The correlations between the forecasted values and the observations illustrate similar  results 370 

to the RMSE as illustrated in Table 3, Figure 4(c) and (d). In Figure 4(c), it is observed that no 371 

significant performance improvement with higher order ARMA models (i.e. ARMA(7,3) and 372 

ARMA(8,5)) is detected except that for long lead times (h>9) these higher order models present a 373 

slightly better performance. Figure 4(d) presents somewhat different results from the RMSE in 374 

Figure 4(b). Trend(1)-ARMA(4,0) shows a better performance over the shorter lead times (h=2-7 375 

month) and worse than ARMA(4,0) during the longer lead times (h=9-12 month). The 376 

ARMA(4,0)-GARCH(1,1) model presents consistently better results overall lead times. Recall that 377 

the monthly ENSO index presents the heteroscedasticity over all different lead times shown in the 378 

scatter plots of Figure 3. It is well documented that GARCH can reproduce the heteroscedasticity 379 

characteristics (Engle, 2002).  380 

The forecasting results corresponding to 1- 6 month lead times are presented for ARMA(4,0), 381 

ARMA(7,3), Trend(1)-ARMA(4,0), and ARMA(4,0)-GARCH(1,1) in Figure 5, Figure 6, Figure 382 

7, and Figure 8, respectively. As the prediction lead time (h) increases, the 95 percent upper and 383 

lower limits get wider. The maximum observation and its neighbors in year 1997-1998 are less 384 

predictable as h increases for all the tested models. 385 

5. Forecasting Monthly PDO 386 

5.1. Preliminary analysis and application methodology for monthly 387 

PDO index 388 

The annual and monthly time series of the employed PDO index are presented in Figure 9(a) and 389 

(b), respectively. The monthly time series presents strong persistency as shown in Figure 9(b) 390 



21 

 

while the annual time series also shows significant serial dependency (0.5245 of lag-1 ACF in 391 

Figure 9(c)  during the period (1900-2009). Figure 10 indicates that the monthly statistics of the 392 

ENSO index do not show much seasonal variation. The scatter plots in Figure 11 reveal linear 393 

relations for all lead times for the monthly PDO index. Variation difference along the values (i.e. 394 

heteroscedasticity) is not observed. Different orders of ARMA(p,q) models as well as both DLM 395 

models have been tested.  396 

Among others, the results of the following models are presented: 397 

(1) ARMA(1,0) 398 

(2) ARMA(5,0) 399 

(3) ARMA(9,7) 400 

(4) ARMA(28,0) 401 

(5) DLM-Trend 1 and ARMA(1,0) 402 

(6) DLM-Trend 2 and ARMA(2,0) 403 

The selection of the order of ARMA models was based on the AIC in Eq. (5) for p=0,…,10 404 

and q=1,…,10 (result not shown). The AIC shows that ARMA(9,7) is the best order selection. 405 

Similar findings for the same data to this order selection was reported by Nairn-Birch et al. (2009) 406 

whose study was for the simulation of this index. The relatively low-order model ARMA(5,0) and 407 

high-order model ARMA(28,0) as well as both DLM models were also tested. Note that 408 

ARMA(28,0) is the best order among p orders without moving average term (i.e. q=0). 409 

5.2. Results  410 

To validate the model performance, the first 90 years of the monthly PDO index (1900-1989) were 411 

employed to fit the models. The last 20 year records (1990-2009) were forecasted at each month 412 
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for h=1,…,12. The correlation and root mean square error (RMSE) between the forecasted values 413 

and the observations were estimated as presented in Table 4 and Table 5, respectively. These 414 

results are also graphically illustrated in Figure 12.  415 

In Table 4 and the top panel of Figure 12, the RMSE of the tested models are compared. The 416 

figure indicates that the higher order ARMA models (i.e. ARMA(9,7) and ARMA(28,0)) show 417 

significantly better performances than lower order ARMA models (i.e. ARMA(1,0) and 418 

ARMA(5,0)) while the RMSE of ARMA(28,0) is much lower than ARMA(9,7) for all lead times 419 

(h). The two DLM models present much worse performances than the selected ARMA models for 420 

forecasting the PDO index over all the lead times. We also tested higher order ARMA models with 421 

the trend component for DLM but no improved results were obtained. 422 

In Table 5 and the bottom panel of Figure 12, it can be observed that the results of the 423 

correlations between the forecasted values and the observations show much different behavior 424 

from the RMSE results. While the ARMA(28,0) model still performs best for short lead times 425 

(h<8), the ARMA(9,7) model shows the worst performance among the selected models. For long 426 

lead times (h>8), the low-order ARMA models (ARMA(1,0) and ARMA(5,0) ) show the best  427 

performances. 428 

The forecasting results corresponding to 1-6 month lead times are presented for ARMA(9,7) 429 

and ARMA(28,0) in Figure 13 and Figure 14, respectively. As the prediction lead time (h) 430 

increases, the 95 percent upper and lower limits get wider. The 6-month lead time shows 431 

excessively wide upper and lower limits. The wide range of the limits and the behavior of the 432 

bottom panel of Figure 12 described above imply that forecasting longer than 6 month lead times 433 

is not skillful regardless of the selected model.  434 
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We also tested the EMD-NSOR model. Even though the prediction was successful in some 435 

cases as shown in Figure 15, the overall prediction skill was no better than even low-order ARMA 436 

models (see Table 6). Also, the ARMA-GARCH model was also tested and the results showed a 437 

prediction skill than is not better than the sole ARMA model as shown in Table 6. 438 

6. Summary and Conclusions 439 

It is commonly known that climate indices are good representatives of the current climate system 440 

and thus good predictors for hydro-meteorological variables, specifically for the NBS components 441 

of the Great Lakes. In the current study, we forecasted the monthly climate index (ENSO) up to 442 

12 month lead time using a number of time series models including the traditional ARMA model 443 

and the DLM, GARCH, and EMD-NSOR models.   444 

For the ENSO index, results indicated that the ARMA(4,0)-GARCH(1,1) model is superior 445 

to the other tested models in forecasting the monthly ENSO index and the DLM model (Trend(1)-446 

ARMA(4,0)) shows the lowest RMSE while the correlation performance measurement revealed 447 

that Trend(1)-ARMA(4,0) does not perform as well for long lead times (i.e. h>8). The reason for 448 

the better representation by the GARCH process is the presence of heteroscedasticity in the ENSO 449 

index. 450 

For the PDO index, results showed that the typical ARMA models are superior to the other 451 

tested models with the agreement between the observed and forecasted values. The forecasted 452 

values for longer than 6-month lead times from all the selected models illustrate wide confidence 453 

intervals. This implies that the forecasting is not much meaningful for the longer than 6-month 454 

lead times. The long-term oscillation model, EMD-NSOR, presents no useful skill for the short-455 

term forecasting of the climate indices. 456 
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The forecasted climate indices can be employed as predictors for the NBS components of 457 

the Great Lakes system in future studies. 458 

  459 
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Notations: 475 

t  : time index 476 

Xt  : time dependent variable 477 

Xt  : vector of multivariate time dependent variables 478 

Zt  : time independent white noise variable or its square is time dependent in the   479 

representation of GARCH model 480 
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p, q  : mode order of ARMA model 481 

 ,   : parameters of ARMA model 482 

n , npar    : number of observations and parameters, respectively 483 

h  : prediction lead time 484 

)(ˆ hX n
 : h-step ahead forecast, Xn+h 485 

L(.)  : likelihood 486 

B     : backward shift operator 487 

 , 2      : mean and variance 488 

C     : covariance matrix 489 

ψ  :parameter set of a model 490 

 ,  :parameters of GARCH model 491 

tΛ  :m-dimensional state vector 492 

tt WV ,  :mutually independent error sequences with normal distribution 493 

tt GF ,  : parameter and evolution matrices in DLM 494 

 495 

496 
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Table 1. AIC values corresponding to the various ARMA(p,q) models for the monthly ENSO 646 

index. The lines correspond to p values and the columns correspond to q values.   647 

ARMA 0 (q) 1 2 3 4 5 6 7 8 9 10 

0 (p) 2029 1223.1 795.5 551.6 386.4 302.8 256.5 222.7 180.7 175.7 163.9 

1 254.8 169.1 167.6 146.2 145.2 146.1 144.4 143.8 144.5 146.4 145.5 

2 155.7 145.4 139.1 136.8 136.0 137.9 139.2 141.2 142.9 144.8 145.1 

3 154.2 155.5 142.6 137.0 137.7 151.7 151.6 146.4 146.4 144.4 145.5 

4 135.2 137.2 136.9 136.4 138.4 140.5 141.1 145.0 146.2 145.8 144.4 

5 137.2 138.9 137.8 138.4 140.8 142.8 143.8 143.8 144.6 147.9 148.5 

6 137.4 137.5 141.2 140.3 143.5 144.4 144.4 145.4 147.6 145.2 148.6 

7 137.9 140.7 141.1 135.9 137.5 141.1 148.8 149.6 143.2 141.7 143.4 

8 139.0 141.8 143.1 137.6 135.5 134.0 145.0 148.1 142.9 145.7 145.3 

9 140.8 142.8 139.0 141.1 142.1 143.3 143.1 143.2 144.6 146.5 149.2 

10 142.7 143.1 147.0 145.3 137.9 149.2 136.5 138.7 139.5 142.7 141.8 

648 



35 

 

Table 2. RMSE for the recent 20 years of the monthly ENSO index 649 

 
ARMA(1,0) ARMA(4,0) ARMA(7,3) ARMA(8,5) TREND(1)- 

ARMA(4,0) 

ARMA(4,0)-

GARCH(1,1) 

EMD-NSOR 

LEAD-1 0.30 0.27 0.27 0.27 0.26 0.26 0.40 

LEAD -2 0.49 0.45 0.46 0.46 0.43 0.44 0.53 

LEAD -3 0.64 0.59 0.60 0.60 0.56 0.56 0.65 

LEAD -4 0.76 0.71 0.72 0.72 0.67 0.67 0.76 

LEAD -5 0.84 0.79 0.80 0.80 0.74 0.75 0.87 

LEAD -6 0.91 0.84 0.85 0.85 0.79 0.80 0.96 

LEAD -7 0.95 0.88 0.89 0.89 0.83 0.85 1.04 

LEAD -8 0.99 0.91 0.91 0.91 0.86 0.88 1.11 

LEAD -9 1.02 0.93 0.93 0.93 0.89 0.90 1.17 

LEAD -10 1.04 0.94 0.95 0.95 0.91 0.92 1.23 

LEAD -11 1.05 0.95 0.96 0.96 0.93 0.94 1.28 

LEAD -12 1.06 0.95 0.96 0.96 0.95 0.95 1.33 

Note that Lead-h presents the prediction lead time (see h in Eq.(7)) 650 

  651 
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Table 3.  Correlation between observed and forecasted values from different models for the last 652 

20 years of the monthly ENSO index 653 

 654  
ARMA(1,0) ARMA(4,0) ARMA(7,3) ARMA(8,5) TR1AR4 ARMA(4,0)-

GARCH(1,1) 

EMD 

LEAD-1 0.94 0.96 0.96 0.95 0.95 0.96 0.81 

LEAD -2 0.84 0.87 0.87 0.87 0.87 0.88 0.68 

LEAD -3 0.72 0.77 0.77 0.77 0.78 0.79 0.54 

LEAD -4 0.59 0.64 0.64 0.64 0.66 0.68 0.37 

LEAD -5 0.48 0.54 0.54 0.54 0.56 0.59 0.21 

LEAD -6 0.38 0.44 0.45 0.45 0.47 0.50 0.06 

LEAD -7 0.30 0.36 0.37 0.37 0.37 0.41 -0.10 

LEAD -8 0.22 0.30 0.31 0.31 0.28 0.34 -0.23 

LEAD -9 0.15 0.23 0.25 0.25 0.19 0.26 -0.33 

LEAD -10 0.09 0.17 0.21 0.20 0.10 0.20 -0.42 

LEAD -11 0.03 0.12 0.17 0.16 0.01 0.14 -0.45 

LEAD -12 -0.01 0.08 0.14 0.14 -0.07 0.10 -0.47 

 655 
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Table 4. RMSE for the recent 20 years of monthly PDO index 657 

 
ARMA(1,0) ARMA(5,0) ARMA(9,7) ARMA(28,0) Tr1AR1 Tr2AR2 

Lead-1 0.545 0.583 0.569 0.552 0.585 0.569 

Lead -2 0.754 0.774 0.748 0.731 0.793 0.804 

Lead -3 0.869 0.883 0.844 0.824 0.923 0.943 

Lead -4 0.935 0.946 0.900 0.872 1.005 1.026 

Lead -5 0.976 0.982 0.933 0.902 1.052 1.074 

Lead -6 0.997 0.996 0.954 0.921 1.071 1.096 

Lead -7 1.004 0.989 0.960 0.925 1.069 1.101 

Lead -8 1.008 0.981 0.968 0.934 1.064 1.102 

Lead -9 1.012 0.979 0.978 0.944 1.058 1.101 

Lead -10 1.016 0.983 0.989 0.955 1.065 1.110 

Lead -11 1.020 0.991 1.004 0.971 1.075 1.120 

Lead -12 1.022 1.002 1.013 0.982 1.088 1.132 

 658 

 659 
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Table 5.  Correlation between observed versus forecasted values from different models for the 661 

recent 20 years of the monthly PDO index 662 

 663  
ARMA(1,0) ARMA(5,0) ARMA(9,7) ARMA(28,0) Tr1AR1 Tr2AR2 

Lead-1 0.866 0.827 0.831 0.832 0.841 0.835 

Lead -2 0.709 0.654 0.659 0.672 0.681 0.670 

Lead -3 0.559 0.507 0.508 0.538 0.536 0.529 

Lead -4 0.438 0.404 0.390 0.445 0.418 0.422 

Lead -5 0.338 0.332 0.301 0.374 0.326 0.342 

Lead -6 0.264 0.285 0.227 0.321 0.263 0.289 

Lead -7 0.249 0.279 0.195 0.300 0.241 0.269 

Lead -8 0.260 0.285 0.170 0.285 0.224 0.257 

Lead -9 0.269 0.284 0.149 0.268 0.199 0.243 

Lead -10 0.272 0.270 0.132 0.250 0.163 0.222 

Lead -11 0.254 0.237 0.094 0.214 0.120 0.187 

Lead -12 0.231 0.191 0.055 0.180 0.065 0.147 

 664 
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Table 6. RMSE of the selected models for the recent 20 years of the monthly PDO index 666 

 ARMA(5,0) EMD 
ARMA(5,0) 

GARCH(1,1) 

Lead-1 0.583 0.807 0.602 

Lead-2 0.774 0.994 0.809 

Lead-3 0.883 1.156 0.929 

Lead-4 0.946 1.257 0.990 

Lead-5 0.982 1.327 1.017 

Lead-6 0.996 1.352 1.027 

Lead-7 0.989 1.337 1.024 

Lead-8 0.981 1.324 1.020 

Lead-9 0.979 1.327 1.018 

Lead-10 0.983 1.338 1.021 

Lead-11 0.991 1.350 1.029 

Lead-12 1.002 1.360 1.045 
    

    

    

    
 667 

 668 
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 670 

Figure 1. Annual (a) and monthly (b) ENSO time series as well as its autocorrelation function 671 

(ACF) (c) and spectral density (d) of monthly ENSO index. Note that g(f) presents the smoothed 672 

sample spectral density at frequency f (see Salas et al. 1980) 673 

 674 

 675 
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 676 

Figure 2. Seasonal variations of time series and statistics for the monthly ENSO index. (a) 677 

spaghetti plot of time series for each year and (b)-(d) monthly statistics. 678 

 679 
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 680 
Figure 3. Scatter plots of the monthly ENSO Xt and Xt+h , h=1,…,12 681 
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 683 

 684 
Figure 4. Performance measurements of the observed versus forecasted values for the last 20 685 

years (1990-2009) of the monthly ENSO index for (a) RMSE of ARMA(p,q) models as 686 

ARMA(1,0), ARMA(4,0), ARMA(7,3), and ARMA(8,5);(b) RMSE of the selected models as 687 

ARMA(4,0), Trend(1)-ARMA(4,0), ARMA(4,0)-GARCH(1,1), and EMD-NSOR; (c) 688 

correlation of ARMA(p,q) models; (d) correlation of the selected models as in the panel (b). 689 

Note that the x-axis presents the lead time (h). 690 

 691 

 692 
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 693 

Figure 5. Forecasting the monthly ENSO index using ARMA(4,0) model for lead time h=1,…,6 694 

months and for the last 20 years (1990-2009). Note that the red-cross line represents the 695 

observations and the black solid line represents the mean prediction while the gray regions show 696 

the 95 percent upper and lower limits for the mean prediction. 697 

698 
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 699 
Figure 6. Same as Figure 5 but using ARMA(8,5) model. 700 

 701 
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 702 
Figure 7. Same as Figure 5 but using Trend(1)-ARMA(4,0) model. 703 
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 704 
Figure 8. Same as Figure 5 but using ARMA(4,0)-GARCH(1,1) model. 705 
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 707 
Figure 9. Annual (a) and monthly (b) PDO time series as well as its autocorrelation function 708 

(ACF) (c) of monthly ENSO index.  709 
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 711 

 712 

Figure 10. Seasonal variations of time series and statistics for the monthly PDO index. (a) 713 

spaghetti plots of time series for each year and (b)-(d) monthly statistics. 714 
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 716 
Figure 11. Scatter plots of the monthly PDO index, Xt and Xt+h, h=1,…,12 717 

 718 

 719 

 720 
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 722 

Figure 12. RMSE (top) and correlation between the observed and forecasted values of the 723 

monthly PDO index for the recent 20 year (1990-2009) with different time series models 724 

 725 
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 727 

Figure 13. Forecasting the monthly PDO index using ARMA(9,7) model for lead time h=1,…,6. 728 

Note that the red-cross line represents the observation and the black solid line represents the 729 

mean prediction while the gray regions show 95 percent upper and lower limit from the mean 730 

prediction. 731 

 732 
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 733 
Figure 14. Same figure as Figure 5 but using ARMA(28,0) model. 734 
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 736 

Figure 15. Last 12 months Extension of monthly PDO index with EMD-NSOR model. (1) Thin 737 

solid line represents the observations; (2) thick solid line shows the selected IMF components 738 

except the last 12 months and the mean of the generated 200 realizations for the last 12 months; 739 

and (3) dotted gray lines represent the 200 realizations of only the selected components (top 740 

panel) and of all components (bottom panel). 741 

 742 


