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 

Abstract—Since the rise of deep learning in the past few years, 

convolutional neural networks (CNNs) have quickly found their 

place within the remote sensing (RS) community. As a result, 

they have transitioned away from other machine learning 

techniques, achieving unprecedented improvements in many 

specific RS applications. This paper presents a meta-analysis of 

416 peer-reviewed journal articles, summarizes CNN 

advancements, and its current status under RS applications. The 

review process includes a statistical and descriptive analysis of a 

database comprised of  23 fields, including 1) general 

characteristics such as various applications, study objectives, 

sensors, and data types, and 2) algorithm specifications such as 

different types of CNN models, parameter settings, and reported 

accuracies. This review begins with a comprehensive survey of 

the relevant articles without considering any specific criteria to 

give readers an idea of general trends, then investigates CNNs 

within different RS applications to provide specific directions for 

the researchers. Finally, a conclusion summarizes potentialities, 

critical issues, and challenges related to the observed trends. 

 
Index Terms— Deep Learning, Convolutional Neural Network, 

Remote Sensing, Meta-analysis. 

 

I. INTRODUCTION 

achine learning (ML) is a subset of artificial intelligence 

that has been used in various applications to train a 

system using provided data [1]. The ML paradigm covers 

numerous areas of study, through which a variety of 

algorithms have been introduced [2]. In the past decade, 

various ML methods and computational algorithms have been 

developed to analyze remote sensing (RS) data [3]. In a survey 

of the ISI Web-Of-Science (WOS) database, Scheunders, et al. 

[2] report that between 2004–2015 about 60,000 papers 

applying ML in an RS context were published, of which 

10,000 applied classification algorithms and 3,000 applied 

regression models. Given recent developments in RS data 

acquisition technologies and the rising diversity of objectives 

capable of being resolved, the use of ML in RS applications is 

expected to increase [4].  

Machine learning methods in the context of RS cover a vast 

range of applications, including land use and land cover 

(LULC) classification, change detection, object detection, 

feature selection, and extraction etc. [2]. LULC, in particular, 

benefits from advancements in ML methods [5]. The growing 

number of satellite platforms with various revisit times has 

increased the ability to capture natural accurately, and human-

made changes to the Earth's surface [6], and ML methods have 

increasingly been used to address related change detection 

 
affiliations. 

problems [7]. Similarly, the development of high spatial 

resolution instruments installed on airborne and spaceborne 

platforms has resulted in an increase in applications of ML for 

special object detection [8]. ML also plays a vital role in 

dimensionality reduction [9] of hyperspectral images 

composed of many essential features for several scientific 

applications [10]. Other roles ML plays in RS applications 

include spectral unmixing, regression, image fusion, etc. [1]. 

Within each category, several ML algorithms have been 

introduced based on sensor type, study objective, ancillary 

data, and limitations such as spatial resolution and training 

sample size [11]. The applicability and effectiveness of these 

algorithms have been demonstrated in many geosciences and 

RS tasks [12].  

The most commonly used ML algorithms in RS are 

artificial neural networks (ANN), support vector machines 

(SVM), decision trees (DT), and ensemble methods, such as 

random forest (RF) [13]. Each of these methods carries 

specific advantages. For example, SVM can best tackle high-

dimensionality problems and limited training data [14], while 

RF does not require the fine-tuning of a large number of 

hyper-parameters and can easily be used for both simple and 

complex computations [15, 16]. These two methods share the 

advantage of lower computational complexity and higher 

interpretability capabilities [13].   

Over the past few years, however, there has been an 

ongoing shift toward using deep learning methods in ML 

applications [17]. Deep learning (DL), which is characterized 

by neural networks (NN), is the fastest-growing trend in big 

RS data analysis and is regarded as a breakthrough technology 

[18]. DL has been used in many areas of research such as 

speech recognition [19], stereo vision [20], biomedicine [21], 

time-series analysis [22], agriculture [23], and medical image 

recognition [24]. Although DL has the disadvantages of 1) 

being a "black box" naturally, which mitigates its 

interpretability, and 2) requiring greater amounts of training 

samples compared to other ML methods, it has become a 

hotspot in the realm of ML and has been approved by many 

researchers in the geoscience and RS community [25].  

To date, several DL architectures have been introduced, of 

which the stacked autoencoder (SAE), convolutional neural 

network (CNN), Generative Adversarial Network (GAN), 

deep belief network (DBN), and recurrent NN (RNN) have 

become mainstream [26]. Of these DL networks, CNN is the 

most popular and the most published [27]. Along with the 

development of DL methods, CNNs have emerged as an 

incredibly powerful tool by providing both remarkable 

performances in image processing and the ability to work in a 
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wide variety of applications in the vision community [28]. In 

the last few years, biologically inspired CNNs have emerged 

and proven to be effective in a diverse range of fields to which 

image processing is fundamental, from social media [29] to 

precision medicine [30] and robotics [31].  

A particularly beneficial characteristic of CNNs is data 

processing in multiple arrays and automatic feature extraction 

ability, which has received acknowledgment in the RS 

community [17, 32]. Moreover, the inherent characteristics of 

CNNs, such as local connectivity and weight sharing, allow 

this DL method to tackle the drawbacks of artificial feature 

extraction by considering the 2D structures and reducing 

network parameters using convolutional filters [28]. CNN-

based approaches have benefited from the recent exponential 

increase in RS technologies that includes various image types 

(optical, RADAR, temperature and microwave radiometer, 

altimeter, etc.) with complex characteristics (high 

dimensionality, multiple scales, and non-stationary) [33]. 

CNNs are composed of a set of blocks that makes them 

particularly suitable for image analysis. The multiple layers of 

operations, such as convolution, pooling, and nonlinear 

activation functions, allow for the hierarchical extraction of 

high-level abstract features [27]. Therefore, CNNs have been 

successfully used in image preprocessing, scene classification, 

pixel-based classification and image segmentation, and object 

detection [34, 35]. For example, CNNs have been used in 

numerous studies to improve image classification results [32, 

36-38], to extract buildings and non-building regions 

automatically [39], and to detect areas of build-up [40]. 

Scarpa, et al. [41] proposed and analyzed CNN-based methods 

to estimate spectral features when optical data are missing. In 

another example, a CNN regression was proposed to develop a 

model applicable to hyperspectral imagery for estimation of 

concentrations of phycocyanin and chlorophyll-a [42]. CNNs 

also have been used in OpenStreetMap Data Quality 

Assessment [43], oil spill segmentation [44], ship position 

detection and direction prediction [45], multimodal RS image 

registration [46], road extraction [47], and many other areas of 

study.  

Several related review papers have been published due to 

DL methods' significant performance over other state-of-the-

art methods in RS. For example, a review by Ball, et al. [27] 

focused on the theories, tools, and challenges of using DL 

algorithms in the RS community. In another review, Zhang, et 

al. [35] and Zhu, et al. [18] summarized recent advances in DL 

methods and discussed related challenges in RS applications. 

Following the explosive growth of new DL methods in 

different RS applications and their striking achievements, 

some review papers have focused on studying the task-based 

reports of DL methods [48-52].  Liu, et al. [53] presented a 

systematic review of the application of DL techniques in the 

field of pixel-based image fusion. A recent comprehensive 

review by Tsagkatakis, et al. [26] was conducted on RS image 

enhancement, including super-resolution, denoising, 

restoration, pan-sharpening, and fusion.  

Most of the existing review manuscripts covering major DL 

concepts related to RS applications consider all DL 

architectures. Early efforts reviewing CNNs generally was 

performed by Rawat and Wang [54] in which the authors 

focused on the application of CNNs in image classification 

tasks and debated their rapid advancement in recent years and 

the contribution CNNs had made to DL developments. Many 

other articles provide readers with a summary of the CNNs' 

basic concepts in different applications such as radiology [55], 

biology [56], and action recognition [57].  

The majority of the CNN review papers are descriptive, 

often with no quantitative assessment, and tend to focus on 

applications other than remote sensing. Accordingly, this 

study's main objective is to describe and discuss the RS-based 

applications of CNN through a meta-analysis of published 

papers and provide remote sensing experts with a "big picture" 

summary of current research in this field. As a whole, the 

contributions of this paper are: (1) Whereas almost all the 

review papers in RS applications cover all related DL network 

structures, this paper reviews the publications dedicated to the 

use of CNNs for RS applications alone and summarizes 

hotspots based on the paper frequency and accuracy. 

Moreover, it discusses trends and specific setups for different 

sub-tasks. (2) This review defines a complete framework for 

professionals and even non-experts, outlining ongoing 

research and the architectures that receive the most attention in 

each application.  

To fulfill the proposed meta-analysis task and to construct a 

database of case studies, more than 400 peer-reviewed articles 

are reviewed, and many other papers are cited. To create a 

context for what follows, we first summarize the performed 

systematic literature search query using the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses 

in Section 2. After presenting the general characteristics of the 

studies in Section 3, the accuracy assessment of different CNN 

setups is given in Section 4. Finally, in the last section, 

concluding remarks are presented.  

II. METHODS 

A systematic literature search query was performed using 

the Web of Science (WoS) to identify relevant articles for this 

comprehensive review. The WoS is one of the biggest 

bibliographic databases covering scholarly literature from 

approximately any discipline. Notably, the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) methodology was followed for study selection 

[58]. After some trials, a title/abstract/keyword search was 

performed in WoS using a search query of: "convolutional 

neural network*" OR "CNN" OR "FCNN" OR "fully 

convolutional neural network*" OR "deep learning" for the 

title and "Remote sensing" for abstract/keyword, checking to 

include papers that used data from the most common remote 

sensing platforms (search date: June 12, 2020). This research 

resulted in 1038 papers, which served as the basis for further 

paper surveys. 

Of the 1038 initial number of studies, 664 papers were 

related to the journals, and the remaining were majority 

proceedings papers. Conference papers were excluded from 

our meta-analysis due to their (typically) lower academic rigor 
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level relative to peer-reviewed articles. When investigating the 

664 Journal papers in detail and after eligibility assessment, 

248 papers were determined unrelated to this meta-analysis 

and removed. The journals with more than five papers are 

listed in Table I.  

 

TABLE I. REMOTE SENSING JOURNALS USED TO COLLECT RESEARCH STUDIES FOR THIS LITERATURE REVIEW. 

Journal Publication 
Impact factor 

(2019) 

# 

papers 

Remote Sensing MDPI 4.118 107 

Transaction on Geoscience and Remote Sensing IEEE 5.63 36 

Geoscience and Remote Sensing Letters IEEE 3.534 37 

ISPRS Journal of Photogrammetry and Remote Sensing Elsevier 6.942 28 

Journal of Selected Topics in Applied Earth Observations and 
Remote Sensing 

IEEE 3.392 24 

International Journal of Remote Sensing Taylor & Francis 2.493 21 

Journal of Applied Remote Sensing SPIE 1.344 20 

IEEE ACCESS IEEE 4.098 16 

SENSORS MDPI 3.510 16 

Remote Sensing Letters Taylor & Francis 2.024 14 

ISPRS International Journal of Geo-Information MDPI 2.350 9 

Remote Sensing of Environment Elsevier 8.218 7 

 

 

 
Fig. 8.  PRISMA flowchart demonstrating the selection of studies. 

 
The 416 eligible papers were included in the meta-analysis 

and described using the following: title, year, journal, citation, 

first author institution's country, remote sensing data, study 

type, application, CNN model, processing unit, training 

sample, area of the data, spatial resolution, geographical 

coverage, framework, learning strategy, number of layers, 

dataset, CPU/GPU run, processing time, convolutional kernel 

dimension, accuracy, and accuracy metric. A summary of the 

literature search is demonstrated in Fig. 1. 
 

III. RESULTS AND DISCUSSION 

A. General characteristics of studies 

There has been a steep upward trend in the use of CNNs 

from 2014, the point at which the first RS-related application 

of CNNs was introduced [59] (Fig. 2). The exponential trend 

of annual publication frequency peaks in 2019 and includes 

more than one-third of the database articles. The expansion in 

the use of CNNs continued in the current year (2020). In the 

first half of 2020, the number of papers published exceeds the 

number of published papers for the equivalent period in 2019. 

 

 
Fig. 2. Annually and cumulative frequency of CNN studies in remote sensing 

applications. 
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Fig. 3. Distribution of research institutions, according to the country reported in the article. The countries with more than five studies are presented in the figure. 

 

 

The first authors' associated research institutions' 

geographical distribution is shown in Fig. 3. Studies were 

conducted in 34 different countries from six continents, the 

majority of which are based in Asia (72%), Europe (15%), and 

North America (9%). Among the different countries, most of 

the contributions were carried out in China, with about 63% of 

total studies, followed by the USA (7%) and Germany (4%). 

Further analysis revealed that only six countries had published 

more than ten papers and thirteen countries contributed only 

one paper. 

Fig. 4 demonstrates the usage frequency of CNNs in a vast 

range of applications. Of the reviewed 416 articles, LULC was 

the most frequented application (with about 155 studies), 

followed by object detection, scene classification, and urban 

studies with 68, 32, and 25 studies, respectively. The 

remaining articles include specific applications in crop- (25), 

disaster- (14), cloud- (12), tree- (10), forestry- (6), and water- 

(5) related research. Some other applications also benefited 

from CNNs, clustered in Fig.4 as "other" as the number of 

associated articles was fewer than five, including sea ice, 

agriculture, and wetland mapping (Fig. 4). 

 
Fig. 4. Number of Studies per each remote sensing application. 

 

B. Sensors and data types 

The first published RS-related work using CNNs occurred 

in 2014 for vehicle detection using multispectral satellite 

images [59]. Since then, CNNs have been applied in research 

using numerous RS data types (see Fig. 5). The largest share 

of this research has used multispectral satellite images, making 

up 51% of the database, mainly Landsat archives, Worldview-

4, and Quickbird-2 imageries. Since early 2016, CNNs have 

been used for hyperspectral data analysis in about 12% of the 

studies. Through the development of CNN architectures and 

their achievements in research using different types of data, by 

2017, CNNs were increasingly used to analyze other data 
types, including aerial (16%), Unmanned Aerial Vehicle 

(UAV) (6%), RADAR (5%), and Light Detection and Ranging 

(LiDAR) (2%). Almost 7% of the studies have also used a 

combination of different data types.  
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Fig. 5. The usage rate of different remote sensing data (the numbers in 

parathesis shows the number of studies). 

 

C. CNN frameworks and models  

The DL community's framework and library development is 

highly dynamic and offers different possibilities to speed up 

the training process with interactive interfaces [60]. A 

graphical representation of the most used frameworks and 

libraries and their annual publication frequency in CNN 

studies is shown in Fig. 6. The presented libraries provide 

built-in classes of NNs, fast numerical computation, and 

automated gradients for both CPU and GPU. These libraries 

include TensorFlow (Google Brain team), MATLAB 

(MathWorks), Caffe (Berkeley Artificial Intelligence 

Research), Torch (Berkeley Software Distribution), MXNET 

(University of Washington), and Theano (Berkeley Software 

Distribution). A detailed search through the literature revealed 

that TensorFlow is the most significant CNN implementation 

source, with about 43% of total usages. TensorFlow is a free 

and open-source end-to-end deep learning framework for 

numerical computations using data-flow graphs [61]. It is 

designed to be highly portable, running on various platform 

scales, from a single CPU to a GPU or GPUs cluster [62]. 

Built on top of TensorFlow, Keras library has been 

employed for CNN implementation as well. Keras, which 

supports almost all models of CNNs, was executed on both 

CPU and GPU. The second most used framework is Caffe 

(22% of studies). Caffe is well suited for machine vision and 

forecasting applications, which permits a network with 

sophisticated configurations [63]. Caffe's specific properties 

include suitability for image processing tasks with CNNs, 

accessibility to pre-trained networks, and easy coding on 

Python and MATLAB [60, 64]. MATLAB, the third most 

used platform for CNN implementation, was utilized in almost 

19% of the studies. MATLAB's beneficial characteristics are 

simplicity, especially for practitioners, various visualizing 

tools, and the capability of deploying models on a variety of 

servers and devices [65]. The remaining libraries include 

Torch (10%), Theano (5%), and MXNET (1%). A comparison 

of the frameworks' annual usage frequency shows that 

TensorFlow and Torch have the steepest growth rates since 

they were introduced for CNN-based RS applications, 

followed by MATLAB with a lower rate of increase. On the 

other hand, Theano reached its peak in 2018, falling in 

numbers with no cases thus far in 2020. Caffe, which was used 

first in 2015, experienced a steep increasing number of usages 

in 2017 and afterward held its position in CNN 

implementations.  

 
Fig. 6. The frequency of the used CNN frameworks and libraries. 

 

To date, different CNN models have been developed starting from 1989 with the introduction of the first CNN-
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based feature encoder, LeNet [66]. Several factors have 

contributed to the development of new CNN models, 

including efficient training on modern processing units, 

introduction of the Rectified Linear Unit (ReLU) activation 

function, availability of new datasets, and innovation related 

to depth and spatial inclusion [67-69]. Fig. 7 shows the 

frequency usage of CNN models used in different problems as 

a backbone architecture or a starting point with the pre-trained 

parameters (i.e., transfer learning). The most frequently used 

model, employed in 33% of studies, was VGG-16 [70], 

followed by ResNet-50 (19%), ResNet-101 (11%) [71], 

AlexNet (10%) [68], and Inception-V3 (5%) [72]. The 

remaining models comprising about 22% of the case studies 

mainly consist of LeNet-5, CaffeNet [64], SegNet [73], 

ResNet-18, VGG-19, and GoogleNet [74]. 

 

 
Fig. 7. Frequency of different CNN models in the article database. 

IV. CNNS FOR DIFFERENT STUDY OBJECTIVES 

A survey among RS-related studies revealed that CNNs 

could be applied to almost any significant RS task, making 

them a promising option for handling various problems. Fig. 8 

shows that 54% of the reviewed papers (225 papers) are 

devoted to classification problems, including LULC and scene 

classification studies. CNNs have been used in several other 

study objectives including object detection (23%), image 

segmentation (7%), data fusion (4%), image super-resolution 

(3%), image matching (2%), image correction (2%), and 

regression (1%). Recently, CNNs have been applied to other 

study objectives, such as image retrieval, prediction, quality 

assessment, and unmixing, making up about 4% of the studies.  

Following the review of the publications in different 

research domains, an in-depth review of different study types 

and their respective finding are provided in the following 

sections. Based on the proximity of the research domains and 

their paper frequency, papers were categorized into three 

distinctive groups (i.e., image classification, object detection 

and segmentation, and others). 

 
Fig. 8. Distribution of study objectives. 

 

A. Classification 

  

The number of classification-based studies focusing on 

different applications (the number of papers is shown in the 

parenthesis) alongside the statistical analyses reported by 

Overall Accuracy (OA) is shown in Fig. 9. Most of the 

classification tasks focused on LULC, scene classification, and 

crop-, urban-, cloud-, and disaster-classification, with about 

52%, 14%, 12%, 5%, 5%, and 4%, respectively. Other 

classification tasks, including agriculture, forestry, wetland, 

and sea ice, comprise about 8% of the total cases but are not 

shown in Fig. 9. The classification accuracy assessment shows 

the maximum average accuracy and the lowest variability for 

cloud studies, with almost 95.5%, followed by scene 

classification with about 95.2%. Urban studies have the lowest 

average accuracy among the applications, with an average OA 

of 90%.  

As mentioned earlier, many CNN classification studies are 

devoted to LULC applications, potentially because of the 

extensive scope of relevant datasets available for training the 

networks. The papers in this group mostly focused on 

hyperspectral image classification by using benchmark 

datasets, including Salinas (Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) sensor), Pavia University (Reflective 

Optics System Imaging Spectrometer (ROSIS-03) sensor), and 

Indian Pines (AVIRIS sensor) [75]. The second most studied 

classification task is scene classification, which is generally 

defined as a procedure to categorize a specific scene theme, 

e.g., a part of a forest, an agricultural landscape, a river, etc. 

[76]. A majority of these studies apply high-resolution remote 

sensing images because of the availability of many large-scale 

high-resolution datasets in recent years [77]. In scene 

classification, datasets most commonly used are the UC-

Merced dataset [78], the aerial image data set (AID) [79], and 

NWPU-RESISC 45 (Remote Sensing Image Scene 

Classification) datasets [80]. 
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Fig. 9. OA distribution of CNN classification studies based on different 

applications. 

 

 
Fig. 10. Distribution of overall accuracies for different data types. 

 

A detailed survey of the article database shows that about 

46% of classification studies used spaceborne multispectral 

remote sensing images for classification tasks (Fig. 10). The 

most frequent multispectral satellite data sources are Landsat 

8, Gaofen 1-2, and Sentinel 2. The least used data type is 

related to LiDAR datasets, making up about 2% of the whole 

database. The remaining types of RS data are aerial images 

(18%), hyperspectral (13%), UAV (7%), multi-data (7%), and 

RADAR (6%). For the aerial images, the Vaihingen Semantic 

Labelling dataset [81] and Potsdam Semantic Labelling 

dataset [82] were the most-used datasets, and for hyperspectral 

images, the most-used datasets were the Salinas, Indian Pines, 

and Pavia University datasets. In recent years, UAV data has 

been deployed in some CNN classification tasks, and it is 

expected that their usage will increase because the cost of 

UAV has lowered in recent years [83]. The capability of 

automatic data acquisition using UAV has made them a 

convenient tool for some classification tasks such as 

geological mapping [83], crop yield prediction [84], and 

wetland mapping [85]. Integration of different remote sensing 

data types (i.e., multi-data) is beneficial for different tasks 

such as tree species diversity mapping using LiDAR and high-

resolution multispectral images [86], soybean yield prediction 

by fusion of weather data and MODIS products [87], and 

coastal land cover classification by integration of optical and 

RADAR satellite images [88].  

A statistical analysis of different data types showed that 

using multi-data resulted in maximum average OA (96.2%) 

and lower variability. In the case of single-data research, the 

mean classification accuracy of hyperspectral datasets is the 

highest at 96%, followed by UAV (94.20%), multispectral 

(93.58%), aerial (93.48%), RADAR (92.75%), and LiDAR 

(90.67%). 

 

 
Fig. 11. Frequency and average overall accuracy of CNN classification by 

the spatial resolution. 

 
Fig. 11 shows the average obtained accuracy for CNN 

classification based on the spatial resolution of the remotely 

sensed image dataset and their respective number of published 

papers (the number of papers is written in the parenthesis). 

The papers were categorized based on the spatial resolution 

into very high (<1 m), high (between 1 m and 5 m), and 

medium and low resolution (>5 m).  

Data with a spatial resolution of <5 m (very high and high) 

were used in 63% of the publications, mainly composed of 

studies using 1 m resolution. Based on this analysis, it can be 

concluded that there is an agreement between the mean 

accuracy of the classification and the spatial resolution. The 

mean accuracy for very high and high-resolution datasets is 

90.10% and 92.48%, respectively. The maximum mean 

accuracy is related to datasets with spatial resolutions > 5 m, 

with about 93.82% mean OA. 

A survey among the usage frequency of different CNN 

models for classification tasks revealed that VGG variants 

were the most frequented backbones, followed by ResNet-50 

and AlexNet. In about 52% of the studies, stochastic gradient 

descent (SGD) was used for parameter optimization of the 

CNN models [66, 89], while the remaining studies used 

Adaptive Moment Estimation (Adam) optimizer [90]. 

Moreover, the training process was conducted over 100 

epochs in about 68% of the cases. 

B. Object detection and image segmentation 

As shown in Figure 8, about 30% of CNN's remote sensing 

studies involve image segmentation and object detection tasks. 
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A close inspection of the usage frequency of different sensor 

types in image segmentation-based studies shows the largest 

share use multispectral satellite images (60%), aerial (18%), 

and multi-data (8%). The other articles were devoted to UAV, 

RADAR, LiDAR, and panchromatic images with almost 7%, 

4%, 2%, and 1%, respectively. Open datasets and their 

respective applications significantly influenced these topics by 

providing information related to various land covers. A survey 

among the article database showed that two publicly available 

datasets, including Potsdam Semantic Labelling [82] and 

NWPU VHR-10 [91], established themselves as baseline 

datasets CNN-based image segmentation and object detection. 

They are followed by DOTA (Dataset for Object Detection in 

Aerial images) [91], UC-Merced [78], and the Massachusetts 

buildings and roads datasets [92]. However, to investigate 

method development in large-scale research areas, some 

studies used custom spaceborne datasets. Google Earth was 

the most employed spaceborne data source, followed by 

Gaofen 1-2, Quickbird-2, and Worldview-4. Of all reviewed 

papers for object detection and segmentation tasks, 68% of the 

CNN models are applied to analyze datasets with 1 m or finer 

spatial resolutions. SGD was used as an optimizer in about 

75% of the studies, while Adam optimizer was used in the 

remaining 25%. In 72% of the cases, the number of epochs 

was set less than 100 iterations, and in the remaining cases 

(i.e., 28%), the number of epochs was more than 100.  

An overview of the popular designs in the publications 

showed a focus on Region-based CNN (R-CNN) inspired 

architectures [93] and its series of improvements, including 

Fast R-CNN [94], Faster R-CNN [95], Mask R-CNN [96]. 

The most frequently used model, representing 39% of studies, 

was related to land cover mapping, with other categorial 

applications including agriculture (15%), urban (11%), forest 

(10%), wetland (12%), disaster (3%) and soil (2%). The 

remaining applications comprising about 8% of the case 

studies mainly consist of mining area classification, water 

mapping, benthic habitat, rock types, and geology mapping. 

Concerning the different architectures designed for image 

segmentation and object detection, the VGG variants have 

been the most used backbone models (34%), followed by the 

ResNet family (30%). The Inception, SegNet, LeNet, and 

GoogleNet backbones were much less commonly used. 

C. Other applications 

Along with the above-mentioned conventional applications 

in remote sensing, CNNs have also been applied in other 

research areas such as data fusion, super-resolution, change 

detection, image registration, etc. Because of their specific 

capability of feature extraction and learning, CNNs 

demonstrate an outstanding possibility to delineate the 

relationship between different data, which has been used in 

panchromatic/multispectral data fusion applications [97-99]. 

The first papers that were introduced in this category were 

motivated by the impressive performance of CNNs in a large 

number of closely related super-resolution problems [99, 100]. 

A comprehensive overview of the article database's fusion 

studies shows a trend of using pixel-based processing units 

with residual learning strategy with SGD optimizers mostly 

implemented in MATLAB [101].  

Super-resolution, which aims to enhance spatial resolution, 

is an ongoing research topic in computer vision and remote 

sensing [100]. The latest super-resolution trend focused on 

example (learning)-based techniques, including a training 

phase between low-resolution and high-resolution pairs of 

images [102]. Example-based techniques have seen enhanced 

accuracies by the introduction of CNNs to generic super-

resolution problems [103]. However, RS imageries exhibit a 

different level of complexity than images in other fields such 

as computer vision, which delayed the use of CNNs in RS 

image super-resolution until 2018 by introducing a specific 

super-resolution CNN architecture to adapt with multispectral 

satellite imagery [102]. An overview of the related papers 

shows that all the CNN models were 2D structured in which 

Adam and SGD equally were used for parameter 

optimizations with the epoch numbers ranging from 80 to 600.  

In recent years, deep learning methods have been 

successfully applied in natural image change detection-based 

applications [104]. Previously, different DL-based methods 

have been applied to various change detection tasks such as 

urban dynamics [105], LULC applications [106], or landslides 

[107]. First, CNN models were employed for high-resolution 

remotely sensed image change detection in 2018 using faster 

R-CNN [105] and have gained attention since then. With a 

review of the database, it is observed that most of the studies 

devoted to change detection applications applied a range of 

data types, from spaceborne and airborne optical to RADAR 

images. 

Image registration is a fundamental part of many RS tasks, 

such as image fusion and change detection [108, 109]. Like 

the first study, in 2018, Ye, et al. [108] fine-tuned the VGG-16 

model using custom RS data to obtain deep CNN features to 

build an automatic registration algorithm. CNNs showed 

powerful performance in the registration of RGB and infrared 

[110], SAR [111], multimodal [46], and aerial remote sensing 

images [112].  

Another active area that uses CNNs is image correction, 

which includes categories such as image denoising [113], 

image reconstruction [114], and image compensation [115]. 

CNNs were introduced to this field in 2017 to build a 

nonparametric color-correcting scheme for multispectral 

images [116] and the year after that for removing haze from 

remote sensing images [117]. Overall, eight studies in the 

article database used CNN models for correction purposes, of 

which most of them were applied to multispectral satellite 

images.  

Besides the above applications of CNNs in remote sensing 

image analysis, CNNs have also been applied in other areas, 

including regression [42], image retrieval [118], prediction 

[119], quality assessment [120], and hyperspectral unmixing 

[121]. CNN models have achieved outstanding performances 

in each of these applications by presenting a novel way to 

solve them. Considering the high-accuracy of CNN, it is 

expected they will continue to find their use in other research 

areas. 
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V. CONCLUSIONS AND PROSPECTS 

This review presents a comprehensive review of CNNs in 

RS data analysis. It summarizes their progression and 

advancement since their emergence in the RS field in terms of 

general characteristics and technical specifications. Based on 

the detailed analysis of the article database, we conclude that: 

1) There is an increasing trend of using CNNs in RS 

applications beginning in 2014, and since then, their use has 

expanded into many new research areas. 

2) The use of CNNs in the context of RS started through its 

employment to analyze multispectral images. As CNNs were 

increasingly used for efficient problem solving based on 

different data types and platforms, researchers began to 

incorporate CNNs in their projects using other data types such 

as LiDAR and RADAR. 

3) Advances in new and freely open-source frameworks and 

libraries with highly dynamic interfaces allowed the RS 

community to research new study objectives. The survey 

among different frameworks identifies TensorFlow as the 

most used framework. Based on the yearly usage frequency, it 

is expected to hold its position in the coming years. 

4) A survey among the CNNs' parameters shows that SGD 

and Adam are the most frequented optimizers, and, in most 

cases, the number of epochs was set more than 100 iterations. 

5) Classification tasks using various data types and sensors 

focus on most of the studies (54%) using CNNs. Classification 

results have shown to be better when using multisource data 

and using images with a spatial resolution of more than 5 

meters. As classification tasks require large quantities of 

training samples, researchers tackled this problem by 

improving their training dataset's efficiency using a transfer 

learning strategy. For this aim, most of the case studies used 

VGG variants. 

6) We could not further analyze and summarize the 

processing time because it was neither available nor specified 

if the entire time is for optimizing meta-parameters or not. 

However, in contrast to the general belief, numerous cases 

report a training time of less than one hour. It is generally true 

that deep networks need considerably more processing time 

for training (though the testing/simulation process is generally 

quick). However, with continuous increases in processing 

power, deep networks are readily usable, particularly by 

incorporating both CPUs and GPUs. It would be interesting to 

evaluate the time saved by using pre-trained networks and 

fine-tuning them, but currently, there were no statistics 

reported to extract conclusive information. 

Based on the 416 reviewed articles in this survey, it is 

evident that CNNs have pervaded every aspect of remote 

sensing image analysis. This has happened very fast as over 

96% of the contributions, a total of 400 papers, were published 

starting from 2017. For example, the first application of CNNs 

in object detection studies happened in 2014, whereas they 

have been used for image registration tasks in 2018. However, 

the growth rate of applying CNNs to different tasks and data 

types is challenged by the lack of large training datasets. 

Although CNNs can be considered newly introduced 

algorithms in RS, they are now clearly among the top 

performers in most RS applications. Despite this progress, the 

study of CNN-based approaches is currently at its beginning 

stages, and there is still much potential for new developments, 

particularly in applications such as hyperspectral unmixing, 

image retrieval, and image quality assessment. Another 

striking conclusion is that a few studies are conducted in new 

application areas. As a result, there is a gap in examining 

different aspects of CNNs. Therefore, in order to get the best 

results, researchers should consider investigating new CNNs 

architectures. In this perspective, the design of new network 

architectures for specific tasks, the generation of large-scale 

datasets for network training, the integration of conventional 

techniques according to the RS data, the advancement and 

analysis of existing networks concerning their architectures, 

optimization techniques, and the regularization strategies are 

still open topics which are in close relation with each other 

and should be jointly considered. 
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