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Abstract 8 

The object-based against pixel-based image analysis approaches were assessed for lithological 9 

mapping in a geologically complex terrain using the VNIR bands of WorldView-3 (WV-3) 10 

satellite imagery. The study area is Hormuz Island, southern Iran, a salt dome composed of 11 

dominant sedimentary and igneous rocks. When performing the object-based image analysis 12 

(OBIA) approach, the textural and spectral characteristics of the lithological features were 13 

analyzed by the use of support vector machine (SVM) algorithm. However, in the pixel-based 14 

image analysis (PBIA), the spectra of lithological end-members, extracted from imagery, were 15 

used through the spectral angle mapper (SAM) method. Several test samples were used in a 16 

confusion matrix to assess the accuracy of classification methods quantitatively. Results 17 

showed that OBIA was capable of lithological mapping with an overall accuracy of 86.54%, 18 

which was 19.33% greater than the accuracy of PBIA. OBIA also reduced the salt-and-pepper 19 

artifact pixels and produced a more realistic map with sharper lithological borders. This 20 

research showed limitations of the pixel-based method due to relying merely on the spectral 21 

characteristics of rock types when applied to the high-spatial-resolution VNIR bands of 22 

WorldView-3 imagery. It is concluded that the application of an object-based image analysis 23 
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approach obtains a more accurate lithological classification when compared to a pixel-based 24 

image analysis algorithm.  25 

 26 
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1. Introduction 29 

Producing the lithological maps has undergone continuous evolution associated with 30 

technological improvements in related fields. At the current time, advances in sensor 31 

technology and developments in image processing approaches are the two main improvements 32 

in collecting geological data and lithological mapping. Many researchers have recently used 33 

multispectral data such as thematic mapper (TM), operational land imager (OLI), and advanced 34 

spaceborne thermal emission and reflection radiometer (ASTER) to extract information about 35 

rocks and alterations as well as their spatial distribution (e.g., Naghadehi et al., 2014; Ducart 36 

and Silva, 2016; Ibrahim et al., 2018; Noori et al., 2019; Bolouki et al., 2020). Although the 37 

pixel size of 30 m in Landsat and ASTER SWIR imagery is not appropriate for producing a 38 

large scale and accurate geological map, they are beneficial for reconnaissance mapping to 39 

guide geologists for more detailed field observations and mappings (Sun et al., 2017; Testa et 40 

al., 2018; Bedini, 2019; Rajendran and Nasir, 2019). However, the Worldview-3 (WV-3) 41 

satellite has recently provided alternative operational data that could efficiently be applied for 42 

large-scale mapping of terrestrial features, including lithological units. 43 

WV3 benefits from significant improvements such as high spatial resolution (1.24 m in VNIR 44 

and 3.7m in SWIR bands), more spectral bands (16 multispectral bands), and high geometric 45 

and radiometric accuracies associated with high radiometric resolution (11-bit in VNIR and 46 
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14-bit in SWIR bands) than the ASTER data. As a result, WV-3 data have been recently utilized 47 

by remote sensing geologists in various disciplines.  48 

Mars (2018) applied band ratios and Logical Operator Algorithms (LOAs) on data of WV-3 to 49 

map goethite, calcite and dolomite, epidote-chlorite, and muscovite, using the absorption 50 

features of Fe3+, CO3
2–,  Fe- Mg-OH, and Al-OH, respectively, in Mountain Pass, California. 51 

Ye et al. (2017) assessed the capabilities of WorldView-3 data compared to the ASTER and 52 

OLI imagery for lithological mapping using a support vector machine (SVM) algorithm. They 53 

estimated higher accuracies of 17% and 14% for WV-3 data outputs than, respectively, ASTER 54 

and OLI data, and attributed it to the higher spatial resolution of WV-3 bands. Sun et al., (2017) 55 

enhanced the alteration minerals in the Pobei area of Xinjiang Uygur Autonomous Region, 56 

China, using short wave infrared data of WorldView-3. These authors proposed five principal 57 

component analysis (PCA) models and ten mineral indices for enhancing the alteration 58 

minerals. The WV-3 and ASTER TIR data were applied by Bedini (2019) for mineral mapping 59 

in the Rodalquilar deposits, Spain. He expressed that the geographic dispersal of goethite was 60 

successfully enhanced by combining all VNIR bands and band-1 of the SWIR region of WV-61 

3 and suggested that ASTER TIR data could map quartz-rich zones. 62 

The primary remote sensing contexts such as training data and statistical assumptions are used 63 

to classify images by running algorithms such as supervised vs. unsupervised, parametric vs. 64 

non-parametric, per-pixel vs. sub-pixel, and pixel-based image analysis (PBIA) vs. object-65 

based image analysis (OBIA) (Thapa and Murayama, 2009). To date, most geologists have 66 

used pixel-based methods to map rock units, in which, they classified lithology based on per-67 

pixel or sub-pixel formats without considering the contextual data for neighboring pixels (e.g., 68 

Hewson et al., 2017; Ayoobi and Tangestani., 2018; Liu et al., 2018). In per-pixel classification 69 

algorithms, each image pixel is independently assigned to a unique lithology if the spectra of 70 

pixel and the lithological end-member are highly suited. (Elnagheeb and Bromley, 1994).  Two 71 
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well-known algorithms being used for per-pixel mapping of geological targets are spectral 72 

angle mapper (SAM) (Kruse et al., 1993) and spectral feature fitting (SFF) (Clark and Roush, 73 

1984). However, they lead to ignoring the spatial correlations between pixels of the imagery. 74 

Moreover, spatial information can supply extra information related to the shape and size of 75 

different structures, which could help identify and classify surface features with high accuracy. 76 

Blaschke (2010) has concluded that the object-based image analysis (OBIA) approach 77 

delineates a remarkable classification method for remote sensing objectives. In OBIA, several 78 

attributes or features are associated with each of the image objects, and these attribute values 79 

can be derived from the imagery. The selection of an optimal set of features for the 80 

classification of unknown image objects is a crucial step and is very important for designing a 81 

useful classification system (Cai et al., 2018). 82 

Recently, the OBIA approach has extensively been applied to enhance and map the Earth's 83 

surface features.  For instance, Petropoulos et al. (2012) investigated OBIA and SAM methods 84 

for land use/land cover mapping in a heterogeneous Mediterranean land using Hyperion 85 

imagery. They estimated a higher overall accuracy and Kappa coefficient for OBIA results. 86 

Additionally, the forest waste due to the gold excavation in Guyana was evaluated by 87 

Mengisteab et al. (2014) using OBIA on the Landsat data, during which, they effectively 88 

enhanced and specified the minor mining activities at the area.  89 

Moreover, few articles have already been published on the geological utilizations of OBIA. 90 

Van der Werff et al. (2007) applied Observatoire pour la Mineralogie, l'Eau, la Glace et 91 

l'Activite (OMEGA) data for geological mapping on Mars using an object-based processing 92 

method. Grebby et al. (2016) illustrated that the object-based image analysis method could 93 

successfully map the rock types in an area covered by vegetation. They applied the Airborne 94 

LiDAR (Li) and Airborne Thematic Mapper 9 (ATM9) data and discriminated chalky marl, 95 

pillow lava, dyke, and alluvium-colluvium deposits. Aufaristama et al. (2017) mapped the 96 

https://www.researchgate.net/scientific-contributions/2120722824_Jie_Cai?_sg%5B0%5D=kiAUAsXq7au_HINjnoj7hKIqsynKOBNOnUR-XHrrbXlAYkO29Hkf2ZECwdv7pzebWrocPnk.1GS-dWaX0IzGVXdF0YJOSuNTwHB104qH_r3FlBajQNW-bxHGyQxaPq0NMi1JTvEJ31V6hVwGyfjlL0_vv7XXIw&_sg%5B1%5D=1iMF8hVLwhFfgGujQ_zY2cTWfHOsn2vqeSrTgOn0gpikjjiCGGDyJC2d2ES71hDIEGhikX4.jFNtRbi9AOOA8YERfeNMsyrtGFejJjh3rkWLNX8jCgJrP8TKmLy3BvqZAks1StViMHDyYUyO_9ulKh0QinZrhQ
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Krafla volcanic rocks of the Icelandic volcanic zone by the use of OBIA and spectral angle 97 

mapper (SAM) methods on Landsat 8 and SPOT-5 images. They revealed that SAM was 98 

successful in producing detailed lava surface morphology maps; however, it partly led to a salt-99 

and-pepper effect. They concluded that despite the more efficient results of the OBIA approach, 100 

it is sensitive to the objects derived from image segmentation. The mapping of geological 101 

structures such as lineaments and faults was analyzed by the OBIA method in southwest 102 

England (Yeomans et al., 2019) using the high-resolution airborne geophysics and LiDAR data. 103 

They suggested that the OBIA method is highly effective for lineament detection.  104 

An overview of the published articles indicated that geologists have conventionally used PBIA 105 

methods for enhancement and identification of rock types, methods that are generally 106 

performed based on the spectral characteristics of desired features. Unlikely, in the object-107 

based image analysis approach, the segmentation of image data into homogeneous and 108 

consistent segments is a prerequisite for classification (Hay and Castilla 2008; Lang et al., 109 

2008; Blaschke 2010). The spatial dimensions, including parameters such as distances, 110 

neighborhoods, and topologies, are essential in the OBIA approach, which is a primary reason 111 

for an increase in its usage in recent years (Benz et al. 2004; Blaschke et al. 2004). 112 

Despite the advantages reported for the OBIA approach (Castillejo-González et al., 2009; 113 

Petitjean et al., 2012; Matton et al., 2015), rare publications are available on its performance 114 

on the WV-3 data for discriminating lithological feature. This paper investigated the potential 115 

of an object-based approach (support vector machine) and compared it to a pixel-based 116 

approach (spectral angle mapper) for classification and information extraction of lithological 117 

units in Hormuz Island, southern Iran. This island is a geologically salt dome, well-known for 118 

of its particular setting and varying types of exposed rocks and minerals. Considering that the 119 

VNIR bands of WorldView-3 can detect the dominant spectral features of rock outcrops of the 120 

study area, this data set was applied for this research. The classification accuracies were 121 
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subsequently analyzed and compared using the parameters of confusion matrices and the 122 

Kappa coefficients.  123 

2. Geological Setting 124 

The study area, Hormuz Island, is an Iranian island in the Persian Gulf with an oval shape and 125 

a total area of about 45 km2 (Fig. 1). A concentric structure shown at the central part of the 126 

island contains salt, gypsum, and anhydrite (Elyasi et al., 1975), surrounded by salt rocks. The 127 

salt rocks contain abundant fragments of black shale, black and white dolomite, limestone to 128 

sandy limestone, iron oxide-rich strata, as well as outcrops of igneous rocks dominantly 129 

consisting of tuff, rhyolite, and trachyte (Sadat Faramarzi et al., 2015). Stocklin (1972 and 130 

1974) suggested that the Hormuz salt plug's diapirism has moved the vast enclaves of igneous 131 

rocks to the surface, now occurring as isolated outcrops.  132 

An iron oxide-rich band surrounded by young sediments wraps around the island. Alluvial 133 

deposits that have been demolished from upstream formations are dominantly outspread in the 134 

northern half of the Island (Fig. 1), and expand as small patches in other parts. The Hormuz 135 

ochre is the most significant mine on the island, with a reservoir of about 390,000 tons (Yazdi 136 

et al., 2014). In terms of quality and applications in industry, this red-colored earth pigment is 137 

considered a unique raw material (Aqanabati, 2006). 138 
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Figure 1. The study area in Iran (a), and in 1:250,000 geological map (Fakhari (1988) (b). 139 

3. Materials and Methods 140 

3.1. Overview 141 

The recently launched WV-3 is a high spatial and spectral resolution satellite that operates at a 142 

height of near 617 km. This satellite provides one panchromatic and eight multispectral bands 143 
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in the VNIR region, eight bands in SWIR region, and 12 CAVIS (Clouds, Aerosols, Vapors, 144 

Ice, and Snow) bands with pixel sizes of, respectively, 0.31 m, 1.24 m, 3.7 m, and 30 m. 145 

The VNIR data of WorldView-3, utilized in this study, was acquired on June 16, 2016 146 

(www.worldview3.digitalglobe.com). These data were firstly corrected for likely geometric 147 

and atmospheric errors, and subsequently, were applied in PBIA and OBIA approaches by the 148 

use of SAM and SVM algorithms for classifying the lithology of Hormuz Island.  149 

The WV-3 level 2-A data have already been calibrated and corrected for radiometric and 150 

geometric inaccuracies. The datum WGS-84 was used to geo-referencing applied data to UTM 151 

zone 40-north projection. The data were also atmospherically corrected using the FLAASH 152 

model, available in ENVI software, version 5.3. The effects of seawater and tidal zone on the 153 

images were eliminated by applying a masking method. Data processing was supported by 154 

extensive field sampling combined with petrographic and spectroscopic studies to identify 155 

mineralogy and lithology of rock types. Finally, the accuracy of results was assessed by the use 156 

of field criteria and confusion matrices.  157 

 3.2. Field sampling and laboratory studies 158 

According to the field observations, spectroscopy, petrography, and X-ray Diffraction (XRD) 159 

studies, the rock units were classified into five groups, including 1) mixture of red soil, gypsum, 160 

and anhydrite, 2) mixture of red soil, tuff and anhydrite, 3) white rhyolite tuff, 4) diabase and 161 

volcanic tuff, and 5) marl. The validation sites of these lithological features were identified, 162 

and 5-10 spectra in the range of 400 nm to 2500 nm were measured for each collected sample 163 

using an ASD FieldSpec spectrometer, in the Department of Geography, Bowling Green State 164 

University, the USA, which were subsequently averaged for each lithology. The pictures of 165 

hand samples and their averaged spectra, resampled to the VNIR bands of WV-3, are shown in 166 

Figures 2 and 3. Hormuz Island is dominantly formed of red soil and salt rock (Figs. 2 (a-b-167 

k)). The red color of soil is due to the extensive occurrence of hematite, which reduces the 168 

http://www.worldview3.digitalglobe.com/
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center's amount and the extent to the margins of the island. The major absorption features of 169 

red soil and gypsum in their high-resolution spectra are in 1900 nm attributed to the H2O 170 

vibration in anhydrite and gypsum, and 800 nm, because of the charge-transfer effect of ferric 171 

iron (Hunt, 1980) (Figs. 3 (a-b)). The second most dominant rock unit is red soil with large 172 

amounts of tuff and less anhydrite (Figs. 2 (b-e-k)). The tuffaceous rocks include rhyolite tuff, 173 

alkaline rhyolite tuff, and dacite tuff (Figs. 3 (a-b)). Microscopic studies showed that tuffaceous 174 

rocks consist mainly of quartz, alkaline feldspar, muscovite, chlorite, and rare epidote and 175 

goethite, which are the results of degradation of ferromagnesian minerals (Mahyari, 2016). 176 

The measured spectra of white rhyolite tuff displayed an absorption in 800 nm for charge 177 

transfer effect of Fe3+ (Hunt, 1980) and additional features in 2160 nm and 2330 nm attributed 178 

to vibrational modes of Al–OH and Mg–OH (Salisbury and Hunt, 1974) (Figs. 3 (a-b)). 179 

Moreover, the diagnostic absorption features of diabase in 400-500 nm and 650-800 nm could 180 

be attributed to the charge transfer effect of Fe-O (Hunt, 1980). Similar spectral properties of 181 

this rock type in 2200 nm and 2210 nm are due to Mg-OH vibrational processes (Segal, 1983) 182 

(Figs. 3 (a-b)). The carbonate interlayers are observed in marl outcrops of the Mishan 183 

Formation (Fig. 2 (h)) and also are dispersed western and southwestern the island within a 184 

sequence of salt and gypsum. The high-resolution spectra of marl showed significant 185 

absorptions in 2000 nm and 2130 nm (Figs. 3 (a-b)) due to Al-OH (Huang and Kerr, 1960) and 186 

an insignificant absorption feature in 1900 nm, for H2O (Hunt, 1980) (Figs. 3 (a-b)).  187 

 188 
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Figure 2. Hand samples of; a) salt rock, b) iron oxide, c) rhyolite, d) diabase, e) green tuff, f) 189 

basalt, h) marl, k) iron soil, and m) volcanic tuff 190 

 191 

 192 

 193 

 194 

 195 
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Figure 3. a) High-resolution spectra of rock samples, b) spectra of rocks resampled to the 196 

VNIR bands of WV-3. 197 

3.3. Pixel-Based Image Analysis (PBIA) 198 

PBIA is a spectrum space method that classifies the imagery by finding the analogy of a 199 

reference spectrum to that of a target (Richards, 1993). Spectral characteristics of desired 200 

materials play an essential role in their detection, identification, and classification. The 201 

appropriate spectra are typically selected from spectral libraries or field samples and are 202 

imported to an algorithm. Figure 4 shows a general workflow of the PBIA approach; its 203 

practical procedure is described in subsections “end-member selection” and “classification." In 204 

cases where no information is available for a class, the spectral measures could be examined 205 

on a single signature vector basis to determine the spectral similarity between the target and 206 

the reference. This commonly is applied for discrimination and identification of specific 207 
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features, but not for classifying an imagery (Kruse et al., 1993). Moreover, these references are 208 

efficient only if compared with the spectral features are true characteristics of desired materials. 209 

 210 

Figure 4. Flowchart of the PBIA approach (PBIA = pixel-based image analysis; WV-3 = 211 

worldview-3; SAM = spectral angle mapper; SID = spectral information divergence; MF = 212 

matched filtering; MTMF = mixture tuned matched filtering, ML = maximum likelihood, SFF 213 

= spectral feature fitting, LSU = linear spectral un-mixing)  214 

3.3.1. End-member selection  215 

A reference spectrum or end-member, which represents the known spectral class, should 216 

typically be selected and put into the SAM algorithm when analyzing the desired satellite data. 217 

The end-members are generally selected from spectral libraries or are extracted from applied 218 

imagery. Since the image spectra involve the atmospheric conditions of the applied data set, it 219 

is suggested that reference spectra from imagery are usually more valid for detecting the targets 220 

than those selected from libraries (Wang et al., 2004). On the other hand, the spectra extracted 221 

from imagery do not show subtle spectral features, as is evident in reference to spectra of 222 

spectral libraries (Wang et al., 2004). In this study, six reference spectra of lithological features 223 
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were directly extracted from WV-3 imagery (Fig. 5) using the Z-profile tool available in ENVI 224 

software. The representative sites of desired pixels were identified during field observations 225 

(Fig. 6), and appropriate rock samples were collected for further investigations. 226 

 227 

Figure 5. a) Spectral curves of lithological groups, extracted from VNIR bands of WV-3, and 228 

b) locations and the names of collected end-members in a gray image. 229 

 230 
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 Figure 6. Field photos of a) red soil and marl, b) anhydrite and marl, c) tuff, d) anhydrite and 231 

rhyolite, e) red soil, gypsum and anhydrite, f) diabase, h) gypsum, k) marl. 232 

3.3.2. Spectral angle mapper (SAM) algorithm 233 

This algorithm is categorized as a pixel-based image analysis technique and has extensively 234 

been applied by the remote sensing geologists (e.g., Qiu et al., 2006; Rajendran et al., 2013; 235 
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Markoski and Rolim, 2014). Kruse et al. (1993) indicated that this algorithm could identify the 236 

similarity between a pixel of a data set and the reference spectra by calculating a spectral angle 237 

(“α” in Eq. 1) between them. They suggested two n-dimensional spectral vectors for this 238 

algorithm [Eq. 1], coincided with the spectrum of each pixel (r) and the spectrum of desired 239 

end-member (t), in which the number of dimensions is equal to the number of applied bands.    240 

[1] 241 

 242 

The pixels with lower spectral angles represent closer similarity to the reference spectrum and 243 

appear darker (Research Systems, Inc., 2002; Jensen, 2005). For the propose of lithological 244 

mapping, eight bands of WV-3 and the spectra of six previously identified lithological groups 245 

were put into the SAM algorithm. Subsequently, the different threshold values per end-member 246 

spectrum were examined, and finally, the appropriate pixels attributed to particular lithology 247 

were realized based on the lowest spectral angles for the desired end-member. 248 

3.4. Object-Based Image Analysis (OBIA) 249 

The objects in the scale of satellite imagery are various sets of similar pixels that provide the 250 

necessary information for the object-based image analysis method. These are similar groups of 251 

pixels based on their spectral characteristics such as texture, shape, color, and conditions of 252 

surrounding pixels (Tormos et al., 2012). The general workflow for this approach is presented 253 

in Fig. 7, includes: 1) segmenting the image, 2) sample selection by the use of a stratified 254 

random scheme (Mason et al. 1988), 3) feature selection for scale using correlation-based 255 

feature selection (CFS) method (Dorren et al., 2003), 4) classifying the image using SVM 256 

classifier (Hsu et al., 2007). 257 

 258 
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259 

Figure 7. Flowchart of the OBIA approach. 260 

This algorithm defines the decision borders by giving priority to margins between support 261 

vectors that spatially contain a minor geometric error (Burges 1998; Melgani and Bruzzone 262 

2004). An essential issue for performing this algorithm is selecting a suitable kernel function, 263 

which works with two other parameters, including gamma and C. Hsu et al. (2007), indicating 264 

that the kernel function re-projects the varying space. C-factor controls the degree of 265 

misclassification by SVM. They expressed that this algorithm randomly fixes the complex 266 

decision borders with particular spatial specifications using the C-factor. On the other hand, 267 

Hsu et al. (2007) also specified that the Gamma factor adapts the spread of the kernel function 268 

and that the factor that both determines the spread of the kernel function and controls the 269 
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susceptibility of the decision boundary to confused support vectors, is set by C parameter. 270 

Geologists such as Bahrambeygi and Moeinzadeh (2017) and Gasmi et al. (2016) have already 271 

used the object-based image analysis approach in lithological mapping.  272 

3.4.1. Segmentation 273 

The primary step before performing the objected-based image analysis for lithological 274 

classification is image segmentation, which leads to generating non-overlapping polygons. The 275 

critical factor for defining the lithological segments is a scale that determines the accuracy of 276 

image segmentation. Marceau (1999) suggested that exert of different scales in imagery could 277 

be possible if the dimensions of the desired object are more significant than the pixel size. To 278 

create the appropriate lithological segments in applied imagery, several scales were tested from 279 

scale parameters of 5 to 20, considering the pixel size of 1.24 m for WV-3 data and the sizes 280 

of objects. Finally, a scale parameter of 10 was selected to be applied to segmenting the image 281 

at one scale for any lithological class. If the value of the scale parameter is high, it obtains 282 

larger objects. 283 

Blaschke and Burnett (2004) indicated that imagery could be categorized into comparatively 284 

analogous and essential classes of pixels by an appropriate segmentation algorithm. These 285 

segments are subject to be identified using a competent processing technique and converted 286 

into relevant objects. Parameters of color and shape control the homogeneity criteria, in which 287 

the summation of factor values is equal to 1 for each couple.  288 

The degree of analogy in texture is determined by shape, which is a combination of smoothness 289 

and compactness and helps extract the desired objects (Trimble, 2015). Considering that in 290 

lithological segmentation, we would instead give the most crucial role to spectral information, 291 

the ratio of 0.9/0.1 was set to color/shape. Moreover, the ratio 0.5/0.5 was set for 292 

https://www.sciencedirect.com/science/article/pii/S0924271609000884#b124
https://www.sciencedirect.com/topics/computer-science/processing-step
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smoothness/compactness because we were reluctant to support the smooth or rough segments, 293 

and the value 1 was assigned as the weight of the image layer to prevent any prejudice.  294 

3.4.2. Training and Test sampling 295 

A significant phase after segmentation of the image and before implementing an object-based 296 

image analysis algorithm is selecting the various rock units that are going to play the role of 297 

training samples. Sampling schemes such as systematic, cluster, simple random, and stratified 298 

random have already been used by various algorithms (Congalton and Green, 2009). In this 299 

study, the selection of lithological training samples was based on the stratified random 300 

sampling with the purpose of selection of enough number of polygons for each distinguished 301 

lithology group. When performing this sampling method at the scale parameter of 10, the visual 302 

and field interpretations of lithological features were used as references for obtaining deduced 303 

knowledge of areas. The main issue in stratified random sampling strategy is the correct 304 

lithological interpretation of the area for which we used the previous studies (e.g., Mahyari, 305 

2016), and field observations. The geological map and GPS points of field observations were 306 

then overlapped on the segmented layer to assign a class label to each segmented object.  307 

3.4.3. Features and Feature Selection 308 

The object-based method produces more features than a pixel-based approach due to its logic 309 

in engaging the segmented objects. The frequently used features of eCognition software, 310 

version 9.0 (Trimble, 2015), including spectral measure, shape, and texture, were directly 311 

calculated using WV-3 bands. The spectral measures including mean, max, mode, difference, 312 

standard deviation, and brightness were calculated for each lithology using aerosol, blue, green, 313 

yellow, red, red edge, NIR1, and NIR2 bands. The shape measures consisting of area, 314 

roundness, main direction, density, compactness, rectangular fit, elliptic fit, border index, shape 315 

index, and asymmetry were also calculated. Furthermore, the texture measures, including Gray-316 
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Level Co-occurrence Matrix (GLCM), homogeneity, and Gray-Level Difference Vector 317 

(GLDV) were estimated on the basis of pixels of every lithology. Based on WV-3 bands, other 318 

texture parameters consisted of contrast, dissimilarity, entropy, standard deviation, correlation, 319 

mean, GLDV angular second moment, entropy, mean, and contrast measured. 320 

3.4.4. Support Vector Machine (SVM) 321 

The classification method applied in this study (support vector machine) works based on the 322 

hypothesis of machine learning through a supervised learning process. This algorithm isolates 323 

two desired classes and enlarges the space between them by creating a hyperplane (Kavzoglu 324 

and Colkesen, 2009). This method is based on the belief of maximum margin (Fig. 8), which 325 

is the distance between identified boundary for classes and the closest samples, and the idea of 326 

transforming extent of depiction on the applied data set to the extent of excessive size. The 327 

support vectors are intended samples positioned adjacent to the borders of decision (Fig. 8) 328 

(Oommen et al., 2008). Four types of kernels, including linear, sigmoid, polynomial, and radial 329 

basis function (RBF), execute the concept of transformation of the SVM algorithm (Hsu et al., 330 

2007). 331 

The SVM algorithm defines the decision borders by giving priority to margins between support 332 

vectors that contain a minor geometric error in space (Burges 1998; Melgani and Bruzzone 333 

2004). An essential issue for performing this algorithm is the selection of suitable kernel 334 

function, which works with two other parameters including gamma and C. Karatzoglou et al. 335 

(2004) stated that when performing SVM algorithm, the varying space is re-projected by kernel 336 

function, and C-factor directs the level of misclassification. They described that this algorithm 337 

randomly fixes the complex decision borders with particular structural specifications by using 338 

the C-factor, in which these structures are a basis of support vector positions in varying space. 339 

Karatzoglou et al. (2004) also expressed that the extent of the kernel task is balanced by the 340 
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Gamma factor, and the C parameter sets the item that determines the extent of the kernel task; 341 

this parameter also modifies the susceptibility and of the decision boundary to those support 342 

vectors which are confused.  343 

Although many types of kernels are available for the SVM, the RBF was applied in this study 344 

because it is suggested as a suitable primary option (Karatzoglou et al. 2004). 345 

Figure 8. The optimum hyperplane, margin, and support vectors in the SVM algorithm 346 

(Kavzoglu and Colkesen, 2009). 347 

3.5. Accuracy Assessment  348 

The degree of correspondence between PBIA and OBIA classification results and the field and 349 

laboratory evidence were assessed to evaluate the lithological plausibility of each classifier 350 

output. A random sampling of rock types provided a set of samples that were then spectrally 351 

and petrographically analyzed to verify their lithology. The overall accuracy of results was 352 

estimated based on a confusion matrix (Congalton and Green, 2009). In this regard, the 353 

reference sites with 5023 pixels for SAM and 5949 pixels for SVM algorithms were selected 354 

through visual interpretation of the images associated with the general in situ and laboratory 355 

validations. 356 

 357 
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4. Results and Discussion 358 

4.1. PBIA results   359 

To enhance the desired lithological units by spectral angle mapper, various threshold values 360 

were examined for spectral angles, and the maximum angle of 0.1 in the range of 0.0-1.0 was 361 

set acceptable. In order to produce a lithological map (Fig. 9) from SAM output images, a 362 

classification code was assigned to each pixel based on its closest match to the reference 363 

spectrum (Kruse et al., 1993; Boardman and Kruse, 1994). The output image shows spatial 364 

overlaps for rhyolite and marl units (green and brown pixels). The marl units are more extended 365 

eastern and northern the study area in the output image, than what was observed in the field. 366 

The mixtures of red soil, tuff, and anhydrite are not well discriminated thought the area. The 367 

Quaternary deposits that are mostly extended at the northern parts of the island are 368 

misclassified as a salt and pepper mixture. Furthermore, a great circular area peripheral to the 369 

central yellow class (Fig. 9) is not attributed to any lithological unit (gray pixels). The overall 370 

accuracy parameter of a confusion matrix was used to assess the validity of the lithological 371 

map achieved by this classifier.  372 
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Figure 9. Classification map of lithological units in Hormuz Island using the Spectral Angle 373 

Mapper algorithm. 374 

4.2. OBIA results  375 

In order to discriminate the lithological units, six lithological codes were assigned to extracted 376 

objects in SVM classifier. The gamma and C parameters were set to 0 and 2, and the final 377 

classification map was produced by the use of the original WV-3 dataset (Fig. 10).  In general, 378 

this output map showed the lithological extensions and borders more clear and transparent than 379 

SAM output, and the whole area was successfully divided into assigned lithological classes. 380 

The highest similarity in shape and extent of the classes in output images of the two methods 381 

(Figs. 9 and 10) belongs to the mixed class "red soil, gypsum and anhydrite" with a circular 382 

shape at the central part of the Hormuz Island. However, the shape, size, borders, and structures 383 

of other lithological units are significantly different in two output maps considering that they 384 

are highly explicit and recognizable in maps produced by SVM. This method was capable of 385 

achieving reliable results by considering the specific spectral absorption and reflection features 386 

of desired objects and their textures and spatial relationships. The various lithological types 387 

and the Quaternary sediments were also successfully discriminated via the segmentation 388 

process performed based on appropriate training areas, even in few numbers. 389 

Furthermore, field observations and controls showed that the lithological units extracted by the 390 

SVM method are more precise than the results obtained by the SAM technique. Results 391 

obtained by SVM demonstrated that lithology classification based on the texture features and 392 

spectral characteristics of a high spatial resolution data such as WV-3 outstandingly 393 

outperforms the pixel-based image analysis approaches such as SAM technique. The accuracy 394 

of lithological classes obtained by this classifier was assessed and presented in the next section 395 

using the overall accuracy of a confusion matrix. 396 
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 397 

Figure 10. Classification map of lithological units in Hormuz Island as produced by the SVM 398 

algorithm. 399 

 4.3. Accuracy assessment 400 

Table 1a shows the confusion matrix of results obtained by the SAM. It showed that the SAM 401 

has accurately mapped the diabase with a volcanic tuff class that occurs in central and eastern 402 

parts of the study area, with a user's accuracy of 82.35% and producer's accuracy of 78.87% 403 

(Table 1a). A mixture of red soil, gypsum, and anhydrite was classified with a producer's 404 

accuracy of 70.20% and the user's accuracy of 58.82%. However, the moderate user's accuracy 405 

of a mixture of red soil, gypsum, and anhydrite, white rhyolite tuff, and Quaternary deposits 406 

could be attributed to the similarity in spectral characteristics this lithological classes in applied 407 

bands of WV-3. Table 1b reveals the confusion matrix of the SVM output. Results showed that 408 

the object-based mapping method has been magnificently more accurate in mapping the white 409 

rhyolite tuff and mixtures of red soil, tuff and anhydrite with user's accuracies of 84.14% and 410 
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92.13% and producer's accuracies of 89.16% and 75.02%. The overall accuracies for SAM and 411 

SVM results were 70.16 and 86.03, respectively (Table 1). 412 

Table 1. Confusion matrices for SAM (a) and SVM (b) classification methods (MRGA: Mixing of red 413 

soil, gypsum and anhydrite, MRTA: Mixing of red soil, tuff and anhydrite, DVT:  Diabase with volcanic tuff, 414 

WRT:  white rhyolite tuffs, M: MARL, and QD: Quaternary deposits).  415 

a)  

SAM 

 

MRGA 

 

MRTA 

 

DVT 

 

WRT 

 

M 

 

QD 

Total 

(Pixels) 

 

User.ac. 

 

MRGA 

 

490 

 

153 

 

0 

 

110 

 

0 

 

80 

 

833 

 

58.82 

 

MRTA 

 

88 

 

510 

 

0 

 

60 

 

180 

 

130 

 

968 

 

52.68 

 

DVT 

 

120 

 

0 

 

560 

 

0 

 

0 

 

0 

 

680 

 

82.35 

 

WRT 

 

0 

 

0 

 

150 

 

530 

 

110 

 

130 

 

920 

 

57.60 

 

M 

 

0 

 

0 

 

0 

 

188 

 

650 

 

119 

 

957 

 

67.92 

 

QD 

 

0 

 

0 

 

0 

 

0 

 

220 

 

475 

 

695 

 

68.34 

 

Total 

(Pixels) 

 

698 

 

663 

 

710 

 

888 

 

1160 

 

934 

 

5023 

 

64.61 

 

Prod.ac. 

 

70.20 

 

76.92 

 

78.87 

 

59.68 

 

56.03 

 

50.85 

 

65.42 

 

75.71 

Overall accuracy = 70.16% 416 

b) 

 

 

SVM 

 

MRGA 

 

MRTA 

 

DVT 

 

WRT 

 

M 

 

QD 

Total 

(Pixels) 

 

User.ac. 

 

MRGA 

 

870 

 

130 

 

0 

 

0 

 

0 

 

0 

 

1000 

 

87.00 

 

MRTA 

 

70 

 

820 

 

0 

 

0 

 

0 

 

0 

 

890 

 

92.13 

 

DVT 

 

0 

 

50 

 

1150 

 

90 

 

0 

 

0 

 

1290 

 

89.14 
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WRT 

 

0 

 

0 

 

59 

 

741 

 

78 

 

0 

 

878 

 

84.39 

 

M 

 

0 

 

93 

 

0 

 

0 

 

667 

 

71 

 

831 

 

80.26 

 

QD 

 

0 

 

0 

 

0 

 

0 

 

180 

 

880 

 

1060 

 

83.01 

 

Total 

(Pixels) 

 

940 

 

1093 

 

1209 

 

831 

 

925 

 

950 

 

5949 

 

85.98 

 

Prod.ac. 

 

92.55 

 

75.02 

 

95.11 

 

89.16 

 

72.10 

 

92.63 

  

86.09 

Overall accuracy = 86.03% 417 

4.4. Discussions 418 

This study's primary purpose was to compare the performance of a pixel-based image analysis 419 

approach versus an object-based approach in the lithological mapping of complex terrain. The 420 

capability of approaches in discriminating lithological units was evaluated by the use of 421 

confusion matrix parameters (Table 1). Results showed that the object-based approach 422 

outperformed the pixel-based method with an average difference of 19.33% in overall 423 

accuracy. 424 

The spectral-based techniques involve two drawbacks: 1) extraction of spectra from known 425 

pure materials, 2) calibration of the pixel spectrum. These techniques are performed based on 426 

an approach in which the pixel spectrum is compared to the spectra of a known pure material. 427 

Spectra of these materials are generally extracted from imagery or measured of field-collected 428 

samples, and if needed, they are selected from known spectral libraries. Methods for extraction 429 

of spectra from imagery typically search for pure pixels. Although these methods depend on 430 

the size of pixels, such pixels might be rare on the surface. Therefore, the numerical values of 431 

these spectral end-members may commonly be associated with noise. This noise shows that 432 
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spectral discrimination is devalued when a pixel is a mixture of two rock types occurring next 433 

to each other.  434 

With recent advances in capabilities of the satellite data such as in WV-3, more studies are 435 

focusing on the texture of images and extraction of contextual information that is a measure of 436 

association between the values of neighboring pixels (Marceau et al., 1990; Hay and Niemann, 437 

1994). In comparison to the pixel-based methods that only rely on the DN values of pixels, 438 

segments in object-based approaches obtain extra information on the spatial behavior of the 439 

objects, which makes it more advantageous (Blaschke and Strobl, 2001; Darwish et al., 2003).  440 

Consequently, it is suggested that the object-based methods are more efficient than per-pixel 441 

algorithms for mapping the various rock units because the decrease of intra-class variability 442 

happens when averaging the DN values of all nearby pixels within objects such as rock classes. 443 

Depending on the type of classifier and the input dataset, the efficiency of object-based image 444 

analysis methods for target enhancement, such as in the case of a lithology, could be different, 445 

although, in general, this approach outperforms the pixel-based methods. Another fact for such 446 

variability is that a unique value of scale is not perfect for segregating all the lithological 447 

categories. 448 

The improved enhancement and discrimination of Quaternary deposits, marl, rhyolite, a 449 

mixture of red soil, tuff and anhydrite, and a mixture of red soil, gypsum and anhydrite in this 450 

study (Figs. 9 and 10), revealed that the object-based image analysis method is superior over 451 

that of the pixel-based approach. In the OBIA classification map, correct spatial distribution is 452 

displayed for rhyolite, marl, Quaternary deposits, a mixture of red soil, tuff and anhydrite, and 453 

a mixture of red soil, gypsum, and anhydrite. The detection of Quaternary deposits has not 454 

always been as easy as with other units. This is mainly because it is a combination of various 455 

products of weathering and erosion of upstream outcrops. The visual interpretation of output 456 
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results in Figure 11-a confirms the improvements of the OBIA method in enhancement and 457 

discrimination of lithological units and attributing all pixels to desired classes. Moreover, 458 

Figure 11-b displays that considering the importance of intra-class discrepancies for OBIA and 459 

similarity in the spectral properties in the PBIA method, the white rhyolite class is efficiently 460 

classified by OBIA; however, it is misclassified by PBIA with marl unit. This drawback is also 461 

observed for other classes in outputs of the SAM algorithm.  Besides, Figure 11-c shows that 462 

the object-based method was successful in decreasing the salt-and-pepper pixels associated 463 

with spectral-based mapping. The common issues in low-resolution pixels are the 464 

heterogeneity in spectral properties of rock units and spectral differences between rocks, 465 

vegetation, and Quaternary deposits, in cases that all are present in one pixel.  466 

When generating the attributes of objects, such as rock types, in the OBIA approach, the 467 

spectral characteristics of all the pixels of a given object are averaged. This leads in decreasing 468 

the mapping confusion by reducing the variations within an object. An essential disadvantage 469 

of a pixel-based mapping method is that it does not use the data of neighboring pixels to support 470 

more correctly recognition of a target class for a pixel. Consequently, if pixels of a class of 471 

lithology exhibit local spectral heterogeneity, they may be labeled as different classes. 472 

Therefore, the pixel-based methods could obtain a high rate of misclassification such that 473 

specific regions of a class of rock might wrongly be classified as another rock unit. 474 

Furthermore, if per-pixel methods are applied, usage of imagery with high spatial resolution, 475 

such as WV-3, which is needed to separate the small areas of specific rock units, may lead to 476 

increased errors in classifications. 477 

This study aimed to classify the lithological groups of a geologically complex terrain by 478 

focusing on the high spatial resolution of WV-3 VNIR data. This advantage of WV-3 led to 479 

the successful enhancement of lithological boundaries in the study area, including places where 480 

lithology is not homogeneous, and the outcrops are small.  Another investigation has also 481 
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suggested the advantageous usage of the spatial resolution of WV-3 in mapping the geological 482 

targets (Sun et al., 2017). Bedini (2019) showed that integration of WV-3 and ASTER TIR data 483 

could successfully recognize the lithological units by using spectral properties and indices 484 

calculated from WV-3 imagery. 485 

Although in this study, we proved the advantage of the OBIA method in comparison to the 486 

PBIA approach for an improved lithological mapping using only the VNIR bands of WV-3, 487 

further works to consider the SWIR bands of this satellite is recommended.  488 

Although it is suggested that considering absorption features in the segmentation process gives 489 

satisfactory results (Grebby, 2016), their application could be more various than region 490 

growing. This research emphasizes the efficiency of object-based image analysis in reducing 491 

the spectral variability within an object (here, lithology) and the conjunction of supplementary 492 

information extracted from structural and contextual image/object properties to improve the 493 

enhancement of rock units. 494 
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Figure 11. Comparison of results achieved by object-based and pixel-based approaches: a) 495 

improvement in lithological mapping outcrops, b) omission of the ambiguous mixture, and c) 496 
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filtering salt and-pepper pixel in a mixture of red soil, gypsum, and anhydrite. 497 

5. Conclusions  498 

This study was a comparative approach to show the capabilities of pixel-based and object-499 

based methods and their representative algorithms, SAM and SVM, in discriminating the 500 

lithological classes using VNIR data of WorldView-3 of Hormuz Island, southern Iran. Results 501 

obtained by these two approaches revealed that the OBIA method was superior compared to 502 

the PBIA method. The OBIA could lead to an improved discrimination of lithological groups, 503 

clear detection of geological units with complex lithology such as Quaternary deposits, and 504 

successful decrease or remove of salt-and-pepper pixels, which were common in the spectral-505 

based output map.   506 

Comparing the degree of efficacies of applied methods illustrated that the OBIA conforms to 507 

a type of expert interpretation aiming to determine the internal relationships among 508 

neighboring pixels. This advantage leads to relatively perfect classification of features, while 509 

that of the pixel-based approach is segregated. Furthermore, the WV-3 data, because of its high 510 

spatial resolution, is notably suitable for the OBIA approach aiming at the discrimination and 511 

classification of lithological units in a geologically complex district. Moreover, realizing the 512 

same ideal texture groups by SVM method is a basis for lithological mapping and classifying. 513 

It was shown that the OBIA approach produces a more improved and contiguous lithological 514 

map than the PBIA method. Overview of the criteria mentioned above showed that the pixel 515 

size of 1.24 m for VNIR bands of WV-3 is particularly advantageous for lithological mapping 516 

by using the OBIA method rather than the PBIA method.  517 

 518 

 519 

 520 
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