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Short-term water demand predictions coupling an

Artificial Neural Network model and a Genetic Algorithm

Majid Gholami Shirkoohi, Mouna Doghri and Sophie Duchesne
ABSTRACT
The application of artificial neural network (ANN) models for short-term (15 min) urban water

demand predictions is evaluated. Optimization of the ANN model’s hyperparameters with a Genetic

Algorithm (GA) and use of a growing window approach for training the model are also evaluated.

The results are compared to those of commonly used time series models, namely the Autoregressive

Integrated Moving Average (ARIMA) model and a pattern-based model. The evaluations are based on

data sets from two Canadian cities, providing 15 minute water consumption records over

respectively 5 years and 23 months, with a respective mean water demand of 14,560 and 887 m3/d.

The GA optimized ANN model performed better than the other models, with Nash-Sutcliffe

Efficiencies of 0.91 and 0.83, and Relative Root Mean Square Errors of 6 and 16% for City 1 and City 2,

respectively. The results of this study indicate that the optimization of the hyperparameters of an

ANN model can lead to better 15 min urban water demand predictions, which are useful for many

real time control applications, such as dynamic pressure control.

Key words | artificial intelligence, artificial neural network, genetic algorithm, hyperparameter

optimization, short term, time series model, urban water demand prediction
HIGHLIGHTS

• ANN models were used for short-term (15 min) urban water demand predictions.

• The hyperparameters of the ANN model were optimized with a genetic algorithm for better

model performance.

• The results of the ANN approach were compared to an ARIMA and a pattern-based models for

two different datasets.

• The performance results proved GA optimized ANN model as an efficient approach for short-

term UWD predictions.
This is an Open Access article distributed under the terms of the Creative

Commons Attribution Licence (CC BY 4.0), which permits copying,

adaptation and redistribution, provided the original work is properly cited

(http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION
Forecasting urban water demand (UWD) is a crucial issue to

ensure the better design, operation, and management of water

distribution systems (WDSs). While long-term forecasting is
mainly required for planning and design, short-term forecasting

isparticularlyused foroperationandmanagement.Morespecifi-

cally, in themost recent applications of real-time control (RTC),

knowledge of the near future fluctuations in consumption is

required (e.g. Pascual et al. ; Kang ; Doghri et al. ).

The UWD is a complex and nonlinear function of differ-

ent factors such as time, socio-economic factors, climatic
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and meteorological variables, and the cost of the supplied

water (Ghiassi et al. ; Odan & Reis ; Hussien

et al. ). UWD prediction models can be univariate,

where only the UWD records are considered as inputs for

the models (e.g. Alvisi et al. ; Alvisi & Franchini ;

Romano & Kapelan ). Aditionally, the models can be

multivariate, with some of the influencing factors mentioned

above also being considered as model inputs to predict the

UWD (e.g. Zhou et al. ; Herrera et al. ; Adamowski

et al. ; Odan & Reis ; Tiwari & Adamowski ;

Bakker et al. ; Tian et al. ). Both univariate and

multivariate models can be based on various modeling

approaches, from which the more commonly applied are

pattern-based models (e.g. Alvisi et al. ; Bakker et al.

, ; Gagliardi et al. ; Pacchin et al. , ),

regression analyses (e.g. Adamowski & Karapataki ;

Bakker et al. ), classical time series models (e.g.

Bougadis et al. ; Caiado ; Arandia et al. ;

Chen & Boccelli ; Viccione et al. ; Guarnaccia

et al. ; Mu et al. ), artificial intelligence (AI)

methods, such as artificial neural networks (ANN) (e.g.

Cutore et al. ; Firat et al. ; Romano & Kapelan

; Gagliardi et al. ; Pacchin et al. ; Pesantez

et al. ), random forest (e.g. Herrera et al. ; Mu

et al. ; Nasser et al. ; Pesantez et al. ), support

vector machines (SVM) (e.g. Candelieri et al. ; Pesantez

et al. ), or fuzzy logic and neuro-fuzzy models (e.g.

Vijayalaksmi & Babu ; Jithish & Sankaran ). More

recently, hybrid models combining two of the previously

cited approaches have also been proposed (e.g. Quevedo

et al. ; Alvisi & Franchini ; Suhartono et al. ).

While many factors impact the performance of UWD pre-

diction models, Sebri () found that forecasting

accuracy of urban water demand is significantly influenced

by demand periodicity, forecast horizon, forecasting

method, model specification and some study specific charac-

teristics such as the sample size, the publication year and the

development level of the country on which the study was

conducted. House-Peters & Chang () and Donkor et al.

() presented an overview of the different existing

models adapted to UWD forecasts up to 2010, while Gha-

lehkhondabi et al. () published a review of the papers

concerning specifically soft computing methods applied to

UWD from 2005 to 2015. It was reported that using many
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explanatory variables for multivariate UWD prediction

models poses a great challenge in terms of collecting and

keeping track of the data since explanatory variables must

have sufficiently long records if they are to be used as inde-

pendent variables for developing forecasting models

(House-Peters & Chang ; Donkor et al. ). Ghaleh-

khondabi et al. () found that although it is still very

difficult to pick a single method as the overall best, ANNs

have been superior in many cases in short-term UWD fore-

casting. This can be derived from the inherent capability of

ANNs in terms of analyzing the non-linear data. Also, lim-

ited number of applications of metaheuristics (such as

evolutionary algorithms) in water demand forecasting was

identified as one of the incentives for potential future

research direction (Ghalehkhondabi et al. ).

Pattern-based models rely on the identification of peri-

odic patterns that characterize UWD over different periods

of time, while classical time series models do not necessarily

take this periodicity into account explicitly. The most popu-

lar univariate classical time series models are the

autoregressive moving average (ARMA) model and its

derivatives, such as autoregressive (AR), autoregressive inte-

grated moving average (ARIMA), seasonal ARIMA, periodic

ARMA, threshold AR, and fractionally integrated ARMA

models (Adamowski & Karapataki ). As for AI

models, they do not presume a specific model structure

and are thus said to ‘learn’ from the data. Among those AI

models, ANN models have been used in numerous studies

to predict UWD during the last decade (see some examples

above). ANN models have proven to be powerful for map-

ping the nonlinear trends of UWD, even in the case of

possibly noisy multivariate time series (Ghalehkhondabi

et al. ). Studies carried out in this field highlight the

dominance of ANN over conventional techniques (Babel

& Shinde ). Bougadis et al. () showed that ANN

models outperforms different regression and time series

models for short-term peak water demand forecasting for

data from the city of Ottawa, Canada. Similar results were

reported by Adamowski & Karapataki () and

Adamowski et al. () in favor of ANNs and wavelet trans-

forms coupled with ANNs, compared to other conventional

techniques for short-term water demand forecasts. The per-

formance of ANN models is dependent on the set of

explanatory variables fed into the model as input and on
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the forecasting horizon. Prediction accuracies over 98%

were achieved by Babel & Shinde () when using only

the historic daily demand as the explanatory variable to fore-

cast short-term UWD for the city of Bangkok, Thailand.

However, they showed that meteorological, water utility

and socioeconomic variables have a greater influence on

medium-term (e.g. monthly) predictions. The benefit of uni-

variate models was also reported by Odan & Reis ()

where their ANN models for short-term UWD prediction

did not require the use of weather variables, resulting in a

simpler and faster model to train. Also, size of the data

sets of case studies can affect the ANN model performance.

As Gagliardi et al. () showed, an ANN model applied to

small districts, with a low number of users and more varia-

bility in water demands, can outperform a pattern-based

model while in case of districts including a large number

of users, the pattern-based model tends to be more efficient

than the ANN one.

Evolutionary algorithms (Bäck ) have been used

along with AI techniques for UWD prediction, either for

the optimization of training algorithms (Rangel et al. )

or optimization of model hyperparameters (Chen ).

Romano & Kapelan () suggested to optimise the hyper-

parameters (e.g., number of hidden neurons and number of

training cycles) and input structure (e.g. number of past

demand values and additional explanatory variables to be

used) of their ANN model with an evolutionary algorithm

for the prediction of UWD 1 to 24 h ahead, and showed

that this approach allows accurate forecasts of UWD. In

their application of ANNs for the prediction of hourly

UWD, Herrera et al. () compared the growing and slid-

ing window approaches to train their ANN model. For their

case study, they found that the growing window approach

lead to better results.

In terms of UWD, the definition of short-term predic-

tions vary among authors. Although many of them

consider predictions 1 h ahead as being short-term (e.g.

Shvartser et al. ; Zhou et al. ), others qualify the

daily, weekly or even monthly predictions as being short

term (e.g. Jain & Ormsbee ; Bougadis et al. ; Yurdu-

sev & Firat ). The forecast horizon depends on the

purpose of the model application (Ghiassi et al. ;

Bakker et al. ). More specifically for real time control

applications, such as active pressure management, demand
://iwaponline.com/ws/article-pdf/doi/10.2166/ws.2021.049/848840/ws2021049.pdf
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predictions should be provided a few times an hour (e.g.

Creaco ; Doghri et al. ).

Few applications of UWD predictions at time steps

lower that 1 h have been presented in the literature: ANN,

support vector regression (SVR) and random forest for

10 min predictions in Nasser et al. (); a pattern-based

model for 15 min predictions in Bakker et al. (); a seaso-

nal ARIMA model for 15 min predictions in Arandia et al.

(); and a pattern-based model combined to an ARIMA

model for 10 min predictions in Quevedo et al. (). A

few studies have compared the performances of prediction

models on making short-term UWD forecasts (daily in

Adamowski et al. ; Tiwari & Adamowski ; Bai

et al. ; and hourly in Ghiassi et al. ; Herrera et al.

). A thorough search of the scientific literature showed

that only two studies comparing the performances of differ-

ent UWD prediction models for time steps lower than 1 h

have already been published (Mu et al. ; Nasser et al.

). Mu et al. () used a long short-term memory

(LSTM) model to predict short-term UWD based on data

with time steps of 15 min, 1 and 24 h. The performance of

the LSTM-based model was compared with ARIMA, SVR,

and random forest models. Nasser et al. () compared

the performance of different models for 10 min UWD pre-

dictions. However, this last study was limited to a few

households (granular water demand) and only compares

AI models among them. Short-term (10- or 15-min) time

steps describe the UWD dynamics in details and can be

required for some real time applications such and optimiz-

ing the exact timing of pumps switch (Bakker et al. )

or for dynamic pressure management (Creaco ; Doghri

et al. ). These can help providing the required amount

and pressure of water to urban areas at the lowest operation

cost. Furthermore, a short-term 15-min time step UWD pre-

diction can be used for leakage and energy analysis (Mu

et al. ).

The main objective of this paper is to evaluate how the

optimization of the hyperparameters of an ANN model

and the use of a growing window approach for its training

can improve the 15 min UWD predictions made with this

model. The performance of the ANN model is also com-

pared with those of a classical time series model (ARIMA)

and of a pattern-based model (Bakker et al. ). To the

best of the authors’ knowledge, it is the first time that the
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performance of these three types of models in making pre-

dictions of UWD for time steps shorter than one hour is

compared. Data sets provided by two Canadian cities are

used for these evaluations.
METHODS

Datasets

The datasets analyzed in this study were collected from two

cities in the province of Quebec (Canada). The data con-

sisted of 15 min time step records of drinking UWD. The

datasets were divided into training, validation and testing

data for the ANN model. The training data were used to

train the model and update the parameters. The validation

data were used to select model parameters and stop the

algorithm early based on minimum validation error which

efficiently avoids model overfitting or underfitting. The test-

ing data were used to evaluate the performance of the ANN

model to the unseen data. The same testing data was used to

evaluate the performance of the pattern-based model.

For the dataset from City 1, the records present the total

drinking water produced in the treatment plant for a period

of five years (2009–2013). The first four years of observation

were used as training and validation samples for the ANN

models (from January 1st, 2009, 00:00 AM to August 3rd,

2012, 17:45 PM for training and from August 3rd, 2012,

18:00 PM to December 31st, 2012, 23:45 PM for validation),

and the remaining year (from January 1st, 2013, 00:00 AM

to December 31st, 2013, 11:45 PM) was used as a test set

to assess the accuracy of all prediction models (ANN,

ARIMA and pattern-based). The average recorded consump-

tion for this dataset is about 14,560 m3/d with a standard

deviation of about 3,090 m3/d for 15 min time steps. The

dataset from City 2 presents the total water provided to a dis-

trict metered area and covers a period of 23 months. The

first period of observations was used as a training and vali-

dation set (from September 1st, 2012, 00:00 AM to

November 1st, 2013, 23:45 PM for training and from

November 2nd, 2013, 00:00 AM to December 31st, 2013,

23:45 PM for validation) for the ANN models and the

remaining 7 months (from January 1st, 2014, 00:00 AM to

July 21st, 2014, 23:15 PM) were used as a test set to assess
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the accuracy of all prediction models (ANN, ARIMA and

pattern-based). The average consumption, in this case, is

about 887 m3/d with a standard deviation of about

311 m3/d for 15 min time steps. The time series for the

two cities are shown in Figure 1 where training, validation

and test sets are identified for each city, while their mean

daily patterns are shown in Figure 2.

To remove the outliers from both databases, the

filloutliers function in MATLAB (ver. R2019a) has been

used, which defines outliers as points outside three standard

deviations from the mean and replace the outlier with the

nearest element that is not an outlier. Finally, 128,167 data

points were used as training/validation sets and 35,028 as

test sets for City 1. Whereas for City 2, a total of 66,145

data points were divided into 46,752 and 19,393 data points

for training/validation and test sets, respectively. As illus-

trated in Figure 1, there were about 1,200 time steps in the

dataset for City 2 with constant values (from time step

8,800 to time step 10,000). As these data were used only for

the training of the ANN models and rather negligible com-

pared to the 46,752 data points, they were not excluded

from the data set. Also, our preliminary results indicated

that performance indices for the ANN models are not depen-

dent on the presence or exclusion of this part of the data set.

ANN model

Artificial neural networks

ANNs have been proven to have excellent predictive ability

in various domains (Sun & Zhang ; Nastos et al. ;

Mislan et al. ; Cheng & Bao ).

One of themost popular ANNs in the scope of UWDpre-

diction are feedforward neural networks (FNNs) (Hamed

et al. ). The layers of the ANN can be fully or partially

connected and for the purpose of forecasting, the weights

should be adapted accordingly in a process called training.

A number of optimization algorithms can be used for

the training process including gradient descent and Leven-

berg-Marquardt (Hamed et al. ; Ghalehkhondabi et al.

). Levenberg-Marquardt algorithm is often utilized for

multilayer perceptron neural networks due to its faster con-

vergence as it adopts the method of approximate second

derivative (Singh et al. ).



Figure 1 | Time series of the two datasets (training, validation and test subsets represesented respectively in dark blue, medium dark blue and light blue).

Figure 2 | Mean daily pattern of water consumption for the two data sets, (a) City 1; (b) City 2.
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Figure 3 | Flowchart of ANN model with GA optimization for network hyperparameters.
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In this work, three ANN models are developed. In all

cases, datasets were decomposed to the trend and cyclical

components, and were used as inputs to the ANN models.

For each time step prediction, the two last time steps were uti-

lized. Thefirstmodel is based on initially performing one time

training, using the entire training and validation data set, and

then obtaining the performance results on thewhole test data

set with the trained network (Single-ANN). The second

model is considering, for each time step in the test data set,

all the data before that time step as a training and validation

data set to predict that specific time step. In other words,

the growing window concept is utilized in which all the

data from the first to current time steps are used to train a net-

work for predicting the next 15 min time step (Multi-ANN).

Finally, as a third approach, genetic algorithm (GA) is used

to optimize the ANN hyperparameters.

Indeed, the performance of an ANN model depends on

the optimization of its hyperparameters, which define the

topology and learning options of a neural network. The

number of hidden layers and neurons in each hidden

layer, learning rate, cost function, regularization parameter,

learning algorithm and maximum validation failure are con-

sidered as ANN hyperparameters. In the third approach

presented here, a GA is utilized for the hyperparameter

optimization of the neural networks.

Genetic algorithm

Genetic algorithm is a strategy of evolutionary computation

search algorithmswhich states that individuals in a population

who are best fitted are more likely to survive and reproduce.

In GA, a chromosome is a set of parameters which

define a proposed solution to the problem that the GA is

trying to solve by searching through the space of possible

chromosome values. In this work, the hyperparameters of

a network are the chromosome of one individual. The

major steps of a GA are described in Whitley ().

In the case studies presented here, the three hyperpara-

meters (genes) of chromosomes and their range of values are

(i) the number of hidden neurons (1 to 20), (ii) the LM algor-

ithm parameter (μ) (0 to 1), and (iii) the maximum validation

failures (1 to 20).

The relative root mean square error (RRMSE) is used as

the fitness function, and three selection operators are
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employed to select the most fitted individuals as the first

and second parents to go through the crossover, namely

Roulette wheel, Tournament, and Random selection

(Zhong et al. ). A crossover percentage of 0.8 and a

mutation percentage of 0.3 are used. The number of individ-

uals in an initial population is set to 20. Also, the maximum

number of iterations is used as stoppage criterion for GA

optimization and is set to 50. The flowchart of the novel

ANN model with GA optimization for network hyperpara-

meters is presented in Figure 3.
ARIMA MODEL

ARIMA model (Box & Jenkins ) is a commonly and

widely used model to make forecasts for a large range of

time steps. It showed satisfactory results in UWD appli-

cations (e.g. Bougadis et al. ; Ghiassi et al. ;

Caiado ; Tiwari & Adamowski ; Chen & Boccelli

). ARIMA models require the input data to have
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constant mean, variance, and autocorrelation through time

(Box & Jenkins ). They allow treating a non-stationary

series by the elimination of the trend through successive

differentiations of the time series data. In the case of water

consumption records, one differentiation of the dataset is

generally enough to satisfy this stationarity condition. The

model is defined as follows:

Ct ¼ Ct�1 þ
Xp1
j¼1

(γ jWj�1)�
Xp2
j¼1

(θjεt�j)þ εt (5)

where: Ct is the observed value of the time series at time step

t; the first sum-term represents an autoregressive model (AR)

of order p1; the second sum-term represents a moving aver-

age model (MA) of order p2; W is the differentiated series; γj
and θj are the parameters of the AR and the MA models to

be calibrated, respectively; and εt is a random perturbation

or white noise. The model is referred to as an ARIMA(p1,

d,p2), where d represents the order of differentiation of the

original dataset, and the values of the parameters p1 and

p2 are estimated following the pre-analysis of the dataset.

The autocorrelation function (ACF) and the partial auto-

correlation function (PACF), as defined by Box & Jenkins

(), were used to identify the most appropriate time

series model for the dataset (Yang et al. ; Arandia

et al. ). For both case studies presented in this paper,

the ACFs decayed slowly with increasing time lags. The

PACFs showed a large spike in the first lags and cutoff to

0 after lags 25 and 17 for Cities 1 and 2, respectively. The

above observations suggested a non-stationary process for

the two datasets. An example of the ACF for 672 lags

(time step of data equal to 15 min) is presented in the Sup-

plementary Material (Figure S-1) for the dataset from City

2, in which the periodic behaviour of the water consumption

can be seen. With a cycle of positive and then negative

values every 96 lags, the observations show the correlation

between the data and exhibit the daily seasonality of the

water consumption data.

Values of p1, d and p2 were determined by analysing the

data of the training and validation sets. Through the differen-

tiation process, the trend was removed from the

autocorrelation functions and the datasets transformed

into stationary series. Indeed, ACFs and PACFs of the
://iwaponline.com/ws/article-pdf/doi/10.2166/ws.2021.049/848840/ws2021049.pdf
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differentiated series tend more quickly to reach a value

near zero than those of the original series (see Figures S-2

to S-5 in the Supplementary Material). Various orders of

models have been tested for the AR and MA processes, how-

ever, results are not presented herein for brevity. It was

concluded that ARIMA(2,1,1) provides satisfying results

for both case studies (City 1 and City 2) and was further

adopted for the following studies. The test set used to evalu-

ate the performance of the ANN model is the same as the

one used for the other models (see section 2.5 below).

Values of the γj and θj parameters were calibrated at each

time step using the previous 192 data (i.e. a total of 2 days

of data) with the estimate function in MATLAB, which is

based on the maximum likelihood.
Pattern-based model

The model developed by Bakker et al. () is the pattern-

based model chosen for the applications presented here.

This forecasting method combines the daily average esti-

mation of the UWD with the demand pattern to provide

15 min predictions over the following 24 h (only the

15 min ahead predictions are presented and discussed in

this paper). The model analyzes the historical data series

to determine different factors ( fdotw,typ,i: typical day of the

week factor and fqtr,typ,i.j: typical 15 min time step factor).

By exploring the available database, the method defines

the specific factors for the seven ordinary days of the week

and for each particular day of the year, and the 15 min

demand pattern corresponding for each one of these days.

The model makes the prediction of the UWD for the

next day with a 15 min time step. The main steps of the

model are summarized in Equations (6) and (7). The

method is as follows: (i) the model computes the value of

the mean demand for the next day (Qi) based on the mean

water demands of the previous two days (Qi�1 and Qi�2),

divided by the corresponding typical day of the week factors

and making the more recent day four times more important

than the older demand (corresponding weighing constants

set at 0.8 and 0.2); then (ii) the mean demand of day i is dis-

cretized in a set of 96 values, namely predictions for each

15 min time step over the next 24 h. The latter step was per-

formed by the multiplication of the mean demand with the



Table 1 | Performance indices used

Indicators Mathematical formulation
Range of
values

Values of
perfect
agreement

Relative
Root
Mean
Square
Error
(RRMSE)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

t¼1
(Ct � Ĉt)

2
r

�C
100%

[0,þ∞[ 0

Mean
Absolute
Percentage
Error
(MAPE)

100
N

XN
t¼1

Ct � Ĉt

Ct

�����
����� [0,þ∞[ 0

Nash-
Sutcliffe
Efficiency
(E)

1�
PN

t¼1 (Ct � Ĉt)
2

PN
t¼1 (Ct � �C)

2 ]�∞,1] 1
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corresponding typical 15-min time step factors.

Qi ¼ fdotw,typ,i 0:8
Qi�1

fdotw,typ,i�1
þ 0:2

Qi�2

fdotw,typ,i�2

� �
(6)

Qi,j ¼ Qi�fqtr,typ,i:j (7)

The model was coded using MATLAB 2014a software

by considering, as most as possible, the steps and parameters

described in Bakker et al. () without any specific con-

sideration of the sprinkle demand. The same method as

the one described in Bakker et al. () was applied

for the factors calculation. The model will thereafter be

called the fully adaptive forecasting (FAF) model. The test

set used to evaluate the performance of the ANN model is

the same as the one used for the other models (see Perform-

ance indicators below).
Table 2 | Summary of results

City 1

Model RRMSE (%) MAPE (%) E

Multiple ANN training 6.46 4.29 0.91

Single ANN training 6.48 4.28 0.91

GA optimized ANN 6.35 4.15 0.91

ARIMA 7.76 5.20 0.87

FAF 13.25 8.94 0.61

City 2

Model RRMSE (%) MAPE (%) E

Multiple ANN training 19.00 14.49 0.77

Single ANN training 17.77 14.16 0.80

GA optimized ANN 16.23 13.27 0.83

ARIMA 20.09 14.88 0.74

FAF 23.92 14.79 0.63
Performance indicators

The accuracies of the different models were evaluated using

the following three statistical indices, namely the Relative

Root Mean Square Error (RRMSE), the Nash-Sutcliffe

Model Efficiency coefficient (E) and the Mean Absolute Per-

centage Error (MAPE) for the test sets of City 1 andCity 2 (i.e.

respectively from 1 January 2013, 00:00 AM to 31 December

2013, 11:45 PM, and from 1 January 2014, 00:00 AM to 21

July 2014, 23:15 PM; see Figure 1). The measures selected

to compare the forecasted and measured values are the

most commonly used by researchers addressing UWD fore-

casting (Adamowski et al. ; Bakker et al. ) and they

all generate dimensionless outputs. The equations used to

compute the values of these indices are given in Table 1,

where N is the total number of forecasted values, Ct is the

measured value at time t, Ĉt is the forecasted value at time t,

and �C is the mean of the measured values.
RESULTS AND DISCUSSION

The performance indices (RRMSE, MAPE and E) of the

studied models for the test sets of the two case studies are

presented in Table 2. Examples of results are illustrated for

two specific days in Figure 4 for City 1 and City 2.
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The ANN hyperparameter values obtained by GA

optimization were as follows: number of hidden neurons¼
18, LM parameter μ¼ 0.4632, and maximum validation

failures¼ 9 for City 1; and number of hidden neurons¼
16, LM parameter μ¼ 0.4307, and maximum validation

failures¼ 3 for City 2. As can be seen in Table 3, the



Figure 4 | Forecasts versus observations of different models (one day sample from test set).
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ANN models provide better 15 min UWD predictions (i.e.

lower RRMSE, lower MAPE, and higher E values) than

the ARIMA and FAF models for both case studies. More-

over, optimization of the hyperparameters of ANN with

GA allows for refining of the predictions. It is also worth

mentioning that the statistical indicators for City 1 are

always better than those for City 2. It can be thought, as

suggested by previous studies (e.g. Maidment & Miaou

; Bakker et al. ; Gagliardi et al. ), that the per-

formance of UWD predictions vary depending on the size

of the water distribution area. Indeed, when the size of

the area increases the total consumption also increases,

and its fluctuations are generally mitigated (see Figure 2),

making future values easier to predict. It can additionally

be observed that that the multiple ANN training approach

has led to better results as compared to the single ANN

training for City 1 than City 2. Again, it seems that the

size of the case study has a direct impact on the perform-

ance of the models. However, the GA optimized ANN

showed the best performance in both cities compared to

other models and proves its reliability in different

circumstances.
://iwaponline.com/ws/article-pdf/doi/10.2166/ws.2021.049/848840/ws2021049.pdf
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The presented results show that ANN models outper-

form the classical time series and pattern-based models in

forecasting short-term UWD. Results in Figure 4 also show

that the ARIMA model provides predictions that are delayed

from the measured data. This is typical of low order ARIMA

models, in which the projections represent a weighting of

the last observations. Better performance of ANN models

over time series and linear and nonlinear regression

methods have also been presented by Jain et al. () and

Adamowski et al. (). There are varying degrees of nonli-

nearity in UWD data that make them difficult to be handled

by linear methods. The strengths of ANNmodels can rely on

their inherent ability to capture the nonlinearities related to

the UWD time series.

Another finding of this study was that hyperparameter

optimization of the ANN model could enhance its predic-

tion performance. This supports the findings of Romano &

Kapelan () for the prediction of UWD 1 to 24 h ahead.

These authors reported Nash-Sutcliffe Efficiencies higher

than 0.9 for their adaptive ANN models for both daily and

hourly forecasting. Their optimization procedure included

six decision variables, namely the number of hidden
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neurons, the number of training cycles, the training algor-

ithm regularization factor, the lag size, and the use of not

of the time of the day and the day of the week.
CONCLUSIONS AND PERSPECTIVES

The 15 min UWD predictions obtained by different

models were compared in this paper, based on data col-

lected from two different Canadian water distribution

systems. Considering the intention of developing real-

time control tools: i) the models that were compared

were exclusively univariate time series models, using

only the records of previous UWD as input data to predict

the future demand, and ii) the comparison of the models

was based on their ability to provide short-term forecasts

of UWD. An original model combining ANN and GA,

for the optimization of the ANN model hyperparameters,

was proposed, showing its superiority in providing more

accurate 15 min UWD predictions than ARIMA and a pat-

tern-based models. However, although the ANN model

provided better 15 min UWD predictions than the

ARIMA and the tested pattern-based models for the two

presented case studies, many authors showed that pat-

tern-based models provide better predictions for longer

lead times (e.g. from about 3 h or more in Doghri ).

Moreover, the efficiency of the GA optimized ANN

model should be verified with other consumption datasets

and different forecast horizons, in order to validate the

obtained results and to generalize these findings. Finally,

since coupled wavelet-neural network models (WA-

ANNs) have shown good potential to predict UWD (Ada-

mowski et al. ), a comparative study between the GA

optimized ANN and WA-ANN models for UWD predic-

tion could be useful.
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