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Abstract 13 

Sparse precipitation information can result in uncertainties in hydrological modelling 14 

practices. Precipitation observation network augmentation is one way to reduce the uncertainty. 15 

Meanwhile, in basins with snowpack-dominated hydrology, in the absence of a high-density 16 

precipitation observation network, assimilation of in situ and remotely sensed measurements of 17 

snowpack state variables can also provide the possibility to reduce flow estimation uncertainty. 18 

Similarly, assimilation of existing precipitation observations into gridded numerical precipitation 19 

products can alleviate the adverse effects of missing information in poorly instrumented basins. In 20 

Canada, the Regional Deterministic Precipitation Analysis (RDPA) data from the Canadian 21 

Precipitation Analysis (CaPA) system have been increasingly applied for flow estimation in 22 

sparsely gauged Nordic basins. Moreover, CaPA-RDPA data have also been applied to establish 23 

observational priorities for augmenting precipitation observation networks. However, the accuracy 24 

of the assimilated data should be validated before being applicable in observation network 25 

assessment. The assimilation of snowpack state variables has proven to significantly improve 26 

streamflow estimates, and therefore, it can provide the benchmark against which the impact of 27 

assimilated precipitation data on streamflow simulation can be compared. Therefore, this study 28 

introduces a parsimonious framework for performing a proxy-validation of the precipitation 29 

assimilated products through the application of snow assimilation in physically-based hydrologic 30 

models. This framework is demonstrated to assess the observation networks in three boreal basins 31 

in Yukon, Canada. The results indicate that in most basins, the gridded analysis products generally 32 

enjoyed the level of accuracy required for accurate flow simulation and therefore were applied in 33 

the meteorological network assessment in those cases.  34 
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1. Introduction 35 

The spatio-temporal representativeness of liquid and solid precipitation data is among the 36 

most crucial factors in every flow simulation practice. Sporadic meteorological observations, 37 

among other data constraints, can result in uncertainties in many hydrological modelling practices 38 

performed for flow and inflow forecasting. This is also the case with the HYDROTEL system 39 

(Bouda et al., 2012; Bouda et al., 2014; Fortin et al., 2001a; Turcotte et al., 2003; Turcotte et al., 40 

2007) set up for the watersheds in Yukon in northwestern Canada, where data constraints due to 41 

sparsely distributed precipitation information in major basins of interest have adversely affected 42 

the performance of the modelling system. Therefore, it is obvious that augmenting the precipitation 43 

observation network could greatly reduce the uncertainty involved with meteorological forcing. 44 

In many forecasting centers around the globe where streamflow simulation is performed in 45 

basins with a hydrology dominated by snowpack melt during spring freshet, in the absence of a 46 

high-density precipitation observation network, assimilation of in situ and remotely sensed 47 

measurements of snowpack state variables has become increasingly important for accurate flow 48 

estimation (Helmert et al., 2018). Li et al. (2019) have shown that in snow dominated basins, where 49 

the meteorological uncertainty during the forecast period is significant (which is the case for 50 

sparsely gauged networks), reinitializing the model based on observed snow water equivalent 51 

(SWE) information can significantly improve streamflow forecasts. Similarly, in the absence of a 52 

high-density precipitation observation network, assimilation of snowpack state variables can 53 

provide the possibility to handle different sources of uncertainty by merging the value of observed 54 

information into the model in order to correct the effects of model errors and improve forecasting 55 

capabilities (Turcotte et al., 2010). 56 
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SWE reinitialization through various data assimilation (DA) approaches has been proven to 57 

be an effective approach to improve the degree of agreement between the simulated and observed 58 

discharge values (see, e.g., Clark et al., 2006; De Lannoy et al., 2012; Leisenring and Moradkhani, 59 

2011; Nagler et al., 2008; Liu et al., 2013; Saloranta, 2016). Several DA techniques are available 60 

for updating snow state variables, including direct insertion (Liston et al., 1999), Cressman 61 

interpolation (Drusch et al., 2004), optimal interpolation (Brasnett, 1999), nudging (Boni et al., 62 

2010), particle filtering (Arulampalam et al., 2002), and various types of Kalman filtering 63 

approaches with different levels of complexity (Gelb, 1974; Miller et al., 1994; Moradkhani, 2008; 64 

Evensen, 1994). Among these approaches, Kalman filtering, and its Monte Carlo-based 65 

implementation, the Ensemble Kalman Filtering (EnKF) approach, have been widely applied in 66 

different hydrological modelling studies (see, e.g., Andreadis et al., 2006; Clark et al., 2006; De 67 

Lannoy et al., 2012; Durand and Margulis, 2008; Huang et al., 2017; Magnusson et al., 2014; 68 

Piazzi et al., 2018; Slater and Clark, 2006; Su et al., 2008).  69 

Currently, to gain a proper insight into short-term, seasonal, and long-term flow forecasting 70 

in northern and mid-cordilleran alpine, sub-alpine, and boreal watersheds in Yukon, where the 71 

flow regime is dominated by snowpack melt, and also to alleviate the adverse effects of scarce 72 

precipitation datasets, two independent DA routines are combined in HYDROTEL. These DA 73 

tasks are performed to update: (i) flow states, including soil temperature, soil moisture, overland 74 

flow routing, and river flow routing, based on in situ discharge measurements, and (ii) snow states, 75 

including snow depth, SWE, snowpack thermal deficit, snowpack liquid water content, and surface 76 

albedo, based on snow survey data. The first DA routine was implemented by Samuel et al. (2019), 77 

where the North American Ensemble Forecasting System (NAEFS) precipitation products are 78 

merged into the operational flow forecasting platform in HYDROTEL through EnKF. The snow 79 
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DA routine, on the other hand, performs a distributed snow correction of the simulated snowpack 80 

based on available in situ measurements. When snow surveys are available, the simulated state 81 

variables including SWE and snow depth are corrected based on site measurements. The correction 82 

is performed by interpolating the three nearest sites, where measurements are taken from, over the 83 

entire watershed (Turcotte et al., 2007). Thus, the application of the snow DA routine in 84 

HYDROTEL is in line with the same practice followed by a number of other forecasting centers 85 

(see, e.g., Brasnett, 1999; Barrett, 2003; Drusch et al., 2004).  86 

There are other sources of information, such as gridded numerical products, which can reduce 87 

the input data uncertainty. For instance, the numerical weather prediction datasets produced by 88 

Environment and Climate Change Canada (ECCC), which are adjusted through an assimilation 89 

technique known as statistical interpolation (SI), represents a prime example of such atmospheric 90 

analysis gridded precipitation products. Currently, these adjusted products are created by the 91 

Canadian Precipitation Analysis (CaPA) system (Fortin et al., 2015; Mahfouf et al., 2007), the 92 

product of which is known as the Regional Deterministic Precipitation Analysis (RDPA). The 93 

CaPA-RDPA products are currently available in grib2 format on a polar-stereographic grid with a 94 

10-km resolution (true at 60°N) at two temporal resolutions (6 hourly and 24 hourly). A high-95 

resolution version of the system, known as High Resolution Deterministic Precipitation Analysis 96 

(CaPA-HRDPA) System is also in operation since 2018 and takes the HRDPS 2.5-km resolution 97 

field as the trial. 98 

The CaPA system has gained considerable momentum in recent years, and the suitability of 99 

its precipitation products for application in hydrological modelling studies in Nordic watersheds 100 

in Canada have been the subject of a number of studies (e.g., Deacu et al., 2012; Eum et al., 2014; 101 

Gbambie et al., 2016; Haghnegahdar et al., 2014; Hanes et al., 2016; Wong et al., 2017; Zhao, 102 
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2013). Boluwade et al. (2018) compared the performance of CaPA-RDPA data against 103 

precipitation observations in the Lake Winnipeg basin, which entails many of the hydro-104 

climatological characteristics associated with the northern Great Plains and concluded that CaPA-105 

RDPA data is a reliable precipitation product in sparsely gauged basin. Xu et al. (2019) evaluated 106 

daily total precipitation data derived from CaPA-RDPA, ERA-Interim, ERA5, JRA-55, 107 

MERRA-2, and NLDAS-2 over the Assiniboine River Basin, and concluded that in general, except 108 

for convective rainfalls in summer, CaPA-RDPA products demonstrated the best performance 109 

among all. 110 

CaPA-RDPA data have also been used for establishing observational priorities in poorly-111 

instrumented basins in Canada. For instance, Abbasnezhadi et al. (2019) used the SI technique and 112 

simulated the products and by-products of the CaPA system to design a stochastic meteorological 113 

network density assessment scheme. In this approach, the network assessment is undertaken with 114 

the objective to maximize the accuracy of precipitation products for hydrological modelling 115 

applications. This scheme can be used to find the optimal density of a new observation network, 116 

only if the RDPA products in the sparsely gauged region, where the observation network is 117 

investigated for augmentation, are assumed to represent the truth. Given such a proposition, a 118 

controlled assessment approach (one in which observation uncertainty is accounted for), as 119 

suggested by Abbasnezhadi et al. (2019), would then be necessary to find the optimal station 120 

density. However, the benchmark that the snow assimilation routine in HYDROTEL provides for 121 

accurate flow estimation would mean that the accuracy of the CaPA-RDPA products could be first 122 

validated prior to undertaking the network assessment. In other words, it is possible to claim or at 123 

least expect that the current SWE correction performed in HYDROTEL can result in accurate 124 

streamflow estimates against which the simulated streamflow for given CaPA-RDPA forcing can 125 
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be compared. Such an evaluation would provide us with valuable information (i.e., benchmark) 126 

with respect to the accuracy or the intrinsic added-value of using the CaPA-RDPA products in 127 

sparsely gauged basins for meteorological network assessment. Given this approach, it would then 128 

be possible to perform the precipitation observation network assessment through a parsimonious 129 

approach. Therefore, this study was designed to provide a framework for performing a proxy-130 

validation (i.e., indirect validation of gridded weather products by means of hydrological 131 

modelling) of the RDPA products through the application of snow assimilation in physically-based 132 

hydrologic models. The proxy-validation experiment and the network assessment framework 133 

designed in this study can therefore be undertaken to complement the precipitation network 134 

assessment approach designed by Abbasnezhadi et al. (2019). The assessment scheme introduced 135 

in this study may also be implemented autonomously in sparsely gauged basins; providing that 136 

snow survey data would be readily available. 137 

The remainder of the paper is organized as follows. In Section 2, the study area is described 138 

and specific details with respect to the hydrometeorological data used in the study are provided. 139 

Section 3 describes the HYDROTEL model and outlines the approaches carried out to: (a) perform 140 

HYDROTEL parameter sensitivity analysis and optimization, (b) validate the CaPA-RDPA 141 

products through the application of the snow data assimilation routine in the model, and (c) 142 

undertake the network assessment. Thereafter, results are presented and discussed in Section 4, 143 

and conclusions are drawn in Section 5. 144 

2. Study area and data characteristics 145 

2.1 Study basins 146 

Fig. 1 illustrates the location of the three study basins in Yukon, Canada, including the Mayo 147 

River basin, Aishihik (/eyzhak/) River basin, and Upper Yukon River basin. These watersheds are 148 
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located in northern and mid-cordilleran alpine, sub-alpine, and boreal ecoclimatic regions (Strong, 149 

2013) of central and southern Yukon. The Mayo basin covers a drainage area of roughly 2,670 150 

km2. The mean annual precipitation and mean daily 2-m temperature are 456 mm (257 mm as rain; 151 

199 mm as SWE) and −5.9°C, respectively (true for 1981-2018). The flow volume varies on a 152 

seasonal basis, peaking in summer between June and July and dropping during winter in January 153 

and December. There are two generating stations in Mayo: Mayo A and Mayo B. The Aishihik 154 

basin covers a larger drainage area in the order of 4,550 km2 and is housing the Aishihik 155 

hydroelectric Facility. The mean annual precipitation is around 302 mm (126 mm as rain; 176 mm 156 

as SWE), and the mean daily annual 2-m temperature is in the order of –6.6°C (true for 1981-157 

2018). The streamflow peaks in June, and the flow volume is relatively higher between May and 158 

October (Brabets and Walvoord, 2009). The Upper Yukon River basin is the largest of the three 159 

and covers a drainage area of around 19,600 km2. The basin is mountainous and is largely covered 160 

by sporadic permafrost. Runoff in the Upper Yukon is derived primarily from snowmelt and 161 

rainfall. The mean annual precipitation is around 299 mm (101 mm as rain; 198 mm as SWE), and 162 

the mean daily annual 2-m temperature is in the order of –3°C (true for 1981-2018). The 163 

streamflow peaks in August and is low between November and May. There is a generating station 164 

in Whitehorse and one control structure on Marsh Lake. For all three basins, the dominant 165 

hydrological processes are governed by snow accumulation and melting that produce high flow 166 

volume which peaks in summer. In addition, the Upper Yukon River summer runoff involves 167 

glacier melting from the southwest region of the basin. 168 

-- Fig. 1 here -- 169 
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2.2 Meteorological data 170 

Table 1 provides a list of the meteorological stations located within and in the vicinity of the 171 

boundaries of each basin. Except for MAYOMET and AISHMET stations, which are operated by 172 

Yukon Energy (YE), the other stations are operated by the Meteorological Survey of Canada 173 

(MSC). 174 

-- Table 1 here -- 175 

Fig. 2 shows the distribution of the meteorological stations within and in the vicinity of the 176 

study basins. In Mayo, the precipitation gauge at the Mayo airport (Mayo A), which is located just 177 

in the outskirts of the basin, is the only historical active weather station with close to 100 years of 178 

available record. The MAYOMET station located near the outlet of Mayo Lake was installed in 179 

late 2018 and is the only active station within the basin. In Aishihik, the majority of the stations 180 

(17 out of 27) have less than 25 years of available data. There are three active MSC stations within 181 

a 75-km distance from the basin boundaries, including Carmacks CS (recording since 1999), 182 

Haines Junction (recording since 1944), and the one at Burwash airport, which is 50 km east of 183 

Aishihik, providing more than 50 years of historical precipitation data in conjunction with its 184 

nearby stations (Burwash & Burwash A). Within the basin boundaries, however, there are only 185 

two weather stations available (AISHMET & Otter falls NCPC), of which Otter falls NCPC has 186 

not been recording since 2015, and AISHMET is the one which was activated in late 2018. In 187 

Upper Yukon, more than 65% of the stations have less than 20 years of record, the majority of 188 

which have been installed in the past 10 years. The MSC station at Atlin is the only historical 189 

active station with more than 120 years of recorded precipitation amounts. It should be reminded 190 

that solid precipitation undercatch is rather an important issue to consider when assimilating snow 191 

measurements. Pierre et al. (2019) assessed the undercatch to be as much as 20-70% of the solid 192 
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precipitation, which is, to the authors’ knowledge, the most recent assessment available. This can 193 

justify and explain why snow assimilation is necessary and beneficial. 194 

-- Fig. 2 here -- 195 

The grib2 CaPA-RDPA v3.0.0 data from 2010 to 2018 at daily time steps were also 196 

downloaded from ECCC ftp repository and decoded using NOAA/National Weather Service 197 

wgrib2 program. The decoded data sets were then converted from the polar-stereographic grid onto 198 

a rectangular grid covering each basin’s drainage area with a spatial resolution of 0.10° in latitude 199 

and 0.15° in longitude (roughly 10 km in both directions at 60°N).  200 

2.3 Hydrometric data 201 

Table 2 provides a list of available hydrometric stations at which streamflow measurements 202 

are taken in each basin (see Fig. 2 for the specific location of the hydrometric stations). The inflows 203 

to Aishihik Lake and Mayo Lake do not represent naturally observed discharge values and were 204 

reconstructed based on recorded water levels (see Samuel et al. (2019) for a detailed description 205 

of the reconstruction methodology). For Mayo Lake, water level data obtained from the 09DC005 206 

station and streamflow observed at the YECMAYO station were used for reconstructing inflows. 207 

Similarly, water levels recorded at station 08AA005 and streamflow recorded at 08AA008, 208 

08AA009, and 08AA010 stations were used to reconstruct the inflows to Aishihik Lake. All flows 209 

and water levels were provided by the Water Survey of Canada (WSC), except for those at 210 

reconstructed stations #0000003, ##0000003, and YECMAYO, which are recorded by YE. 211 

-- Table 2 here -- 212 

2.4 Snow readings 213 

Table 3 provides the metadata of the snow depth and SWE monitoring networks managed by 214 

the Water Resources Branch (WRB) of Environment Yukon as well as the Gamma Monitoring 215 
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(GMON) automatic snowpack sensor readings provided by YE. The GMON (a.k.a. Campbell 216 

Scientific CS725) sensor measures SWE by detecting the attenuation of naturally occurring 217 

electromagnetic energy from the ground. This contactless approach can offer highly reliable and 218 

accurate local SWE measurements with an uncertainty level that does not exceed ±5% at maximum 219 

snow depth. Traditional SWE measurement approaches, such as the application of snow pillows, 220 

by which the snowpack weight is directly measured, are prone to higher uncertainty levels since 221 

snowpack properties (e.g., radiation characteristics) can be altered during the measurement. The 222 

GMON gauge, which monitors snowpack properties in a contactless mode, does not suffer from 223 

the same disadvantages. During the past few years, a number of GMON gauges were installed at 224 

those locations identified in Table 3 and Fig. 2 (five stations were initially installed in Upper 225 

Yukon, but two were removed and relocated; one in Mayo; and one in Aishihik). Once monitored, 226 

the collected information is transmitted via satellite connection and goes through quality control. 227 

Added and relocated GMON gauges intend to complete the existing snow survey site or at least 228 

offer specific measurements within the basin limit (in Aishihik, Mayo). In situ snow measurements 229 

are relevant and aim to capture snow evolution, but local measurements may not be representative 230 

for the entire basin conditions. 231 

-- Table 3 here -- 232 

3. Models and methodology 233 

3.1 HYDROTEL: Sensitivity analysis and model calibration 234 

The semi-distributed physically based HYDROTEL model can simulate a variety of 235 

hydrological processes. These processes and the physically-based approaches used to simulate 236 

each one along with a list of parameters associated with each process used in the version of 237 

HYDROTEL utilized in this study are listed in Table 4. In HYDROTEL, the vertical water budget 238 
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is computed over a computational unit called the Relatively Homogeneous Hydrological Unit 239 

(RHHU), which represents either a hillslope or elementary sub-watershed and are derived based 240 

on a digital elevation model and a digital network of lakes and river sections using PHYSITEL, a 241 

specialized GIS for distributed hydrological models (Turcotte et al., 2001; Rousseau et al., 2011; 242 

Noël et al., 2014), both of which overlaid by a multi-layer soil model. The soil column of a RHHU 243 

is stratified into three layers. The first soil layer (Z1) governs infiltration, and the other two layers 244 

(Z2 and Z3) control interflow and baseflow. The interpolation of meteorological variables is based 245 

on the weighted mean of the nearest three stations to resolve the amount of total precipitation, 246 

which is then partitioned into rain and snow according to a threshold temperature and a simple 247 

weighted scheme based on daily minimum and maximum temperatures, on each RHHU. For 248 

missing station values, HYDROTEL fills the gap by using the values available at the three nearest 249 

stations based on the inter-station temperature and precipitation altitude variations. The 250 

accumulation and melt of snowpack processes are based on a mixed degree-day energy budget 251 

approach and determine the timing and peak of the spring freshet. In the glacier module, a mixed 252 

degree-day energy budget approach is also used in the exact same fashion used for the snowmelt 253 

process. In the soil temperature and soil frost process, the only associated parameter (soil freezing 254 

temperature threshold) is not distributed over the entire RHHUs, and therefore, is not 255 

recommended to be modified. The next process is designed to identify the potential 256 

evapotranspiration which is dominantly going to impact the total annual runoff and baseflow in 257 

summer. The flow process at the RHHU scale simulates the water flux towards the river network 258 

using a hydrogeomorphological unit hydrograph (a.k.a., HGM). 259 

-- Table 4 here -- 260 
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While other studies have performed different types of sensitivity analyses of HYDROTEL on 261 

other basins (e.g., Bouda et al., 2013; Turcotte et al., 2003), a global sensitivity analysis was 262 

performed using the Variogram Analysis of Response Surfaces (VARS) toolbox (Razavi et al., 263 

2019). The toolbox allows the user to identify the parameters by the importance level (i.e., model 264 

sensitivity to changing parameter conditions) through a multi-method approach that unifies 265 

different theories and strategies. With sensitive parameters in hand, the model calibration becomes 266 

a less challenging task. However, since calibration of HYDROTEL, in essence, is a multi-objective 267 

optimization problem (due to the number of stream gauges reporting flows in the basin for which 268 

several error criteria might be assessed), defining what makes the model calibrated is not a 269 

straightforward task. Moreover, other factors affecting the quality of the calibration result include 270 

error due to lake/reservoir inflow reconstruction and the quality of precipitation or temperature 271 

forcing data (elaborating on these concerns is beyond the scope of the current study). To properly 272 

respond to these challenges, model calibration was completed in OSTRICH (Optimization 273 

Software Toolkit for Research Involving Computational Heuristics), which is a model-274 

independent and multi-algorithm optimization tool (Matott, 2017). The toolkit, which supports 275 

both single- and multi-criteria optimization options, can be used for the weighted non-linear least-276 

squares calibration of the model parameters or for constrained optimization of a set of design 277 

variables according to pre-defined cost functions. OSTRICH can incorporate different algorithms 278 

to search for the optimal value of the objective functions and to identify the set of parameter values 279 

associated with such optima. There are several optimization algorithms available in the toolkit, 280 

which can be classified as either deterministic local or heuristic global search methods 281 

incorporating elements of structured randomness. For multi-criteria optimization, the Pareto 282 

Archive Dynamically Dimensioned Search (PA-DDS; Asadzadeh and Tolson, 2009, 2013) and the 283 
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simple multi-objective optimization heuristic algorithms are available, while for uncertainty-based 284 

calibration, several sampling-based algorithms (i.e., Generalized Likelihood Uncertainty 285 

Estimation and Metropolis-Hastings Markov Chain Monte Carlo) are available. In addition, the 286 

asynchronous parallel processing architecture provided by OSTRICH, which is based on the 287 

industry standard Message Passing Interface (MPI), provided the means to speed up the calibration 288 

procedure. 289 

The model was calibrated for the period of 2010-2018 using PA-DDS by maximizing the 290 

Kling-Gupta Efficiency (KGE; Gupta et al., 2009) and minimizing the root mean squared errors 291 

(RMSE). HYDROTEL was forced with CaPA-RDPA and meteorological data, including daily 292 

precipitation and maximum and minimum temperatures time series described in Table 1, as well 293 

as snow survey observations provided in Table 3. Daily historical discharge data measured at the 294 

location of available hydrometric stations described in Table 2 and identified in Fig. 2 were 295 

obtained from WSC, while the reconstructed inflows were calculated and used for model 296 

calibration.  297 

3.2 Impact of snow data assimilation and CaPA-RDPA forcing 298 

In order to investigate the impact of SWE assimilation on model performance, and also to 299 

understand how robust the accuracy of CaPA-RDPA products were over the three study basins for 300 

hydrologic application purposes, two separate sets of modelling experiments were designed. In the 301 

first set (experiment Set 1), the model was trained with forcing CaPA-RDPA, while in the second 302 

set (experiment Set 2), MSC meteorological data were used as input. Depending on whether the 303 

GMON and snow survey monitoring information were assimilated during the calibration and the 304 

‘stand-alone’ run (i.e., when the model runs once the calibration is completed), two separate runs 305 

were considered for each set (see Table 5). In Exp. 1.1, the model was calibrated while assimilating 306 
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SWE measurements. The assimilation was then switched off and the calibrated model was forced 307 

with CaPA-RDPA once again for the same time period (2010-2018) (Exp. 1.2). This experiment 308 

was designed to indicate the extent by which the model would be able to preserve the flow 309 

estimation accuracy with forcing precipitation analysis products only. The second set of 310 

experiments (Exp. 2.1 and Exp. 2.2) are similar to those in the first set except that CaPA-RDPA 311 

data were replaced with gauged meteorological forcing. For each experiment, goodness-of-fit 312 

metrics can be used to quantitatively measure the representativeness of the experimental flow 313 

estimations to the hydrometric observations (the metrics used in this study can be found in the 314 

supplementary materials provided in the online version of this paper). Such an evaluation helped 315 

us perform an inter-comparison of the results between the two sets of experiments. 316 

-- Table 5 here -- 317 

3.3 Network assessment 318 

Depending on whether the former assessment of the CaPA-RDPA forcing in HYDROTEL 319 

may suggest if the gridded analysis products can be adequately used for streamflow simulation, a 320 

simple network density sensitivity analysis based on CaPA gridded products was proposed for 321 

flow simulation in HYDROTEL. Such an assessment was designed to guide future network 322 

assessment procedures. Therefore, a network assessment procedure similar to that of 323 

Abbasnezhadi et al. (2019) was followed here, except that the assessment did not include 324 

artificially generated reference fields. Rather, a subset of grid points was extracted to create 325 

network scenarios of different resolutions from the RDPA domain over each basin, while the 326 

respective precipitation analysis was directly used during the assessment. Such an uncontrolled 327 

framework could be specifically useful for the case of this study as the SWE DA-CaPA coupling 328 

could prove to output such streamflow estimation that could closely match flow observations. 329 
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Sampling grids (Θ𝜈), where 𝜈 is the resolution of the pseudo-network in decimal arc-degrees, 330 

pertaining to each study basin are defined in Table 6 (refer to the supplementary materials to see 331 

individual scenarios for each basin). 332 

-- Table 6 here -- 333 

4. Results and Discussion 334 

4.1 Sensitivity analysis and model calibration 335 

The results of the sensitivity analysis provided by VARS indicated that among the parameters 336 

used to regulate the vertical water budget, the second soil layer thickness (Z2), which affects flow 337 

peaks, is a sensitive parameter. The third soil layer thickness (Z3), which mostly affects baseflow, 338 

was identified to be a less sensitive parameter in this group. Also, the recession coefficient (CR), 339 

which affects summer baseflow and works with Z3, was found to be a relatively sensitive 340 

parameter. Among the parameters used for calculating the weighted mean of the nearest three 341 

stations, VARS indicated that the third parameter in this group (PPN) has more impact on the 342 

results, and the first two (GT and GP) are almost equal in sensitivity. Also, for the snow processes, 343 

the melting temperature thresholds and rates for all three land classes in this group (SFC, SFF, 344 

SFD, TFC, TFF, TFD) were shown to have equal sensitivity levels. Both glacier melting 345 

parameters (MR and TT) were found to be sensitive too, and the multiplicative coefficient (FETP) 346 

applied to the Penman-Monteith equation was found to be the only sensitive evapotranspiration 347 

parameter. None of the parameters related to the flow process at the RHHU scale was found to be 348 

sensitive, while any modification to these parameters would force the model to recalculate the 349 

HGM file which would be time-consuming. The parameters associated with the channel flow 350 

process, computed using the kinematic wave equation, were also not found to be sensitive. 351 
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Previous VARS applications performed by Foulon et al. (2019) in two basins in southern 352 

Québec yielded different results for the vertical water budget parameters. Z1 was shown to be the 353 

least sensitive soil layer thickness, while Z2 and Z3 were the second most and the most sensitive 354 

parameters, respectively. Also, the recession coefficient (CR) was indicated to be one of the most 355 

sensitive parameters in the model. This signifies that HYDROTEL is rather sensitive to basin 356 

location and governing hydrological processes. In fact, Yukon and southern Québec are both 357 

governed by snow accumulation and melt, yet summer baseflow plays a more prominent role in 358 

southern Québec.  359 

With sensitive parameters in hand, comprising of a set of 16 parameters indicated in Table 4 360 

by those with the importance level of 1, the model was calibrated in OSTRICH. The standard upper 361 

and lower bound values used for each parameter in OSTRICH are provided in Table 4, which are 362 

based on the physical meaning of each parameter and the works of Fortin et al. (2001b) and 363 

Turcotte et al. (2003). Also, the initial estimates for each parameter were based on those derived 364 

in previous calibration efforts, in which each parameter was manually adjusted in order to achieve 365 

the desired hydrological performance. The toolbox utilized eight computational cores for 366 

asynchronous parallel processing at the budget of 2-18 hours (depending on the basin’s drainage 367 

area) for 1000 iterations. 368 

In Mayo, the model calibration was completed in OSTRICH based on the inflow time-series 369 

into Mayo Lake associated to YE gauge ##0000003 (see Fig. 2). In Aishihik, the model calibration 370 

was completed in two stages. In the first stage, the model was calibrated for Sekulmun River 371 

streamflow time-series at the outlet of Sekulmun Lake observed at WSC Gauge 08AA008 (see 372 

Fig. 2). The Sekulmun portion of the Aishihik model was isolated and separated in HYDROTEL 373 

GUI (graphical user interface) to decrease the model run time. In the second stage, the model was 374 
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setup to simulate the reconstructed inflow time series to Aishihik Lake associated with YE gauge 375 

#0000003. The original reconstructed inflow data display high-intensity fluctuations and were not 376 

deemed suitable for the calibration. Instead, they were first smoothed by using a 7-day moving 377 

average window (windows of longer durations were also tested and did not show to enhance the 378 

calibration results). In Upper Yukon, the model calibration was also performed in two stages. In 379 

the first stage, the model was calibrated separately for three gauged sub-basins, including Atlin 380 

River (WSC gauge 09AA006), Tutshi River (WSC gauge 09AA013), and Wheaton River (WSC 381 

gauge 09AA012) (see Fig. 2). In the second stage, the model was then setup to simulate the flow 382 

time series in Yukon River at Whitehorse observed at WSC gauge 09AB001. 383 

Fig. 3 shows the flow duration curves for Mayo, Aishihik (including the Sekulmun sub-basin), 384 

and Upper Yukon (including the Atlin, Tutshi, and Wheaton sub-basins) (refer to the 385 

supplementary materials provided in the online version of this paper to see discharge time-series). 386 

In Mayo, the simulation has fully preserved the exceedance probability of observed flows. In 387 

Aishihik and Sekulmun, other than some overestimation of winter low flows, the remainder has 388 

been well captured by the model. In Upper Yukon, in general, the exceedance probabilities of the 389 

simulated flows closely resemble the observed ones although the low flows are underestimated in 390 

sub-basins with small drainage areas (Tutshi and Wheaton), which has similarly impacted the low 391 

flows in Yukon too. In Atlin, the exceedance probability of the observed high flows (corresponding 392 

to the flow peaks) is marginally underestimated. 393 

-- Fig. 3 here -- 394 

4.2 Proxy validation of CaPA-RDPA  395 

The impact of the snow DA routine in HYDROTEL and CaPA-RDPA forcing data on 396 

modelling results were assessed based on the set of experiments discussed in Section 3.2. Fig. 4 397 
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compares the metrics in Mayo for the first and the second sets of experiments (for the full 398 

description of the metrics used in the figures of this section, see the supplementary materials in the 399 

online version of this paper). The metrics reported by the experiments indicate that the calibration 400 

results for the case when CaPA-RDPA are used as input (Exp. 1.1 and Exp. 1.2) surpass, in both 401 

cases, those derived by station observations (Exp. 2.1 and Exp. 2.2). In addition, the best outcome 402 

is obtained with Exp. 1.1 when the model calibration is performed with CaPA-RDPA forcing and 403 

the snow DA routine in active mode. Exp. 1.2 (CaPA-RDPA forcing and no snow DA), on the 404 

other hand, indicates that the model’s performance is not undermined if the snow DA routine is 405 

turned off in HYDROTEL (when the model has already been calibrated with the snow DA routine 406 

in active mode). In other words, for this experiment, the assimilation of snow monitoring data has 407 

relatively no impact on the flow estimation accuracy if CaPA-RDPA data are used as input. In 408 

contrast, the metrics obtained from the second set of experiments indicate that when the model is 409 

calibrated using MSC meteorological data as input and with the snow DA routine in active mode 410 

(Exp. 2.1), the metrics are on the ballpark of an acceptable level, while still falling short of those 411 

obtained with CaPA-RDPA. However, as Exp. 2.2 indicates, if the snow DA routine is turned off, 412 

the flow estimation accuracy declines significantly. This illustrates that for the second set of 413 

experiments with sparsely gauged meteorological input data, the snow DA routine has a 414 

compensating impact on the flow estimation accuracy. 415 

Although the new GMON stations do not provide a long record of measurements yet, the snow 416 

course sites in all three basins provide long-enough and continuous records of snow depth and 417 

SWE measurements. Results from the second set of experiments shown in Fig. 4 indicate that, in 418 

Mayo, these snow course measurements provide valuable information by which the SWE data 419 

simulated using the meteorological network can be corrected through the snow assimilation routine 420 
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in HYDROTEL. In other words, the flow estimation accuracy in Mayo is highly dependent on the 421 

external information from the snow survey sites. Although this outcome does not indicate the 422 

representativeness of the snow survey sites, it hints at their value. The same debate is found in the 423 

literature where hydrological models, for example, are run by interpolating snow depth 424 

measurements from a few selected sites to larger areas despite their limited spatial 425 

representativeness (Grünewald and Lehning, 2015; López-Moreno et al., 2013). Other studies have 426 

quantified the issue of snow sites representativeness. For example, Winstral and Marks (2014) 427 

proved that an index site representative of the basin conditions can be valid for a basin wide SWE 428 

in most years. 429 

On the other hand, the proxy validation of the CaPA-RDPA in Mayo based on the 430 

reconstructed inflow associated with gauge ##0000003 shows that the analysis is accurate enough 431 

to the extent that would not call for any correction through snow measurements. To this point, 432 

these results indicate that in Mayo: (a) CaPA-RDPA products can be used for flow estimation, (b) 433 

given the fact that very few precipitation stations are currently assimilated in CaPA, if the current 434 

network is extended, the modelling accuracy will improve, and (c) in the absence of a precipitation 435 

observation network with an optimal density, the snow assimilation routine plays a significant role 436 

to compensate for proper precipitation information. 437 

-- Fig. 4 here -- 438 

Fig. 5a compares the metrics in Aishihik for the first and the second sets of experiments, while 439 

the performance of the model in response to the set of experiments completed in Sekulmun are 440 

shown in Fig. 5b. The results reported for both Aishihik and Sekulmun are not identical to those 441 

of Mayo and the experiments rather exhibit a contrasting outcome. While in Mayo, deactivating 442 

the snow assimilation routine in HYDROTEL when forcing the model with CaPA-RDPA 443 
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(Exp. 1.2) would marginally impact the metrics compared to the case when the snow assimilation 444 

routine was active (Exp. 1.1), in Aishihik (including the Sekulmun sub-basin), deactivating the 445 

snow assimilation routine led the model performance to decay significantly. This suggests that the 446 

RDPA gridded products do not encompass the required accuracy over Aishihik, rendering the 447 

assimilation of snow readings an essential component for accurate flow estimation. The 448 

inadequacy of the RDPA estimates over Aishihik is an indication of the detrimental impact of the 449 

sparse precipitation network in Aishihik, which encompass a relatively larger drainage area, on 450 

CaPA products over the basin. In Sekulmun, Exp. 2.2 provides marginally better results than Exp. 451 

2.1, demonstrating that the precipitation measurements taken at the MSC meteorological stations 452 

better represent the ground SWE accumulation than those recorded at the snow course sites. 453 

Nevertheless, in Sekulmun, when using CaPA-RDPA data as the input, the combined effect of 454 

incorporating the value of information from both the external assimilation of precipitation data in 455 

CaPA and the internal assimilation of snow readings in HYDROTEL has obviously improved the 456 

flow estimation accuracy (see Fig. 5b). In Aishihik, however, Exp. 2.1 displays a declined 457 

performance relative to Exp. 1.1, while Exp. 2.1 and Exp. 2.2 are relatively identical. These results, 458 

in total, revealed that in Aishihik and Sekulmun, the snow data are essential for accurate flow 459 

estimation if the model is forced with CaPA-RDPA, while the MSC precipitation input data seems 460 

to deliver sufficient accuracy (indicating the accuracy of the precipitation measurements taken as 461 

MSC stations which necessitates minimal correction by the data taken at the snow course sites). 462 

This, once again, indicates that the value of precipitation information from the MSC precipitation 463 

gauges is superior to those of CaPA-RDPA which illustrates the low accuracy of CaPA data over 464 

the basin. 465 

-- Fig. 5 here -- 466 
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Fig. 6 compares the metrics in Upper Yukon, including those for Atlin, Tutshi, and Wheaton 467 

for the first and the second sets of experiments. In Atlin (Fig. 6a), there are marginal differences 468 

between the results derived from all four experiments. This agreement could be the outcome of 469 

several factors, including: (a) co-location of the snow course site and the MSC gauge in Atlin, (b) 470 

existence of a MSC gauge which is assimilated in CaPA (see Fig. 2); forcing the respective RDPA 471 

over the basin to become more or less identical to that of gauge reading, (c) the impact of the 472 

nearby MSC gauges on the northeast side of the basin (just beyond the basin boundary) on the 473 

accuracy of precipitation estimate over the basin. In Tutshi and Wheaton, however, a different 474 

outcome is evident. The impact of drainage area on the flow estimation accuracy for the given 475 

activity state of the snow assimilation routine seems to be a factor of importance. For instance, for 476 

a sub-basin such as Tutshi (Fig. 6b) with a small drainage area, the impact of the only snow course 477 

site in the basin (site #09AA-SC3) on the flow accuracy can be comprehended by the fact that 478 

deactivating the snow assimilation in Exp. 2.2 has significantly decayed the flow accuracy by 479 

almost half. On the other hand, in Wheaton (Fig. 6c), a sub-basin with a comparable drainage area 480 

to that of Tutshi, in the absence of any snow course site, Exp. 2.2 has apparently yielded about the 481 

same metrics obtained from Exp. 2.1. In general, the results of the experiments performed in Upper 482 

Yukon indicate that since the basin generally enjoys a higher number of weather stations (including 483 

those assimilated in CaPA and snow course sites), the results demonstrate better metric values. 484 

-- Fig. 6 here -- 485 

Table 7 summarizes the significance of the snow assimilation routine for each basin for the 486 

given meteorological forcing. In short, activating the snow assimilation routine would have a 487 

significant impact on the flow estimation only in Mayo when forcing HYDROTEL with the MSC 488 

meteorology and in Aishihik when forcing the model with CaPA-RDPA data. Hence, it appears 489 
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that snow survey sites are more representative of the watershed snow conditions than the 490 

meteorological conditions recorded at the MSC stations or embedded into CaPA-RDPA. 491 

In Upper Yukon, sub-basins did not yield consistent results. It was shown that the model does 492 

not necessarily need the assimilation of snow products when the model is forced with either gauged 493 

or analysis precipitation products (for 3 out of 4 sub regions). While medium-size watersheds (as 494 

Tutshi) could benefit from snow survey measurements, the others could not. For larger watershed 495 

with denser meteorological networks, snow assimilation may prove to be superfluous. Overall, 496 

where snow assimilation significantly improves the results, it can be concluded that the 497 

corresponding meteorological forcing does not have the expected accuracy for hydrologic 498 

modelling purposes, including the assessment of the meteorological network density which is the 499 

subject of the next analysis in this study. 500 

-- Table 7 here -- 501 

4.3 Network sensitivity analysis 502 

The information gained from the validation stage was used to decide whether the assessments 503 

should be undertaken with/without the assimilation of snow course data. The proxy validations 504 

indicated that at least in Aishihik, CaPA data do not have the required accuracy, while the 505 

validations in the other two basins (Mayo and Upper Yukon) were promising. Therefore, in 506 

Aishihik, the network assessment was carried out while assimilating the snow course 507 

measurements. In Mayo and Upper Yukon, no snow assimilation was performed when evaluating 508 

the impact of different network scenarios. Even though any proposed additional station would 509 

probably be equipped with various measuring apparatus for different meteorological variables, the 510 

network augmentation assessment was carried out with the assumption that the network would be 511 
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mainly measuring precipitation. This is mainly due to the fact that precipitation demonstrates a lot 512 

more spatial variability than other meteorological variables (e.g., temperature, wind). 513 

Fig. 7 shows the variation of the NSE, KGE, and absolute PBias scores in Mayo, Aishihik, 514 

and Upper Yukon with the changing resolution of the pseudo-network scenarios (for descriptions 515 

of the scores, see the supplementary materials). In Mayo (thick lines in all figures), as the network 516 

resolution decreases (and so does the network density) from 0.10° to 0.35°, the scores go through 517 

two distinct areas of variation. First, decreasing the network resolution from 0.10° to 0.30° results 518 

only in marginal drops in all three performance scores. In comparison, the performance of the 519 

CaPA precipitation products for a network with a given resolution of 0.30° or higher is better than 520 

that of the current meteorological precipitation network (shown by horizontal lines). The 521 

fluctuations and the unexpected drops in performance scores in this range are an artifact of the 522 

spatial variability of precipitation that has not been fully resolved by certain grid points. This 523 

phenomenon which is known as singularity has been reported previously by Abbasnezhadi et al. 524 

(2019) and Dong et al. (2005). Decreasing the network density below 0.30°, results in substantial 525 

performance deterioration to an extent well below the current sparse MSC network. This indicates 526 

that the limit at which the CaPA gridded data can outperform the existing network in Mayo is 527 

limited to a network with a density of at least 0.30°. 528 

-- Fig. 7 here -- 529 

The variation of the NSE, KGE, and absolute PBias in Aishihik with changing network 530 

resolution are shown by dashed lines and compares the performance of the pseudo-network 531 

scenarios constructed based on the CaPA grid definition with the current MSC network in the 532 

basin. The same overall trend of variation previously observed in Mayo is evident here too where 533 

the scores drop (although less abruptly) after negligible changes before the threshold network 534 
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density. The less sudden drop is an expected attenuation consequence of a larger drainage area 535 

which is more evidently manifested by the NSE scores which is known to be a sensitive parameter 536 

to peak discharge values (see Abbasnezhadi et al., 2019 for the same performance outcome). In 537 

Aishihik, the network resolution threshold cannot be explicitly inferred. The variation of the NSE 538 

indicates that for every decrease in resolution there is a decrease in performance that is rather of 539 

the same order of magnitude for all resolutions, whereas those of KGE and PBias assert the 0.4° 540 

pseudo-network to entail the optimal resolution below which the accuracy of the ensued flow 541 

simulations degrades significantly. Any higher-density network would cause the scores to level 542 

off and little would be gained by further increasing the network density. The asserted network 543 

density threshold of 0.4° derived for Aishihik resembles the performance established by the current 544 

MSC meteorological network in the basin. Moreover, this threshold value is also slightly higher 545 

than the one determined for Mayo. This was an anticipated outcome as in basins with a larger 546 

drainage area, representativeness errors are averaged out which makes missing a storm event less 547 

impactful on the overall network precision. In contrast, in smaller basins (as in Mayo), mesoscale 548 

precipitation systems are essentially significant for capturing proper flow statistics. Accordingly, 549 

a higher network threshold value can already be anticipated for Upper Yukon which has an even 550 

larger drainage area than that of Aishihik. 551 

In Upper Yukon (thin lines), the same features previously observed in Mayo and Aishihik are 552 

apparent, while a higher network threshold value is resolved. Similar to what was indicated for 553 

Aishihik, a network resolution threshold cannot be explicitly inferred in Upper Yukon. Arguably, 554 

if Pbias changes are ignored (which asserts the 0.7° pseudo-network to entail the optimal 555 

resolution), it can be claimed that the 0.5° pseudo-network would be optimal. A pseudo-network 556 

with a density threshold value between 0.5° and 0.7° would as such provide an optimal resolution 557 
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range. Quite interestingly, the current MSC network maintains an accuracy which is comparable 558 

in performance to the highest network density of the original CaPA network.  559 

5. Summary and Conclusions 560 

This study is at the crossroad between meteorological data assimilation (in which precipitation 561 

observations are merged into numerically modelled precipitation data), and hydrological data 562 

assimilation (in which snow survey data are merged into streamflow forecast). Before applying 563 

assimilated precipitation products in meteorological network assessment, first it is required to 564 

validate the accuracy of these products. In this study, it is indicated that since assimilation of snow 565 

survey data could provide the benchmark for accurate flow estimation, it would then be possible 566 

to evaluate the accuracy of precipitation assimilation products through the proxy-validation of 567 

precipitation analysis in such a hydrologic system. The HYDROTEL model snow data assimilation 568 

(DA) routine is one such example which provides the opportunity to investigate the added value 569 

of using the CaPA-RDPA data for application in meteorological network assessment in sparsely 570 

gauged Nordic basins. 571 

The hydrologic footprint of CaPA-RDPA data and MSC ground observations were validated 572 

against hydrometric observations. This validation was performed to examine whether assimilating 573 

snow monitoring information in HYDROTEL can offset the adverse effects of precipitation data 574 

scarcity in Yukon. When snow assimilation could significantly improve the flow simulation 575 

outcomes, it was concluded that the corresponding meteorological forcing (either CaPA-RDPA 576 

data or ground observations; in this instance, MSC stations) could not exclusively provide the 577 

required accuracy for hydrologic modelling purposes. The proxy validation of the CaPA-RDPA 578 

data indicated that the gridded analysis products enjoy the level of accuracy required for accurate 579 

flow simulation in Mayo and Upper Yukon which does not entail the application of snow 580 
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assimilation in HYDROTEL. In Aishihik, however, the validations demonstrated that the regional 581 

precipitation analysis does not have the required accuracy, and therefore, assimilation of observed 582 

snow course information had a significant impact on the flow estimation accuracy. Based on the 583 

results of these experiments, it can be concluded that although these basins are all located within 584 

similar ecoclimatic zones in southern Yukon and in the proximity of each other, the distribution 585 

of snow course sites and precipitation gauges have left a substantial impact on the accuracy of 586 

precipitation and snow assimilation procedures which directly affect the accuracy of flow 587 

simulations. These results indicate the importance of the snow assimilation routine in HYDROTEL 588 

to embed crucial information not readily available from precipitation forcing data. This approach 589 

and the lessons learned may also benefit watersheds in other parts of the world facing similar 590 

challenges related to incorporating accurate data when such information is not embedded within 591 

the forcing data. 592 

With the experiments in hand, a network augmentation assessment was carried out 593 

subsequently by incorporating the value of data and products available from the CaPA assimilation 594 

system with the assumption that the network would be mainly measuring precipitation. The 595 

assessment indicated that a number of additional stations can be installed in each basin to increase 596 

the accuracy for streamflow simulation. It is worth reiterating that the analysis was performed 597 

based on CaPA-RDPA data and having real measurements on the ground could prove to require 598 

fewer stations, especially for Aishihik and Mayo. In addition, the network was assessed in an 599 

uncontrolled mode where no observation error was added during the analysis to simulate the 600 

impact of such errors (including those related to solid precipitation in winter and convective storms 601 

during summer). Instead, CaPA-RDPA data were used directly into the assessment since the 602 

assumption of accuracy was validated prior to undertaking the assessment. Given that in the CaPA 603 
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system, precipitation measurements are subjected to various quality control (QC) procedures 604 

before being assimilated, the RDPA products can, therefore, be assumed to be of relatively proper 605 

quality. However, the implication of such an assumption is that, the optimal number of stations 606 

derived for each basin is valid when those stations satisfy CaPA QC procedures too. In other words, 607 

if the quality of measurements available from the proposed extended network can satisfy CaPA 608 

QC, they could equally benefit the CaPA system. Moreover, it is ultimately beneficial if any 609 

additional precipitation station which can be directly used for flow forecasting in HYDROTEL 610 

may also be used for the similar purpose indirectly when embedded into the products of the CaPA 611 

assimilation system. Also, if existing snow survey sites could provide the required SWE data for 612 

hydrologic snow assimilation, the framework introduced in this study could be easily 613 

implemented. Otherwise, in case a network assessment is to be undertaken in a basin where such 614 

data are not readily available, proper arrangements should be made to first conduct snow surveys.  615 
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Table 1. MSC* meteorological networks in Mayo, Aishihik, and Upper Yukon (see Fig. 2). 865 

Basin Station Name Station No. Period Time Step Type 

Mayo 

ELSA 2100500 1948-1989 Daily Manual 

Mayo A 2100700 1924-2013 Hourly & Daily Auto 

Mayo A 2100701 2013-Present Hourly & Daily Auto 

Steward Crossing 2101030 1953-2008 Daily Manual 

MAYOMET MAYOMET 2018-Present Hourly & Daily Auto 

 Aishihik A 2100100 1943-1966 Hourly & Daily Manual 

Aishihik 

Blanchard River 2100163 1986-2012 Daily Auto 

Burwash A 2100181 2011-Present Hourly & Daily Auto 

Burwash A 2100182 1966-2015 Hourly & Daily Auto 

Burwash Airport BC 2100184 2013-Present Hourly & Daily Auto 

Carmacks CS 2100301 1999-Present Hourly & Daily Auto 

Haines Junction 2100630 1944-Present Hourly & Daily  Auto 

Pelly Ranch 2100880 1898-2015 Daily Manual 

Takhini River Ranch 2101095 1980-2015 Daily Manual 

Otter Falls NCPC 2100840 1980-2015 Daily Manual 

AISHMET AISHMET 2018-Present Hourly & Daily Auto 

Upper 

Yukon 

Atlin 1200560 1899-Present Daily Manual 

Teslin 2101102 1944-Present Hourly & Daily Auto 

Whitehorse A 2101303 2012-Present Hourly & Daily Auto 

Whitehorse Auto 2101310 2009-Present Hourly & Daily Auto 

Fantail Lower FANTLOW 2012-Present Hourly Auto 

Fantail Upper FANTUPP 2012-Present Hourly Auto 

Llewellyn Lower LLEWLOW 2013-Present Hourly Auto 

Llewellyn Upper LLEWUPP 2013-2016 Hourly Auto 

Wheaton WHEATON 2014-Present Hourly Auto 

* MSC: Meteorological Survey of Canada  866 
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Table 2. WSC* and YE* hydrometric networks in Mayo, Aishihik, and Upper Yukon basins. The 867 

gauges used for the HYDROTEL model calibration are in bold (see Fig. 2).  868 

Basin Station Name Station No. Period Type 

Mayo 

Mayo Lake near the Outlet 09DC005 1979-Present Water Level 

Mayo Lake at the Outlet YECMAYO 1979-Present Flow 

Inflow to Mayo Lake (reconstructed) ##0000003 1979-Present Flow 

Aishihik 

Aishihik Lake near Whitehorse 08AA005 1972-Present Water Level 

Sekulmun River at Outlet of Sekulmun Lake 08AA008 1981-Present Flow & Water level 

Giltana Creek near The Mouth 08AA009 1980-Present Flow & Water level 

Aishihik River below Aishihik Lake 08AA010 1980-Present Flow & Water level 

Aishihik Lake near Aishihik 08AA012 1995-2015 Water Level 

Inflow to Aishihik Lake (reconstructed) #0000003 1980-Present Flow 

Upper 

Yukon 

Atlin River near Atlin 09AA006 1950-Present Flow 

Wheaton River near Wheaton 09AA012 1955-Present Flow 

Tutshi River near outlet of Tutshi Lake 09AA013 1956-Present Flow 

Yukon River at Whitehorse 09AB001 1902-Present Flow 

* WSC: Water Survey of Canada; YE: Yukon Energy   869 
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Table 3. WRB and YE snow course and GMON networks in Mayo, Aishihik, and Upper Yukon 870 

(see Fig. 2). 871 

Basin Station Name Station No. Period Type Sources* 

Mayo 

Calumet 09DD-SC01 1975-Present Depth/SWE WRB 

Edwards Lake 09DD-SC02 1987-Present Depth/SWE WRB 

Mayo Airport A 09DC-SC01A 1968-Present Depth/SWE WRB 

Mayo Airport B 09DC-SC01B 1987-Present Depth/SWE WRB 

MAYOMET MAYOMET 2017-Present GMON YE 

Aishihik 

Canyon Lake 08AA-SC01 1975-Present Depth/SWE WRB 

Macintosh 09CA-SC02 1976-Present Depth/SWE WRB 

Aishihik Lake 08AA-SC03 1944-Present Depth/SWE WRB 

AISHMET AISHMET 2017-Present GMON YE 

Upper 

Yukon 

Tagish 09AA-SC1 2006-Present Depth/SWE WRB 

Montana Mountain 09AA-SC2 2006-Present Depth/SWE WRB 

Log Cabin (BC) 09AA-SC3 2006-Present Depth/SWE WRB 

Atlin (BC) 09AA-SC4 2006-Present Depth/SWE WRB 

Mt. McIntyre 09AB-SC1B 2006-Present Depth/SWE WRB 

Whitehorse Airport 09AB-SC2 2006-Present Depth/SWE WRB 

Meadow Creek 09AD-SC1 2006-Present Depth/SWE WRB 

Moore Creek Bridge (AL) 0034K02 2006-Present Depth/SWE USDA-NRCS 

Eaglecrest (AL) 0034J03 2006-Present Depth/SWE USDA-NRCS 

Fantail Lower FANTLOW 2012-2017 GMON YE 

Fantail Upper FANTUPP 2012-2017 GMON YE 

Llewellyn Lower LLEWLOW 2013-Present GMON YE 

Llewellyn Upper LLEWUPP 2013-2016 GMON YE 

Wheaton WHEATON 2014-Present GMON YE 

* WRB: Water Resources Branch, Environment Yukon; YE: Yukon Energy; USDA-NRCS: United States 

Department of Agriculture, Natural Resources Conservation Service 
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Table 4. HYDROTEL parameter sets associated with each hydrological process. Importance 873 

Level-0 parameters refer to those often physically-based constant (non-calibrated parameters), 874 

while levels 2 and 3 indicate lower importance levels and were not calibrated. Parameters 875 

calibrated in OSTRICH are identified by the importance level of 1. The lower and upper bounds 876 

shown in the table are used in parameter optimization.   877 

Process/Parameter Unit 
Lower 

Bound 

Upper 

Bound 

Importance 

Level 

OSTRICH 

Code 

Vertical water budget: BV3C 

Thickness of the first soil layer m 0.05 0.60 1 Z1 

Thickness of the second soil layer m 0.05 0.60 1 Z2 

Thickness of the third soil layer m 0.05 0.80 1 Z3 

Initial humidity of the first soil layer -- 0.90 0.90 0 -- 

Initial humidity of the second soil layer -- 0.90 0.90 0 -- 

Initial humidity of the third soil layer -- 0.90 0.90 0 -- 

Extinctive coefficient -- 0.3 0.9 2 -- 

Recession coefficient m/h 0.0000001 0.00001 1 CR 

Drying coefficient -- 0.5 1.0 2 -- 

Maximal variation of relative humidity of soil layer -- 0.2 0.4 2 -- 

Interpolation of meteorological variables: Weighted mean of nearest three stations 

Temperature gradient °C/100 m −1.5 0.0 1 GT 

Precipitation gradient mm/100 m 0.0 1.5 1 GP 

Phase change temperature threshold °C −3.5 3.5 1 PPN 

Snow accumulation and melt: Mixed degree-day energy budget approach 

Melting rate (soil/snow) mm/day 0.5 0.5 0 -- 

Maximal snow density Kg/m3 466 466 0 -- 

Compaction constant -- 0.01 0.01 0 -- 

Evergreen forest melting temperature threshold  °C −3.5 3.5 1 SFC 

Deciduous forest melting temperature threshold  °C −3.5 3.5 1 SFF 

Open area melting temperature threshold  °C −3.5 3.5 1 SFD 

Evergreen forest melting rate mm/day °C 1 20 1 TFC 

Deciduous forest melting rate mm/day °C 1 20 1 TFF 

Open area melting rate mm/day °C 1 20 1 TFD 

Albedo threshold -- 1 1 0 -- 

Glacier melt: Mixed degree-day energy-budget approach 

Melting rate mm/day 1 20 1 MR 

Melting temperature threshold °C −3.5 3.5 1 TT 

Soil temperature and soil frost: Rankinen 

Soil freezing temperature threshold °C −1 1 3 -- 

Potential evapotranspiration: Penman-Monteith 

Standard height for wind measurement m 2 2 0 -- 

Standard height for humidity measurement m 2 2 0 -- 

Wind speed at the Z elevation m/s 2 2 0 -- 

Surface reference vegetation height m 0.12 0.12 0 -- 

Stomatal resistance for reference surface s/m 80 120 2 -- 

Multiplicative coefficient -- 0.25 1.30 1 FETP 

Flow on sub-watersheds towards river network: Kinematic wave 

Manning coefficient for forest land cover classes -- 0.15 0.3 3 -- 

Manning coefficient for water land cover classes -- 0.015 0.03 3 -- 

Manning coefficient for other land cover classes -- 0.04 0.1 3 -- 

Channel flow: Kinematic wave 

Roughness optimization -- 1 1 0 -- 

Stream width optimization -- 1 1 0 -- 
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Table 5. Application of snow assimilation during the experiments. × : snow assimilation was 879 

performed during the calibration/stand-alone run, ✓: snow assimilation was not performed 880 

during the calibration/stand-alone run. 881 

Exp. 
Meteorological Forcing 

Snow Assimilation 
✓: active / ×: inactive 

Set Run Calibration Stand-alone Run 

1 
1.1 

CaPA-RDPA 
✓ ✓ 

1.2 ✓ × 

2 
2.1 

MSC Meteorology 
✓ ✓ 

2.2 ✓ × 
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Table 6. Sampling grid of pseudo-network scenarios (Θ𝜈) of different resolutions in decimal arc-883 

degrees (𝜈) for each study basin, extracted from the CaPA grid. See individual scenarios in the 884 

supplementary material. 885 

Basin Sampling grid scenarios 

Mayo Θ𝜈  |  𝜈 ∈ [0.10°, 0.15°, 0.20°, 0.30°, 0.35°] 

Aishihik Θ𝜈  |  𝜈 ∈ [0.10°, 0.20°, 0.30°, 0.40°, 0.50°] 

Upper Yukon Θ𝜈  |  𝜈 ∈ [0.10°, 0.20°, 0.30°, 0.40°, 0.50°, 0.60°, 0.70°, 0.80°] 

  886 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-20-0106.1.Brought to you by I.N.R.S. | Unauthenticated | Downloaded 01/29/21 08:57 PM UTC



43 

Table 7. Significance of the snow assimilation routine in HYDROTEL given the meteorological 887 

forcing for each study basin. Basin denominations are in bold, sub-basins are not. ✓indicates that 888 

performing snow assimilation for the selected basin has a significant impact, while × shows a 889 

nonsignificant outcome. 890 

Basin CaPA-RDPA MSC meteorology 

Mayo × ✓ 

Aishihik ✓ × 

Sekulmun ✓ × 

Upper 

Yukon 
× × 

Atlin × × 

Tutshi × ✓ 

Wheaton ✓ × 
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 892 

Fig. 1. The location of Mayo, Aishihik, and Upper Yukon River basins in central and southern 893 

Yukon. The southern half of the Upper Yukon basin is located within northern British Columbia.  894 
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 895 

Fig. 2. The distribution of meteorological (solid black squares), hydrometric (co-centric green 896 

circles), snow course sites (blue asterisks), and GMON stations (solid red three-dot triangles) 897 

within and in the vicinity of the study basins (Mayo, Aishihik, and Upper Yukon). Meteorological 898 

stations are graduated based on the number of years of available record. Active meteorological 899 

stations (hollow red squares with dashed perimeter) and the synoptic weather stations currently 900 

assimilated in CaPA (hollow red circles) are identified.  901 
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(a) Mayo (##0000003) 

  
(b) Aishihik (#0000003) (c) Sekulmun (08AA008) 

  
     (d) Yukon (09AB001)      (e) Atlin (09AA006) 

  
     (f) Tutshi (09AA013)      (g) Wheaton (09AA012) 

Fig. 3. Calibration flow duration curves for different hydrometric stations. Observations are shown 902 

as solid lines and simulations are dashed (refer to the supplementary materials provided in the 903 

online version of this paper to see flow hydrographs).   904 
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 905 

Fig. 4. Radial diagram for the performance of the model in response to the set of experiments 906 

completed in Mayo (Station ##0000003). NSE, VE, bR2, md, mNSE, and KGE stand for Nash-907 

Sutcliffe Efficiency, Volumetric Efficiency, Modified Coefficient of Determination, Modified 908 

Index of Agreement Modified Nash-Sutcliffe Efficiency, and Kling-Gupta Efficiency, 909 

respectively.  910 
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(a) Aishihik (b) Sekulmun 

 911 

Fig. 5. Radial diagrams for the performance of the model in response to the set of experiments 912 

completed in Aishihik at (a) Aishihk (Station #0000003), and (b) Sekulmun (Station 08AA008). 913 

NSE, VE, bR2, md, mNSE, and KGE stand for Nash-Sutcliffe Efficiency, Volumetric Efficiency, 914 

Modified Coefficient of Determination, Modified Index of Agreement Modified Nash-Sutcliffe 915 

Efficiency, and Kling-Gupta Efficiency, respectively.  916 
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(a) Atlin (b) Tutshi 

  
(c) Wheaton (d) Upper Yukon 

 917 

Fig. 6. Radial diagrams for the performance of the model in response to the set of experiments 918 

completed in Upper Yukon at (a) Yukon (Station 09AB001), (b) Tutshi (Station 09AA013), 919 

(c) Wheaton (Station 09AA012), and (d) Atlin (Station 09AA006). NSE, VE, bR2, md, mNSE, 920 

and KGE stand for Nash-Sutcliffe Efficiency, Volumetric Efficiency, Modified Coefficient of 921 

Determination, Modified Index of Agreement Modified Nash-Sutcliffe Efficiency, and Kling-922 

Gupta Efficiency, respectively.  923 
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Fig. 7. Variation of the NSE (left), KGE (middle), and absolute PBias (right) in Mayo (thick lines), 924 

Aishihik (dashed lines), and Upper Yukon (thin lines) based on pseudo-networks (PN) resolution 925 

defined in Table 6. The revenue of the current network (CN) in each basin is also shown (horizontal 926 

lines). 927 
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