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Abstract

The CANJEM job-exposure matrix compiles expert evaluations of 31 673 jobs from four population-
based case–control studies conducted in Montreal. For each job, experts had derived indices of in-
tensity, frequency, and probability of exposure to 258 agents. CANJEM summarizes the exposures 
assigned to jobs into cells defined by occupation/industry, agent, and period. Some cells may, how-
ever, be less populated than others, resulting in uncertain estimates. We developed a modelling 
framework to refine the estimates of sparse cells by drawing on information available in adjacent 
cells. Bayesian hierarchical logistic and linear models were used to estimate the probability of ex-
posure and the geometric mean (GM) of frequency-weighted intensity (FWI) of cells, respectively. 
The hierarchy followed the Canadian Classification and Dictionary of Occupations (CCDO) classifi-
cation structure, allowing for exposure estimates to be provided across occupations (seven-digit 
code), unit groups (four-digit code), and minor groups (three-digit code). The models were applied 
to metallic dust, formaldehyde, wood dust, silica, and benzene, and four periods, adjusting for the 
study from which jobs were evaluated. The models provided estimates of probability and FWI for 
all cells that pulled the sparsely populated cells towards the average of the higher-level group. In 
comparisons stratified by cell sample size, shrinkage of the estimates towards the group mean was 
marked below 5 jobs/cell, moderate from 5 to 9 jobs/cell, and negligible at ≥10 jobs/cell. The mod-
elled probability of three-digit cells were slightly smaller than their descriptive estimates. No sys-
tematic trend in between-study differences in exposure emerged. Overall, the modelling framework 
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for FWI appears to be a suitable approach to refine CANJEM estimates. For probability, the models 
could be improved by methods better adapted to the large number of cells with no exposure.

Keywords:  retrospective occupational exposure assessment; job-exposure matrix; expert assessment; hierarchical 
model

Introduction

The CANJEM project aimed at developing a general-
population job-exposure matrix (JEM) from the infor-
mation of >30 000 jobs evaluated by experts during 
four population-based case–control studies of cancer 
conducted in Montreal, Canada since the 1980s (Sauvé 
et al., 2018; Siemiatycki and Lavoué, 2018). In this pro-
cess, the exposures assigned to individual jobs (where 
each job represents an occupation held by a subject for 
at least 6 months) for 258 chemical and physical agents 
were summarized in CANJEM into strata of occupation 
or industry (available in several standardized classifi-
cations) and employment period. Both the occupation/
industry and the period dimensions are defined over 
several levels of resolution, from specific occupations/in-
dustries to broader categories, or from a single global 
period to a stratification into four shorter periods. Each 
cell provides a descriptive summary of the exposures as-
signed to jobs according to their probability, confidence, 
intensity, frequency, and frequency-weighted intensity 
(FWI). CANJEM has been recently used to estimate the 
risk of thyroid cancer associated with exposure to pes-
ticides and biocides (Zeng et al., 2017) and to estimate 
the prevalence of occupational exposure to 21 chemicals 
in the Northwestern United States (Doubleday et al., 
2019).

CANJEM is akin to a JEM developed from a data-
base of workplace measurements as it is based on a fi-
nite sample of jobs held by subjects in the four studies 
conducted over a 25-year period. The information for 
each job represents expert judgment on the presence and 
ordinal level of exposure to a series of agents over the 
time period covered by the job, as opposed to a single 
objective measurement of concentration in air. The 
number of jobs available to develop exposure estimates 
thus varies across cells, being lower for less prevalent 
occupations or industries in the population. Increasing 
the resolution of the occupation/industry groups and 
periods also implies that the finite set of jobs is distrib-
uted across a larger number of categories, thereby fur-
ther decreasing sample size per cell. One way to obtain a 
more precise estimate of exposure for a cell based on few 
jobs (e.g. snowmobile repairers) is to use the estimate of 
a broader occupation group (e.g. motor vehicle mech-
anics), pooling jobs across the nested occupations. This 

may represent a useful approach when the exposure pro-
file in one occupation (or industry) is comparable to the 
other occupations within the same group. On the other 
hand, this could introduce bias if the exposure profile of 
the broader group is not indicative of the exposure in a 
specific occupation. Hierarchical models represent an al-
ternative approach that could provide a compromise be-
tween the unbiased, but less precise information of cells 
at finer resolution, and the more precise, but also poten-
tially biased information of coarser resolutions. The use 
of these models structured by the occupation/industry 
systems allows for cells based on a few data points to 
draw information from other, more populated cells asso-
ciated with similar occupations within a broader group.

Hierarchical models have been applied to the inter-
pretation of workplace measurement data for purposes 
of comparisons with exposure limits (Banerjee et al., 
2014) and in occupational epidemiology to account 
for similarities in exposure profiles among workers, job 
titles, or facilities (Friesen et al., 2006; Portengen et al., 
2016; Toti et al., 2006). Other examples include com-
bining a generic JEM with measurement data to esti-
mate quantitative exposure levels by occupation, where 
the occupations were grouped by their categorical JEM 
rating (Peters et al., 2011, 2016; Friesen et al., 2012). 
Hierarchical models have also been used in the evalu-
ation of lung cancer risk for 184 agents by pooling 
information across agents sharing similar chemical 
characteristics and/or prior evidence of carcinogenicity 
(Momoli et al., 2010). More recently, Roberts et al. 
(2018) used Bayesian hierarchical models based on 
the structure an occupational classification to impute 
exposure estimates in the development of a general-
population JEM from a large database of noise meas-
urements. Compared to similar frequentist approaches, 
Bayesian inference is more easily amenable to modelling 
complex multilevel structures (Gelman and Hill, 2007) 
and allows incorporating prior knowledge on the distri-
bution of the parameter(s) of interest.

In this article, we developed a Bayesian modelling 
framework applied to the expert ratings to refine the es-
timates of sparse CANJEM cells by building on the in-
formation contained in cells of similar occupations. The 
application of models also provided an opportunity to 
explore trends in exposure differentiated by study and 
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to compare the predicted exposure estimates of cells to 
those obtained from descriptive summaries.

Methods

The Montreal case–control studies
Study populations
CANJEM is based on data from four population-based 
case–control studies in Montréal, Canada. Study 1 (con-
ducted 1979–1986) investigated 19 different sites of 
cancer among men aged 35–90 years (3726 cancer pa-
tients and 533 population controls) (Siemiatycki et al., 
1987). Study 2 (1996–2001) was a study of lung cancer 
and included males and females aged 35–75 years (1203 
cases and 1513 population controls) (Pintos et al., 2012). 
Study 3 (1996–1997) was a study of breast cancer and 
included women aged 50–75 years (608 cases and 667 
cancer controls) (Labrèche et al., 2010). Study 4 (2000–
2004) was a study of glioma and meningioma tumours 
and represented the Quebec and Ontario portions of the 
multi-centric INTEROCC study (Lacourt et al., 2013), 
and included men and women aged between 30 and 
59 years of age (218 cases and 414 population controls).

Occupational exposure assessment
The expert approach to exposure assessment described 
in Gérin et al. (1985) was developed during Study 1 
and applied in subsequent studies. Briefly, complete oc-
cupational histories including job titles, employment 
duration, tasks performed, work environment and con-
ditions, and product and equipment use were collected 
from questionnaires and extensive face-to-face inter-
views with subjects, or proxy respondents. A team of 
trained chemists and industrial hygienists reviewed each 
job description, blind to the subject’s case/control status, 
to assign standardized job and industry titles and to as-
sess exposures to a predefined list containing approxi-
mately 300 chemical physical and biological agents. 
Exposure was rated by its intensity (low, medium, high), 
its frequency (hours per week), and the experts’ level 
of confidence in the assessment (possible, probable, 
definite). Jobs judged exposed to an agent at a concen-
tration equivalent to or less than a background non-
occupational level were considered unexposed.

Exposure information in CANJEM
The occupational histories and exposure data associated 
with 31 673 jobs served as the foundation of CANJEM, 
with 15 067 jobs from Study 1 (47.6%), 10 371 from 
Study 2 (32.7%), 3510 from Study 3 (11.1%), and 

2725 from Study 4 (8.6%). CANJEM summarizes the 
exposure information of these jobs into three dimen-
sions: agents, occupations/industries, and periods. The 
agent axis includes 258 agents. The occupation/in-
dustry dimension is available in seven standard classifi-
cation schemes. For each agent, exposure estimates can 
be obtained at several resolution levels of the selected 
classification, from broader groupings (e.g. service oc-
cupations) to the most detailed categories (e.g. waiters). 
The period dimension is available in three levels of reso-
lution: a single global period (1930–2005), two periods 
(1930–1969 and 1970–2005), and four periods (1930–
1949, 1950–1969, 1970–1984, and 1985–2005). These 
periods were defined a priori based on broad population-
level changes potentially affecting exposure (e.g. changes 
in regulatory environment in the 1970s). CANJEM can 
be consulted freely at www.canjem.ca.

The exposure profile of jobs in each cell is repre-
sented by five indices: probability, confidence, intensity, 
frequency, and FWI of exposure. Probability represents 
the proportion of jobs exposed among all jobs in the 
cell. Confidence is the relative proportion of jobs with 
possible, probable, and definite ratings. Similarly, in-
tensity of exposure presents the relative proportion of 
exposed jobs across the low, medium and high ratings, 
and frequency the relative proportion of jobs exposed 
<2 h, 2 to <12 h, 12 to <40 h, and 40 h per week or 
more. Last, the continuous FWI index represents the 
intensity of exposure averaged over a 40-h workweek, 
computed by multiplying the intensity ratings with the 
frequency of exposure relative to a baseline of 40 h. In 
computing FWI, weights of 1, 5, and 25 were assigned 
to the low-, medium-, and high-intensity categories, re-
spectively (Lavoué et al., 2012; Sauvé et al., 2018). FWI 
in CANJEM cells is represented as the median value 
across exposed jobs.

Model development
General framework
We used hierarchical models based on the structure of 
the occupational/industrial classification, in which one 
model provided exposure estimates for all cells across all 
levels of a classification system. Cells from each period 
were modelled separately for two reasons. First, we 
wanted to allow for the probability or FWI of cells to 
vary between periods for the same occupation. Second, 
jobs could span several years and belong to several con-
tiguous periods, which represented a challenge to the 
use of a single model applied to several periods at once. 
Therefore, for one combination of agent, period, and 
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exposure index, a single model provides estimates for all 
categories of the selected occupational or industrial clas-
sification across all resolutions.

Furthermore, although all studies relied on the same 
general data collection and exposure assessment frame-
work, shifts in the definition of exposure indices, re-
finement of questionnaires, and accrual of experience 
may have caused differences in exposure estimates for 
a comparable situation. This would have been the most 
important for the time gap between the first study con-
ducted by the group in the early 1980s, and the other 
studies that were conducted some 15 years later. To 
account for potential shifts in exposure coding, the 
models included a binary indicator separating the older 
Multisite study from the others.

Development and structure of models
The models were developed for two exposure indices, 
probability and FWI, and applied to CANJEM defined 
by four periods and the 1971 Canadian Classification 
and Dictionary of Occupations (CCDO) (Department of 
Employment and Immigration, 1971). This classification 
is structured with four hierarchical levels: two-digit major 
groups, three-digit minor groups, four-digit unit groups, 
and seven-digit occupations, the latter featuring 7907 
unique codes. Only the three-, four-, and seven-digit levels 
were included in the models since the two-digit major 
group strata was considered too broad. The models were 
applied to five agents (metallic dust, formaldehyde, wood 
dust, crystalline silica, and benzene) to encompass a diver-
sity of physical forms. All available cells in CANJEM were 
used in the modelling, without restriction on sample size, 
because cells based on a single job could still provide ex-
posure information for higher-level groups.

Because of the expectations of small sample size, 
empty cells, and uneven distribution of data, we chose 
to develop the models using Bayesian inference, which 
is also naturally suited to the application of hierarchical 
models. General introductions to Bayesian inference can 
be found in Gelman et al. (2014) and Kruschke (2015), 
with more detailed information on computational 
methods provided in Carlin and Louis (2009). Recent ap-
plications of Bayesian methods in assessing occupational 
exposures have been reviewed by Ramachandran (2019).

The model for FWI was applied to the individual ex-
posed jobs separately for each agent and period. Linear 
models were applied to the log-transformed FWI values 
to estimate the geometric mean (GM) FWI by occupa-
tional group based on the structure shown below.

ln(FWIhijk) = β
(FWI)
Study + β

(FWI)
3dh

+ b(FWI)
4dhi

+ b(FWI)
7dhij (1)

where ln(FWIhijk) is the log-transformed FWI value of 
the kth job in the jth seven-digit group in the ith four-
digit group in the hth three-digit group.

The three-digit groups were entered as fixed effects 
in the model. The four-digit groups (b4dhi) in equation 
(1) were entered as a random-effects nested within three-
digit groups (β3dh) and the seven-digit groups (b7dhij) 
were nested within the four-digit groups. Last, the term 
for study was entered as a binary indicator in the models 
for the two middle periods only (1950–1969 and 1970–
1984) where the job histories overlapped the most. This 
term was excluded for the other periods since 73% of 
jobs in the period 1930–1949 came from Multisite and 
95% of jobs for 1985–2005 came from the more recent 
studies.

For probability of exposure, which is expressed as 
a proportion, a logistic model was used along with the 
same core structure used to model FWI. The number of 
exposed jobs in a cell (Nexp) was modelled as a binomial 
distribution defined by the proportion of jobs exposed 
(π) and the total number of jobs evaluated (Ntot) [equa-
tion (2)]. The logit of π was assumed to follow a normal 
distribution based on the mean of the seven-digit group 
and the level of the study variable (when applicable).

Nexphijk ∼ Binomial(πhijk, Ntothijk) (2)

where Nexphijk represents the number of exposed jobs 
in the cell for the jth seven-digit occupation and the 
kth study. The logit of π was then modelled according 
to equation (3), allowing for the concurrent estimation 
of probability across the three-, four-, and seven-digit 
groups.

logit(πhijk) = β
(π)
Study + β

(π)
3dh

+ b(π)4dhi
+ b(π)7dhij

 (3)

where πhijk represents the estimated proportion of ex-
posed job of the kth study in the jth seven-digit group in 
the ith four-digit group in the hth three-digit group.

Implementation of the Bayesian models
We fit the Bayesian models using the JAGS 3.4.0 soft-
ware (Plummer, 2003). The JAGS code is provided in 
Supplementary Material (available at Annals of Work 
Exposures and Health online).

Priors for the coefficients of three-digit groups (β3d) 
and study were normal distributions with mean 0 and 
variance 1000. Priors for the between-occupation 
and between-unit group variances, and for the within-
occupation variance (FWI only), were uniform distri-
butions on the scale of the standard deviation bounded 
between 0.001 and 100. Each model for FWI was fitted 
using 12 Markov chain Monte Carlo (MCMC) chains 
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with 75 000 iterations each, discarding the first 25 000 
iterations for burn-in, for a total of 600 000 iterations 
used for inference. Since the models for probability ap-
plied to all CANJEM cells (not only those with exposed 
jobs), we used a larger number of iterations (275 000 
per chain), discarding the first 25 000 iterations and 
keeping the results of one out of each 10 iteration (total 
of 300 000 iterations kept). Convergence was assessed 
using the Brooks–Gelman–Rubin statistic, or R̂ (Brooks 
and Gelman, 1998), where a value close to 1 indicates 
convergence for a given parameter. For FWI, conver-
gence was reached for all parameters with R̂ lower than 
1.1 (Gelman and Shirley, 2011) for all combinations of 
agents and periods. For probability, there remained on 
average 1% of the model parameters with Rhat values 
above 1.1 (range across combinations of period and 
agent = 0–6%).

Development of predictions for CANJEM cells
The hierarchical model structure allowed for predictions 
to be made for the probability of exposure or the GM 
of FWI for all cells across the three levels of the CCDO 
classification for one combination of agent and period. 
One important feature of hierarchical models is the bor-
rowing of information across the data by shrinking the 
more imprecise estimates in the direction of the broader 
group. Exposure estimates for cells with few observa-
tions will tend to be pulled more heavily towards the 
mean of the higher-level group, more so when their 
(unshrunk) estimates differ markedly from the group 
mean (Gelman and Hill, 2007). On the other hand, cells 
with more observations would be less affected. This 
shrinkage allows an increase in precision in estimates 
while applying some level of bias towards the estimate 
of the higher-level group (Greenland, 2000). The relative 
influence of the different occupations in the models was 
mostly driven by the distribution of the data. Recently, 
Quick et al. (2017) proposed a method to modulate 
the relative influence of the exposure groups based on 
sample sizes in constructing informative prior distribu-
tions. However, we did not use this approach because of 
the large number of occupations distributed across three 
hierarchical levels in our models.

As an illustration consider a group of motor vehicle 
mechanics as one level, with two subgroups forming the 
lower level: automobile mechanics, with a FWI value 
for diesel exhaust of 0.5 based on 50 jobs (equivalent 
to 20 h exposed at low intensity per week), and heavy 
truck mechanics, with a single job with a FWI of 25 (i.e. 
40 h at high intensity). The resulting overall estimate 
for mechanics would therefore be mainly based on jobs 
from automobile mechanics. Provided this distribution 

of mechanics jobs reflects the distribution in the base 
population (i.e. higher proportion of automobile mech-
anics), the estimate would accurately represent the 
overall exposure profile for ‘mechanics’. However, the 
estimate for truck mechanics would be pulled towards 
the overall estimate for mechanics, i.e., closer to 0.5 than 
25, itself driven by automobile mechanics. If an FWI of 
25 accurately reflects the exposure of truck drivers in 
the population, this pulling effect is undesirable. On the 
other hand, if the exposure of truck drivers in the popu-
lation is actually lower and the very high exposure for 
the single observation available in our database is due to 
random sampling, the pooling of the data would provide 
a better estimate.

Because it is not possible to discriminate between 
these two scenarios for every situation that may arise 
in CANJEM, we conducted an evaluation of the im-
pact of sample size on the robustness of the estimates 
to shrinkage. This was done with the aim of finding a 
compromise value allowing for some, but not extreme, 
shrinkage for using the results of a cell.

The inclusion of a variable for the source study of 
jobs in the models allowed for predictions to be made 
for a cell corresponding to a case reflecting only the 
Multisite study, only the site-specific studies, or a com-
bination of both. In consultation with the experts, we 
made the predictions for CANJEM cells to reflect a situ-
ation where 75% of the information came from the site-
specific studies, and the remaining 25% from the earlier 
Multisite study. We gave a higher weight to the more 
recent site-specific studies because experts had more ex-
perience with the coding approach and had access to a 
larger pool of information to reconstruct past exposures. 
We adjusted the predictions for the periods where the 
study term was omitted from the models. In those cases, 
we used the median of the posterior distribution for the 
study parameter from the model of the nearest period. 
Details for the adjustment for study on the predictions 
are presented in Supplementary Appendix (are available 
at Annals of Work Exposures and Health online).

Results

Descriptive statistics of the exposure data
The total number of jobs available, the number of 
cells by CCDO level, and the number of exposed jobs 
by agent for each of the four periods are presented in 
Table 1. The total is greater than the total number of 
jobs (31 673) because jobs could be included in more 
than one period. All of the 81 three-digit minor groups 
had at least one job in the two middle periods. However, 
no jobs were available in period 1930–1949 for minor 
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groups 235 (occupations in library, museum, and arch-
ival sciences) and 239 (other occupations in social sci-
ences), and for minor group 731 (Fishing, trapping and 
related occupations) in period 1985–2005.

Metallic dust had the highest proportion of ex-
posed jobs for the first two periods, while formaldehyde 
ranked highest for the two most recent periods. The 
number of seven-digit cells with at least one exposed job 
varied from 94 (benzene, 1985–2005) to 716 (metallic 
dust, 1950–1969).

Modelling
Between-study differences in exposure
The associations between site-specific studies and 
the probability and GM of FWI in cells relative to 
those of the Multisite study are presented in Table 2. 
The between-study differences in probability of ex-
posure were generally small among the combinations 
of agents and periods, with odds ratios (ORs) close to 
1. The largest difference was observed for benzene in 
the period 1950–1969 where jobs from site-specific 
studies were twice likely to be exposed compared to 
those from the Multisite study (OR = 1.93, 90% con-
fidence interval = 1.66–2.24). The influence of site-
specific studies on the GM of FWI of cells (Table 2) 
was expressed as a ratio relative to a reference of 1 
for Multisite. Site-specific studies were associated with 
FWI levels on average 0.75–0.80 of those in Multisite 
for silica and 0.50 for wood dust and metallic dust. In 
the case of formaldehyde and benzene, the FWI levels 
of jobs were comparable between the two study groups.

Predicted probability and GM of FWI of cells
To illustrate the distribution of the information on ex-
posure in cells across the levels of the classification, Fig. 
1 presents the predicted probability and GMs of FWI 
for exposure to formaldehyde (where the between-study 
differences were negligible) among cells nested in the 
minor group of fabricating, assembling and repairing oc-
cupations, wood products (CCDO 854) for the period 
1970–1984. Approximately half of all jobs were asso-
ciated with the occupation of cabinetmakers (CCDO 
8541-110), while most of the other occupations were 
based on one or two jobs.

Effect of sample size on the sensitivity to shrinkage
Among the occupations listed in Fig. 1, the predicted 
FWI of Laminating-press tenders was heavily pulled 
towards the overall mean due to its small sample size 
and large value relative to the other occupations. 
Another illustration of the influence of cell sample 
size on shrinkage of the estimates is presented in Fig. 
2, which compares the observed to the predicted esti-
mates of exposure to formaldehyde among all seven-
digit cells within the minor group 855/856 (Fabricating, 
assembling, and repairing occupations: Textile, fur, and 
leather products) for the period 1950–1969. The 62 
seven-digit cells were categorized in three groups by cell 
sample size (exposed jobs for FWI): fewer than 5 jobs, 
5–9 jobs, and 10 jobs or more. For both probability and 
FWI, the difference between the predicted and the ob-
served estimates decreases from the leftmost panel (<5 
jobs) to the rightmost one (≥10 jobs), with a marked 
reduction in sensitivity with a sample size of at least 5 

Table 1. Total number of jobs per time period and corresponding number of exposed jobs by agent

Time period

 1930–1949 1950–1969 1970–1984 1985–2005

Overall     

 Number of jobs availablea 9444 17 147 13 450 6405

 Number of seven-digit occupationsb 1743 2408 2082 1289

 Number of four-digit unit groupsb 436 469 461 392

 Number of three-digit minor groupsb 79 81 81 80

Number of exposed jobs by agent (%)    

 Metallic dust 1258 (13.3%)c 2065 (12.0%) 1344 (10.0%) 402 (6.3%)

 Formaldehyde 965 (10.2%) 1960 (11.4%) 1522 (11.3%) 663 (10.4%)

 Wood dust 1007 (10.7%) 1525 (8.9%) 916 (6.8%) 341 (5.3%)

 Silica 807 (8.5%) 1480 (8.6%) 907 (6.7%) 277 (4.3%)

 Benzene 571 (6.0%) 1055 (6.2%) 541 (4.0%) 145 (2.3%)

aBecause jobs could be present in two or more adjacent periods, the total is greater than the number of jobs used in the construction of CANJEM (n = 31 673).
bNumber of groups with at least one job available.
cPercentage of exposed jobs relative to the total number of jobs assessed within the time period.
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Table 2. Relative influence of site-specific studies on the probability and FWI of exposure of cells relative to Multisite, 
stratified by time period and agent

Probability Frequency-weighted intensity

 Odds ratio (90% CI) (reference: multisite = 1) Geometric mean ratio (90% CI) (reference: 
multisite = 1)

Perioda 1950–1969 1970–1984 1950–1969 1970–1984

Metallic dust 1.09 (0.94–1.26)b 0.95 (0.80–1.13) 0.61 (0.56–0.68)c 0.56 (0.50–0.64)

Formaldehyde 0.93 (0.83–1.05) 1.05 (0.92–1.21) 1.18 (1.09–1.28) 1.08 (0.98–1.18)

Wood dust 1.27 (1.10–1.47) 1.19 (1.00–1.42) 0.51 (0.46–0.58) 0.45 (0.38–0.52)

Silica 0.72 (0.62–0.84) 0.93 (0.78–1.11) 0.72 (0.64–0.82) 0.80 (0.68–0.94)

Benzene 1.93 (1.66–2.24) 1.17 (0.96–1.43) 1.02 (0.88–1.17) 1.05 (0.87–1.26)

aThe inclusion of study in the models was limited to periods 1950–1969 and 1970–1984.
bOdds ratio and 90% credible interval for site-specific studies, relative to a reference of 1 for the Multisite study.
cRatio between the GM of FWI of cells from site-specific studies relative to a reference of 1 for the GM of cells from Multisite study, computed as exp(β study). The 

90% credible interval around the ratio of the GMs is in parentheses.

Figure 1. Comparison of the observed and predicted probability and GM for FWI for exposure to formaldehyde among cells 
nested in CCDO minor group 854 (Fabricating, assembling and repairing occupations, wood products), period 1970–1984.
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jobs. The pattern observed in Fig. 2 was generally con-
sistent across other combinations of three-digit groups, 
agents, and time periods (results not shown).

Predicted versus observed probability and FWI
Figure 3 presents a comparison of the distribution of the 
observed and predicted probability (Fig. 3a) and FWI (Fig. 
3b) of all cells stratified by CCDO level, using exposure 
to formaldehyde in period 1970–1984 as an illustration. 
For FWI, the models pulled the very low or very high es-
timates towards the overall average for cells at the seven-
digit occupation and four-digit unit group levels, where 
no systematic differences were observed in one direction 
or another. A different pattern emerged for probability 
where shrinkage for the three-digit cells went systematic-
ally in the direction of lower probability of exposure, with 
a median decrease of 1.7% in the predicted probability 

of cells relative to their observed values (interquartile 
interval 0–6.4%). This pattern was consistent throughout 
the analyses, where the median decrease in the predicted 
probability of three-digit cells ranged 0–4.3% (median 
0.8%) across the agents and periods.

Discussion

We developed Bayesian models to refine the probability 
and FWI estimates of CANJEM cells that were based on 
a small number of jobs by borrowing information on ex-
posure available in other related occupations using the 
structure of a standardized classification. The resulting 
estimates are a compromise between the level of infor-
mation on exposure specific to jobs evaluated in a cell, 
and the information available in other cells within the 
same broader occupational group.

Figure 2. Comparison of the observed and predicted probability and FWI of exposure to formaldehyde, stratified by cell 
sample size. Cells shown are all seven-digit cells (n = 99 for probability, n = 62 for FWI) within major group 855/856 (Fabricating, 
assembling and repairing occupations: Textile, fur and leather products) in period 1950–1969.
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Predicted probability and FWI
Effect of sample size and classification structure on 
shrinkage
The borrowing of information on exposure between 
cells in the models was organized by the hierarchical 
structure of the occupational classification, which im-
plies some level of exchangeability in exposure across 
occupations. For example, this would suppose that the 
exposure to formaldehyde is a priori comparable be-
tween the various occupations of cabinet and wood 
furniture makers in the absence of exposure data spe-
cific to an occupation. The estimates of individual cells 
would then draw on the information available within 
the larger pool of cabinet and wood furniture makers 
in the models, which would increase the precision by 
adding some amount of bias compared with a purely de-
scriptive estimate. The trade-off is greater for cells with 
an outlying estimate relative to the other cells and with 
a smaller sample size. This shrinkage property can be 
useful in facilitating the inclusion of groups with a small 
sample size in an analysis that could otherwise result in 

unstable estimate. However, the possibility a large bias 
outweighing the increased precision of an estimate was a 
concern in the context of CANJEM due to the challenge 
of differentiating the lack of compatibility in the expos-
ures between occupations from random variation for 
a large number of agents and occupational and indus-
trial classifications. This challenge was also found with a 
quantitative JEM for noise (Roberts et al., 2018) where 
some managerial occupations with a priori low exposure 
had high noise exposure predicted by the model due to 
borrowing information from industrial production and 
agricultural managers.

The evaluation of shrinkage showed that overall, 
cells with fewer than five jobs for probability, or ex-
posed jobs for FWI, tended to be quite sensitive to the 
shrinkage effect (Fig. 2), while cells with five to nine 
jobs were more robust, and shrinkage was negligible for 
those with at least 10 data points. A sample size of five 
jobs, while an arbitrary threshold, may represent a rea-
sonable starting point in using the estimate of a cell that 
accounts to some extent for the information available 

Figure 3. Comparison of empirical cumulative distribution functions of the observed and predicted estimates of cells across all 
three levels of the CCDO classification, for the probability and FWI of exposure to formaldehyde, period 1970–1984.
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in similar occupations, without being overly sensitive to 
shrinkage towards the group mean. While the structure 
of the classification may not always be representative 
of the distribution in exposures, the impact of potential 
misspecification is therefore limited when using a sample 
size of at least five jobs per cell and avoids defining al-
ternative schemes to group occupations based on 
exposures.

Overall trends in the predicted probability and FWI 
of cells
The distribution of the predicted GMs of FWI of cells 
showed that the more outlying estimates (high or low) 
were pulled towards the mean, suggesting the suitability 
of the models in pooling the exposure information 
across CANJEM cells. However, the model for prob-
ability resulted in a tendency to predict lower values at 
the highest hierarchical level (three-digit groups). This 
trend may be due to the application of logistic models 
to a distribution of (seven-digit) cells for which be-
tween 74 and 93% had no exposed job, depending on 
the agent and period. The evaluation of MCMC history 
plots also showed issues of convergence in cells with 
no exposed jobs compared with those with exposed 
jobs (results not shown). We also explored alternative 
models (see Supplementary Material, available at Annals 
of Work Exposures and Health online) such as linear 
models which, while allowing predictions outside of the 
0–100% range, resulted in a distribution of predicted 
probability closer to FWI in Fig. 3. While the amplitude 
of the systematic shift towards lower probabilities was 
limited, the use of models adapted for zero counts, such 
as zero-inflated binomial regression in a hierarchical 
framework (Hall, 2000), might constitute an improved 
strategy to model the probability of exposure. The adap-
tation of these models to the multiple hierarchical levels 
of the classifications and the unbalanced structure of 
the data would however require further methodological 
development. Further developments could also include 
models adapted to the ordinal indices of intensity and 
frequency of exposure. However, the large proportion of 
empty cell counts also represents a challenge to the ap-
plication of traditional modelling approaches.

Between-study differences in exposure
Overall, the between-study differences were gener-
ally small. The only exceptions were the lower FWI for 
wood dust and metallic dust, and higher probability of 
exposure for benzene (1950–1969 only) in site-specific 
studies. The differences between studies could be due to 
the increased experience and familiarity of the team with 

the exposure assessment method over time, and changes 
in the meaning benchmarks for the intensity categories 
and for the background environmental exposure level 
(Pintos et al., 2012).

The inclusion of a variable for the source studies in 
the model also allowed us to weigh the relative influence 
of each study across all cells in the predictions. In con-
trast, the influence of the study on exposure estimates 
obtained using a descriptive approach might vary from 
cell to cell depending on the distribution of the jobs be-
tween the two study levels within each cell.

Extension of the models
In addition to extending the models to the ordinal in-
dices of intensity and frequency, potential developments 
could also made to modify the hierarchical structure of 
the models to allow for borrowing information across 
periods. The addition of period in a cross-classified hier-
archical design would permit information for a cell to be 
drawn from nearby occupation as well as from nearby 
periods (Browne et al., 2001; Jones and Burstyn, 2016). 
The issue of jobs belonging to more than one period 
would however remain a challenge for this development.

Conclusion

The models applied to the index of FWI appeared to 
have adequately weighted the influence of cells between 
the hierarchical levels on the final estimates. Their ap-
plication to probability was however suboptimal, likely 
due to the considerable number of cells with no ex-
posure. The framework presented here can be useful in 
developing sources of exposure information from ex-
isting data sets of measurements or expert evaluations 
for which job or industry titles are available and where 
the issue of spare data may arise.

Supplementary Data

Supplementary data are available at Annals of Work Exposures 
and Health online.
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