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Abstract: Biofilms can be used as a biomonitoring tool to determine metal bioavailability in streams
affected by mining and other anthropogenic activities. Surface water and biofilm were sampled
over two years from rivers located in the vicinity of a mine located in a Nordic ecosystem (Nunavik,
Quebec). Biofilm metal content (Cd, Cu, and Ni) as well as a variety of physicochemical properties
were determined to examine relationships between metal accumulation and water quality. Among
the three metals of interest, copper and nickel had the highest levels of accumulation and cadmium
had the lowest. When considering the exposure levels, nickel was the most abundant metal in our
sampling sites. Both exposure and accumulation levels were consistent over time. Biofilm metal
content was highly correlated to the ambient free metal ion concentration for sites of circumneutral
pHs for all three metals. When the surface water pH was below 6, biofilm metal content was much
lower than at other sites with similar aqueous metal concentrations of exposure. This apparent
protective effect of decreasing pH can be explained by proton competition with dissolved metals for
uptake binding sites at the surface of the organisms within the biofilm as described by the Biotic
Ligand Model principles. The relationships obtained for Cd and Cu were overlapping those observed
in previous publications, indicating strong similarities in metal accumulation processes in biofilms
over very large geographical areas. Although more data are needed for Ni, our results show that
biofilms represent a promising metal biomonitoring tool.

Keywords: periphyton; lotic ecosystems; cadmium; copper; nickel; mining effluents; biomonitoring;
biotic ligand model; metal speciation; antagonism

1. Introduction

The demand for base metals has been sharply increasing worldwide since industrialization [1].
Anthropogenic activities involving metals, such as mining, have led to a growing mobilization of
elements on a global scale [2]. This has increased metal inputs into the environment, resulting in
contamination pressure upon terrestrial and aquatic biota. Environmental regulations were designed to
limit metal inputs, usually based on the inherent toxicity of each element. Adequate protection of biota
is, however, not straightforward. Indeed, metal impacts vary greatly among elements and between
exposure media (air, water, soil, sediments), and they can be modulated by numerous environmental
factors. For aquatic ecosystems, the water composition (cations and anions, including organic matter)
strongly influences metal bioavailability. In their seminal paper, Sunda and Guillard [3] showed that
copper uptake by marine phytoplankton was not related to the total copper concentration, but rather
to the free cupric ion activity. This paper and several others led to the current paradigm of the Free Ion
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Activity Model (FIAM) [4,5]. Briefly, the FIAM stipulates that metal binding by ligands in solution
contribute to decreased metal availability for aquatic organisms.

Although the FIAM was based on observations of metal uptake and toxicity in seawater, it was
anticipated that the ionic composition would also play a major role in freshwater. This was formally
integrated within the Biotic Ligand Model (BLM) in the 1990s [6,7]. Based on the theoretical framework
of the BLM, metal bioavailability depends not only on the metal free-ion concentration, but also on
the presence of competing ions, such as hardness cations, Ca2+ and Mg2+, and hydronium (H3O+

but commonly called protons and expressed as H+). Metal uptake and toxicity decrease with water
hardness; however, the role of pH is more complex as it influences metal complexation. Indeed, on one
hand, metal binding generally decreases with pH due to proton competition with metals for ligand
binding sites, increasing bioavailability. However, on the other hand, the same principle applies to
biological membrane surfaces where protons compete with metals for surface binding sites, including
metal uptake sites. Therefore, a low pH can result in a higher proportion of free metal in ambient water,
but can also reduce metal bioavailability through competition at the plasma membrane level. The
resulting impact thus depends on the relative importance of each of these effects. Despite the simplicity
of the BLM principles, the exact impact of water composition on metal bioavailability requires a
fairly large amount of data. This includes data on water chemistry (e.g., ionic composition, organic
carbon concentrations), the thermodynamics of metal-ligand complexes, metal binding to transport
sites of the target organism, and the impacts of each pertinent, potentially competing ion that could
provide a protective effect against metal uptake and toxicity. Several BLM-type approaches have been
developed in the last two decades to help environmental regulators achieve adequate water criteria
that would match the receiving water chemistry. These can be empirically [8] or mechanistically [9]
based. Empirical models are usually simpler to build and operate, but mechanistic models tend to
offer greater flexibility and some latitude in extrapolating outside of the range of calibration data.

Another tool available for environmental regulators is the use of biomonitoring [10]. This latter
approach is based on the idea that metals accumulated by organisms reflect the bioavailability of the
metal. The organism thus offers a basis of comparison between sites to determine the extent of metal
bioavailability. The selection of this target organism is thus critical for biomonitoring, with many
species of fish, invertebrates, and freshwater biofilms being assessed in the last decades [11,12]. Ideally,
this organism must be geographically widespread, abundantly available, easy to collect, and, most
importantly, tolerant to the contaminants that it accumulates [13].

Among possible candidates, freshwater biofilms have shown great potential as a biomonitor (and
bioindicator) for contaminants [14–16] and the ecologic quality of rivers [17]. Biofilms develop at the
surface of substrates (rocks, sediments, macrophytes, buoys, wharf structures, etc.) and are composed
of phototrophic and heterotrophic organisms (including bacteria, algae, fungi, and micro-meiofauna).
This heterogeneous community develops quickly and is usually embedded within a self-produced
matrix of exopolysaccharides [18]. Although species composition is known to evolve rapidly over
time and in the presence of stressors, biofilms have been shown to provide a robust signal in terms of
metal accumulation [19]. Biofilms also provide the advantage of being present in the surface waters
(streams, rivers, or lakes) of even the most contaminated ecosystems, where they have been shown to
respond to a large array of both organic and inorganic contaminants [20–23]. Biomonitoring can also
offer additional information than water sampling techniques alone. In the case of small streams, pulse
contamination events may occur which may not be captured at the moment of sampling, whereas such
exposures would likely be integrated in the biofilm response [24,25]. Additionally, water sampling
requires extensive precautions to avoid inadvertent metal contamination through sample handling
and sensitive analytical instruments. Metal accumulation in biomass, however, is usually at high
enough concentrations that sample contamination is negligible, and less sensitive instruments are
required to quantify metal content [19,26]. Finally, from an ecologic perspective, biofilms are also
known to play a key role in aquatic systems, as they are involved in nutrient cycling (e.g., organic
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matter decomposition). Moreover, they are at the base of the food chain and accumulated metals can
be transferred to grazers [27–29].

Ideally, these two approaches can be combined in a single tool where metal accumulation in
biofilms can be used as a biomonitoring tool but also as a predictive bioavailability tool. This would
allow decision makers the possibility of determining the impact of different remediation scenarios
on the expected bioavailability of metals. Although biofilms are commonly found in all types of
ecosystems, it remains to be demonstrated that their response is robust enough over a large geographical
range to be used as a general tool. In previous work, we showed that the accumulation of cadmium,
copper, lead, and zinc could be well predicted based on their respective aqueous speciation [30]. This
work was undertaken in a temperate region of southern Quebec. In the present work, we wanted to
test the coherence of biofilm metal accumulation within a Nordic environment with this previous work.
Considering that mineral extraction operations are expanding in the north and that a large portion
of the mineral reserves are located in remote areas, the development of biomonitoring tools need
widespread applicability to arid, Nordic ecosystems. We thus set out to determine the accumulation of
a series of metals in biofilms occupying streams in the immediate surroundings of a nickel mine in
Nunavik, Quebec, and compare accumulation levels to those observed in temperate areas. We also
fully characterized the water chemistry to identify any potential parameters required to develop a
predictive tool for metal bioavailability using stream biofilms.

2. Materials and Methods

The study was conducted in the area surrounding the Nunavik nickel mine. The mine is found on
the Ungava Peninsula. At the time of the present study, the mine was exploiting nickel and copper
as main products, in addition to cobalt, platinoids, and gold in lower quantities. The mine has two
open pits, each one with its own wastewater treatment facility and wastewater effluents discharging
into different tributaries of the Puvirnituq River. The Puvirnituq River flows through the Pingualuit
National Park, 20 km downstream of the mining installation. It is also the main source of drinking
water for the village of Puvirnituq, 260 km further downstream, and its final discharge is in Hudson
Bay. Sampling sites were selected to encompass a metal contamination gradient and a detailed map
identifying their locations is available in a previous publication [31]. Briefly, sampling sites Ex1 to
Ex4C were located near the Expo pit facilities, in close proximity to a wastewater reservoir. Reference
sites (C1Ex and C2Ex) were located 2.3 km north of Ex3. These sites are upwind of the main mining
activities and are thus less likely to be affected by dry depositions. Wastewaters from the Expo sites are
treated on-site and the effluents are discharged ~6 km downstream of the Expo pit. Sampling sites Ef0
and Ef1 to Ef3 were distributed along the river over a distance of 1.4 km. The reference site Ef0 was
located on a tributary located downstream of the effluent. Mesamax is the other open pit of the mine,
8.5 km east from the Expo site. The sampling site M1 was close to the wastewater reservoir, while sites
M2, MA, M3, and M4 were distributed along the wastewater effluent over a distance of 1.5 km. The
reference site M0 was located ~1 km upstream of the wastewater effluent.

Sampling took place in July and August of 2014 and 2015, corresponding to the periods of effluent
discharge form the mine. During the sampling period, there were two open-pit mining sites in activity;
Expo (since 2012) and Mesamax (since 2013). A total of 18 sampling stations were selected in nearby
rivers and streams. At the Mesamax site, five sampling stations were positioned along an expected
gradient of metal contamination; starting at the wastewater effluent and reaching 1.2 km downstream.
A reference site was sampled upstream from the mining effluent. At the Expo site, three sampling
stations were located at the wastewater effluent and further downstream, covering a distance of 1.4 km.
A reference station was sampled in a tributary of this river. Four sampling stations were also located in
small watercourses within proximity to the Expo site tailings ponds. Two additional reference stations
were selected in rivers 1.5 km north of the mine, away from anthropic activities.

Materials used to store samples for analyses of cations, dissolved organic carbon (DOC) and
total phosphorus (TP) were previously soaked for 24 h in 10% nitric acid (v/v), and rinsed eight times
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with ultrapure water (18 MΩ·cm). Materials used to store samples for the analyses of anions were
previously rinsed eight times with ultrapure water. After rinsing, all materials were dried under a
laminar flow hood. Water samples were collected in triplicate and field blanks were also prepared at
each station. Samples for anions, cations, and DOC were collected in 20 mL high-density polyethylene
Nalgene bottles using polypropylene syringes with polysulfonate encapsulated filters (0.45 µm; VWR
International). Filters were previously purged with 5 mL of surface water for pre-conditioning of the
syringe and filter membrane. Samples collected for cation analysis were acidified to 0.26% nitric acid
(v/v; trace metal grade; Fisher). For TP samples, 50 mL polypropylene tubes were used and samples
were acidified to 0.2% sulfuric acid (v/v; trace metal grade; Fisher). All samples were kept at 4 ◦C until
processed. Water conductivity, temperature, and pH were measured at each station using portable
instruments (Conductivity meter SevenGo SG3; Mettler Toledo; Switzerland and pH/mV meter Denver
Instrument Model 10; Denver Instrument; Sartorius; Germany).

Biofilm was collected by scraping the top surface of several rocks (composite samples) using a
new toothbrush at each station. Biomass was concentrated by centrifugation for 5 min at 4000 rpm.
A volume of 10 mL of EDTA (10 mM; pH 7) was added to the pellets, vigorously shaken, and the
centrifugation process was repeated after five minutes. The resulting pellets were kept in a freezer at
−15 ◦C and subsequently lyophilised. Each pellet was grinded with a clean plastic spatula directly in
the tube, and 30 to 100 mg were weighed in acid-washed Teflon vials. Then, 800 µL of concentrated
nitric acid (trace metal grade; Fisher) were added. After 48 h, 200 µL of concentrated hydrogen peroxide
(trace metal grade; Fisher) were added for 48 h. Finally, 800 µL of the digested material were diluted in
7.2 mL of ultrapure water (18 MΩ·cm) in a 15 mL polyethylene tube to reach a final acidification of 10%
(HNO3; v/v), and kept in a refrigerator. The previous manipulations were also performed on a certified
material (Buffalo river sediment 1RM.8704; Sigma Aldrich; USA), and on blank samples containing
only reagents. Measured metal contents of certified material were within 80 to 116% of certified
values for Al, Ca, Mg, Mn, Ni, and Zn. Total digestions were also tested on four random samples to
compare the metal concentrations measured in comparison to the partial digestion method used in
the present protocol; Cu and Ni recoveries ranged from 77 to 88 and 76 to 86%, respectively. Anions
(Cl−, Br−; NO2

−; NO3
−, SO4

2−) were analyzed by ion chromatography (Dionex DX- 300 Gradient
Chromatography Systems, Dionex, Thermo Fisher Scientific; Netherlands), total phosphorus was
analyzed by persulfate digestion and manual colorimetry (SM 4500-PB), and DOC was analyzed with
a total organic carbon analyzer (TOC-500A, Shimadzu Scientific Instruments, Japan).

Cations in surface water and in digested biofilms (Al3+, Ca2+, Fe3+, K+, Mg2+, Na+, Mn2+, Ni2+,
Zn2+) were analyzed by inductively coupled plasma–atomic emission spectrometry (ICP-AES; Varian
Vista AX CCD; Agilent Technologies; USA) while trace metals (Cd2+, Cu2+, Pb2+, Zn2+) were also
analyzed by ICP-mass spectrometry (ICP-MS; Element X series, model X7; Thermo Fisher Scientific;
Netherlands). The certified controls 900Q30.100 (SCP Science) and FP95-06 (Environment and Climate
change Canada PT Study) were also used with both ICP–MS and ICP–AES. Finally, spiked samples
were analyzed to validate the ICP–MS and ICP–AES measurements. Detection limits (DL) were
used to validate the analytical methods; the DL is three times the standard deviation of ten replicate
measurements of the lowest standard used. Any concentrations lower than the mean field blank values
were systematically excluded from subsequent analyses. Almost all field sample concentrations were
inferior to the field blank for zinc and lead due to very low concentrations in samples. Therefore, these
two metals were excluded for data interpretation and discussion.

The Windermere humic–aqueous model VII (WHAM; Centre for Ecology & Hydrology, UK)
was used to estimate the free ion concentrations of Cd2+, Cu2+

, and Ni2+. This model requires the
ionic composition as determined above as input data. It also requires the humic and fulvic acid
concentrations; these were estimated from the DOC by assuming that the ratio of DOM and DOC is 2:1
and that 60% of DOM is composed of humic and fulvic acids in a 1:3 ratio [30,32].
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3. Results and Discussion

Full dataset including basic physico-chemical characteristics and mean dissolved cation
concentrations is publicly available (https://doi.org/10.5683/SP2/MH5EWX). Bromide and nitrite
were not considered as most samples were below the detection limit (DL = 0.13 µM and 0.04 µM
respectively). Briefly, pH was between 6.3 and 6.9 except for Ex2, Ex3, and EX4C stations where
mean pH values were between 4.1 and 4.9. These sites are in close proximity of the “Expo” operating
site, which was a source of acidification. Dissolved organic carbon was generally low with means
ranging from 0.64 to 2.62 mg C/L. Phosphate concentrations were comparable between stations with
concentrations in the µg P/L range. Total dissolved concentrations of metals spanned over five orders
of magnitude, from tens of nM to hundreds of µM for Cu and Ni, and from tens of pM to hundreds
of nM for Cd. The measured concentrations were consistent between sampling periods suggesting
stable exposure conditions over the sampling period. Reference sites (CEx1, CEx2, C, and M0) were
characterized by the lowest concentrations for the three metals with concentrations in the nM range.
The highest concentrations of the three metals studied were measured near the Expo site (Ex2, Ex3, Ex4
and Ex4C). Site Ex3 was the most contaminated site in our study with average concentrations (n = 12)
of 156 ± 2 µM Cu, 411 ± 4 µM Ni, and 33.3 ± 4.6 µM Cd. The Ex4C site also had high concentrations,
comparable to those of Ex3, but this last site was only sampled on August 2015. The effluent sites
(Ef0–Ef3) were located close to the discharge point of the wastewater effluent. These sites presented
high metal concentrations in the µM range in comparison to reference sites. Mesamax sites (M0 to M4
and MA) were close to the Mesamax mining operation. These sites showed lower metal concentrations
than those of the Expo or the effluent sites, and were slightly higher than reference sites.

3.1. Identifying Key Modifying Variables for Metal Accumulation in Biofilms

Using the water composition determined at each site, we calculated the predicted free metal ion
concentration and plotted biofilm metal content ([M]Bio in mol/g dry weight) to test simple relationships
with this key parameter (Figure 1). Results showed significant linear trends for Cu and Ni but not for
Cd. The Cu2+ data spanned over six orders of magnitude, the Ni2+ data over four orders of magnitude,
and finally, Cd2+ spanned over only three orders of magnitude. The significance of the trends thus
decreased with the dynamic range of the data, resulting in an increase of the signal-to-noise ratio.

Visual examination of the data indicated, as observed by Leguay et al. [30], that biofilms from sites
with low pHs (<6) had distinctively lower metal content for a given exposure concentration. Indeed,
when metal content was plotted again using only data where pH > 6, this resulted in significant trends
for all three metals and improved determination coefficients and significance levels (Figure 1d–f). From
a biological perspective, this break in trends with pH could potentially be explained by a change in
biofilm composition [31]. Should metal tolerant species become dominant, this could result in lower
metal accumulation than at higher pHs. From a chemical perspective, the observed pH effect could
also reflect the inhibition of metal uptake typically observed at high proton concentrations [33–35].
Indeed, the binding of protons to membrane proteins can prevent metal binding and thus decrease
metal uptake. The fact that the accumulation of all three metals is inhibited around the same pH value
suggests that the proton binding affinity to metal uptake sites is similar among the sites involved and
that the binding constant is in the vicinity of 106. This value is close to published proton binding
constants to biological membranes for these metals (e.g., 105.4

−106.7 for fish [36,37]; 105.2
−106.1 for

invertebrates [38–40]; 105.2 for algae [41]). Overall, these results confirm that the concentration of free
metals in the water explains a large amount of the variability in biofilm metal content at pH > 6 and
that below this pH, protons are inhibiting metal uptake in agreement with the premises of the BLM.

https://doi.org/10.5683/SP2/MH5EWX
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Figure 1. Biofilm metal content (mol/g dry weight) plotted as a function of calculated free metal
concentration in solution (M). (a,d) Copper; (b,e) Nickel; (c,f) Cadmium. Lines represent linear
regressions. Top panels are for the entire data set while bottom panels show results for sites where
pH is greater than 6. Error bars represent standard deviations around the mean (n = 3). White circles
correspond to sites where pH < 6.

In order to investigate the potential influence of other cations on the accumulation of a given metal,
we normalized metal content for the ambient calculated free metal exposure concentration [30]. Such
normalized data should result in constant values for a given element if its free metal ion concentration
in solution is the only determining parameter in our data set. In Figure 2, we show how the normalized
Cd, Cu, and Ni biofilm content ([M]Bio/[M2+] in L/g) varies as a function of calculated free proton,
magnesium, manganese, and calcium concentrations at each site. All tested relationships were
significant, suggesting that more than one parameter needs to be considered.
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Figure 2. Biofilm metal content normalized for exposure free metal concentration (L/g dry weight) are
plotted as a function of calculated free competing ion (H+, Mg2+, Mn2+, and Ca2+) concentration in
solution (M). (a–d) Copper; (e–h) Nickel; (i–l) Cadmium. Determination coefficients and p-values from
linear regressions are presented. White circles correspond to sites where pH < 6.

Protons (Figure 2a,e,i) reveal a distinct pattern in which a large number of sites have similar pH (~
6.5) but with a large spread in metal content. This clearly indicates that for a given pH and free metal
concentration, other factors can modulate metal accumulation. Additionally, as anticipated, metal
content decreased at low pHs, confirming the importance of pH. For both Mg2+ and Mn2+, results show
a gradual decrease in normalized Cd, Cu, and Ni biofilm content when the concentrations of these
elements increase in the water column. This suggests that Mg and/or Mn have a potential protective
effect with threshold concentration values of ~10−4 and ~10−8 M, respectively. More specifically for Cu,
there seems to be a plateau at low Mg2+ and Mn2+ concentrations. This could be explained by a larger
difference in the metal affinity of Cu2+ for uptake sites with respect to that of Mg2+ and/or Mn2+ than
for Ni2+ and Cd2+. Indeed, normalized accumulation levels reveal that Cu uptake is two orders of
magnitude higher than that of Cd and Ni for a given free metal ion concentration. It would thus be
coherent that more Mg2+ and/or Mn2+ are required to trigger a significant inhibition of Cu uptake by
the biofilm community than for Cd and Ni. Finally, when plotted as a function of Ca2+, the normalized
data was quite scattered and had the lowest determination coefficients among all cations tested. This
was somewhat surprising since calcium is usually considered as a key variable in protecting aquatic
species from metal accumulation and toxicity [42–44]. Pinpointing the exact contributions of each
competing ion is difficult, since most ions are correlated to each other. Indeed, Figure 3 shows the
correlation coefficients between the calculated free cation concentrations and the biofilm metal contents.
These indicate that, for our three metals of interest, Cd, Cu, and Ni, all other cation concentrations
have correlation coefficients between 0.48 and 0.94. For example, if [Cu]Bio is correlated to [Cu2+] (r =

0.71), because [Cu2+] is correlated to other parameters such as [Mn2+], [Ni2+], [Cd2+] (r values of 0.9,
0.93 and 0.91, respectively). The Cu biofilm content is thus also strongly correlated to three metals
(even more than with [Cu2+] with r values of 0.74, 0.76 and 0.76, respectively) or other components of
the water column. The same reasoning can be applied to Ni and Cd, [Ni]Bio being as much correlated
to [Mn2+] and [Cd2+] as [Ni2+], while [Cd]Bio being as much correlated to [Mn2+] and [Ni2+] as to
[Cd2+]. In simple terms, because all elements co-vary to some extent, internalized metal normalized to
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its free ion concentration will be strongly influenced by the correlation between the free ion and the
competing ion studied. This point makes it difficult to distinguish interactions correctly.Environments 2020, 7, x FOR PEER REVIEW 8 of 13 
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Figure 3. Pearson correlation matrix for all calculated free cation concentrations in the sampled surface
waters of Nunavik and biofilm Cd, Cu, and Ni content. Pearson coefficients (r) were calculated using a
log transformation of the mean for each site (n = 3) including all data regardless of pH.

Because the metal concentrations can reach high levels, it is also possible that some competitive
effects occur between metals for uptake sites. Significant relationships were observed between the
biofilm metal content normalized to free ion concentration and our three metals of interest (Figure 4).
Internalized Ni and Cd normalized to its free ion concentration was observed to gradually decrease
with ambient free metal concentration across the board (Figure 4d–i) in a manner similar to that
observed for Mg2+ and Mn2+ (Figure 2f,g). A slightly different pattern was observed for Cu. Indeed, the
normalized Cu content was somewhat constant, between 103 and 104 L/g, at free Ni2+ concentrations
below ~10−6 M but decreased when Ni2+ increased further (Figure 4b). Even larger data spread can be
seen in the biofilm normalized Cu content as a function of free Cd2+. This pattern for Cu accumulation
is similar to that observed with increasing Mg2+ and Mn2+ concentrations (Figure 2b,c). This strongly
suggests that the overall binding affinity for membrane transporters is much higher for Cu2+ than for
Cd2+ and Ni2+. This difference in binding affinity results in higher uptake levels for Cu while high
ambient free ion concentrations of other metals are required in order to induce a significant competitive
behavior, as expected based on the BLM principles [45,46]. On the other hand, Cd2+ and Ni2+ uptake
are being progressively reduced with increasing concentrations of free ions in surface waters. In their
laboratory exposures of periphyton, Mebane et al. observed that Cd uptake was clearly reduced when
Cu and Zn were also present while the uptake of Cu, Ni, and Zn seemed less affected by the presence
of other metals [47]. The fact that the normalized biofilm metal content is decreasing with increasing
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free concentration of the same metal could reflect possible, gradual saturation of metal transport sites.
As pointed out by McGeer et al. [48], bioconcentration factors (ratio of metal content over ambient
concentration, equivalent to our normalized metal content) often show inverse relationships due to
non-linearity of ion transport across membranes.
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Figure 4. Biofilm copper (a–c), nickel (d–f), and cadmium (g–i) content normalized for exposure free
metal concentration (L/g dry weight) are plotted as a function of calculated free competing ion (Cu2+,
Ni2+, and Cd2+) concentration in solution (M). Determination coefficients and p-values from linear
regressions are presented. White circles correspond to sites where pH < 6.

3.2. Geographical Implications

The present set of data is, to our knowledge, the first one available for biofilms in a Nordic
environment (North of 60◦ latitude). To determine if the observed accumulation of metals were coherent
with those determined much further South, we compared the present data set to values previously
published [30]. As can be seen from Figure 5, biofilm Cu and Cd content as a function of their ambient
free metal ion concentration show significant linear correlations and data overlap between the studies.
In this figure, data obtained in acidic waters (pH < 6) were omitted, but these nevertheless show
that free metal ion concentration is the main uptake driver for neutral to alkaline systems. At low
pHs, predicting metal uptake by biofilms becomes challenging due to protons competing with metals
for membrane surface binding sites, and acidic waters are often rich in all elements which increases
competition for binding sites. Although our data set has allowed us to identify potential candidates for
this ionic competition, we were not able to tease out their relative importance. Due to high correlations
between these variables in field data, laboratory data could provide further information.
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Figure 5. Biofilm metal contents (mol/g dry weight) plotted as a function of calculated free metal
concentration in solution (M) at sampling sites where pH > 6. Copper (a); Cadmium (b). Lines represent
linear regressions. Error bars represent standard deviations around the mean (n = 3). Black circles:
Current data; white circles: Data from Leguay et al. [30].

In their publication, Leguay et al. [30] had shown temporal and spatial robustness in signal as
accumulation was coherent over several years and over a large geographical area of southern Quebec
(sampling sites more than 500 km apart) incorporating sites of different geological characteristics.
The data presented in this study were obtained ~1600 km north of these sites and yet show good
overlap. Indeed, for metals determined in both studies, Leguay et al. [30] found similar normalized
biofilm content for Cu and Cd at neutral pH values with values around 103 L/g for Cu and between
102 and 101 L/g for Cd. This point is important, because it suggests that biofilm, for a given free metal
concentration, will internalize a similar quantity of metals regardless of the environment considered.
This is promising for the development of a generic metal biomonitoring tool. There is, however, a
lack of data for nickel (and metals other than Cd and Cu) to determine the robustness of biofilm
accumulation for metals over large geographical scales. In order to further develop a biofilm metal
biomonitoring tool, more data over a large geographical area are required.
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