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An auto-encoder based classifier for crop mapping from 

multitemporal multispectral imagery  

Crop mapping is a challenging task due to the spatial, spectral, and temporal 

variations within the cropland. These variations cause high intra-class and low 

inter-class variability problems. In this study, inspired by Deep Learning (DL) 

techniques, two Auto-Encoder (AE)-based learning schemes are proposed to 

exploit the spatio-temporal features in order to increase the stability of remotely 

sensed data classification for crop mapping. The first strategy is based on 

stacking the spatio-spectral features of different imaging dates to provide spatio-

temporal spectral features and then feeding them as input to the Stacked AEs 

(SAEs). The spatio-spectral features are achieved by stacking the spectral 

features of all pixels in a Neighbourhood Window (NW) in each imaging date. 

The second strategy is an ensemble learning scheme, in which the base classifiers 

are SAEs trained considering different NW sizes. This method has an advantage 

such that while using the neighbourhood information, it maintains the 

classification accuracy in the boundary areas. To evaluate the performance of the 

proposed strategies, they were compared to the conventional classifiers, namely 

Linear Support Vector Machines (SVMs), Gaussian SVM, and Random Forest 

(RF). In addition, the effect of different train data sampling strategies and 

different proportions of train data on the classification performance was 

examined. The proposed ensemble (EN) strategy with a configuration of 

combining three NW sizes of 1, 3, and 5 pixels (i.e., ‘AE, EN (1, 3, 5)’) reached 

the highest accuracy in all experiments. Notably, in the experiment with a set of 

four imaging dates and 5.0% train data, it achieved an Overall Accuracy (OA) of 

95.26%, the Kappa coefficient (K) of 0.94, and the average class accuracy of 

92.16%.  

Keywords: crop mapping, stacked auto-encoders, deep learning, ensemble 

learning, spatio-temporal classification 

 

1. Introduction 

Crop maps are essential for various agro-environmental applications including detailed 

quantification of agricultural products (Massey et al. 2017), accurate estimation of 



agricultural statistics (Kussul et al. 2015), recovery of biophysical variables of plants 

using radiative transfer models (Immitzer, Vuolo, and Atzberger 2016), crop growth 

monitoring (Niazmardi et al. 2018), crop inventories (Peña and Brenning 2015; 

Khosravi, Safari, and Homayouni 2018), crop insurance (Whelen and Siqueira 2017), 

crop production forecasting (Arvor et al. 2011; Kussul et al. 2015; Immitzer, Vuolo, and 

Atzberger 2016; Inglada et al. 2016; Massey et al. 2017; Skakun et al. 2017; Sonobe et 

al. 2017; Whelen and Siqueira 2017; Niazmardi et al. 2018), and implementation of 

quota limits (Foody, McCulloch, and Yates 1994). 

Crop mapping is a unique challenge due to high spatial, spectral, and temporal 

dynamics in the growing season (Bargiel 2017; McNairn et al. 2002; Kenduiywo, 

Bargiel, and Soergel 2018). Inherent spectral variability of crop types is repeatedly 

influenced by local climate or farming practices (Peña-Barragán et al. 2011; Song et al. 

2017). Specifically, different crops in the same region may have similar spectral 

signatures, while crops of the same type may demonstrate different spectral behaviour 

in different location and situation (Song et al. 2017). The spectral variety of crops is 

typically influenced by the phenological stage of the crops at the time of imaging, and 

also by the spatial and spectral characterisations of the sensor. (Peña and Brenning 

2015).  

In recent years, new satellite multispectral sensors such as RapidEye and 

Sentinel-2 have provided high spatial resolutions and relatively high temporal 

resolutions with global coverage. Land-cover classification using these data allows for a 

significant distinction between different classes (Bargiel and Herrmann 2011). 

Temporal observations can provide valuable information on crop phenology and help to 

distinguish different crop types (Bargiel 2017). Each crop type has a specific crop 

calendar with well-defined cultivation times and unprecedented growth and 



development patterns. As a result, spectral reflections can be distinguished during the 

growth period of different crops. Using images of optical sensors with high temporal 

resolutions also improves the accessibility of high-quality images in key phenological 

phases for classification by providing a large number of observation opportunities. 

Hence, multi-temporal optical data will be the preferred data source for classification 

(McNairn et al. 2009) because of a better understanding of the relationship between 

observations and plant phenology (Inglada et al. 2016), valuable information on crop 

phenology, and also improved accessibility and quality of data.  

Another solution to increase the stability of classification algorithms against the 

high intra-class variability problem is to involve their group information in the 

classification procedure instead of assuming pixels isolated; this is very useful, 

especially in images with high spatial resolution. One way to extract information from 

larger pixel neighbourhoods is to classify images at the pixel level while including a 

softening process before the classification framework (Ozdarici-Ok, Ok, and Schindler 

2015). The Softening hypothesis is based on this base idea that as long as the spatial 

sampling is sufficiently dense, the neighbouring pixels will tend to have the same class 

labels (Ozdarici-Ok, Ok, and Schindler 2015). On the other hand, factors such as growth 

stage, crown structure, cultivation pattern, and soil context not only affect the return 

signal received by the sensor but also define the structural and contextual features 

(texture patterns) for each crop (Peña-Barragán et al. 2011), which can help in 

identifying crop types. To this end, neighbourhoods with spatial dimensions 

proportionate with the spatial resolution of the sensor are considered, and the structural 

and contextual features are extracted, which are then fed as input to the classifier. The 

problem with using this method is that the softening in the boundary areas will cause 

loss of spatial information and reduce the classification accuracy. To overcome this 



problem, a solution based on the ensemble learning of trained classifiers on different 

sizes of Neighbourhood Windows (NWs) is proposed in this paper. This solution, while 

using the neighbourhood information, maintains the classification accuracy in the 

boundary areas.  

The present study proposes two learning schemes based on a successful type of 

Deep Learning (DL) methods, i.e., Stacked Auto-Encoders (SAEs) for crop mapping 

from multi-temporal multispectral satellite earth observations. In order to increase the 

stability of the classification scheme against the high intra-class and low inter-class 

variability problems, both temporal and spatial data enrichments were utilised. The 

potential of the proposed methods was evaluated in comparison to traditional machine 

learning methods, namely Linear Support Vector Machine (LSVM) (Scholkopf and 

Smola 2001), Gaussian SVM (GSVM) (Scholkopf and Smola 2001), and Random 

Forest (RF) (Liaw and Wiener 2002). In addition, the effects of different train data 

sampling strategies and different proportions of train data on the classification accuracy 

were examined. The novelty and specific objectives of the paper could be summarised 

as follows: 

1) Evaluating the potential of SAEs for accurate crop mapping in comparison to 

conventional classifiers 

2) Evaluating the effect of spatial and spatio-temporal data enrichments on the 

classification accuracy of different methods 

3) Proposing an neighbourhood-based method for improving the classification 

accuracy 

4) Proposing an ensemble-based method for improving the classification accuracy  

5) Evaluating the effect of different train data sampling strategies on the 

classification accuracy of different methods 



6) Evaluating the effect of train data amount on the classification accuracy of 

different methods. 

2. Related work 

Several methods have so far been proposed for the classification of crops using Remote 

Sensing (RS) imagery. Maximum Likelihood (ML) (Arvor et al. 2011; Ozdarici-Ok, 

Ok, and Schindler 2015; Salehi, Daneshfar, and Davidson 2017; Waldhoff, Lussem, and 

Bareth 2017), Decision Trees (DT) (Inglada et al. 2015; Marais Sicre et al. 2016; 

Massey et al. 2017), RF (Immitzer, Vuolo, and Atzberger 2016; Inglada et al. 2016; 

Richard et al. 2017; Song et al. 2017; Sonobe et al. 2017; Zhang and Roy 2017; 

Khosravi, Safari, and Homayouni 2018), and SVMs (Peña and Brenning 2015; 

Waldhoff, Lussem, and Bareth 2017; Xiong et al. 2017; Niazmardi et al. 2018) are 

among the most frequently used classification methods. These methods are supervised 

classifiers based on manually extracted features (appearance descriptors), which are 

able to describe the information content of the images locally (Volpi and Tuia 2017). 

Traditional machine learning methods are highly dependent on the choice of 

input features (Goodfellow, Bengio, and Courville 2016). Feature extraction and 

selection requires the user’s knowledge and experience, as well as a robust method 

(Goodfellow, Bengio, and Courville 2016). In particular, most of the algorithms have 

free parameters that must be optimised along with the selection of input features. 

However, in RF, this problem is alleviated somewhat because of a feature selection 

scheme that is included in the algorithm. Nevertheless, none of these conventional 

methods is trained in an end-to-end manner so that the final system can train the feature 

extractors and the classifier simultaneously. 

DL, as a machine learning-based method, tries to develop a system that could be 

trained in an end-to-end manner. A set of simultaneously trained feature extractors are 



capable of extracting features from the raw data that are optimised for the task. 

Moreover, DL methods are a specific type of Artificial Neural Networks (ANNs) that 

provide a high level of potency and flexibility through the representation learning of 

data in the form of a hierarchy of features. In these methods, the more complicated 

features are obtained from ones that are more straightforward. Therefore, more abstract 

representations, in the higher levels, are provided from broader concepts in the lower 

layers. DL has recently been used in various fields of machine learning and proved its 

efficiency (Goodfellow, Bengio, and Courville 2016). 

Recent progress of DL methods and their increasing application, especially in 

image processing, have caused them to be taken into consideration in RS research. 

Recently, extensive studies have investigated the potential of deep networks in 

resolving different remote sensing problems like image pre-processing (Masi et al. 

2016; Yuan, Zheng, and Lu 2017), dimensionality reduction (Zabalza et al. 2016), 

image classification (Marmanis et al. 2016; Sherrah 2016; Volpi and Tuia 2017; Cheng 

et al. 2018; Zhou et al. 2019), change detection (El Amin, Liu, and Wang 2016; Gong et 

al. 2016), image matching (Altwaijry et al. 2016; Mou et al. 2017), target detection and 

location (Vakalopoulou et al. 2015; Diao et al. 2016; Cheng, Zhou, and Han 2016), 

navigation (Hudjakov and Tamre 2011; Maturana and Scherer 2015), and 3D analysis 

(Armagan, Hirzer, and Lepetit 2017; Audebert et al. 2017). Here, we review only the 

image classification studies. 

Marmanis et al. (2016) utilised a large pre-trained Convolutional Neural 

Network (CNN) on the ImageNet dataset (Deng et al. 2009) for urban scene 

classification purpose (UC Merced Land Use benchmark). They initially extracted 

representations using the pre-trained network and then fed them as the inputs to a 



smaller supervised CNN classifier. This method led to transfer representation learning 

obtained from computer vision data to RS imagery.  

Sherrah (2016) applied CNNs for pixel-level classification of high-resolution 

remote sensing data in urban areas (International Society for Photogrammetry and 

Remote Sensing (ISPRS) Vaihingen and Postdam benchmark data sets). They used a 

pre-trained CNN and also a Fully Convolutional Neural Network (FCN) which were 

trained from scratch and obtained state-of-the-art accuracies in both cases. 

Volpi and Tuia (2017) proposed an FCN structure like SegNet (Badrinarayanan, 

Kendall, and Cipolla 2017) which uses sequential convolution and deconvolution layers 

to provide pixel-level predictions in high-resolution RS imagery. The network was 

tested on ISPRS Vaihingen and Postdam benchmark data sets and achieved reliable 

results. 

Cheng et al. (2018) proposed optimising discriminative objective function in 

convolutional networks and named the resulted networks as discriminative CNNs (D-

CNNs). The new discriminative objective function was achieved by imposing a metric 

learning regularisation term on the CNN features. They claimed that D-CNN models are 

more discriminative in confronting with between-class similarity and within-class 

diversity problems. The D-CNN models were evaluated on three publicly available 

benchmark datasets for remote sensing scene classification purpose using three widely 

used pre-trained CNN models. 

Zhou et al. (2019) proposed a two-step framework named Compact and 

Discriminative Stacked AutoEncoder (CDSAE) for Hyperspectral Image (HSI) 

classification. The first step was learning feature mappings by training discriminative 

SAE with a local Fisher discriminant regularisation on each hidden layer. The second 

step was to learn a classifier and update DSAE with a diversity regularisation over the 



hidden neurons and a local Fisher discriminant regularisation on the last feature layer. 

Fisher’s Local Discriminatory Regularisation and Diversity Regularisation were used to 

learn the maps of discriminating characteristics and to balance the dimensionality of the 

characteristics and the representational capacity of the characteristics, respectively. 

With experiments on three HSI public datasets, they demonstrated the effectiveness of 

their proposed method. 

In this paper, we propose two learning schemes based on SAEs for crop 

mapping from multi-temporal multispectral satellite imagery. The first scheme is to 

extract stacked spatio-temporal spectral features from all imaging dates and then 

feeding them to the SAE. The spectral, spatial, and temporal features are utilised 

together in order to increase the discrimination capability of the algorithms. The second 

scheme is an ensemble learning method, in which the base classifiers are SAEs trained 

on different spatial neighbourhood sizes. Performance of the proposed methods was 

evaluated on an agricultural area in Canada and compared to conventional classifiers, 

namely SVMs and RF. In addition, the effect of train data sampling strategy and the 

amount of train data on the classification performance were examined. 

3. Materials and methods 

3.1. Study area and data 

The study area is located in the southwest of the Manitoba state in Canada between 

latitudes 47° 32′ 16″ N and 48° 12′ 56″ N, and longitudes 97° 5′ 2″ W and 97° 45′ 13″ 

W. The area is an agricultural region with various annual and perennial crop types, and 

its spatial extent is about 5689 ha. For the analysis, we used a time series of RapidEye 

data with original 5 m spatial resolution images. The RapidEye sensors’ data consist of 

five spectral bands (blue, green, red, red-edge, and near-infrared). These images were 



initially atmospherically corrected and orthorectified. However, to have a high level of 

co-registration accuracy, we applied a precise geo-referencing to the time series using a 

first-order polynomial function. We used four different dates from the atmospherically 

corrected and orthorectified RapidEye imagery during the 2012 growing season (Figure 

1).  

Figure 1. about here. 

Figure 2. about here.  

The ground reference map and the amount of data in each crop class are 

represented in Figure 2 (a) and (c), respectively. One example of the training data set is 

also displayed in this figure (Figure 2 (b)). In the classification scheme, seven different 

crop classes, including corn, pea, canola, soybean, oat, wheat, and broadleaf, were 

considered. These data were collected to support the Soil Moisture Active-Passive 

Mission Validation Experiment (SMAPVEX) 2012 campaign of National Aeronautics 

and Space Administration (NASA) (McNairn et al. 2014). 

3.2. Experimental design 

The structure of the study is represented in Figure 3. The first strategy is represented in 

a smaller box as a ‘Single classifier,’ and the second ensemble-based strategy is 

represented in the outer box as ‘Ensemble strategy.’ First, an image data cube is 

constructed by stacking all the spectral bands of multi-temporal imagery (see Figure 1). 

This data cube is then pre-processed in order to create a normalised dataset. The 

normalisation was performed using the maximum and minimum values of each band to 

create values between -1 and 1.  

The ground reference map (Figure 2 (a)) is used to generate a train set. Two 

other inputs to train the data sampling process are patch size (sp) and train data 



percentage. The process identifies positions and class indices of the train set. All other 

pixels are then considered as a test set, and their positions and class indices are saved.   

The next step in the process chain is spatio-temporal feature extraction. This step 

appends all spectral, spatial, and temporal input features to the train and test data sets 

for a specified NW and selected dates. The train and test data sets are then used to train 

and test the classifier. The output of the testing process would be class indices and class 

probabilities for the test set, as well as the parameters of accuracy analysis (i.e., Overall 

Accuracy (OA), Kappa coefficient (K), and average per-class accuracies). 

For the ensemble strategy, other NW sizes (e.g. NW = 1, 3, 5) are then selected 

to train new classifiers. After training nEN different classifiers with different NWs, we 

fuse their results in a decision level fusion process in order to create the final fused class 

probabilities and indices. 

Figure 3. about here. 

To evaluate the efficiency of the proposed methods, we compared our AE-based 

classifiers with three traditional classifiers (i.e., LSVM, GSVM, and RF). The process 

of training and testing these classifiers is the same as mentioned for our first proposed 

method (single classifier) in the second paragraph of this section, except that the 

training process is one-step (not pre-training and then fine-tuning) and the class 

probabilities are not the output of the classifier. 

3.2.1. Train data sampling strategies 

In this paper, we tried two different stratified sample selection methods based on 

random points and random patches, respectively. Random points are groups of single 

pixels, and random patches are groups of rectangular patches having a maximum 

number of sp pixels in each direction and all having the same class label. All of the 

points and patches were selected randomly throughout the entire area. The number of 



groups was considered equal to the number of classes. The sampling method based on 

random points will yield the best results, but in real-world scenarios, it is impractical. 

Consequently, we will employ both strategies and compare the results in one of the 

experiments. For the other experiments, we will use the patch-based method as the 

sampling strategy that is more similar to the real-world conditions.  

The reason for considering randomness in the sampling process is to be able to 

provide different train data and see the effect of such a strategy on the classification 

performances. Therefore, we evaluated each classifier using ten different random train 

sets and then compared the results.  

The automatic random patch selection method was employed as follows: For 

each new patch, two numbers were selected randomly, as the coordinates of the first 

pixel with the position in the upper left corner. Then new pixels were added to the 

current patch in the row direction until the size of the patch in this direction reached the 

patch size (sp), or the class label of newly added pixel changed. Similarly, this process 

was repeated for the column direction. We then saved the upper left and lower right 

coordinates of the current patch. The steps, mentioned above, were repeated for each 

new patch and each class until the total number of samples, considered for each class, 

was reached. Examples of the selected train samples for the random points and patches 

with the patch sizes of 10, 20, and 30 pixels are shown in Figure 4. 

Figure 4. about here. 

3.2.2. Spatio-temporal feature extraction and classification 

In order to increase the stability of classification algorithms against the high intra-class 

variability problem, we involved spatial and temporal information in the classification 

process. For spatial information, we used two strategies. 



Strategy 1. Single classifier: The first strategy was to apply the neighbourhood 

information of pixels considering an NW size. All pixel values inside an NW around a 

target pixel i are included as its input features in the classification framework.   

Strategy 2. Ensemble learning: For the second strategy, we combined the results of 

classifiers trained with different NWs using an ensemble method. This method is a 

decision level fusion strategy and is shown in Figure 5, where a case with three NWs of 

1, 3, and 5 are displayed (1, 9, and 25 neighbourhoods), and pixel i is the one to be 

classified. As illustrated, in this case, three different AEs will be trained to use three 

different numbers of input features. For example, if we use all the five spectral bands of 

single-date images, the number of input features in these three networks would be 5, 45, 

and 125, respectively (NW × NW × 5). Class probabilities are obtained from the 

classifiers trained with different NWs. They are then averaged to produce the final 

ensemble probability (Figure 5). In a case with nEN trained classifiers, the probability of 

pixel i being in class k can be computed as Equation (1): 

P(𝑦(𝑖) = 𝑘 | 𝒙(𝑖)) =
1

𝑛EN
∑ P𝑗(𝑦(𝑖) = 𝑘 | 𝒙(𝑖))

𝑛EN

𝑗 = 1

, 𝑘 = 1, 2, … , 𝑛C (1) 

where, Pj is the obtained probability from the j
th

 classifier, 𝒙(𝑖) is the input feature 

vector for pixel i, y
(i)

 is its class label, nC is the total number of classes (here 7, see 

Figure 2 (c)). The final class identification number of pixel i (c
(i)

) would be computed 

using argmax function (Equation (2)): 

𝑐(𝑖) = argmax (P(𝑦(𝑖) = 𝑘 | 𝒙(𝑖))) (2) 

Figure 5. about here. 



In Figure 6, the numbers show the contribution time of each pixel in the final 

classification result for the case displayed in Figure 5. As we see, after applying the 

ensemble method, pixels near the pixel to be classified will have more effect than far 

pixels on the classification result. Therefore, we can say that this ensemble strategy 

would be a weighted scheme for involving neighbourhood information in the 

classification result, which applies more weights on the near pixels. This is in agreement 

with the real-world conditions and will reduce the effect of blurriness, especially in the 

boundary areas.   

Figure 6. about here. 

To include temporal information, we merely stacked the input features of 

different dates and fed them as overall input features to the network (a feature level 

fusion strategy). Consequently, the overall amount of input features will be the number 

of features in a single-date multiplied by the number of dates. For example, if we use all 

the five spectral bands of RapidEye imagery as input features in an ‘NW = 1’ 

configuration and also use two dates, the total amount of input features will be ten (5 × 

2). As a result, the number of input units of the network will be equal to this number. 

3.2.3. SAE 

Autoencoders: Stacked AEs (SAEs), obtained from the sequences of AEs, is an 

unsupervised learning algorithm designed in a way that reconstructs its input data in the 

output. In other words, labels assigned to the input values are set to the input values 

themselves (y
 (i)

 = x
 (i)

, for the i
th

 input value). Each AE has two parts: an encoder, which 

codes the input data as a hidden representation (also called latent representation) in a 

hidden layer; and, a decoder, which decodes the hidden representation to reconstruct the 

input data in the output layer. An example of AE having four input and output units and 

three hidden units is represented in Figure 7. 



Figure 7. about here. 

The forward propagation of an AE in the encoder part (hidden layer) and the 

decoder part (output layer) is calculated from Equations (3) and (4), respectively. 

𝒂(1) = 𝒙 

𝒛(2) = 𝐰(1)𝒂(1) + 𝒃(1) 

(3) 

𝒂(2) = 𝑓(𝒛(2)) 

𝒛(3) = 𝐰(2)𝒂(2) + 𝒃(2) 

ℎ(𝒙; 𝐰, 𝒃) = 𝒂(3) =  𝑓(𝒛(3)) 

(4) 

where, w
(1)

, b
(1)

, w
(2)

, and b
(2)

 are the weight and bias parameters for the encoder and 

decoder parts, respectively, f is the activation function, h is the function that AE learns, 

and x and a represent inputs and activations, respectively. The superscripts in the 

parenthesis are layer numbers. 

An AE tries to learn a ‘h (x; w, b) is approximately equal to x’ function, which 

is, indeed, an approximation of an identity function, such that output �̂� be similar to x. 

Although the identity function seems to be a simple function to be learned, by imposing 

some constraints on the network, interesting structures about the data can be discovered 

(Ng et al. 2010). Generally, constraints such as limiting the number of hidden units are 

applied. For example, considering a network with s1 = 100 input units, which accepts 

gray values of a 10 × 10 image (100 pixels) in the input, and s2 = 50 units in the hidden 

layer (Layer 2 in Figure 8), the network must learn a compressed representation of the 

input data; in other words, given only the activations of hidden units a
(2)

 ∈ ℝ50 it must 

try to reconstruct 100 input pixels (Ng et al. 2010). Even if the number of hidden units 

is larger than the number of input pixels, it could be possible to recover interesting 



structures of data by imposing other constraints on the network. Especially, with 

imposing sparsity constraints on the hidden units, even with a large number of hidden 

units, AE could extract structures from the input data (Ng et al. 2010). The sparsity 

constraint could be applied by imposing a constraint on the average activation value of 

each hidden unit in the network (Equation (5)): 

�̂�𝑗 = 𝜌  (5) 

where, ρ is the sparsity parameter that usually is selected as a small value near zero, and 

�̂�𝑗 is the average activation value of hidden unit j for nS train samples, and calculated as 

Equation (6): 

�̂�𝑗 =
1

𝑛S
∑[𝒂𝑗

(2)
(𝒙(𝑖))]

𝑛S

𝑖 = 1

 (6) 

To establish this constraint, most of the unit activations must be near zero.  

Generally, a penalty term is added to the optimisation function to enforce the 

sparsity constraint, which penalises the sharp difference between the values of �̂�𝑗 and ρ. 

The Kullback-Leibler (KL) divergence can be used to this end. In this case, the cost 

(objective) function will be obtained with Equation (7): 

𝐽sparse(𝐰, 𝒃) = 𝐽(𝐰, 𝒃) +  𝛽 ∑ KL(𝜌||�̂�𝑗)

𝑠2

𝑗 = 1

, (7) 

where, J(w, b) is the cost function without sparsity constraint, that for example, could 

be squared-error or cross-entropy cost function. In this paper, we used a cross-entropy 

cost function (Equation (8)): 



𝐽(𝐰, 𝒃) = −
1

𝑚
∑ [𝑦(𝑖) ln ℎ(𝒙(𝑖); 𝐰, 𝒃) + (1 − 𝒚(𝑖)) ln (1 − ℎ(𝒙(𝑖); 𝐰, 𝒃))]

𝑚

𝑖 = 1

 (8) 

The Kullback-Leibler (KL) divergence is defined as Equation (9):  

KL(𝜌||�̂�𝑗) = 𝜌 log
𝜌

�̂�𝑗
+  (1 − 𝜌) log

1 − 𝜌

1 − �̂�𝑗
 (9) 

Assuming 𝜌 = �̂�𝑗, KL divergence (Equation (9)) would be zero, and with distancing of 

�̂�𝑗 from 𝜌, KL will increase. 

SAE is a neural network composed of several AEs, which is obtained by 

sequentially stacking their encoder and decoder parts (Figure 8). Training of SAEs is 

accomplished in two unsupervised steps: In the first step, all the constructor elements 

(AEs) are trained separately. This step is, generally, referred to as layer-wise pre-

training. In the second step, parameters of the entire network are improved through the 

back-propagation algorithm. Both training steps are accomplished using unlabelled data. 

Figure 8. about here. 

In classification applications, the decoder part of the SAE network is eliminated, 

and a classification layer is added at the end (Figure 9). The last layer of the network is 

a Softmax layer used to generate class probabilities based on the features of the hidden 

layer of the last AE. Training of a classification SAE also includes two steps of pre-

training and fine-tuning, with the difference that in the fine-tuning stage, the network 

parameters are tuned using labelled train samples. Therefore, in a classification SAE, 

the pre-training step is a training process that uses unlabelled data (unsupervised), and 

the fine-tuning step is a training process with labelled data (supervised). 

Figure 9. about here. 



A Softmax layer gets real values as its inputs (the outputs of the last hidden 

layer) and generates class probabilities that lie between 0 and 1 and sum to 1 (See 

Equation (10)): 

P(𝑦 = 𝑗|𝒙(𝑖)) =
exp(ℎ𝑗

(𝑖)
)

∑ exp(ℎ𝑘
(𝑖)

)
𝑛C
𝑘 = 1

 (10) 

where, P(𝑦 = 𝑗|𝒙(𝑖)) is the probability of input x
(i)

 being in class j, exp is the 

exponential function, ℎ𝑗
(𝑖)

 is the output of the last hidden layer (input of Softmax layer) 

for input x
(i)

 and class j, and nC is the total number of classes. 

Generalisation of AEs: The main specification of a machine learning algorithm is its 

level of generalisation or its performance on new unseen data (Goodfellow, Bengio, and 

Courville 2016). Many generalisation strategies have been proposed to reduce the test 

error, possibly at the expense of increased training errors (Goodfellow, Bengio, and 

Courville 2016). Here, two common forms of generalisation methods, namely L2 

regularisation and early stopping, were used. L2 regularisation strategy, also known as 

weight decay, drives the weights closer to the origin by adding a regularisation term 

(𝑡r =
1

2
‖𝜔‖2

2; where ‖. ‖2 is the Euclidean norm) to the objective function (Goodfellow, 

Bengio, and Courville 2016). 

The early stopping strategy is one of the most commonly used methods in DL to 

increase generalisation. One behaviour often observed when training models with 

sufficient representational capacity is that the training error decreases steadily over 

time, while the validation set error begins to rise after some iterations (Goodfellow, 

Bengio, and Courville 2016). Using the parameter set at the iteration with the lowest 

validation set error, we will have a model with better generalisation capability (lower 



test error). However, it is possible that after some iterations of no improvement, the 

validation set error will decrease again. Instead of running the training algorithm until 

reaching a (local) minimum of the validation error, we run it until we do not have any 

improvement in the validation set error for some successive iterations like, for example, 

50. Whenever the validation set error improves, a copy of the parameters is stored. After 

the training algorithm terminates, these parameters are returned rather than the last 

parameters (Goodfellow, Bengio, and Courville 2016). Early stopping strategy can also 

be considered as a very efficient hyper-parameter selection algorithm as it can 

determine the number of epochs required to train the model. 

3.2.4. Experiments 

We tried different structures for SAE, and finally, an optimum network structure with 

three layers (input layer, hidden layer, and Softmax layer) and 75 units in the hidden 

layer was selected. The number of input units differs in each case according to the 

number of its input features (for example, five in the case of five input spectral bands of 

single-date image). However, the number of output units was selected as seven equal to 

the total number of classes. The other hyper-parameters of SAE and traditional 

classifiers were selected based on 5-fold cross-validation technique. For the SAE, they 

are the regularisation parameter (𝜔) and the sparsity parameter (ρ), which were set to 

0.004 and 0.15, respectively. 

For traditional classifiers, parameter setting was as follows: For LSVM, the 

kernel function was linear; the kernel scale was selected using a heuristic procedure in 

each experiment. For GSVM, the kernel function was Gaussian (as its name), and the 

kernel scale was 2.2. In both LSVM and GSVM, the box constraint was considered as 

1; the multi-class classification was performed based on ‘one-vs.-one’ coding and a 



standardisation procedure were considered that centres and scales each column of the 

predictor data (all pixel values for a specified feature) by the column mean and standard 

deviation. In RF, the maximum number of decision splits was considered as 16314, the 

number of decision trees and the minimal leaf size were considered as 30 and 1, 

respectively, and the number of predictors selected at random for every decision split 

was considered as the square root of the number of predictors (input features) for 

classification. 

The experiments will cover evaluating the effects of different sampling 

strategies, spatial accuracy improvement, spatio-temporal accuracy improvement, and 

amount of train data on the classification performance. For all experiments, all five 

spectral bands of RapidEye imagery were used as input features. All experiments except 

the last one were done with ten different sets of train and test data samples created 

randomly. In the last experiment, only one sample data set was used. We also examined 

what classification accuracy could be obtained if the red-edge channel is not available 

considering the setting of the last experiment. To have a fair comparison, all the 

experiments were implemented using MATLAB v2017.b on a Desktop PC with Intel 

Corei7 CPU 3.06 GHz, 12 GB RAM. Explanation and setting of the experiments 

performed in this study are as follows: 

Experiment 1:  Different sampling strategies: In the first experiment, we examined the 

effect of each sampling method (random points and random patches) on the 

performance of different classifiers. To this end, we considered only 1 pixel 

neighbourhoods (i.e. NW = 1) in the feature extraction step. In the patch-based strategy, 

three values of 10, 20, and 30 pixels were tested as patch size (sp). Each sampling case 

was accomplished ten different times using 5.0% of the ground reference data as the 



train data. Patterns of the selected samples in each case are displayed in Figure 4 for the 

first run. The input features were five spectral bands of the image data of date 14 July. 

Experiment 2: Different spatial feature extraction and classification strategies: This 

experiment evaluated the effect of the two proposed spatial feature extraction strategies 

(single classifier and the ensemble method) on the classification performance. For the 

first strategy, we compared results obtained by three different NW sizes of 1, 3 and 5 

pixels. For the second one, we tested three possibilities of ensemble learning using these 

three NW values, i.e. EN (1, 3), EN (3, 5), and EN (1, 3, 5). Other NWs, like 7 and 9 

pixels, were also examined, but the results were less accurate than what mentioned 

above. Hence we did not include them in the manuscript. Here, the data sampling 

method was a patch-based strategy with a patch size (sp) of 10 pixels, which ran ten 

times. Like the previous experiment, 5.0% of the ground truth data was considered as 

the train data and the rest as the test data. In this experiment, we used the five spectral 

bands of image data acquired on 5 July as input features, since it has been collected in 

the middle of the growing season.  

Experiment 3: Different spatio-temporal feature extraction and classification settings: In 

this experiment, the effect of spatio-temporal accuracy improvement was analysed. To 

this end, we used the time series of four image data represented in Figure 1 as input 

data. The other settings were the same as the second experiment.   

Experiment 4. Different train data proportions: To evaluate how the amount of train 

data will affect different classifiers’ performances, we considered eight different 

proportions of train data from 0.5% to 70.0%. We tested both of the proposed spatio-

temporal feature extraction strategies in this experiment. For the first single classifier 



strategy, three NWs of 1, 3, and 5 pixels were assumed. For the second ensemble-based 

method, three cases of EN (1, 3), EN (3, 5), and EN (1, 3, 5) were tested. All other 

settings were also like the same as the third experiment except that this experiment is 

based on just one train data set for each proportion (shown in Figure 10). The reason is 

that this experiment was very time consuming and could not be completed in a 

reasonable time if repeated ten different times. Moreover, we performed a test to see 

what would be obtained if the red-edge channel is removed from the input data. 

Figure 10. about here. 

4. Results and Discussion 

4.1. Different sampling strategies 

The classification accuracy decreases by increasing the patch sizes in all classifiers 

(Table 1). The GSVM and AE methods reached the highest accuracies in all the four 

cases with a slight difference from each other. The Kappa coefficients showed similar 

patterns. With increasing the patch sizes (sp), the standard deviations increase too (Table 

1). This is represented with more details in Figure 11, which shows OAs in ten runs of 

four train sample selection cases (sp = 1 for the random points, sp = 10, 20, and 30 for 

the random patches) and their mean values. It shows that the accsuracy will be more 

dependent on the selected train samples if we use larger patch sizes. Therefore, we 

choose the patch-based strategy with sp = 10 for train sample selection in the following 

experiments, which is more similar to the real-world conditions (In the real conditions 

we cannot easily provide random train samples with the desired number) and has 

minimum changes in different runs. 

Table 1. about here. 

Figure 11. about here. 



Different spatial feature extraction and classification strategies 

As shown in Table 2, the spatial data enrichment strategy (NW > 1) improves the 

classification accuracies considerably in all classifiers when using single-date data. The 

amount of OA improvement in the case of ‘NW = 3’ is 7.82, 1.87, 9.17, and 7.27% for 

LSVM, GSVM, RF, and AE, respectively. In the experiment with ‘NW = 5’ 

configuration, also improvements to the ‘NW = 1’ case are observed in all classifiers 

except GSVM, but the accuracy is less than what was achieved with ‘NW = 3’ 

configuration. To this point, RF reached the maximum performance, which was 

obtained in the ‘NW = 3’ configuration. For this classifier, the OA and K were 94.05% 

and 0.93, respectively. For the AE classifier, we applied ensemble strategy considering 

three different configurations: ‘EN (1, 3)’, ‘EN (3, 5)’, and ‘EN (1, 3, 5)’. The third 

configuration (i.e. ‘EN (1, 3, 5)’) reached the maximum accuracy among all the other 

methods and configurations (OA = 94.75%, and K = 0.94).  

Table 2. about here. 

The spatial enrichment strategy has improved the per-class accuracies and the 

average per-class accuracies in all classifiers but GSVM (Table 3). The improvements 

in the average per-class accuracy for the first strategy are 14.89, 15.50, and 12.75% for 

LSVM, RF, and AE, respectively, which were obtained in the ‘NW = 3’ configuration. 

For the ensemble strategy, the amount of this improvement is 13.95 for AE in the ‘EN 

(1, 3, 5)’ configuration, which is higher than its equivalent value in the first strategy 

(i.e., 12.75). Therefore, we conclude that the two proposed spatial enrichment methods 

have improved the classification performance in terms of average per-class accuracy.  

The highest average per-class accuracy is for the proposed method of ‘AE, EN 

(1, 3, 5)’, which is 90.26%. Among the non-ensemble methods, RF classifier with the 

spatial configuration of ‘NW = 3’ reached the maximum average per-class accuracy of 



90.22%. Comparing the per-class accuracies, we see that for oat and broadleaf, the 

performance of the proposed AE-based classifier was higher than that of RF for 

classifying these classes, with a considerable margin (83.66% vs 79.19% and 73.84% vs 

72.10%, respectively). For the class pea, the condition is reversed (i.e., the per-class 

accuracy obtained from RF for this class (93.47%) is much higher than its equivalent 

value obtained from the AE-based classifier (87.00%)).  

Table 3. about here. 

Different spatio-temporal feature extraction and classification settings 

By comparing Table 4 with the results represented in Table 2, one can observe the 

effect of temporal data enrichment on the classification performance. As can be seen, 

the accuracies obtained from the configurations of all classifiers (except ‘GSVM, NW = 

3’) have been improved using multi-temporal data. 

Table 4 also shows the effect of spatial data enrichment on the classification 

performance in the case of multi-temporal data. As we see, like the single-date 

experiment (i.e., the previous experiment), the first spatial data enrichment strategy has 

improved the classification performance in all classifiers except GSVM. Moreover, the 

improvements from the second strategy (i.e., the ensemble method) are even more 

significant. This also could be concluded by comparing the accuracies presented in 

Table 5, which shows that per-class accuracies and average per-class accuracies have 

also been improved using the proposed spatial enrichment strategies.  

In the previous section, we saw that the experiment with the ‘NW = 3’ 

configuration obtained better results than the ‘NW = 5’ setting. Consequently, we 

considered ‘NW = 5’ configuration just for the AE classifier, which then was used in 

the ensemble configurations. Using the first spatial data enrichment strategy, RF and 

AE reached the maximum accuracies in the ‘NW = 3’ configuration among all 



classifiers and settings. In this case, the OAs of 94.92 and 94.26% and the Ks of 0.94 

and 0.93 were obtained for these two classifiers, respectively. For the AE classifier, we 

applied the ensemble strategy considering three different configurations: ‘EN (1, 3)’, 

‘EN (3, 5)’, and ‘EN (1, 3, 5)’. As shown in Table 4, the third configuration reached the 

maximum accuracies compared to all other methods and configurations (OA = 95.26%, 

and K = 0.94). Therefore, the proposed ensemble-based SAE reached maximum 

performance in the case of multi-temporal data, too. 

Table 4. about here. 

Table 5 reveals that the highest average per-class accuracy is for the proposed 

method of ‘AE, EN (1, 3, 5)’, which is 92.16%. This method also obtained the highest 

per-class accuracy for the classes of oat and broadleaf again with a considerable margin 

from their equivalent values obtained from RF (85.38% vs 79.98% and 82.81% vs 

74.54%, respectively). Among the non-ensemble methods, the RF classifier with the 

configuration of ‘NW = 3’ reached a maximum average per-class accuracy of 91.35%. 

This classifier obtained the highest per-class accuracy for the class of pea again with a 

considerable difference from the proposed AE (94.68% vs 87.97%), which is in 

agreement with what we found in the case of single-date data (previous experiment). 

The reason for this fixed behaviour could be explained by comparing our 

findings with the ground reference data (Figure 2). As shown, the geometric shapes of 

the broadleaf and oat fields are more complicated than that of other fields (See Figure 2 

(a)). Our proposed ensemble-based method (‘AE, EN (1, 3, 5)’) has worked much better 

in these geometrically complex fields. Because this is an advantage of this method that 

while using the neighbourhood information, it maintains the classification accuracy in 

the boundary areas, on the other hand, class pea has very small samples to create train 

data (only 1.10% of samples, Figure 2 (c)). This is why our AE-based classifier reached 



a low accuracy for this class comparing to the RF classifier because the AE-based 

classifiers cannot reach high accuracies when a minimal number of train data are 

available.  

Table 5. about here. 

We selected one dataset from these ten train datasets in order to show the 

classification maps obtained from different configurations in the experiment. To this 

end, we selected a dataset that its results had a maximum likelihood of the mean values 

of all data. Here, the selection was based on the comparison of the trends of average 

class accuracy changes between different configurations in each dataset with those of 

mean values. For this comparison, we considered just three configurations with the 

highest values (i.e., ‘AE, EN (1, 3, 5)’, ‘RF, NW = 3’, and ‘LSVM, NW = 3’). The 

dataset that has maximum similarity in the trend of accuracy change between different 

classifiers to that of mean values was the best choice. According to the comparison 

results, the train dataset No.3 was selected since it has the highest likelihood of the 

mean results obtained among the ten datasets. 

Classification maps obtained using the third data set (displayed in Figure 2 (b)) 

are represented in Figure 12. We also compared the OA and K values of different 

classifiers based on this dataset. The highest OA and K values are for the proposed ‘AE, 

EN (1, 3, 5)’ method (95.55% and 0.95, respectively). Per-class accuracies (%) and 

average per-class accuracies (%) are also displayed in Table 6 for this dataset. As 

shown, the maximum average per-class accuracy has also been obtained with the 

proposed ‘AE, EN (1, 3, 5)’ method with a value of 93.09%. Similar to what was 

obtained with comparing the mean values represented in Table 5, the result of using the 

third train dataset also shows that the RF classifier with the ‘NW = 3’ configuration 

reached the best average per-class accuracy among the non-ensemble methods. It is to 



be noted that again the oat and broadleaf classes reached higher accuracies in the 

proposed AE-based classifier than RF. Moreover, the reverse situation here is true for 

the pea class again. This is in agreement with what we concluded earlier on the 

complexity of the geometric forms of the crop fields and the number of training data.  

Table 6. about here. 

Figure 12. about here. 

Different proportions of train data 

Classification accuracies obtained from different train data proportions are shown for 

the five best classifiers in Figure 13 to a better comparison. As can be seen, the 

accuracies of all classifiers have improved significantly by adding train data from 0.5% 

to 5.0%. However, adding more data after that has improved accuracy in all classifiers 

but with a slow trend. This motivates us to decide on how much train data should be 

gathered to get proper classification results. As we saw in the first experiment on train 

data sampling strategies (section 3.2.1), the best sampling was a patch-based strategy 

using 10 pixel patches. Using a 10 pixel patch size and 5.0% train data proportion as the 

base, we can count the number of patches sampled for each crop type and get an 

indicator for train data requirement in the form of the number of patches per X ha. By 

using the sample shown in Figure 4 (b) and the maximum number of patches between 

all the crop types (42 for canola), this indicator was calculated as 7 patches per 1000 ha.  

The accuracy comparison between different classifiers shows that AE classifier 

with the ensemble configuration of ‘EN (1, 3, 5)’ reaches the best performance among 

all classifiers when the training data is equal to or more than 5.0%. The AE and RF 

classifiers with the NW size of 3 pixels and the GSVM classifier with the NW size of 1 

pixel are in the next positions. 

Figure 13. about here. 



When there is a little amount of train data (0.5%), the LSVM classifier with no 

spatial data improvement strategy (‘LSVM, NW = 1’) reaches the maximum 

performance (Table 7). In the case of 1.0% train data, similar conditions are true for the 

RF classifier. When we have 5.0% or more train data, the AE-based classifiers gain 

better results than other classifiers; the ensemble configuration of ‘AE, EN (1, 3, 5)’ 

shows the best results, and among the non-ensemble methods, AE with NW size of 3 

pixels has the best performance. It is worth noting that the RF with ‘NW = 3’ 

configuration achieved results close to the AE with ‘NW = 3’.  

Table 8 shows that with a meagre amount of train data (e.g., 0.5% and 1.0%), 

the LSVM classifier obtains the best results. After increasing the amount of train data 

equal to or more than 5.0%, the AE classifier with ensemble strategies reaches to the 

best performances. Regarding the non-ensemble strategies, AE and RF classifiers with 

the NW size of 3 pixels gain better results than other methods. These results are in 

agreement with what was concluded by comparing the OA and K values in the previous 

paragraph. 

Table 7. about here. 

Table 8. about here. 

Figure 14 indicates the total calculation time for the five best-selected classifiers 

for a better comparison. The first column in Figure 14 shows the calculation times for 

all the train data proportions (0.5, 1.0, 5.0, 10.0, 20.0, 30.0, 50.0, and 70.0%), while the 

second column shows the calculation times for the train data proportions equal to or less 

than 10.0 (0.5, 1.0, 5.0, and 10.0%) in order to get a closer view. Table 9 shows that 

with the train data proportions less than or equal to 1.0%, the LSVM was the fastest 

method. While when using train data proportions more than or equal to 5.0%, the RF 

was the fastest. According to Table 9, the classification methods can be sorted based on 



their cumulative calculation time from 0.5% to 70.0% as: ‘RF, NW = 1’, ‘RF, NW = 3’, 

‘GSVM, NW = 1’, ‘LSVM, NW = 3’, ‘LSVM, NW = 1’, ‘AE, NW = 3’, ‘AE, NW = 1’, 

‘AE, NW = 5’, ‘AE, EN (1, 3)’, ‘AE, EN (3, 5)’, ‘AE, EN (1, 3, 5)’, and ‘GSVM, NW = 

3’. 

Figure 14. about here. 

Table 9. about here. 

In order to see what would be happening if the imaging sensor does not have 

red-edge band, we also examined a case by removing this band from the input data 

using the settings of this section, i.e., using all four-date imageries and the patch size of 

10 pixels. Train data proportion and NW size were considered as 5.0% and NW = 1, 

respectively. The OA (%) and K pairs of (92.58, 0.91), (94.10, 0.93), (94.56, 0.93), and 

(94.44, 0.93) were obtained for the methods of LSVM, GSVM, RF, and AE, 

respectively. These values are comparable with the case that used all five spectral bands 

of RapidEye data displayed in the first four rows of the 6
th

 and 7
th

 columns of Table 7. 

Accordingly, the methods and results presented in this study could also be applied in a 

broader spectrum of image data that may not have a red-edge band. 

Conclusions 

In this study, two SAE-based learning schemes were proposed for spatio-temporal crop 

mapping and applied on the multi-temporal multispectral RapidEye imagery. The 

experiments showed that involving spatial information in the classification scheme, i.e., 

NW > 1, improves the classification performance considerably when using a single-date 

image. The best performance observed was with ‘AE, EN (1, 3, 5)’ with the OA of 

94.75%, the Kappa coefficient of 0.94, and the average class accuracy of 90.26%.  

In the experiments on multi-temporal data, involving spatial information in the 

classification scheme improved the final results in all classifiers but GSVM. However, 



these improvements were less than those in the single-date setting because using multi-

temporal data has improved the performance by itself. The best performance was with 

‘AE, EN (1, 3, 5)’ with the OA of 95.26%, the K of 0.94 and the average class accuracy 

of 92.16%. 

Experiments on different train data sampling strategies showed that the 

classification accuracy would be more dependent on the sampled data if we use larger 

patch sizes. The best choice was a 10 pixel patch-based strategy, which we used in our 

next experiments for train data sampling. Experiments on different train data 

proportions showed that the accuracy of classification significantly improves by adding 

train data from 0.5% to 5.0%. However, beyond this proportion, the accuracy 

improvements in all classifiers follow smoother trends. Based on our experiments, 

gathering 7 patches per 1000 ha (a 10 pixel patch size almost equivalent to 0.5% train 

data proportion) is an excellent indication for field-work required to train data collection 

in homogenous agricultural areas. The best performance was with the ‘AE, EN (1, 3, 5)’ 

when the train data was equal to or more than 5.0%. With a meagre amount of train data 

(less than 5.0%), the LSVM classifier obtained the best results. Comparing the 

computation times showed that among the classifiers with the best performance, RF 

with ‘NW = 3’ was the fastest, and the ‘AE, EN (1, 3, 5)’ was the slowest method.  

Briefly, according to the present research findings, AEs and RFs are two reliable 

classifiers in crop mapping, and their performance could be improved by involving 

spatial and temporal information in the classification. We strongly recommend always 

using NW > 1 to do crop mapping especifically when high spatial resolution image data 

are available. We could also improve the performance of AEs using an ensemble 

strategy to use spatial neighbourhood information in a weighted scheme. Though the 

ensemble-based AE obtained slightly better performance, the RFs reached a much 



higher speed. This proves that not everything needs deep learning to perform well. 

Moreover, geometrical complexity of fields and number of train data in each class are 

two crucial factors, which influence the classification results. In fields with high 

geometrical complexity, ensemble-based AE shows better performance, and in classes 

with a minimal number of train data, RF would generate better results. This motivates 

us to use our ensemble-based AE in areas with more geometrical complexity like 

humanmade urban areas to see its performance as our future work, network structure 

(including the number of layers and units in each layer), and NW size would be 

different. In addition, we will examine the potential of other types of DL methods such 

as CNNs and Recursive Neural Networks (RNNs) in crop mapping and ways to 

improve the performance in terms of calculation time and final classification accuracy. 
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List of Figures’ captions 

Figure 1. The true colour composite window of imagery used in this study; (a) 5 July 

2012, (b) 14 July 2012, (c) 19 August 2012, and (d) 29 August 2012 

Figure 2. Reference data; (a) the ground reference map, (b) one sample train data set, 

and (c) number of total samples in each class 

Figure 3. Flowchart of the implemented methodology 

Figure 4. Selected samples in one run of (a) random points, and (b) – (d) random 

patches sampling methods (sp = 1 pixel, sp = 10 pixel, sp = 20 pixel, and sp = 30 

pixel, respectively); Train data proportion was 5.0% 

Figure 5. Spatial information extraction using different sizes of NWs and ensemble 

strategy for combining the results  

Figure 6. Number of the contribution of each neighbour pixel in the classification result 

Figure 7. An example of simple AE (with four input and output units, and three hidden 

units) 

Figure 8. Example of (unsupervised) SAEs; this network is composed of two AEs; their 

connections are distinguished with two different colours 

Figure 9. Example of (supervised) SAEs designed for classification. This network is 

composed of two AEs applied consequently. A Softmax classifier is used on the 

top to generate class probabilities 

Figure 10. Train data with different proportions used in the last experiment; (a) – (h) 

0.5, 1.0, 5.0, 10.0, 20.0, 30.0, 50.0, and 70.0%, respectively 

Figure 11. OA (%) of different classifiers trained using ten runs (TD#1 to TD#10) of 

four train sample selection cases (sp = 1, 10, 20, and 30 pixel) and their mean 

values (Mean) 

Figure 12. Classification maps and their corresponding OA (%) obtained from different 

classifiers using different configurations of spatial enrichment for the third 

dataset; (a) ‘AE, NW = 1’, OA = 93.92%, (b) ‘AE, NW = 3’, OA = 94.26%, (c) 

‘AE, NW = 5’, OA = 93.92%, (d) ‘AE, EN (1, 3)’, OA = 95.02% (e) ‘AE, EN 

(3, 5)’, OA = 94.66%, (f) ‘AE, EN (1, 3, 5)’, OA = 95.26%, (g) ‘LSVM, NW = 

3’, OA = 94.08%, (h) ‘GSVM, NW = 1’, OA = 93.96%, and (i) ‘RF, NW = 3’, 

OA = 94.92% 



Figure 13. Classification accuracy obtained from different classifiers using different 

train data percentages; (a) Best OA (%), (b) Best Kappa coefficient, and (c) Best 

average class accuracy (%) 
Figure 14. Training and test time (in seconds) of different classifiers using different 

train data proportions; (a) train data proportion = 0.5, 1.0, 5.0, 10.0, 20.0, 30.0, 

50.0, 70.0%; (b) train data proportion = 0.5, 1.0, 5.0, 10.0%) 

 

 

  



List of Tables’ captions 

Table 1. Mean OA (%) and mean K (%) with Standard Deviation (SD) obtained from 

different classifiers using different train sample selection methods (image data 

acquired on 14 July) 

Table 2. Mean OA (%) and mean K (%) with SD obtained from different classifiers for 

different configurations of spatial enrichment (image data acquired on 5 July) 

Table 3. Per-class accuracy (%) and average per-class accuracy (%) (These are mean 

values over ten random samplings; image data acquired on 5 July) 

Table 4. Mean OA (%) and mean K (%) with SD obtained from different classifiers for 

different configurations of spatial enrichment (4-date image data) 

Table 5. Per-class accuracy (%) and average per-class accuracy (%) (These are the 

mean values over ten random samplings; 4-date image data) 

Table 6. Per-class accuracy (%) and average per-class accuracy (%) for the third dataset 

Table 7. OA (%) and K (%) obtained from different classifiers using different train data 

proportions 

Table 8. Average class accuracy (%) obtained from different classifiers using different 

train data proportions 

Table 9. Training and test time (in seconds) devided by the minimum value (5.43) of 

different classifiers (rows) using different train data proportions (columns) 
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Table 1.  

Classifier 
w = 1 pixel w = 10 pixel w = 20 pixel w = 30 pixel 

Mean SD Mean SD Mean SD Mean SD 

LSVM 
OA (%) 75.21 0.05 74.64 0.58 73.40 1.07 72.58 1.57 

K (%) 71.09 0.06 70.50 0.71 69.24 1.19 68.36 1.67 

GSVM 
OA (%) 79.73 0.06 78.18 0.60 76.25 0.89 74.23 2.39 

K (%) 76.30 0.07 74.58 0.70 72.48 0.96 70.31 2.59 

RF 
OA (%) 78.46 0.10 76.56 0.52 74.56 0.94 72.61 1.86 

K (%) 74.91 0.11 72.81 0.58 70.70 1.00 68.6 1.99 

AE 
OA (%) 79.05 0.38 78.13 0.55 75.86 0.83 74.38 1.91 

K (%) 75.49 0.44 74.51 0.64 72.07 0.89 70.46 2.07 

 

  



Table 2.  

Classifier 
NW = 1 NW = 3 NW = 5 EN (1, 3) EN (3, 5) EN (1, 3, 5) 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

LSVM 
OA (%) 84.91 0.30 92.73 0.36 92.20 0.45       

K (%) 81.94 0.37 91.08 0.43 90.47 0.53       

GSVM 
OA (%) 86.20 0.46 88.07 1.27 67.37 1.87       

K (%) 83.42 0.56 85.57 1.47 63.21 1.84       

RF 
OA (%) 84.88 0.53 94.05 0.57 93.09 0.55       

K (%) 81.93 0.64 92.66 0.68 91.52 0.67       

AE 
OA (%) 86.04 0.46 93.31 0.74 92.64 0.73 94.22 0.80 93.99 0.61 94.75 0.54 

K (%) 83.26 0.55 91.78 0.89 90.98 0.86 92.87 0.96 92.59 0.74 93.51 0.65 

 

 

  



Table 3.  

Class 

name 

Classifier 

LSVM, 

NW = 1 

LSVM, 

NW = 3 

GSVM, 

NW = 1 

GSVM, 

NW = 3 

RF, NW 

= 1 

RF, NW 

= 3 

AE, 

NW = 

1 

AE, 

NW = 

3 

AE, 

NW = 

5 

AE, EN 

(1, 3) 

AE, EN 

(3, 5) 

AE, EN 

(1, 3, 5) 

Corn 76.96 96.62 76.49 87.11 74.92 96.31 78.91 96.39 95.07 96.22 96.40 96.47 

Pea 73.51 90.65 72.45 30.25 77.11 93.47 70.49 84.04 83.87 84.46 86.00 87.00 

Canola 97.24 98.38 97.50 97.66 97.58 98.38 97.51 97.18 96.06 98.47 97.49 98.30 

Soybean 94.00 97.30 95.89 94.92 93.87 96.89 94.27 95.94 95.82 97.24 96.47 97.49 

Oat 59.90 77.53 66.57 65.07 63.73 79.19 66.50 81.92 82.29 81.87 83.27 83.66 

Wheat 84.69 90.69 84.40 90.17 83.10 95.22 84.03 93.09 92.56 94.42 94.39 95.17 

Broadleaf 33.48 72.89 28.51 16.23 32.69 72.10 42.47 74.68 36.54 74.54 55.94 73.84 

Average 

per-class 

accuracy 

74.26 89.15 74.54 68.77 74.72 90.22 76.31 89.04 83.17 89.60 87.14 90.26 

 

  



Table 4.  

Classifier 
NW = 1 NW = 3 NW = 5 EN (1, 3) EN (3, 5) EN (1, 3, 5) 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

LSVM 
OA (%) 92.87 0.38 94.08 0.41         

K (%) 91.24 0.45 92.70 0.49         

GSVM 
OA (%) 93.96 0.66 56.46 2.68         

K (%) 92.53 0.80 52.23 2.63         

RF 
OA (%) 94.51 0.44 94.92 0.60         

K (%) 93.21 0.54 93.70 0.73         

AE 
OA (%) 93.92 0.72 94.26 0.61 93.92 0.8 95.02 0.6 94.66 0.68 95.26 0.68 

K (%) 92.50 0.87 92.92 0.74 92.52 0.95 93.83 0.73 93.41 0.83 94.13 0.83 

 

  



Table 5.  

Class 

name 

Classifier 

LSVM, 

NW = 1 

LSVM, 

NW = 3 

GSVM, 

NW = 1 

GSVM, 

NW = 3 

RF, NW 

= 1 

RF, NW 

= 3 

AE, 

NW = 

1 

AE, 

NW = 3 

AE, 

NW = 5 

AE, EN 

(1, 3) 

AE, EN 

(3, 5) 

AE, EN (1, 

3, 5) 

Corn 97.66 97.31 95.55 40.25 97.30 97.04 97.48 97.30 96.34 97.86 97.17 97.59 

Pea 92.67 91.76 70.63 0.00 94.48 94.68 86.37 84.94 82.48 87.32 85.16 87.97 

Canola 99.41 99.06 99.51 91.10 99.17 99.19 98.53 97.77 97.04 98.78 97.81 98.64 

Soybean 98.34 98.21 98.25 60.34 98.10 98.11 96.98 97.37 97.62 97.79 97.73 97.99 

Oat 74.64 80.88 75.90 24.79 78.58 79.98 81.02 83.74 84.41 83.99 85.04 85.38 

Wheat 90.35 92.16 95.97 50.39 95.07 95.91 93.18 93.67 92.78 94.75 94.17 94.75 

Broadleaf 79.84 79.27 62.22 0.00 72.99 74.54 77.67 63.32 77.48 67.25 66.01 82.81 

Average 

per-class 

accuracy 

90.42 91.24 85.43 38.13 90.81 91.35 90.18 88.30 89.74 89.68 89.01 92.16 

 

  



Table 6. 

Class 

name 

Classifier 

LSVM, 

NW = 1 

LSVM, 

NW = 3 

GSVM, 

NW = 1 

GSVM, 

NW = 3 

RF, NW 

= 1 

RF, 

NW = 3 

AE, 

NW = 

1 

AE, 

NW = 

3 

AE, 

NW = 

5 

AE, EN 

(1, 3) 

AE, EN 

(3, 5) 

AE, EN 

(1, 3, 5) 

Corn 97.55 97.22 95.64 42.70 97.38 97.02 97.44 96.81 95.78 97.64 96.60 97.27 

Pea 94.34 93.17 71.36 0.00 94.46 95.87 93.17 83.05 92.55 90.68 87.83 93.93 

Canola 99.75 99.27 99.78 100.00 99.77 99.49 99.69 99.23 99.38 99.76 99.37 99.71 

Soybean 95.84 95.63 94.57 44.10 95.37 95.55 92.35 94.97 95.29 94.50 95.47 95.48 

Oat 77.38 80.41 77.08 31.29 82.65 85.46 82.76 86.04 90.37 85.28 89.23 88.28 

Wheat 90.93 93.88 96.59 59.79 94.02 94.49 94.88 95.27 90.01 95.94 93.92 95.39 

Broadleaf 77.81 78.45 61.79 0.00 75.05 74.40 75.51 78.64 76.70 79.19 79.19 81.58 

Average 

per-class 

accuracy 

90.52 91.15 85.26 39.70 91.24 91.75 90.83 90.57 91.44 91.86 91.66 93.09 

 

 

 

  



Table 7.  

Classifier 

Training percentage (%) 

0.5 1.0 5.0 10.0 20.0 30.0 50.0 70.0 

OA 

(%) 
K 

OA 

(%) 
K 

OA 

(%) 
K 

OA 

(%) 
K 

OA 

(%) 
K 

OA 

(%) 
K 

OA 

(%) 
K 

OA 

(%) 
K 

LSVM, NW = 1 89.37 0.87 88.72 0.86 92.92 0.91 93.24 0.92 93.91 0.92 93.92 0.92 93.57 0.92 93.48 0.92 

LSVM, NW = 3 87.76 0.85 88.37 0.86 93.92 0.92 94.52 0.93 95.13 0.94 95.28 0.94 95.28 0.94 95.35 0.94 

GSVM, NW = 

1 
75.74 0.72 88.04 0.86 93.54 0.92 96.69 0.96 97.52 0.97 97.69 0.97 97.81 0.97 98.18 0.98 

GSVM, NW = 

3 
28.78 0.25 39.08 0.34 58.52 0.54 64.38 0.60 76.77 0.73 78.21 0.75 80.32 0.77 81.85 0.78 

RF, NW = 1 86.06 0.83 90.20 0.88 94.27 0.93 96.63 0.96 97.34 0.97 97.30 0.97 97.34 0.97 97.59 0.97 

RF, NW = 3 85.02 0.82 89.56 0.87 94.65 0.93 96.75 0.96 97.77 0.97 97.76 0.97 98.05 0.98 98.48 0.98 

AE, NW = 1 83.43 0.80 87.98 0.86 94.47 0.93 96.74 0.96 97.47 0.97 97.59 0.97 97.52 0.97 97.89 0.97 

AE, NW = 3 84.58 0.82 84.47 0.82 94.82 0.94 96.70 0.96 97.90 0.97 98.16 0.98 98.31 0.98 98.87 0.99 

AE, NW = 5 82.60 0.79 83.88 0.81 94.44 0.93 96.75 0.96 97.95 0.97 98.05 0.98 98.52 0.98 98.93 0.99 

AE, EN (1, 3) 85.97 0.83 88.91 0.87 95.37 0.94 97.41 0.97 98.36 0.98 98.48 0.98 98.65 0.98 99.09 0.99 

AE, EN (3, 5) 85.15 0.82 85.32 0.83 95.38 0.94 97.20 0.96 98.28 0.98 98.44 0.98 98.74 0.98 99.15 0.99 

AE, EN (1, 3, 5) 86.02 0.83 87.74 0.85 95.59 0.94 97.71 0.97 98.51 0.98 98.63 0.98 98.86 0.99 99.28 0.99 

 

 

  



Table 8.  

Classifier 
Training percentage (%) 

0.5 1.0 5.0 10.0 20.0 30.0 50.0 70.0 

LSVM, NW = 1 86.85 88.00 90.47 92.57 93.65 92.84 92.70 92.73 

LSVM, NW = 3 87.37 87.76 91.13 94.34 94.88 94.23 95.07 94.65 

GSVM, NW = 1 58.81 76.05 85.26 92.71 94.21 93.51 93.96 95.46 

GSVM, NW = 3 18.04 23.89 39.70 44.16 53.44 54.54 56.04 57.37 

RF, NW = 1 81.88 85.73 91.41 94.86 96.20 95.32 95.84 95.64 

RF, NW = 3 80.30 85.32 91.61 95.24 96.29 95.89 97.06 96.88 

AE, NW = 1 80.62 86.90 91.61 94.38 95.81 95.34 95.59 96.15 

AE, NW = 3 81.48 81.80 91.11 93.18 96.85 95.98 96.75 97.42 

AE, NW = 5 79.79 83.52 91.10 95.62 96.95 96.14 97.48 98.10 

AE, EN (1, 3) 84.06 87.41 92.31 95.82 97.39 96.49 97.18 97.62 

AE, EN (3, 5) 82.10 83.62 91.71 96.78 97.42 96.66 97.60 97.81 

AE, EN (1, 3, 5) 84.06 86.80 92.46 95.48 97.78 97.04 97.84 98.34 

 

 

 

  



Table 9.  

 

 

 

 

 

 

 

 

 

 

 

Classifier 
Training percentage (%) 

0.5 1.0 5.0 10.0 20.0 30.0 50.0 70.0 

LSVM, NW = 1 1.00 1.23 5.29 21.65 57.40 124.63 336.02 709.23 

LSVM, NW = 3 2.96 3.91 12.28 26.72 57.59 87.00 176.26 325.51 

GSVM, NW = 1 1.84 2.02 3.81 6.75 13.53 21.24 39.60 66.57 

GSVM, NW = 3 7.18 18.24 86.23 305.36 1233.57 1180.65 2006.68 4949.08 

RF, NW = 1 4.73 5.06 10.28 28.90 64.74 137.39 320.06 617.13 

RF, NW = 3 36.61 61.47 320.39 996.59 4182.72 8589.53 20627.70 36491.90 

AE, NW = 1 3.97 4.46 8.66 18.26 34.11 53.71 101.65 167.98 

AE, NW = 3 5.66 10.81 66.61 245.65 669.04 1073.77 2895.97 4702.30 

AE, NW = 5 7.56 14.41 105.52 273.81 783.88 1430.38 2775.86 4524.62 

AE, EN (1, 3) 12.84 29.06 152.84 551.01 1902.61 2254.42 4902.65 9651.38 

AE, EN (3, 5) 13.23 25.22 172.13 519.45 1452.92 2504.15 5671.83 9226.91 

AE, EN (1, 3, 5) 20.41 43.47 258.36 824.82 2686.48 3684.80 7678.51 14175.99 


