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Abstract 

Hydrological systems are naturally complex and nonlinear. A large number of 

variables, many of which not yet well considered in regional frequency analysis (RFA), 

have a significant impact on hydrological dynamics and consequently on flood quantile 

estimates. Despite the increasing number of statistical tools used to estimate flood 

quantiles at ungauged sites, little attention has been dedicated to the development of new 

regional estimation (RE) models accounting for both nonlinear links and interactions 

between hydrological and physio-meteorological variables. The aim of this paper is to 

simultaneously take into account non-linearity and interactions between variables by 

introducing the multivariate adaptive regression splines (MARS) approach in RFA. The 

predictive performances of MARS are compared with those obtained by one of the most 

robust RE models: the generalized additive model (GAM). Both approaches are applied 

to two datasets covering 151 hydrometric stations in the province of Quebec (Canada): a 

standard dataset (STA) containing commonly used variables and an extended dataset 

(EXTD) combining STA with additional variables dealing with drainage network 

characteristics. Results indicate that RE models using MARS with the EXTD outperform 

slightly RE models using GAM. Thus MARS seems to allow for a better representation 

of the hydrological process and an increased predictive power in RFA.   
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1. Introduction and literature review 

The main objective of regional frequency analysis (RFA) is the estimation of the 

return period of extreme hydrological events at target sites where little or no hydrological 

data is available. Examples of these events include floods and low-flow quantiles which 

are crucial for infrastructure design and management. In general, RFA comprises two 

main steps: i) the delineation of homogenous region (DHR) to determine gauged sites 

similar to the target one and ii) regional estimation (RE) to transfer the information from 

sites determined in the DHR step to the target one (e.g. Chebana and Ouarda, 2008). 

Various methods have been suggested for each of these two steps (e.g. Ouarda, 2016).  

Among the most common DHR methods, we can mention the region of influence 

(ROI) (Burn, 1990a) and the canonical correlation analysis (CCA) (Ouarda et al., 2001). 

Recently, several advanced non-linear neighborhood approaches were suggested (e.g. 

Ouali et al., 2016; Wazneh et al., 2016). Among the commonly used RE approaches, we 

can distinguish the regression-based models and the index-flood models. Among the 

former, the log-linear regression models are the most commonly used ones in practice, 

because of their simplicity and good predictive performances. We focus here on 

regression-based models in the RE step. 

Hydrological processes depend from a large number of variables, such as the 

topographic variability of the basins, their soil structure and texture, their geological 

formations and the climatology. This leads to a natural complexity, which has been 

widely recognized and documented in the hydrological literature (e.g. Ibbitt and Woods, 

2004; Sivakumar, 2007; W. Wang et al., 2008; Xu et al., 2010). In statistical terms, this 
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complexity manifests itself through three aspects: i) the high number of explanatory 

variables necessary to paint a realistic picture of the processes, ii) the nonlinear impact of 

these explanatory variables and iii) the important interaction between the different 

explanatory variables. It is thus important that the RE step in RFA accounts for these 

three aspects in order to yield accurate estimations of the target site’s quantiles of 

interest.  

In RFA studies, the RE step usually requires a large number of explanatory 

variables to result in satisfactory predictive performances. This number usually exceeds 

five, as in Ouarda et al. (2018), but should increase in the future with the discovery of 

new potential variables. For instance, evidence is growing that drainage network 

characteristics have a strong impact on hydrological dynamics, and are consequently 

linked to flood quantiles (Jung et al., 2017).Thus, integrating additional characteristics 

related to the drainage network may lead to more accurate estimates of the regional 

quantiles. Hence, there is a need to propose efficient approaches that are able to manage 

such high-dimensional databases. 

Another consequence of the natural complexity of hydrological processes is the 

nonlinearity between explanatory variables and the at-site quantiles. To handle this 

problem and better reproduce the dynamics of hydrological processes, various non-linear 

approaches have been proposed (e.g. Shu and Burn, 2004). The classical log-linear 

method used in the RE step assumes that the relation between the logarithm of the 

response variable (hydrological) and explanatory variables (physio-meteorological) is 

linear, which is too simplistic for such complex non-linear processes. Therefore, several 

RE approaches, such as random forest (RF), artificial neural network (ANN), and 
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generalized additive models (GAM) have been proposed in the literature to account for 

the possible nonlinear links between variables (e.g. Aziz et al., 2014; Khalil et al., 2011; 

Ouali et al., 2017; Ouarda et al., 2018; Saadi et al., 2019). 

Random forest (Breiman, 2001), is a powerful nonlinear and non-parametric 

method commonly used to handle regression and classification problems based on 

decision trees. Due to its good performance, it has been applied in several fields, such as 

hydrology (e.g. Diez-Sierra and del Jesus, 2019; Muñoz et al., 2018; Z. Wang et al., 

2015), ecology (e.g. Cutler et al., 2007; Prasad et al., 2006) environmental modeling (e.g. 

Masselink et al., 2017; Pourghasemi and Kerle, 2016) and RFA (e.g. Booker and Woods, 

2014; Brunner et al., 2018). Despite its predictive power, RF suffers from major 

limitations such as the difficulty of interpretation and the large memory requirements for 

storing the model when used with a large dataset (Geurts et al., 2009).  

The ANN is a nonparametric mathematical model, whose design is inspired by the 

biological functioning of brain neurons (Bishop, 1995). It was considered in several RFA 

studies for the estimation of flood and low-flow quantiles at ungauged sites (e.g. Aziz et 

al., 2014; Ouarda and Shu, 2009). However, ANNs present a major common problem 

which is the tendency to overfit (e.g. Gal and Ghahramani, 2016; Lawrence and Giles, 

2000). In addition, their calibration is relatively complex, especially for debutant users, 

which requires some subjective choices since no explicit regression equations can be 

given (Ouali et al., 2017).  

GAMs do not suffer the same drawbacks as ANNs. GAMs are flexible nonlinear 

regression models (Hastie and Tibshirani, 1987), that have been introduced in the RFA 
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context by Chebana et al. (2014). The authors found that the GAM-based methods 

present the best performances when compared to the classical log-linear model and other 

common methods. GAMs are increasingly being adopted in several fields such as hydro-

climatology and environmental modeling (e.g. Rahman et al., 2018; Wen et al., 2011), 

public health (e.g. Bayentin et al., 2010; Leitte et al., 2009), and renewable energy (e.g 

Ouarda et al., 2016). However, it still presents a number of disadvantages. Indeed, the 

method can be computationally intensive, especially when a large number of variables is 

involved. It can, then, be difficult to fit GAM to high-dimensional databases because of 

memory limitations imposed by the numerical complexities of this model (Leathwick et 

al., 2006). More importantly, GAMs do not cope well with the interaction between 

variables (e.g. Ramsay et al., 2003), which is difficult to integrate in the model. 

The interaction between physiographical variables within the watershed has long 

been recognized (e.g. Niehoff et al., 2002). Thus, the inclusion of the terms of 

interactions between the explanatory variables used to model the hydrological dynamics 

seems to be essential for better estimates of flood quantiles. However, this aspect is 

difficult to take into account in the RE models due to the high complexity that it may add 

to the models (see above for the specific example of GAMs). This affects the quality of 

the estimates and makes it less accurate. Hence, the motivation behind the present paper 

is to propose and explore alternative techniques able to realistically reproduce the 

hydrological process while avoiding the problems mentioned above. 

The method considered here is multivariate adaptive regression splines (MARS), a 

procedure designed to build complex nonlinear regression models in a high dimensional 

setting. It is attractive in the RFA context since it actually addresses the three issues 
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developed above which are: high number of variables, nonlinearity, and interactions. 

Indeed, MARS is efficient in a high dimensional setting and naturally selects the relevant 

predictors in this context. In addition, it does not require assumptions about the form of 

the relationships between the response and the explanatory variables (Friedman, 1991). 

MARS also allows the modelling of complex structures between variables, which are 

often hidden in high-dimensional data, without imposing strong model assumptions. 

Hence, it can easily include interactions between variables, allowing any degree of 

interaction to be considered (Lee et al., 2006).  

All of these desirable properties lead to a very flexible approach able to adapt well 

to the hydrological phenomenon. Due to its simplicity and capacity to capture complex 

nonlinear relationships, it has been successfully applied in several fields such as ecology 

and environment (e.g. Balshi et al., 2009; Bond and Kennard, 2017; Leathwick et al., 

2006; Leathwick et al., 2005), finance (e.g. Lee and Chen, 2005; Lee et al., 2006), 

geology (e.g. Zhang and Goh, 2016; Zhang et al., 2015), energy (e.g. Li et al., 2016; Roy 

et al., 2018) and hydrology (e.g. Bond and Kennard, 2017; Deo et al., 2017; 

Emamgolizadeh et al., 2015; Kisi, 2015; Kisi and Parmar, 2016). Despite the extensive 

use of the MARS model in various frameworks and contexts, its potential has never been 

exploited and investigated in the context of RFA of extreme hydrological events. 

The main objective of the present study is to introduce the MARS approach in the 

RFA context to estimate flood quantiles and evaluate its predictive potential when it is 

applied to an extensive database. It is hereby applied in combination with the DHR with 

the CCA and the ROI approaches. MARS is also applied without DHR to test its 

performance when applied to all stations without consideration of hydrological 
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neighborhoods. A jackknife procedure is used to evaluate the model performances, with 

GAMs used as a benchmark.  

This paper is structured as follows. Section 2 presents the theoretical background of 

MARS and the other RFA approaches adopted. The considered methodology is outlined 

in section 3. Section 4 describes the case study and the considered datasets. The obtained 

results are presented and discussed in section 5. The conclusions of the study are 

summarized in the last section. 

2. Theoretical background  

In this section, the adopted statistical tools are briefly presented and discussed. 

2.1 Neighborhood identification approaches  

Here we present the two most commonly considered neighborhood identification 

approaches as a necessary step before the RE one. 

2.1.1 Canonical correlation analysis (CCA) approach  

CCA (Hotelling, 1935) is a multivariate analysis technique used to identify the 

possible correlations between two groups of variables. It consists of a linear 

transformation of two groups of random variables into pairs of canonical variables, which 

are established in such a way that the correlations between each pair are maximized. 

Let 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑟) and 𝑌 = (𝑌1, 𝑌2, … , 𝑌𝑠) be sets of random variables including, 

respectively, the 𝑟 physio-meteorological variables and the s hydrological variables of 
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𝑛 gauged sites. The objective of CCA is to construct linear combinations 𝑉𝑖 and 

𝑊𝑖 (called canonical variables) of the variables X and Y, i.e.: 

𝑉𝑖 =  𝐴𝑖1𝑋1 +  𝐴𝑖2𝑋2 + ⋯ +  𝐴𝑖𝑟𝑋𝑟 (1) 

 𝑊𝑖  =  𝐵𝑖1𝑌1 +  𝐵2𝑌2 + ⋯ +  𝐵𝑖𝑠𝑌𝑠 (2) 

where i = 1,…,p, with p = min (r, s). The first weights vectors 𝐴1and 𝐵1 maximize the 

correlation coefficients between resulting canonical variables, i.e. λ 1= corr (𝑉1  ,𝑊1), 

under constraints of unit variance. Once the first pair of canonical variables is identified, 

other pairs (𝑉𝑖, 𝑊𝑖, 𝑖 > 1) can be obtained under the constraint corr (𝑉𝑖  ,𝑊𝑗) = 0 (where 𝑖≠ 

𝑗). 

For neighbourhood delineation in RFA, the considered 𝑋𝑟 are physio-

meteorological variables while the 𝑌𝑆 are the flood quantiles of interest. CCA is then used 

to construct canonical variables 𝑊𝑖 that correlate well with physio-meteorological 

variables. The neighbourhood is the set of sites such that the canonical hydrological score 

wk  , k =1, . . . , K, is close to the canonical physio-meteorological score of the target 

ungauged site v0. The distance is measured by a Mahalanobis distance between the 

hydrological mean position of the target site Ʌv0 and the positions of other sites  wk, 

where Ʌ = 𝑑𝑖𝑎𝑔 (𝜆1, … 𝜆𝑝) and v0 is the physio-meteorological canonical score of the 

target site Provided the 𝑋 variables are approximately normal, the Mahalanobis distance 

converges to a 𝜒2 distribution with 𝑝 degrees of freedom. The size of the neighborhood is 

controlled by the parameter 𝛼 that represent the (1 − 𝛼) 𝜒𝑝
2 quantile above which sites 

are excluded from the neighborhood. As extreme cases, all stations are considered if 𝛼 = 
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0, and no station is included in the neighborhood when 𝛼 = 1.  For more details the reader 

is referred to Ouarda et al. (2001). 

2.1.2 Region of influence (ROI) approach  

The ROI approach was introduced by Burn (1990b), to identify the neighborhood 

of a given target-site based on the similitude between watersheds characteristics. The 

similitude is measured using an Euclidean distance in the multidimensional physio-

meteorological space (e.g. Burn, 1990b; Tasker et al., 1996)  i.e.: 

𝑅𝑂𝐼𝑖 =  {𝑠𝑖𝑡𝑒𝑠 𝑗 𝜖 (1, … , 𝑛);  𝐷𝑖𝑗 =  [∑ 𝑊𝑘

𝑟

𝑘=1

(𝑋𝑘,𝑖 − 𝑋𝑘,𝑗)2]
1
2  ≤  𝛳} 

 

(3) 

where 𝐷𝑖𝑗 is the weighted Euclidean distance between the target site i and the gauged 

one, j = 1,…, n, Xk,j (k = 1,…, r) is the standardized value of the k
th

 variable at site j, Wk 

is the weight associated with the k
th

 variable, and 𝛳 represents the threshold value. The 

threshold value is defined for each site in such a way that it permits a compromise 

between the amount of information to be used and the degree of hydrological 

homogeneity of the neighborhood (Ouarda et al., 1999). For more details, the reader is 

referred to (e.g. Burn, 1990b; GREHYS, 1996). 

2.2 Regional estimation approaches  

Once a neighborhood is identified, the methods described below are used to transfer 

information from the neighborhood stations to the target site. 
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2.2.1 Generalized Additive Model (GAM) 

GAM (Hastie and Tibshirani, 1987) is a flexible class of nonlinear models that is able to 

efficiently model a wide variety of nonlinear relationships. In addition, it allows for non-

gaussian response variables  (Wood, 2006) making it relevant for streamflow data. Thus,  

GAM allows a more realistic description of the hydrological phenomenon because of the 

flexible non-parametric fitting of the smooth functions. 

Formally, a GAM is defined as (Wood, 2006): 

𝑔 (𝑌) =  𝛼 +  ∑ 𝑓𝑗

𝑚

𝑗=1

(𝑋𝑗) +  𝜀 

 

(4) 

where g is a monotonic link function and 𝑓𝑗 are smooth functions giving the relationship 

between the explanatory variables 𝑋𝑗 and the response 𝑌. 𝛼 is the intercept and  𝜀 is the 

error term. The structure of eq. 4 allows for a distinct interpretation of each explanatory 

variable. 

To estimate the model, the smooth functions 𝑓𝑗 are expressed as a set of 𝑞 spline basis 

functions, a common choice for smoothing (Wahba, 1990). They are expressed as: 

 𝑓𝑗(𝑋) =  ∑ 𝛽𝑗𝑖

𝑞

𝑖=1

𝑏𝑗𝑖(𝑋) 

 

(5) 

where 𝛽𝑗𝑖 are unknown parameters to be estimated and 𝑏𝑗𝑖 are the spline basis functions. 

The expansion in (5) allows linearizing the model that can then be estimated through 

backfitting (Hastie and Tibshirani, 1987) or simple penalized least-squares (Wood, 2004). 
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For more details, the reader is referred to  (e.g. Wood, 2006; Wood, 2017). 

 2.2.2 Multivariate adaptive regression splines (MARS) 

MARS was introduced by Friedman (1991) as a flexible non-parametric regression 

approach able to deal with high-dimensional data. The MARS model 𝑓(𝑋) can be seen as 

a flexible extension of GAM, in that it is expressed as a linear combination of basis 

functions and their interactions as: 

𝑓(𝑋) =  𝛽0 +  ∑ 𝛽𝑛

 𝑟

𝑛=1

𝐵𝑛(𝑋)  

 

(6) 

 

where 𝛽0 is the intercept,  𝛽𝑛 are regression coefficients of the basis functions (𝐵𝑛(𝑋)). In 

the MARS model, the 𝐵𝑛(𝑋) terms can take one of the following forms: i) a constant 

(just one term) which represent the intercept, ii) a linear spline functions on a single 

variable 𝑋𝑗 called hinge function, i.e. of the form ℎ𝑚(𝑋𝑗) = (𝑡𝑚 − 𝑋𝑗)
+

 or ℎ𝑚(𝑋𝑗) =

(𝑋𝑗 − 𝑡𝑚)
+

 where 𝑡 is a knot and iii)  a products of two or more hinge functions, e.g. 

𝐵𝑛(𝑋) = ℎ𝑚(𝑋𝑗)ℎ𝑚′(𝑋𝑘) where 𝑗 ≠ 𝑘. The latter represent interaction between two or 

more variables. The 𝐵𝑛(𝑋) are defined in pairs and separated by a knot which represents 

an inflection point along the range of a given explanatory variable (see Figure 1). 

Allowing the product of several linear spline terms ℎ𝑚(𝑋𝑗) = (𝑡𝑚 − 𝑋𝑗)
+

 as basis 

functions further allows the integration of interaction in the model, an aspect GAMs are 

not well designed for. 



 

12 
 

In mathematical terms, the  hinge functions ℎ𝑚(𝑋𝑗) are defined as (Rounaghi et al., 

2015): 

(𝑡 −  𝑋𝑗)+ =  { 
𝑡 − 𝑋𝑗 ,         𝑖𝑓 𝑡 >  𝑋𝑗

0,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(7) 

 

(𝑋𝑗 − 𝑡)+ =  {
𝑋𝑗 − 𝑡 , 𝑖𝑓 𝑋𝑗 > 𝑡

   0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(8) 

where t is the knot position.  

The main difference of MARS with GAM is in the estimation algorithm. Where the 

spline bases are defined a priori in GAM, they are iteratively constructed in MARS, 

adapting hence to the data. Indeed, building the model in (6) is carried out through two 

phases: i) a forward addition of linear spline terms (i.e. of the form (7) and (8)) to build a 

large model and ii) a backward deletion to delete irrelevant terms. The forward phase 

begins with an empty model containing only the intercept 𝛽0.  Bns are then iteratively 

added to the model, each time choosing the variable and knot yielding the largest 

decrease in the residual error of the model. This process of adding Bns continues until the 

model reaches some predetermined maximum number, leading to a large model which 

may over-fit the data. A backward deletion phase is then performed to improve the model 

performance by removing the less significant Bns until obtaining the best sub-models. 

Comparison of sub-models is made based on the Generalized Cross Validation (GCV). 

Figure 2 illustrates the details of the MARS model algorithm. 

Another interesting feature of MARS is the assessment of the variable importance 

for the prediction of the response. Variable importance can be measured in two different 
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ways: i) the number of sub-models that include the variable, or ii) the increase in GCV 

caused by deleting the considered variables from the final MARS model (e.g. Roy et al., 

2018). 

3. Methodology 

3.1 Regional models 

In this study, the methods presented in section 2 for neighborhood delineation 

(CCA and ROI) are used in combination with the regional estimation models GAM and 

MARS for transfer of hydrological information. As mentioned in section 1, other 

evaluated models are obtained by applying the GAM and MARS using all stations, i.e. 

without defining any neighborhoods. Table 1 summarizes all six resulting combinations. 

The two most commonly used neighborhood approaches, the CCA and the ROI 

(Ouarda, 2016) are applied to the DHR using two sets of variables. For these methods, 

the relevant variables are selected based on their correlation degree with the hydrological 

variables. 

Considering the classical procedures used to define the threshold in ROI and CCA, 

the density of stations in the neighborhoods can vary considerably from one region to 

another. Indeed, for a given fixed threshold, stations located near the center of the cloud 

points defined by the canonical space for CCA or the Euclidean space for ROI will have 

more stations within their neighbourhoods and vice versa  (Leclerc and Ouarda, 2007). 

Since, the sample may affect the accuracy of the estimates obtained by regression 

models, it was decided that for each target station, the size of the region is increased until 
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a selected optimal size is reached. The optimal number of stations to be considered in the 

DHR step is chosen based on the optimization procedure of Ouarda et al. (2001). The 

optimal number of sites in the neighborhood is the one that minimizes a given 

performance criterion of the log-linear model applied in each neighborhood.  

MARS is fitted using the R package earth (Milborrow, 2018).The application of 

MARS needs the tuning of three main parameters (see Figure 2): the maximum number 

of terms in the model in the forward phase (Nk), the degree of interaction (degree), and 

the maximum number of terms in the Backward phase (N_prune). A range of values of 

these parameters was tested and evaluated in order to optimize them based on the 

GCV,the residual sum of squares (RSS) and the coefficient of determination (R
2
)
 
criteria 

of the
 
fitted models.  

GAM is also implemented on R, through the package mgcv (Wood, 2006). The thin 

plate regression spline is used in this study as basis 𝑏𝑗𝑖  in the smoothing function  𝑓𝑗  in 

(5). The latter is selected due to its advantages, i.e. low calculation time, flexibility and 

fewer number of parameters compared to other smoothing functions (Wood, 2003). The 

used link function 𝑔 in (4) is the identity function because of the approximately normal 

log-transformed quantiles such as considered in Ouali et al. (2017).  

Different physio-meteorological variables are considered in each regional model. A 

backward stepwise approach is applied in this study to select the relevant explanatory 

variables to be used in each RE models (GAM and MARS). This method is presented in 

the next section.    
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3.2 Variable selection 

The backward stepwise selection procedure is applied in this work to select the 

optimal explanatory variables as in Ouarda et al. (2018) and Chebana et al., (2014). It 

consists in a progressive deleting of the least effective variables from an initial full model 

containing all available variables. At each step, the removed variable is the one having 

either the highest p value for the null hypothesis that the smooth term for GAM is zero or 

those whose consideration yields the most significant increase in the GCV score of the 

model for MARS. 

Note that the MARS algorithm naturally includes a variable selection feature since 

it builds a sparse model and a variable for which no term is added is by default discarded. 

This is not the case for GAM within which an automatic backward stepwise procedure 

was specially developed for this study. 

3.3 Validation 

For each RFA combination in Table 1, performances are evaluated using a leave-

one-out cross validation, commonly called jackknife procedure in the field of hydrology. 

It consists in deleting temporarily each site to consider it the target one and perform RE. 

This process is repeated for each gauged sites. Then, the regional estimate is compared to 

its observed values. Note that, in statistics, the validation with the jackknife technique is 

carried out on the retained data not on the data removed as in the leave-one-out cross 

validation (Quenouille, 1949). However, we will retain the jackknife term for ease of 

presentation.  



 

16 
 

Based on the jackknife procedure, several standard performance criteria are used to 

evaluate the prediction power of each regional model (e.g. Ouali et al., 2016). First, the 

Nash criterion (NASH) gives a global evaluation of the prediction quality. Second the 

root mean squared error (RMSE) provides information about the accuracy of the 

prediction in an absolute scale, and the relative RMSE (RRMSE) removes the impact of 

each site’s order of magnitude from the RMSE computation. Finally, the bias (BIAS) and 

the relative bias (RBIAS) provide a measure of the magnitude of the systematic 

overestimation or underestimation of a model. 

4. Case study and datasets 

The dataset considered in the present paper consists in 151 hydrometric stations 

located in the southern part of the province of Quebec, Canada (Figure 3). Two versions 

of the datasets with different variables are considered. The first is a standard one (STA) 

with only well-known variables used in previous RFA studies (e.g. Shu et al., 2007, 

Chebana et al., 2014, Durocher et al., 2016, Ouali et al., 2016, Wazneh et al., 2013; 2015 

and 2016). Note that geographical coordinates of the stations are considered instead of 

the geographical coordinates of the centroids. The second is an extended dataset (EXTD) 

combining STA with less common variables characterizing the drainage network 

systems. Table 2 lists all variables considered as well as whether they are in the EXTD 

dataset and thorough definitions of the new variables can be found in (e.g. Adhikary and 

Dash, 2018). These new variables are calculated based on drainage networks extracted 

using the D8 approach implemented in Arc Gis (Arc Hydro) using the digital elevation 

models; DEMs (Jenson and Domingue, 1988; O'Callaghan and Mark, 1984; Tarboton et 

al., 1991). This method consists in calculating the flow direction and the flow 



 

17 
 

accumulation layers based on the direction of the steepest slope among the eight 

neighbors of a given DEM. Using this information, the drainage networks can be defined 

considering a constant threshold value which represents the stream head locations 

(O'Callaghan and Mark, 1984). Descriptive statistics of the new variables used in the 

EXTD dataset (Msilini et al., 2020) are given in Table 3. In both datasets the considered 

hydrological response variables are at-site specific flood quantiles, chosen to match the 

specific return periods of 10, 50 and 100 years. These quantiles are thus denoted by QS10, 

QS50 and QS100. 

To ensure the convergence of the Mahalanobis distance to a 𝜒2 distribution in 

CCA, note that the logarithmic transformation is used for the following variables to 

achieve approximate normality: AREA, MBS, MATP, DDBZ and RT and a square root 

transformation for PLAKE and RC. After transformation normal q-q plot indicate that all 

variables are approximately normal.  

5. Results and Discussion 

5.1 Region delineation with CCA and ROI 

The CCA and the ROI are applied to the DHR using two sets of variables. The first 

set contains variables from STA, which are the area (AREA), mean basin slope (MBS), 

percentage of the area occupied by lakes (PLAKE), mean annual total precipitation 

(MATP), mean annual degree days below 0 °C (DDBZ) and the longitude of the centroid 

of the basin (LONGC). The second one includes variables from the EXTD, namely 

PLAKE, MATP, DDBZ, LONGC, texture ratio (RT) and circularity ratio (RC).  
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The obtained optimum sizes of the neighborhood are n
opt

 (STA) = 85 sites and n
opt

 

(EXTD) = 78 sites according to the RRMSE for the CCA method. For the ROI approach, 

we obtain n
opt

 (STA) = 54 sites and n
opt

 (EXTD) = 44 sites according to the same 

criterion. Thus, these neighborhood sizes are used for each target station. 

5.2 Selection of optimal variables 

The selection of significant explanatory variables is applied for each specific 

quantile (QS10, QS50 and QS100) and for each estimation model (GAM and MARS). Table 

4 summarizes the final variables for each datasets (STA and EXTD). Following the 

application of the backward technique with GAM and MARS, we note the selection of 

the same new variables for the two models (RN, MRL and DD). The definition of these 

variables can be found for example in Adhikary and Dash (2018). For each quantile and 

for each model, different combinations of variables are selected. The variables that seem 

to be the most important are AREA, PLAKE, MCL and LONGC. 

5.3 MARS model results 

Figure 4 shows the variable importance graph for QS100 obtained using the EXTD 

(we present only the results of QS100 to avoid repetitions). The variable with the most 

influence for the QS100 is the percentage of the area occupied by lakes, PLAKE. Indeed, 

lakes act as a sponge absorbing the excess water during extreme events. Thus they may 

have a significant effect on flood peaks. 

Figure 5 shows the GCV R
2
 (GRSq) value for the QS100 predictions versus the 

number of terms in the final MARS model. The GCV R
2 

statistic is equivalent to the 

ordinary R
2 

statistic calculated with the variance for error replaced with the GCV statistic. 
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It allows quantifying the goodness-of-fit for models that use unobserved data. The vertical 

dashed lined at 12 indicates the optimal number of terms retained where marginal 

increases in GCV R
2
 are less than 0.001. The twelve final terms include seven variables 

in this case. Five terms are related to interaction effects. 

5.4 Comparison between MARS and GAM models 

Table 5 shows the jackknife results for each model combination. The comparison of 

GAM and MARS models confirms that the simple linear spline fitting generated by 

MARS captures more information from the EXTD than the more sophisticated smoothing 

functions used in GAM. Indeed, MARS adds the terms in an iterative way leading to a 

simple and performant model including the effects of interactions. This model performs 

well with the ROI which contains a smaller number of stations than CCA. Thus, based on 

the results of our case study MARS seems applicable in small neighborhoods even with 

complex terms (interaction effects) and able to give good predictions with fewer stations 

than GAM. 

The response functions fitted by GAM and MARS models for selected explanatory 

variables are given in Figure 6. It can be seen that the smoothing functions fitted by 

MARS approximate closely the more continuous smooth curves fitted by GAM, in a 

simpler way. This result has been observed by Leathwick et al. (2006) in a comparative 

study made between GAM and MARS applied in the field of ecology. The smooth curves 

generated by GAM add degrees of freedom to the model which makes it relatively more 

complex. This may be the reason for the better prediction results obtained by MARS than 

GAM.  
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Figure 7 illustrates the interaction effects between some explanatory variables fitted 

by GAM and MARS models. Note that we considered the same interactions 

automatically identified by MARS to be able to make the comparison. The interaction 

surface generated by both models is also close. GAM gives more continuous and 

complex interaction effects, which lead to a large model with a large number of 

coefficients. This makes it difficult or impossible to integrate the interaction effects with 

GAM if we have a large number of explanatory variables in the model. For example, for 

the QS100, the integration of the same interactions identified by MARS to GAM 

considering the same variables gives a model with 79 coefficients, versus only 12 using 

MARS. In addition, MARS searches for and integrates interaction effects automatically 

into the model, which allows obtaining flood quantile estimates overall better than those 

obtained by GAM. We take as a simple example of interaction the first effect illustrated 

in Figure 7 which represents the predicted response (specific quantile) as DD and 

LONGC vary. It can be seen that the LONGC affects little the hydrological variable level 

unless the DD is high where a nonlinear effect is seen. 

5.5 Comparison of regional models 

According to Table 5 (see above), the highest NASH values (0.80) and the lowest 

RRMSE values (28.30 % for QS100) are given by the ROI/MARS/EXTD, which leads to 

the most accurate estimates compared to all other combinations. It can also be seen that, 

with ALL, MARS has a comparable performance to GAM considering both databases. 

However, using the neighborhoods, especially the ROI, MARS overall outperforms 

GAM in terms of RRMSE and RBIAS criteria. This may be attributable to the flexibility 

of MARS and its generalization ability in small size neighborhoods. 
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Figure 8 illustrates the relative error, which is the most important criterion 

(Hosking and Wallis, 2005), as a function of the sites ordered according to their area 

associated to the best models (ROI/MARS/EXTD and ROI/GAM/EXTD). One can 

notice that, overall, MARS with the EXTD performs better than GAM. The figure also 

shows that the performances at the level of extreme size basins are much worse than 

those obtained at the level of medium size basins.  

Figure 9 presents the differences between relative errors of MARS and GAM 

calculated using ROI/EXTD. One can notice that, in terms of RRMSE, MARS 

outperforms GAM in 84 sites out of 151, which represents 56% of the total number of 

sites. Accordingly, MARS is shown to be a simple performant model that can be 

considered as an alternative RE model. 

 

6. Conclusions 

The aim of this study is to introduce MARS in the RFA of extreme hydrological 

variables and to compare its performance to GAM. The MARS model is able to model 

complex relationship between physio-meteorological variables, including variables 

dealing with drainage network characteristics, and flood quantiles at ungauged sites.  

MARS is hereby compared to the GAM which is gaining popularity in RFA and is 

one of the best performing models. Results show that slightly better flood quantile 

estimates are obtained from regional models that combine MARS with the EXTD 

including a STA with additional variables dealing with drainage network proprieties. 

Results indicate also that better performances are obtained with the ROI which includes 
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low density of stations than CCA. This suggests that MARS is able to transfer 

hydrological information adequately even with fewer data than GAM. Further efforts are 

required to generalize this conclusion and to evaluate the benefits of MARS in other 

study areas and with other hydrological variables. 

Although MARS is an effective and simple tool for estimation that can be used in 

RFA, there are some constraints such as the maximum number of terms and the 

maximum allowable degree of interaction in the forward pass that have to be specified by 

the user. These depend on the problem at hand and should be considered carefully. In 

addition, MARS does not cope well with missing data and, like many machine learning 

algorithms, is prone to overfitting. Note however that the backward deletion phase is 

meant to address this drawback 

Aside from the above-mentioned shortcomings, MARS is easy-to-use as shown in 

this work. It is able to addresses the issues of high number of variables, nonlinearity, and 

interactions involved in the hydrological phenomena. This yields flood quantile estimates 

that compete with those obtained from GAM, while being simpler and more applicable to 

smaller datasets.  Flood quantiles represent important information that is used in the 

design of hydraulic structures (e.g. dams). The construction of these structures is very 

expensive. The availability of simple and sophisticated tools for the reliable estimation of 

flood quantiles is crucial for hydraulics engineers. 

In this work we considered linear neighborhood approaches (CCA and ROI), which 

are the most used methods in RFA. Future efforts can focus on the assessment of the 

performance of the MARS model in combination with non-linear neighborhood 
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approaches such as the non-linear canonical correlation analysis (Ouali et al., 2016) and  

the nonlinear neighborhood based on the statistical depth function (Wazneh et al., 2016). 
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Appendix 

Abbreviations 

ANN Artificial neural network 

AREA  Basin area 

BH Basin relief  

BIAS Mean bias  

CCA Canonical correlation analysis  

DD Drainage density  

DDBZ Mean annual degree days below 0 °C  

DEM Digital elevation model 

DHR Delineation of homogenous regions 

Edf Estimated smooth degree of freedom 

EXTD Extended dataset  

FS Stream frequency  

GAM Generalized additive model  

GCV Generalized cross validation 

IF Infiltration number  

LATC Latitude of the centroid of the basin  

LONGC Longitude of the centroid of the basin  

MALP  Mean annual liquid precipitation 

MALPS Mean annual liquid precipitation (summer–fall) 

MARS  Multivariate adaptive regression splines 

MASP Mean annual solid precipitation 

MATP Mean annual total precipitation  

MBS Mean basin slope 

MCL  Main channel length 

MCS Main channel slope 

MRB Mean bifurcation ratio   
MRL Mean stream length ratio  
NASH Nash efficiency criterion 

NL-CCA  Nonlinear canonical correlation analysis 

PFOR  Percentage of the area occupied by forest 

PL1 Percentage of first-order stream lengths  

PLAKE Percentage of the area occupied by lakes 

PN1 Percentage of first-order streams  

QST Specific quantile associated to the return period T   

R
2
 Coefficient of determination 

RB Bifurcation ratio  

RBIAS Relative mean bias  

RC Circularity ratio  

RE Regional estimation
 

RFA Regional frequency analysis 

RL Stream length ratio  

RMSE Root-mean-square error  

RN Ruggedness number  

ROI Region of influence  

RRMSE Relative root-mean-square error  

RSS Residual sum of squares 

RT Texture ratio 

STA Standard dataset 

WMRB Weighted mean bifurcation ratio  
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Table 1 Adopted regional models. 

                     Step 

Regional model 

 

DHR 

 

RE 

STA /EXTD 

ALL/GAM ALL (all stations) GAM 

ALL/MARS ALL (all stations) MARS 

CCA/GAM CCA GAM 

CCA/MARS CCA MARS 

ROI/GAM ROI GAM 

ROI/MARS ROI MARS 

 

Table 2 Variables used in the STA and the EXTD. 

QST   Specific quantile associated to the return period T  ; (T = 10, 50 and 100 years.) *    +   

AREA  Basin area *    + Log  

MCL  Main channel length *      +   

MCS Main channel slope * +   

MBS Mean basin slope * + Log  

PFOR  Percentage of the area occupied by forest * +   

PLAKE Percentage of the area occupied by lakes * + √.  

MATP Mean annual total precipitation * + Log  

MALP Mean annual liquid precipitation * +   

MASP Mean annual solid precipitation * +   

MALPS Mean annual liquid precipitation (summer–fall) * +   

DDBZ Mean annual degree days below 0 °C * + Log  

LATC Latitude of the centroid of the basin * +   

LONGC Longitude of the centroid of the basin * + ---  

RT Texture ratio  + Log  

RC Circularity ratio  + √.  

MRL Mean stream length ratio  +   

MRB Mean bifurcation ratio    +   

WMRB Weighted mean bifurcation ratio  +   

ρWMRB RHO WMRB coefficient  +   

DD Drainage density  +   

FS Stream frequency  +   

IF Infiltration number  +   

RN Ruggedness number  +   

PN1 Percentage of first-order streams  +   

PL1 Percentage of first-order stream lengths  +   

( * ) Variables considered in the standard dataset (STA). 

( + ) Variables considered in the extended dataset (EXTD). 

The variables considered in the neighborhoods and their transformations are presented in 

bold character. 
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Table 3 Descriptive statistics of new physiographical variables. 

Variable Min Mean Max STD.dev  

DD (Km
-1

) 2.41 2.96 4.73 0.34 

FS (Km
-2

) 7.34 9.74 11.86 0.97 

IF  (Km
-3

) 17.69 29.26  67.09 6.56 

RT (Km
-1

) 8.09 32.11 131.84 21.41 

MRB 1.67 2.40 17.27 2.08 

WMRB  1.95 2.08 4.14 0.24 

MRL 0.85 0.97 1.11 0.05 

ρWMRB 0.23 0.47 0.55 0.04 

RN 0.20 1.89 7.48 1.03 

RC 0.06 0.18 0.46 0.08 

PN1 (%) 50.12 50.41 52.50 0.30 

PL1 (%) 44.09 52.89 66.36 4.10 

 

Table 4 Explanatory variables selected for the various regression models. 

Regional models Quantile Selected predictor variables 

 

ALL/GAM/STA, CCA/GAM/STA, ROI/GAM/STA 

QS10 

QS50 

QS100 

AREA, MBS,  PLAKE, MALP, MASP, DDBZ, LONGC 

AREA, MCL,  MBS,  PLAKE,  MALP, DDBZ, LONGC 

AREA, MCL,  MBS,  PLAKE,  MALP, DDBZ, LONGC 

 

ALL/GAM/EXTD, CCA/GAM/EXTD, ROI/GAM/EXTD 

QS10 

QS50 

QS100 

MCL,  PLAKE,  MATP,  DDBZ,  DD, RN, LATC 

MCL, PLAKE, MALP, DDBZ, DD, MRL, LONGC 

MCL, PLAKE, MALP, DDBZ, DD, MRL, LONGC 

 

ALL/MARS/STA, CCA/MARS/STA, ROI/MARS/STA 

QS10 

QS50 

QS100 

PLAKE, LONGC, MCL, LATC, MALP, AREA, MBS 

PLAKE, LONGC, MCL, LATC, PFOR, MASP 

PLAKE, LONGC, MCL, LATC, PFOR, MASP 

 

ALL/MARS/EXTD, CCA/MARS/EXTD, ROI/MARS/EXTD 

QS10 

QS50   

QS100 

PLAKE, LONGC, MCL, DD, MRL, MALP 

PLAKE, LONGC, MCL, DD, MRL, MASP 

PLAKE, LONGC, MCL, LATC, DD, RN, MASP 
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Table 5 Jackknife Validation Results (STD and EXTD). 

                                              STA  EXTD  

               

            

                    Quantile 

 

ALL 

 

CCA 

 

ROI 

 

ALL 

 

CCA 

 

ROI 

 

GAM 

 

MARS 

 

GAM 

 

MARS 

 

GAM 

 

MARS 

 

GAM 

 

MARS 

 

GAM 

 

MARS 

 

GAM 

 

MARS 

 

NASH 

QS10 0.774 0.788 0.797 0.771 0.829 0.866 0.802 0.820 0.837 0.797 0.865 0.859 

QS50 0.745 0.648 0.762 0.749 0.796 0.785 0.754 0.742 0.775 0.748 0.816 0.802 

QS100 0.715 0.643 0.723 0.679 0.762 0.752 0.725 0.625 0.742 0.682 0.791 0.803 

  

RMSE 

[(m3/s)km-2] 

QS10 0.060 0.058 0.057 0.060 0.053 0.047 0.056 0.054 0.051 0.057 0.047 0.047 

QS50 0.089 0.104 0.086 0.088 0.080 0.081 0.087 0.089 0.080 0.088 0.076 0.076 

QS100 0.107 0.119 0.105 0.113 0.097 0.099 0.105 0.122 0.101 0.112 0.091 0.089 

 

RRMSE 

(%) 

QS10 40.937 40.781 37.163 35.316 34.690 25.950 34.970 32.065 30.619 30.435 27.974 24.423 

QS50 49.420 51.552 43.333 43.086 39.365 30.439 36.659 35.214 35.086 35.282 27.818 29.210 

QS100 51.832 47.953 45.678 42.298 41.661 37.775 38.630 41.215 37.416 38.818 29.235 28.298 

 

BIAS 

[(m3/s)km-2] 

QS10 0.005 0.004 0.006 0.004 0.003 0.007 0.005 0.005 0.007 0.008 0.004 0.008 

QS50 0.008 0.008 0.015 0.014 0.006 0.009 0.008 0.006 0.015 0.015 0.009 0.009 

QS100 0.011 0.008 0.020 0.014 0.009 0.011 0.011 0.007 0.020 0.016 0.012 0.001 

 

RBIAIS 

(%) 

QS10 -5.461 -4.650 -5.555 -5.095 -4.177 -1.682 -4.179 -4.003 -3.871 -2.818 -2.836 -0.250 

QS50 -7.047 -8.563 -5.632 -5.778 -5.487 -3.154 -4.954 -4.862 -3.513 -3.514 -2.892 -2.176 

QS100 -7.663 -8.451 -5.780 -6.291 -5.816 -5.275 -5.472 -5.767 -3.714 -4.465 -3.172 -3.583 

Best results are in bold character. 
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Figure 1 Knots and linear splines for a simple example of MARS. 
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Define the maximum number of terms in the model (NK ) 

Define the maximum degree of interaction (degree) 

Define the maximum number of terms in the Backward phase (N_prune) 

Define Forward stepping threshold (thresh) 

“Forward phase” 

 

Calculate the GCV of the model 
Loop: add Bn (x) into the model 

Reach thresh? Reach the number NK ? 

Get the model with the lowest GCV by the Forward phase  

No 

No 

Yes Yes 

“Backward phase” 
Loop: remove the Bn (x) which helps 

reduce GCV the most or increase it the 

least. 

Calculate the GCV of the model from 

each step of "Backward". 

 

Remains only 2 terms ? 

Collect all models and GCV values identified from each 

Backward step. 

No 

Yes 

Model Selection 
Find models with a number of terms < N_prune 

Find the model with the lowest GCV. 

Y : Response variable  

X : Explanatory variables 

Figure 2 Graph of MARS modelling process. 
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Figure 3 Geographical location of the studied sites in the southern part of the province of 

Quebec, Canada. 
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Figure 4 Variable Importance while predicting QS100. The Redline represents the variation of the 

sqrt GCV values caused by the removal of a given variable from the MARS model during the 

backward phase. The black line represents the variation of the number of sub-models including a 

given variable. 

 

Figure 5  MARS model selection for QS100. The gray line and the red dashed line 

represent, respectively, the variation of the GCV R
2
 (GRSq) and the R

2 
(RSq) values in 

the backward phase. For this model, 12 terms were retained which are based on 7 

predictors (nbr preds).  
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Figure 6 Examples of smoothing functions produced by the GAM and MARS models for some 

explanatory variables. Dashed lines represent the 95% confidence intervals (CI). A Bayesian 

approach to variance estimation is used to calculate the CI for GAM. For MARS, the approach 

considered to identify the CI for MARS is the one that we can use for a linear regression model as 

it is simply a linear regression of linear basis functions. All the terms are estimated with a sum to 

zero constraint, leading to lower uncertainty associated with the mean in the plots. 
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Figure 7 Examples of the multivariate effects of some explanatory variables produced by the 

GAM and MARS models on the response variable (interactions). 
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Figure 8 Relative errors associated to the at site quantile QS100 calculated using 

ROI/GAM/EXTD and ROI/MARS/EXTD. 

 

 

Figure 9 Relative errors differences associated to the at site quantile QS100 calculated between 

MARS and GAM. The considered combinations are ROI/GAM/EXTD and ROI/MARS/EXTD. 

 

 

 

 

 

 


