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Abstract: Phytoplankton bloom monitoring in freshwaters is a challenging task, particularly when
biomass is dominated by buoyant cyanobacterial communities that present complex spatiotemporal
patterns. Increases in bloom frequency or intensity and their earlier onset in spring were shown
to be linked to multiple anthropogenic disturbances, including climate change. The aim of the
present study was to describe the phenology of phytoplankton blooms and its potential link with
morphological, physiographic, anthropogenic, and climatic characteristics of the lakes and their
watershed. The spatiotemporal dynamics of near-surface blooms were studied on 580 lakes in southern
Quebec (Eastern Canada) over a 17-year period by analyzing chlorophyll-a concentrations gathered
from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite images. Results show a
significant increase by 23% in bloom frequency across all studied lakes between 2000 and 2016. The first
blooms of the year appeared increasingly early over this period but only by 3 days (median date
changing from 6 June to 3 June). Results also indicate that high biomass values are often reached,
but the problem is seldom extended to the entire lake surface. The canonical correlation analysis
between phenological variables and environmental variables shows that higher frequency and
intensity of phytoplankton blooms and earlier onset date occurred for smaller watersheds and higher
degree-days, lake surface area, and proportion of urban zones. This study provides a regional picture
of lake trophic state over a wide variety of lacustrine environments in Quebec, a detailed phenology
allowing to go beyond local biomass assessments, and the first steps on the development of an
approach exploiting regional trends for local pattern assessments.

Keywords: algal bloom phenology; chlorophyll-a; lake; watershed; climate; physiography; morphology;
MODIS; Canada

1. Introduction

The marked increase in freshwater algal blooms is of major interest to governments and public
health agencies responsible for maintaining the ecological services provided by these systems.
Cyanobacteria threaten the ecological integrity of some of the world’s most important lake environments,
including Lake Erie [1], Lake Ontario [2], Lake Taihu [3], Lake Okeechobee [4], and Lake Victoria [5].
Their increasing frequency and sustained presence affect the structure and functioning of aquatic
food webs [6], limit recreational activities [7], and threaten drinking water sources [8]. Monitoring
phytoplankton blooms remains difficult and onerous, particularly because their spatial and temporal
distribution is highly variable when dominated by buoyant cyanobacteria [9,10].
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Several models have been developed to describe the mechanisms involved in bloom onset,
development, maintenance and decline, including ecological models based on phytoplankton
growth response mechanisms [11–14], and hydrological models involving nutrient production,
transport, and accumulation [15]. Other studies have focused on the relationships between the
development of phytoplankton blooms and the environmental conditions prevailing in water bodies or
watersheds [16–18]. Among others, Hu et al. [19] and Liu et al. [20] have demonstrated the impact of
climatic variables (air temperature, relative humidity, wind speed and direction) on the development of
cyanobacterial blooms. Several other studies have shown relations between chlorophyll a concentration
(Chl-a) and key physicochemical factors associated with phytoplankton development [21,22]. The main
disruptive elements identified are phosphorus [23–25] and nitrogen when phosphorus is no longer
limiting [23,26]. The N:P ratio is also used as an indicator of the occurrence of cyanobacterial [27–29]
and other phytoplankton blooms [30,31]. Water temperature and light availability has also been shown
to play a major role in bloom development [32] in a way that is specific to each species [33].

These models, most being empirical, allowed to target disruptive elements and characterize
their effect on spatiotemporal patterns of phytoplankton blooms. It remains fairly difficult, however,
to identify all disruptive elements acting upon a given water body or on an annual basis. In order to
develop solutions for the protection or restoration of water bodies, it is necessary to identify major
sources of disruption among the multiple anthropogenic disturbances concurrently taking place [34,35]
and to define their specific effect on the frequency, intensity, and duration of blooms. The supply of
local or diffuse sources of nutrients to a water body is related to the physiography of its watershed.
For example, the nutrient storage capacity is influenced by the size of the watershed; the type of soil
affects runoff and infiltration rates; and the shape and topography of the watershed act upon peak
flows and soil erosion [36]. Moreover, climatic variables play an undeniable role in the development of
blooms, including air temperature, precipitation, wind, and hours of sunlight [37,38]. Bloom intensity
and frequency were shown to increase in response to climate change [38–43] and to occur earlier in the
spring [44,45].

This study is part of a project aiming to estimate lake predisposition to phytoplankton blooms
based on the environmental conditions prevailing on its watershed. The ultimate goal is to provide a
tool to project future scenarios of bloom phenology in response to climate change and anthropogenic
developments, or to test the efficiency of mitigating approaches. To do so, the first step was to set up
a database of near-surface phytoplankton bloom phenological characteristics (frequency, intensity,
surface area, onset date, end date, and duration) between 2000 and 2016 from 580 lakes in Quebec,
Canada, using satellite images from the MODIS (Moderate Resolution Imaging Spectroradiometer)
sensor. This database was then used to target key environmental variables involved in defining this
phenology, including the morphological, physiographic, anthropogenic, and climatic characteristics of
the lakes and their watershed, through a canonical correlation analysis (CCA). We further illustrate the
results for two lakes particularly affected by blooms, the Missisquoi Bay of Lake Champlain and Lake
Brome. A frequency analysis model linking the phenological characteristics of phytoplankton blooms
with the environmental conditions at the regional scale will later be presented in a sister paper.

2. Materials and Methods

The lakes studied are located in the province of Quebec, Canada, between 44◦ N and 50◦ N and
67◦ W and 80◦ W, covering an area of approximately 600,000 km2 (Figure 1). The spatial distribution of
the lakes was homogeneous throughout the study area, as verified by the Ripley’s index suggesting a
regular pattern [46]. This territory mainly consists of podzolic soils and is characterized by a humid
continental climate in the south and a subarctic climate in the north. Industrial and agricultural
developments are widespread in the southwestern area of the territory, while the northern part is much
less developed.
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Figure 1. Study area (darker shade) covering the 580 lakes observable by the MODIS sensor. 

A database of historical Chl-a concentrations was generated from satellite data acquired by the 
MODIS sensor (bands 1–7) located on NASA’s Earth Observation System Terra platform, at a 
temporal frequency of 1 day. The spatial resolution of the bands 3–7 was refined from 500 m to 250 
m using a spatial resolution downscaling approach developed by Trishchenko et al. [47]. This 
approach was validated using high resolution spatial data (Landsat ETM+ at 30 m) demonstrating 
that the radiometric properties of the downscaled bands were not altered. Image pre-treatment, 
including downscaling, projection, and atmospheric correction, was achieved using an automated 
procedure developed by the Canadian Center for Remote Sensing [47]. An estimation algorithm for 
Chl-a concentrations based on ensemble methods [48] was then applied to all MODIS images 
extracted. This algorithm was specifically developed for inland waters and performed well on 
databases with Chl-a ranging from low to high concentrations (see Appendix A). In order to reduce 
the uncertainty related to the heterogeneous elements on lakeshores (e.g., build environments, lake 
bottom), mixed pixels (water-land boundary) were removed over a 250 m band by applying a ground 
mask. This procedure generated a composite image formed by the minima of reflectance in the near 
infrared on images captured between May and October of 2000 to 2016. This avoids interference by 
macrophytes, since the reflectance of water pixels with phytoplankton will be inferior to that of the 
pixels occupied by macrophytes, which are more permanent elements in the littoral zone during the 
open-water season. In order to have enough pixels to adequately represent each water body, only 
lakes with a minimum area of 3.5 km2 were considered for this study. Areas affected by haze or cloud 
cover were then removed using a cloud mask [49] specifically developed for inland waters (lakes, 
rivers, estuaries). Only lakes having less than 25% cloud cover for a given image were selected. 
Overall, Chl-a concentrations were extracted from 580 lakes in southern Quebec between May and 
October of the years 2000 to 2016, for a total of 1572 images.  

An operational biomass threshold of 10 µg Chl-a L−1 was chosen to define the onset of a bloom 
and characterize its phenology on the studied lakes. It corresponds to the lower end of the eutrophic 
lake class (8–25 µg L−1) and to the decision threshold for recreational water level 1 as established by 

Figure 1. Study area (darker shade) covering the 580 lakes observable by the MODIS sensor.

A database of historical Chl-a concentrations was generated from satellite data acquired by the
MODIS sensor (bands 1–7) located on NASA’s Earth Observation System Terra platform, at a temporal
frequency of 1 day. The spatial resolution of the bands 3–7 was refined from 500 m to 250 m using
a spatial resolution downscaling approach developed by Trishchenko et al. [47]. This approach was
validated using high resolution spatial data (Landsat ETM+ at 30 m) demonstrating that the radiometric
properties of the downscaled bands were not altered. Image pre-treatment, including downscaling,
projection, and atmospheric correction, was achieved using an automated procedure developed by the
Canadian Center for Remote Sensing [47]. An estimation algorithm for Chl-a concentrations based
on ensemble methods [48] was then applied to all MODIS images extracted. This algorithm was
specifically developed for inland waters and performed well on databases with Chl-a ranging from low
to high concentrations (see Appendix A). In order to reduce the uncertainty related to the heterogeneous
elements on lakeshores (e.g., build environments, lake bottom), mixed pixels (water-land boundary)
were removed over a 250 m band by applying a ground mask. This procedure generated a composite
image formed by the minima of reflectance in the near infrared on images captured between May
and October of 2000 to 2016. This avoids interference by macrophytes, since the reflectance of water
pixels with phytoplankton will be inferior to that of the pixels occupied by macrophytes, which are
more permanent elements in the littoral zone during the open-water season. In order to have enough
pixels to adequately represent each water body, only lakes with a minimum area of 3.5 km2 were
considered for this study. Areas affected by haze or cloud cover were then removed using a cloud
mask [49] specifically developed for inland waters (lakes, rivers, estuaries). Only lakes having less
than 25% cloud cover for a given image were selected. Overall, Chl-a concentrations were extracted
from 580 lakes in southern Quebec between May and October of the years 2000 to 2016, for a total of
1572 images.

An operational biomass threshold of 10 µg Chl-a L−1 was chosen to define the onset of a bloom
and characterize its phenology on the studied lakes. It corresponds to the lower end of the eutrophic
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lake class (8–25 µg L−1) and to the decision threshold for recreational water level 1 as established by
the World Health Organization [50] and the government of Quebec [51]. When level 1 threshold is
exceeded and biomass becomes dominated by cyanobacteria, it is considered a risk of minor health
effects (irritation and allergies). This threshold is already used by watershed-based organizations,
water management officers and municipalities.

For each studied year, phenological variables were established as follows: (1) the frequency,
which is the number of days when Chl-a concentrations remained above the threshold, (2) the intensity,
which is the maximum concentration of Chl-a detected during a bloom, (3) the relative area, which is the
maximum area occupied by a bloom normalized by the lake area, (4) the onset date, and (5) the end date,
which are the first and last days of the year when a bloom is detected, and (6) the duration, which is the
number of days between the onset date and the end date. Determination of the end date and duration
of blooms is challenging because the studied region is frequently covered by clouds during the fall,
significantly reducing the number of MODIS images available for this period. This is especially true
during the month of October, for which there was on average half as many MODIS images without full
cloud cover than for months between May and September. Therefore, end date and duration were
discarded from the study. The retained variables describe what can be considered as an annual-based
phenology, compiling days with less than 25% cloud cover and for which remotely-sensed Chl-a was
above the established threshold, for any given pixel.

A geo-referenced database of the morphological, physiographic, and climatic characteristics of
the watershed of each studied lake was established. The boundaries and morphological descriptors of
the watersheds (area, slope) were calculated from the Canadian Digital Elevation Model [52] with a
spatial resolution of approximately 30 m. Climate data from North American Regional Reanalyses [53],
with a spatial resolution of approximately 32 km, were used. The cumulative degree-days (◦C day)
were calculated by summing the recorded degrees (◦C) each day above 20 ◦C, a value that has been
considered a threshold for cyanobacterial growth [54,55]. Even though the remote sensing approach
used here is not specific to cyanobacterial biomass, this climate proxy is considered valid. Land use
data (at 40 m spatial resolution) and agricultural and ecumene data (at 25 m spatial resolution)
were provided by Natural Resources Canada [56,57]. The environmental indicators were considered
stationary over the period 2000–2016. A total of 27 environmental variables were extracted for each lake
and their watershed. The variables with the highest correlation to phytoplankton bloom phenology
were selected (see Section 3.2) for statistical analysis (Table 1).

Table 1. List of the phenological variables and environmental descriptors used in the canonical
correlation analysis.

Phenological Variables Environmental Variables

1—Frequency 1—Lake area
2—Intensity 2—Lake shape index
3—Surface area 3—Watershed area
4—Onset date 4—Watershed shape index

5—Watershed slope—standard deviation
6—Land cover—Forest (%)
7—Land cover—Settlement (%)
8—Land cover—Cropland (%)
9—Population ecumene
10—Agriculture ecumene
11—Total precipitation—annual
12—Mean temperature—annual
13—Degree-days above 20 ◦C
14—Wind speed—summer

The spatial variability in phenological data is presented according to the latitude or longitude of
the concerned lakes, and was statistically tested using the Kruskal and Wallis [58] test by randomly
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generating a subsample of lakes (by longitude or latitude) to ensure the independence of variables
(runs test [59]). Temporal trend tests were conducted on median and annual extreme values (5th or
95th percentile; normality test [60]). Given the size and diversity of the generated data sets and the
complexity of the interactions governing bloom phenology, analyses were carried out using canonical
methods. The aim was to explore all possible correlations between phenological and environmental
variables without using one group of variables to justify the other. The canonical correlation analysis
(CCA) allows to simultaneously analyze two groups of variables by quantifying their association.
The objects (lakes) under study are described by two sets of quantitative descriptors: the first set X1 of
p phenological descriptors, and the second set X2 of q environmental descriptors. Linear combinations
Ui = AiX1 and Vi = BiX2 (Ai and Bi are parameters; i = 1, . . . , K) of each set of descriptors are calculated
in such a way that the canonical correlation between Ui and Vi is the highest possible. The first pair of
canonical variables i = 1 is the pair of linear combinations U1 and V1, which maximizes the equation’s
correlation. The second pair of canonical variables i = 2 is the pair of linear combinations U2 and V2

which maximizes the correlation of this equation and which is not correlated with the first pair of
canonical variables. This process is repeated until K pairs of canonical variables are obtained, such
as K = min (p, q). The significance of canonical correlations was tested using Bartlett’s approximate
chi-squared statistic [61,62]. The interpretation of canonical variables was based on the identification
of: (1) standardized canonical coefficients Ai and Bi, (2) structure coefficients R(Ui,X1p) and R(Vi, X2q),

and (3) canonical communality coefficients h2. The contribution of original variables to a given
canonical variables was estimated from standardized canonical coefficients Ai and Bi. These weights
are generated to maximize the canonical correlation Ri, and are thus similar to the weights of a
regression. Standardized coefficients assess the importance of one variable in relation to the others, and
thus reflect their contribution to the canonical correlation. Structure coefficients were also calculated to
evaluate the importance of a given unrelated variable. These coefficients correspond to the correlations
between the original variables and the canonical variables R. The correlations (when squared) indicate
the proportion of variance linearly shared by a given original variable with the canonical variable.
Note that R correlations are not affected by the standardization of the original variables. Finally, the
canonical communality coefficients (h2) correspond to the sum of the squared R of all the canonical
variables interpreted in the analysis. They provide information on the proportion of variance of a
variable that is explained by the set of canonical variables used in the analysis. Variables with low values
(<45%) are generally omitted from the analysis [63]. Although multicolinearity between variables
does not present any analytical difficulties when using a CCA, it can complicate the interpretation of
the results by blurring the origin of the observed effects [64]. The combined use of standardized and
structure coefficients is therefore recommended since the latter are not affected by multicollinearity,
and informs us on the potential contribution of the observed variables to the development of canonical
variables [65]. Satellite data treatment and statistical analyses were computed using Matlab software
(R2018b).

3. Results

3.1. Descriptive Analysis of Bloom Events

Figure 2 shows the distribution histograms of the phenological variables. The median frequency
of blooms was 15 days per year for all the lakes and years considered (Figure 2a). Among all lakes,
the median intensity (maximum Chl-a concentration for a given lake) was 110 µg L−1 (2160 µg L−1 for
the 95th percentile; Figure 2b), and the median surface area (maximum relative surface area) was 19%
(Figure 2c). The distribution shape is similar across phenological variables and shows a left-sided
asymmetry. However, the shape of the onset date distribution is left truncated (Figure 2d). This is
because mapping of Chl-a using satellite imagery does not begin until mid-May of each year to ensure
that the lakes further north are completely thawed out. Thus, the median date of the first algal bloom
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is 4 June on the available dataset. This date could be slightly earlier with a more complete distribution
of this phenological variable (i.e., including lakes that thawed before 15 May).
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François (2012). The last four water bodies are fluvial lakes generally presenting low intensities 
(median values between 12 and 15 µg Chla L−1). Five hundred seventy-two lakes also showed Chl-a 
concentrations of 100 µg L−1 or more at least once between 2000 and 2016 (Figure 3b). However, the 
number of lakes with such high concentrations over a significant portion of the surface area (above 
50% of the lake area) dropped to 54 (not shown; Figure 3 rather presents the extent for biomasses > 
10 µg L−1). On the other hand, only 13 lakes had experienced an extended bloom (covering at least 
75% of their area) over the period 2000–2016 (Figure 3c), including Lake Brome and Missisquoi Bay. 

Figure 2. Distribution of phytoplankton bloom phenology, including (a) the frequency of events with
Chl-a rising above the threshold concentration of 10 µg L−1, (b) the maximal intensity of Chl-a reached
during a phytoplankton bloom, (c) the maximal bloom areal extent, and (d) the onset date of blooms.
Median values are highlighted in blue.

Figure 3 presents the complementary cumulated histogram of the phenological variables.
For instance, more than 180 lakes showed 30 days during which Chl-a concentrations were above the
threshold of 10 µg L−1 (for any specific year between 2000 and 2016), while only five lakes showed at
least 50 days exceeding this threshold (Figure 3a): Missisquoi Bay (2012), Lake Saint-Louis (2005, 2012,
2013), Lake Des-Deux-Montagnes (2005, 2012), Lake Saint-Pierre (2013), and Lake Saint-François (2012).
The last four water bodies are fluvial lakes generally presenting low intensities (median values between
12 and 15 µg Chla L−1). Five hundred seventy-two lakes also showed Chl-a concentrations of 100 µg
L−1 or more at least once between 2000 and 2016 (Figure 3b). However, the number of lakes with such
high concentrations over a significant portion of the surface area (above 50% of the lake area) dropped
to 54 (not shown; Figure 3 rather presents the extent for biomasses > 10 µg L−1). On the other hand,
only 13 lakes had experienced an extended bloom (covering at least 75% of their area) over the period
2000–2016 (Figure 3c), including Lake Brome and Missisquoi Bay.
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Bloom frequency shows a clear spatial pattern across the entire studied territory (Figure 4a,b). 
Phytoplankton blooms were more frequent west of the area, and this frequency tended to drop 
systematically from west to east (Kruskal-Wallis test (KW): 𝜒ଶ = 934; p < 0.001). A systematic increase 
was also apparent from north to south (KW: 𝜒ଶ = 433; p < 0.001). Hence, regions located in southwest 
Quebec had much more frequent blooms. In terms of temporal patterns, the median number of days 
with blooms increased by 23% between 2000 and 2016 (significant at the 10% threshold, p = 0.091; 
Figure 4). There was also a significant increase in high bloom frequencies; for example, the 95th 
percentile of the number of days with blooms increased by 24% between 2000 and 2016 (significant 
at the 5% threshold, p = 0.043; not presented). Conversely, smaller occurrence frequencies (5th 
percentile) did not show any significant trend over time. This generally concerns lakes located in 
underdeveloped regions, northeast of the studied area. 

Figure 3. Cumulative distribution of phytoplankton bloom phenology between 2000 and 2016, including
(a) the frequency of events with Chl-a rising above the threshold concentration of 10 µg L−1, (b) the
maximal intensity of Chl-a reached during a phytoplankton blooms, (c) the maximal bloom areal extent,
and (d) the onset date of blooms. The blue bars correspond to the number of lakes associated to the
event phenology identified on the x-axis.

3.2. Frequency of Blooms

Bloom frequency shows a clear spatial pattern across the entire studied territory (Figure 4a,b).
Phytoplankton blooms were more frequent west of the area, and this frequency tended to drop
systematically from west to east (Kruskal-Wallis test (KW): χ2 = 934; p < 0.001). A systematic increase
was also apparent from north to south (KW: χ2 = 433; p < 0.001). Hence, regions located in southwest
Quebec had much more frequent blooms. In terms of temporal patterns, the median number of days
with blooms increased by 23% between 2000 and 2016 (significant at the 10% threshold, p = 0.091;
Figure 4). There was also a significant increase in high bloom frequencies; for example, the 95th
percentile of the number of days with blooms increased by 24% between 2000 and 2016 (significant at
the 5% threshold, p = 0.043; not presented). Conversely, smaller occurrence frequencies (5th percentile)
did not show any significant trend over time. This generally concerns lakes located in underdeveloped
regions, northeast of the studied area.
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between 74° W and 75° W (KW: 𝜒ଶ = 512; p < 0.01). It also increased from north to south, with blooms 
on lakes located between 45° N and 49° N showing a surface area twice as large as the lakes located 
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observed between 2000 and 2016 (p = 0.1836). However, events characterized by large surface areas 
(95th percentile) significantly increased from 50 to 55% between 2000 and 2016 (p = 0.025).  

Figure 4. The frequency of phytoplankton blooms (defined when Chl-a rose above the threshold
concentration of 10 µg L−1) as a function of longitude (a), latitude (b), and years (c). The frequency is
relative to the number of lakes for a given longitude or latitude (median frequency divided by the total
number of lakes at a specific latitude or longitude). The trend line corresponds to the linear regression
on median values.

3.3. Intensity of Blooms

Although not marked as the frequency of occurrence, bloom intensity also showed a similar spatial
pattern on the studied territory (Figure 5), representing an increase from east to west (KW: χ2 = 199;
p < 0.001) and from north to south (KW: χ2 = 78; p < 0.001). No temporal trends of bloom intensity
were detected between 2000 and 2016 (median, p = 0.220).

3.4. Surface Area of Blooms

The relative surface area of blooms showed a significant spatial pattern that differed from its
frequency or intensity (Figure 6). The relative surface area significantly increased on lakes located
between 74◦ W and 75◦ W (KW: χ2 = 512; p < 0.01). It also increased from north to south, with blooms
on lakes located between 45◦ N and 49◦ N showing a surface area twice as large as the lakes located
between 50◦ N and 52◦ N (KW: χ2 = 198; p < 0.01). This spatial trend was similar when the four
fluvial lakes were removed from the dataset. No significant temporal trend in median surface area was
observed between 2000 and 2016 (p = 0.1836). However, events characterized by large surface areas
(95th percentile) significantly increased from 50 to 55% between 2000 and 2016 (p = 0.025).
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3.5. Onset Date of Blooms

The date of the first algal bloom was earlier on lakes located west of the studied area (Figure 7).
The median date of the first event was May 21 at 80◦ W, while the first event occurred on 25 June
at 66◦ W (KW: χ2 = 828; p < 0.01). The first bloom also occurred increasingly early on lakes located
further south of the territory (KW: χ2 = 508; p < 0.01); for example, the median date of the first event
was 21 May at 45◦ N, and 21 June at 52◦ N. For 58% of the lakes, the onset of blooms occurred before
the beginning of July, while only 17 lakes had their bloom onset date later than 1 September (Figure 3d).
Moreover, the first bloom occurred earlier as years progressed (p = 0.0646; Figure 7c); the median
date for all lakes of the studied territory moved from 6 June to 3 June . The 95th percentile of the
onset date (i.e., on the lakes with the latest onset date) also occurred earlier (yet not significant at a
threshold of 10%, p = 0.1065), changing from 14 July to 1 July between 2000 and 2016. These lakes
are typically located north of the studied area, with very little agricultural and urban development.
Lakes characterized by the 5th percentile of the onset date, typically located southwest of the studied
area in highly urbanized and agricultural sectors did not show any significant trend, the date remaining
between May 18 and 19 from 2000 to 2016 (p = 0.826).
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Figure 7. The date of first phytoplankton bloom on lakes of the studied region as a function of longitude
(a), latitude (b), and years (c). The trend line corresponds to the linear regression on median values.

3.6. Phenological Trends of Missisquoi Bay and Lake Brome

The phenological trends of Missisquoi Bay (Lake Champlain; Figure 8) and Lake Brome (Figure 9)
are presented since they have been extensively studied in the past given the persistence of cyanobacterial
blooms on those lakes in the last decades. The annual occurrence frequency increased significantly
on Missisquoi Bay, where the number of days above the Chl-a threshold increased from 25 in 2000 to
47 in 2016 (t = 2.71; p = 0.02). The intensity and surface area of these bloom events were important,
with maximum Chl-a concentrations reaching 1315 µg L−1 on average every year, and surface area
reaching 62%. However, the onset date of blooms over Missisquoi Bay did not show any significant
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temporal trend. With regard to Lake Brome, the annual frequency also showed a significant increase
from 23 days in 2000 to 30 days in 2016 (t = 2.32; p = 0.03). Although the intensity (219 µg L−1 on
average) was lower than that of Missisquoi Bay, the bloom was covering the entire surface of the lake
(maximum annual surface area reaching 100%) at least once every year over the studied period except
in 2010 (97% of surface area). Although not significant, the first annual bloom occurred increasingly
early in the spring on this lake (in average, from 28 May in 2000 to 19 May in 2016). This trend may be
confirmed in the future.
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Figure 8. Annual frequency, intensity, areal extent, and onset date of bloom events from 2000 to 2016 at
the Missisquoi Bay of Lake Champlain (Canadian portion of the Bay). When the regression is significant
(orange line), the Student statistic (t-stat) and p-value are given.

3.7. Correlation Analysis

Results of the Pearson correlation analyses within and between the phenological and environmental
variables are presented in Appendices B and C. These analyses allowed to reduce the number of
environmental variables in order to eliminate information redundancy and to select variables most
correlated to bloom phenology. Results indicate that the frequency of events and the onset date show a
strong correlation with degree-days, while bloom intensity is correlated to water body morphology
and water surface temperature. However, the bloom extent did not show any significant correlation
with the environmental variables included in this study.
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Figure 9. Annual frequency, intensity, areal extent, and onset date of bloom events from 2000 to 2016 in
Lake Brome. When the regression is significant (orange line), the Student statistic (t-stat) and p-value
are given.

3.8. Canonical Correlation Analysis

Results from the CCA applied between the environmental variables and phytoplankton bloom
phenology show high Ri for the first two pairs of canonical variables (0.77 and 0.71), which considerably
dropped for the last canonical correlations (0.23 and 0.13). The Bartlett test has shown that these
canonical correlations are significant at threshold α = 0.01 (Table 2). Based on these Ri values,
only results of the first two pairs of canonical variables were interpreted. Table 3 presents the
standardized canonical coefficients, structure coefficients, and communality coefficients. Communality
coefficients where h2

≥ 45% are highlighted to identify the variables most useful to the canonical
model development.

Table 2. Canonical correlation and significance test of the canonical correlations. All p-values are < 0.01.

i R*
i Pz1 Pz2 Observed Test Statistic Degrees of Freedom χ2 Distribution (α<0.01)

1 0.77 0.53 0.15 16,067 56 83.51
2 0.71 0.24 0.17 7470 39 62.43
3 0.23 0.14 0.07 697 24 42.98
4 0.13 0.09 0.05 167 11 24.72

Total 1 0.44
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Table 3. Canonical variate coefficients a,b = {a1,i, b1,j, a2,i, b2,j}, structure coefficients R =
{
R(U1,x2,j), R(V1,x1,i), R(U2,x2,j), R(V2,x1,i)

}
and communality coefficients of the

first two canonical variables h2. Communality coefficients greater than 45% are underlined.

Phenology Morphology Physiography Climate

Frequency
(x1,1)

Intensity
(x1,2)

Surface
Area
(x1,3)

Onset
Date
(x1,4)

Lake
Area
(x2,1)

Lake
Shape
Index
(x2,2)

Watershed
Area
(x2,3)

Watershed
Shape
Index
(x2,4)

Slope
(x2,5)

Forest
(x2,6)

Settlement
(x2,7)

Cropland
(x2,8)

Population
Ecumene

(x2,9)

Agriculture
Ecumene

(x2,10)

Precipitation
(x2,11)

Temperature
(x2,12)

Degree-
Days
(x2,13)

Wind
Speed
(x2,14)

Function 1
a1,i, b1,j: −0.54 −0.20 −0.06 0.41 −0.36 −0.05 0.21 −0.13 0.14 −0.20 −0.37 0.16 −0.22 −0.11 0.15 −0.10 −0.56 0.05

R(U1,x2,j),R(V1,x1,i): −0.94 −0.49 −0.46 0.89 −0.38 −0.27 −0.19 −0.27 0.27 0.38 −0.65 −0.10 −0.48 −0.32 0.27 0.02 −0.84 −0.10

Function 2
a2,i, b2,j: −0.21 −0.69 0.73 −0.22 −0.89 0.21 −0.15 0.02 −0.05 0.08 0.13 −0.05 0.20 0.17 0.26 0.08 0.18 −0.05

R(U2,x2,j),R(V2,x1,i): 0.00 −0.66 0.70 −0.22 −0.86 −0.55 −0.67 −0.41 −0.05 −0.06 0.17 −0.36 0.19 0.03 0.44 0.54 0.26 0.01
h2: 88.3% 67.2% 70.2% 84.1% 88.4% 37.8% 48.9% 24.6% 7.8% 14.6% 45.4% 14.2% 26.4% 10.3% 26.5% 29.4% 77.6% 1.0%



Environments 2020, 7, 77 14 of 25

3.8.1. Phenological Variables

The phenological variable most contributing to the correlation between U1 was V1 were the
frequency of occurrence (a1,1 =−0.54), followed by the onset date (a1,4 = 0.41), the intensity (a1,2 =−0.20),
and the extent of blooms (a1,3 = −0.06). Variables with the highest level of relevance to the model
development appear in the same order: the frequency of occurrence (R(V1,x1,1) = − 0.94), the onset
date (R(V1,x1,4) = 0.89), the intensity (R(V1,x1,2) = − 0.49), and the extent (R(V1,x13) = − 0.46). Hence,
bloom phenology was mainly characterized by the frequency and onset date, followed by the intensity
also having a significant contribution. These variables each provide complementary information,
since they do not show strong collinearity (r < 0.7, Appendix B). The structure coefficients of
frequency, intensity, and extent are inversely related to the structure coefficients of the onset date.
Hence, high frequency, intensity, and large blooms are more likely to occur earlier in the open-water
season. With regard to the second function, there was a significant contribution by the extent
(a2,3 = 0.73; R(V2,x1,3) = 0.70), the intensity (a2,2 = −0.69; R(V2,x1,2) = −0.66), the onset date (a2,4 = −0.22;
R(V2,x1,4) = −0.22), and finally the frequency (a2,1 = −0.21; R(V2,x1,1) = 0).

3.8.2. Environmental Variables

The environmental variables most contributing to the canonical correlation between U1 and V1

are the degree-days (b1,13 = −0.56; R(U1,x2,13) = − 0.94), the percent cover by urban area (b1,7 = −0.37;
R(U1,x2,7) = − 0.65), the lake area (b1,1 = -0.36; R(U1,x2,1) = −0.38), the population ecumene (b1,9 = −0.22;
R(U1,x2,9) = −0.48), the percent cover by forest (b1,6 = −0.20; R(U1,x2,6) = 0.38), and the lake watershed
area (b1,3 = 0.21; R(U1,x2,3) = −0.19). Thus, degree-days and urban areas correspond to the climatic
and physiographic characteristics most related to bloom phenology, and show a direct correlation
with frequency, intensity, and extent of the blooms (r of same sign). The environmental variables
mostly contributing to the second function of the canonical correlation are the lake area (b2,1 = −0.89;
R(U2,x2,1) = −0.86) and precipitation (b2,11 = 0.26; R(U2,x2,11) = 0.44). All phenological variables
contributed to the development of the first two pairs of canonical variables (h2

≥ 45%), while lake area,
watershed area, land use (urban areas), and annual degree-days are the environmental variables that
contributed the most.

4. Discussion

This study presents the spatiotemporal dynamics of phytoplankton blooms over 580 lakes
in southern Quebec between 2000 and 2016, and their potential relationships with physiographic,
morphological, and climatic descriptors prevailing on the lakes and their watersheds. The results
demonstrate realistic and expected trends, which validate the usefulness of this approach to study the
response of lake trophic state to historical and future changes in land use and climate. For instance,
the data show the expected increase in the magnitude of phytoplankton blooms (expressed by frequency,
surface area, or intensity) from north to south and east to west, as well as an earlier onset date in the
southern and western regions of the studied region. These spatial trends had been observed over the
last decades by water quality monitoring services (MELCC) [66–68], with blooms typically located in
sectors of highly developed areas.

A particularly interesting result is the temporal increase of blooms observed between 2000 and
2016 in Quebec lakes, invalidating the hypothesis that the increasing trend would simply be related to
the greater attention given to the phenomenon. This trend has also been observed by Winter et al. [69]
from 1994 to 2009 on lakes of Ontario, and Ho et al. [42] over a 30-year period on 71 large lakes across
the planet. The recent review by Huisman et al. [70] particularly describes the overall increase in
frequency, intensity, and duration of cyanobacterial blooms observed on lakes globally. For example,
this was demonstrated from the analysis of cyanobacterial pigments in sediment cores from over one
hundred lakes of Northern America and Europe [71]. Our study allowed to quantify phenological
trends over time and with respect to landscape characteristics, promoting predictive models such as
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the one put forward by Cremona et al. [17], who developed a cyanobacterial biomass prediction model
with respect to regional climatic variables and hydrological indicators. They found that cyanobacteria
biomass will increase from 2% to 10% in future decades.

4.1. Phenological Trends

During the period under study, phytoplankton biomass exceeded the threshold of 10 µg Chl-a L−1

during 15 days per year (May to October) on average for all lakes studied. This result is rather
conservative, as only days with a cloud cover under 25% of observable surface area were included
in the database, while we can assume that many additional cloudy days would add to this [27].
The areal extent of the blooms reached 19% of the overall lake surface on average (47% for the 95th
percentile). Hence, most bloom events were rather restricted in terms of surface coverage. A bloom is
qualified as very limited when the surface area remains under 25% (Sylvie Blais from the government
of Quebec, pers. comm.). Our results show that all studied lakes had at least one pixel reaching
a biomass of 10 µg Chl-a L−1 or above at least once over the studied period, while this proportion
drops to 12% of the lakes for blooms (biomass > 10 µg L−1) covering more than 50% of the lake area.
Therefore, high biomass values are often reached, but the problem is seldom extended to the entire
lake surface area.

High annual bloom frequencies were mostly observed on lakes located in highly developed
sectors with heavy urbanization and agricultural use. The impact of land use (and its associated inputs
of nutrients) appears to play an undeniable role on algal bloom phenology; this relationship was
validated by the CCA showing that the relative proportion of urban areas and population ecumene
were significant in controlling the frequency, intensity, and onset date. These results were also obtained
by Weber et al. [72] showing a significant relationship between percent forest and cyanobacteria cell
densities for 771 waterbodies in Georgia, USA. The bloom areal extent also varied spatially, with a
significant increase between longitudes 74◦ W and 75◦ W, a corridor with intense seasonal resort
operations stretching southwest of Montreal. However, this regional increase was partly caused by the
phenology of two fluvial lakes (see Appendix D), Lake Des-Deux-Montagnes and Lake Saint-François,
showing extended blooms (on average 35% of the lake area) of low biomass (median values below
15 µg L−1 for days exceeding the threshold). Nevertheless, this spatial trend in bloom areal extent still
existed when removing fluvial lakes from the database.

An increase by 23% in bloom frequency was observed between 2000 and 2016 (all lakes). It was
mostly observed on lakes with moderate to high frequencies (i.e., between 15 to 28 days of blooms
per year on average). While the median areal extent did not increase significantly over the studied
period, events covering a large fraction of the lake (95th percentile) showed a significant increase
over the years. Hence, lakes with large and frequent blooms, for instance Missisquoi Bay north of
Lake Champlain and Lake Brome, are the ones most clearly showing a rising trend over the studied
period. These two lakes have largely been studied due to the intensity of blooms occurring there
and the resulting socio-economic issues, for example on drinking water quality [10,73–75]. The rising
importance of blooms on these lakes, often composed of buoyant cyanobacteria, has been associated to
land-use changes (nutrient inputs) and increasing water temperature [76].

The first blooms occurred 3 days earlier in 2016 than in 2000 on average over the studied
territory, although the accuracy of onset date estimates is influenced by the amount of missing
data. Other studies have shown bloom onset date becoming earlier over time on Lake Taihu in China
(subtropical climate), but at a much faster rate (~10 days earlier per year between 1998 and 2009, [38,77]).
Interestingly, our results show that the onset date was particularly getting earlier (by almost 2 weeks)
on lakes located in the northern part of the studied territory, but this specific trend is not significant.
Direct impacts of increased air temperatures include an extended summer season, higher surface water
temperatures, and intensified thermal stratification of lacustrine environments [78]. These conditions
can stimulate the growth of phytoplankton communities in eutrophic environments [79] and particularly
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of cyanobacteria [70]. Therefore, these effects may be more apparent in northern regions where other
anthropogenic factors are not acting, although the observed trends need to be substantiated.

4.2. Links to Climate and Environmental Physiography

It is not simple to identify the causes of the rising trend in bloom frequency in a context of
population expansion occurring in parallel to global warming. Partitioning the causes will need the
development of a regional model allowing to test various scenarios for a given water body with respect
to the specific conditions prevailing on its watershed. The spatiotemporal trends in bloom onset
date, development, maintenance, and decline observed on the studied territory present linkages with
the lake’s morphological characteristics, watershed’s physiographic characteristics, and prevailing
climatic conditions, as shown from the canonical analysis. It allowed to highlight the characteristics
underpinning the regional dynamics of phytoplankton blooms.

The frequency and onset date of blooms are the phenological variables most strongly linked to
the environmental characteristics prevailing on the lakes and their watershed. The most significant
environmental variables are the lake area, watershed area, settlement, and degree-days. Ultimately,
the input of nutrients to lakes will be larger in urbanized and agricultural sectors southwest of the
territory where lakes are more exposed to non-point source pollution (typically related to agriculture)
and point source pollution (e.g., sewage systems, domestic, or industrial wastes). On the other
hand, since the studied territory covers about 600,000 km2, climate is very likely to play a role on
phytoplankton bloom phenology. For example, on the studied territory, there is a difference of
37 days in the onset date of phytoplankton bloom. Zhang et al. [38] showed that the onset date and
duration of blooms are strongly related to climate (temperature, sunshine hours, and global radiation).
The southwestern part of the territory is therefore offering more favorable conditions to phytoplankton
growth, particularly when nutrients are abundant (Huisman et al [70] and references therein).

Results indicate that the urbanized area is the physiographic variable best explaining bloom
frequency and intensity. This relationship has been evoked in other studies mentioning that key
forcing factors for the development of blooms include modifications resulting from anthropogenic
activities such as contaminants from effluent and stormwater discharges, natural resource extraction
and agricultural runoff [80,81]. Interestingly, the CCA results indicate that urbanization (settlement
and population ecumene) better explains the spatiotemporal variability of phytoplankton blooms than
agricultural variables (cropland and agriculture ecumene), but both variables are linked on this relative
occupancy scale. In the studied region, urban area varied extensively (0–64% of the lakes drainage
basin) as well as farming area (0–55%). Farming has often been raised as a major controlling factor on
bloom phenology through its influence on P and N loads.

The impact of lake surface area on frequency, intensity, and onset date revealed in the present
study (larger lakes presenting higher frequency, intensity, and earlier onset date) has yet to be
explained, although lake morphology is of definite importance in the development of cyanobacteria.
For instance, dominance of filamentous species is observed in shallow lakes while colony-forming
species dominate deeper lakes [82]. Others have also shown the influence of hydrologic retention time
on the establishment of blooms and their composition [83,84]. Since larger lakes generally tend to
have longer retention times, this factor could explain the relationships revealed by the CCA. However,
we cannot exclude that the frequency of events could increase with the observable lake surface area
(by the remote sensor), increasing the probability of detecting a bloom.

Degree-days is the climatic variable best explaining bloom phenology, followed by total annual
precipitation. However, annual or seasonal water temperatures (Table 3 and Appendix C) do not show
any clear relationships with the phenological variables. Although several temperature descriptors
have often been related to phytoplankton growth, including atmospheric temperature [19,38],
water temperature [85], hours of sunlight [38], and degree-days [86,87], it is the latter descriptor
that most directly impact the growth of ectotherm organisms [88]. For instance, Ralston et al. [87] used
degree-days to assess inter-annual variability in the onset date of algal blooms, their development
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and date of decline in the Nauset estuary, and proposed this metric as an efficient warning indicator.
Trombetta et al. [89] also pointed out that water temperature is a key factor controlling the phenology and
community structure of phytoplankton blooms in a Mediterranean shallow coastal system. The recent
study by Ho and Michalak [90], exploiting over twelve hundred summertime lake observations from
across the continental U.S., showed that summer temperature drives total phytoplankton abundance,
while the length of summer is linked to cyanobacterial abundance. The impact of precipitations on
bloom frequency, intensity, and onset date suggested by the present study CCA is also discussed by
Ho and Michalak [90], who are evoking the effect of increased nutrient runoff on bloom development,
while precipitations could rise flushing rates and slow down growth, confusing the relationships.

5. Conclusions

This study provides a regional portrait of lake trophic state over a wide variety of lacustrine
environments in Quebec, and a detailed phenology allowing to go beyond simple biomass assessments
at the scale of a lake or locally. It offers an approach to characterize bloom phenology on lakes that
are providing ecological services for instance, and eventually to forecast how this phenomenon could
evolve in response to changes in climate or land use. This approach is of particular interest in a country
with over a million lakes across its territory [91]. While the statistical approach used here does not
provide definitive mechanistic linkages, it is useful for identifying potential mechanisms driving bloom
phenology at the regional scale. The increasing frequency of bloom events observed over the study
period invalidates the hypothesis that the rising trend would simply be due to the greater amount
of attention given to the phenomenon. Remote sensing data allows to assess bloom phenology with
much more details and inform on specific features. For example, results indicate that high biomass
values are often reached but the problem is seldom extended to the entire lake surface. Moreover,
studying blooms over a territory 600,000 km2 allowed to determine a difference in bloom onset dates
of 37 days, which could be exploited in a space-for-time substitution approach to assess the response
of lakes to future climate conditions.

The analysis of bloom phenology on 580 lakes and the associated environmental conditions also
allowed to identify key factors explaining the spatiotemporal patterns: degree-days, land use, and the
morphology of lakes and their watersheds. For instance, the procedure adopted here based on remote
sensing provides near-real time biomass estimation to implement management plans in a recreational
context. Remote sensing offers a great potential to locate where phytoplankton blooms initiate and how
they evolve over space and time, and exploit regional relationships to study local patterns. This will be
done through the development of a statistical model examining the impact of climate or land use on the
occurrence of phytoplankton blooms, which will be presented in a sister paper. As spatial resolution
improves and images become more accessible, this approach will represent an efficient tool to identify
priority areas and strategies in restoration plans.
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Appendix A. Uncertainties on the Estimation of Pytoplankton Biomass and Global Trends

Naturally, there is an uncertainty regarding the Chl-a concentration values obtained using the
ensemble-based model developed by El Alem et al. [48]. This model had a determination coefficient
of 0.93 (relative RMSE = 50%, relative BIAS = −27%, relative NASH = 0.70) when it was tested on
an independent database containing a group of lakes with relatively low biomass in the southern
part of the studied territory, and where Chl-a concentrations had been measured in-situ [48]. Using a
cross-validation approach, the model performed better when it was used to estimate high Chl-a
concentrations (R2 = 0.98, RMSEr = 15%, BIASr = −2%, NASHr = 0.95) than at the initialization of
blooms (R2 = 0.77, RMSEr = 37%, BIASr = −8%, and NASHr = 0.70). The model calibration did not
include fluvial environments, where the hydrological dynamics and optically active components are
different from those of lacustrine environments, and where there is a greater amount of suspended
inorganic matter. This could cause an estimation bias regarding Chl-a concentrations when non-algae
particles are proportionally concentrated, although a qualitative evaluation of this type of interference
by El Alem et al. [48] seems to indicate that the estimation model behaved correctly in the presence
of a high inorganic content in Lake Huron. That is why the results of lakes Des-Deux-Montagnes,
Saint-Louis, Saint-François, and Saint-Pierre, located along the St. Lawrence River, were presented for
information purposes only. The inclusion of these lakes does not affect our global results, since the
spatiotemporal trend analysis and the CCA were also carried out without including these lakes,
and the results remained the same. In Lake Des-Deux-Montagnes, bordering the city of Montréal,
the median summer concentration of Chl-a was 4.8 µg L−1 in 2000 according to our results, while in situ
measurements taken close to the lake in 1997–1998 varied between 2 and 5 µg L−1 [66]. Given the little
amount of data available to validate the estimations obtained for these lakes, it is difficult to ensure of
the accuracy of the concentrations, further justifying the need to develop this type of approach when
aiming to describe the phenological history of phytoplankton blooms using remote sensing.

Lastly, the percentage of missing data due to a large cloud cover (over 75% of the lake’s surface area)
or to geometric distortion of MODIS images was 68% at 45◦ N for the present study, which gradually
increased with latitude, reaching 80% of missing data at 52◦ N (Figure A1). The number of sunlight
hours in Quebec [92,93] fully explains the spatial variability of missing data. Certain studies have shown
that missing data can affect the accuracy of phenological variables, particularly on phytoplankton
bloom frequency and onset date. For example, Cole et al. [94] found bloom onset date errors in ocean
environments of the order of 2 to 3 days with 10% of missing data, and 15 to 30 days with 80% missing
data when using images from the SeaWiFS sensor. The results obtained in the present study obviously
carry an uncertainty related to cloud cover, which is admittedly difficult to quantify. Nonetheless,
satellite databases considerably increase the precision and accuracy of spatiotemporal modelling of
phytoplankton blooms comparatively to in situ sampling, thus representing a fair trade-off.
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Table A1. Pearson correlation analysis between bloom phenological and environmental variables.
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La
ke

m
or

ph
ol

og
y Area 0.09 0.21 −0.01 −0.02

Perimeter 0.16 0.54 −0.10 −0.05
Gravelius coefficient 0.22 0.50 −0.18 −0.11
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Width of the Gravelius’s rectangle 0.21 0.46 −0.04 −0.05

Slope—mean 0.10 0.04 0.09 −0.04
Slope—standard deviation −0.24 −0.09 −0.14 0.22
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Land cover—Forest 0.16 0.28 0.04 −0.05
Land cover—Settlement 0.17 0.13 0.16 −0.07
Land cover—Cropland 0.20 0.16 0.21 −0.08

Land cover—Forest (relative) −0.33 −0.10 −0.21 0.17
Land cover—Settlement (relative) 0.29 0.07 0.16 −0.22
Land cover—Cropland (relative) 0.30 0.10 0.20 −0.13

Population ecumene 0.32 0.06 0.25 −0.30
Agriculture ecumene 0.28 0.09 0.19 −0.14
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Total precipitation—annual −0.23 −0.43 0.02 0.11
Total precipitation—summer −0.22 −0.35 0.01 0.09
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Appendix C

Table A2. Pearson correlation analysis among environmental variables (left) and among bloom phenological variables (right). L = lake; W = watershed; rel = relative %.

Frequency Intensity Extent Onset
Date

L Area 1 1 0.32 0.29 −0.66 Frequency

L Perimeter 0.50 1 1 0.03 −0.16 Intensity

L Shape index 0.13 0.79 1 1 −0.32 Extent

L Length 0.48 1.00 0.80 1 1 Onset date

L Width 0.90 0.39 0.00 0.37 1

W Area 0.57 0.52 0.29 0.51 0.60 1

W Perimeter 0.57 0.62 0.44 0.61 0.59 0.89 1

W Shape index 0.26 0.43 0.50 0.43 0.24 0.41 0.69 1

W Length 0.57 0.61 0.44 0.60 0.59 0.89 1.00 0.69 1

W Width 0.47 0.72 0.54 0.71 0.52 0.85 0.87 0.50 0.86 1

Slope—mean 0.01 0.11 0.13 0.11 0.01 0.59 0.37 0.10 0.37 0.43 1

Slope—std 0.05 −0.04 −0.04 −0.04 0.01 −0.08 −0.03 0.08 −0.03 −0.08 −0.11 1

Forest 0.55 0.52 0.30 0.51 0.59 1.00 0.90 0.42 0.90 0.86 0.57 −0.08 1

Settlement 0.22 0.24 0.16 0.24 0.23 0.81 0.60 0.20 0.59 0.65 0.88 −0.14 0.78 1

Cropland 0.21 0.24 0.15 0.24 0.25 0.77 0.59 0.20 0.59 0.66 0.72 −0.15 0.75 0.95 1

Forest (rel) −0.06 −0.06 0.01 −0.06 −0.17 −0.13 −0.13 −0.04 −0.13 −0.24 −0.09 0.20 −0.11 −0.21 −0.30 1

Settlement (rel) 0.03 0.02 −0.04 0.02 0.11 0.08 0.06 0.01 0.06 0.11 0.08 −0.10 0.07 0.15 0.18 −0.76 1

Cropland (rel) 0.06 0.07 0.01 0.07 0.17 0.13 0.14 0.05 0.14 0.26 0.07 −0.22 0.11 0.21 0.31 −0.96 0.55 1

Population
ecumene 0.04 0.01 −0.04 0.00 0.11 0.07 0.06 0.00 0.06 0.12 0.05 −0.04 0.06 0.11 0.14 −0.54 0.62 0.43 1

Agriculture
ecumene 0.08 0.07 0.01 0.07 0.17 0.13 0.14 0.05 0.14 0.24 0.06 −0.20 0.11 0.19 0.27 −0.87 0.63 0.85 0.48 1

Total pcp—
annual −0.29 −0.54 −0.40 −0.54 −0.30 −0.41 −0.42 −0.22 −0.42 −0.54 −0.14 0.04 −0.41 −0.27 −0.30 0.21 −0.18 −0.20 −0.13 −0.18 1

Total
pcp—summer −0.22 −0.41 −0.30 −0.40 −0.22 −0.31 −0.31 −0.16 −0.31 −0.40 −0.11 −0.03 −0.30 −0.20 −0.23 0.16 −0.14 −0.15 −0.12 −0.14 0.88 1

Mean
temp—annual −0.43 −0.79 −0.56 −0.79 −0.44 −0.60 −0.62 −0.30 −0.62 −0.79 −0.21 0.05 −0.60 −0.39 −0.43 0.13 −0.04 −0.15 −0.01 −0.12 0.67 0.50 1

Mean
temp—summer −0.43 −0.79 −0.56 −0.79 −0.44 −0.60 −0.62 −0.30 −0.62 −0.79 −0.21 0.05 −0.60 −0.39 −0.43 0.14 −0.04 −0.16 −0.02 −0.12 0.67 0.51 1.00 1

Wind—annual −0.01 −0.01 −0.02 −0.01 0.00 −0.03 −0.04 −0.07 −0.04 −0.02 −0.01 −0.12 −0.02 −0.02 −0.02 −0.11 0.13 0.08 0.04 0.04 0.00 0.04 0.01 0.02 1

Wind—summer −0.06 −0.01 0.01 −0.01 −0.04 −0.06 −0.08 −0.08 −0.08 −0.04 −0.02 −0.25 −0.06 −0.04 −0.04 −0.04 0.04 0.03 −0.05 −0.01 0.04 0.06 0.02 0.02 0.73 1

Degree days −0.09 0.00 0.06 0.00 −0.06 0.01 0.01 0.08 0.01 0.02 0.07 −0.26 0.01 0.08 0.09 −0.24 0.26 0.20 0.27 0.21 −0.13 −0.13 0.02 0.02 0.10 0.18 1
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Figure A2. Localization of Lake Des-Deux-Montagnes, Lake Saint-Louis, Lake Saint-François, Lake 
Brome, and Missisquoi Bay of Lake Champlain. 
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