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Abstract

The fifth-generation (5G) wireless cellular system is expected to provide huge improvement
in comparison to the fourth-generation (4G) system in supporting more stringent and ver-
satile technical requirements. Particularly, the 5G system should be capable of providing a
1000-fold of network throughput, supporting ultra reliable and low latency communications,
and handling massive connectivity. Novel techniques must be devised and well integrated
to enable the 5G wireless cellular system fulfill such stringent key performance requirements
of diverse wireless applications and to significantly reduce the capital expenditure (CAPEX)
and operational expenditure (OPEX) for 5G cellular network operators. Wireless network
virtualization (WNV), or network slicing, has been considered as a promising networking
approach for addressing this problem. Efficient techniques for advanced resource manage-
ment of network slices must be developed to achieve high resource utilization efficiency and
flexibility while satisfying each slice’s quality of service (QoS) constraints.

Harnessing new kind of resources (i.e., new resource dimensions) is essential to help the
future 5G wireless cellular system satisfy these stringent technical requirements in addition
to exploiting new spectrum bands (e.g., millimeter wave (mmWave)) and techniques for
improving spectrum and energy efficiency. Moreover, content caching at the network edge, i.e,
placing popular contents or files at places closer to end users can potentially help significantly
reduce network traffic and access delay considering the rapid increase of mobile video data
in the wireless cellular network. The 5G network performance would be further improved
if different types of network resources such as frequency spectrum, transmission power, and
storage resources were efficiently utilized and managed. As a result, it is crucial to design
frameworks for network resource management and content placement. Motivated by these
promising key directions, the general objective of this Ph.D. research is to develop efficient
resource management techniques enabling wireless edge caching and network virtualization in
the wireless cellular network. Our research has resulted in three major research contributions,
which are presented in three corresponding chapters of this dissertation.

First, we study the caching problem for heterogeneous small-cell networks with bandwidth
allocation and caching-aware base station (BS) association. The caching control and band-
width allocation problem aims at minimizing the request miss rate for one network operator
who has a limited bandwidth and storage capacity in serving its end users (UEs). To solve
this problem, we propose a Line-Search-based-Iterative (LSBI) algorithm which determines
the solution by combining the line-search algorithm to obtain the optimal bandwidth allo-
cation with the iterative caching algorithm to acquire a caching solution. Numerical results
demonstrate that the LSBI algorithm significantly outperforms existing caching algorithms,
and is on a par with a performance bound.
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Second, we investigate the joint resource allocation and content caching problem which
aims to efficiently utilize the radio and content storage resources in multi-cell virtualized
wireless network with highly congested backhaul links. In this design, we minimize the max-
imum content request rejection rate experienced by users of different mobile virtual network
operators (MVNO) who share a common resource pool of subcarriers and storage repositories
owned by an infrastructure provider (InP). We solve the resulting mixed-integer non-linear
programming (MINLP) problem by proposing a bisection-search based algorithm that itera-
tively optimizes the resource allocation and content caching placement. We further propose
a low-complexity heuristic algorithm which achieves moderate performance loss compared
to the bisection-search based algorithm. Extensive numerical results confirm the efficacy of
our proposed framework which significantly reduces the maximum request outage probability
compared to other benchmark algorithms.

Third, we study the resource allocation and pricing problem in the virtualized wireless
network that captures the multilateral interactions among access/backhaul service providers
and their UEs by using the multi-leader-multi-follower (MLMF) Stackelberg game approach.
Toward this end, we show how to formulate such a Stackelberg game and prove the existence
of a unique game equilibrium. Then, we develop a distributed algorithm based on updating
underlying best-response functions, which is proved to converge to the game equilibrium.
Numerical results are presented to provide important insights into the interactions among
the involved stakeholders and demonstrate the economical efficacy of the proposed design
with respect to existing benchmarks.

In summary, different efficient resource management algorithms have been developed con-
sidering several enabling 5G wireless technologies. Moreover, extensive numerical results are
presented in each contribution to gain further insights and to evaluate the performance of our
proposed designs. The solid results achieved in this dissertation would form good foundations
for our future studies where research issues such as mobility management, security and pri-
vacy, and applications of machine learning techniques for more effective network management
can be addressed.
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Chapter 1

Extended Summary

1.1 Background and Motivation

The fifth-generation (5G) wireless cellular system, which has started rolling out by 2020, is expected
to provide a huge network performance improvement and to support new services and applications,
compared to those enabled by the current fourth-generation (4G) system [2H4]. Specifically, 1000-
fold increase of network throughput compared to that of 4G systems is the target spec promised
by the 5G systems [b]. This significant network capacity increment is for coping with the ever-
increasing mobile traffic generated from enhanced mobile broadband (eMBB) services such as mobile
video streaming [6H9]. In addition to support the eMBB service type, the future 5G wireless
cellular system also supports the other two key service types, namely ultra-reliable low-latency
communications (URLLC) and massive machine type communications (mMTC) for respectively
serving mission-critical applications and a massive number of simultaneous connections from wireless
devices [8, [10, [I1]. Accordingly, a hefty burden of network traffic as well as stringent requirements
are put on both the radio access network (RAN) and the backhaul network, which establish end-
to-end connections between user equipments (UEs) and core network (CN) via base stations (BSs).
New techniques and novel network architectures must be devised and well incorporated together to

enable the 5G wireless cellular system to fulfill such stringent and versatile requirements [3}, 4, [7, [§].



1.1.1 Advanced Resource Utilization and Management

Exploiting new radio spectrum bands [12] and enhancing spectrum efficiency are two necessary and
complementary approaches for network throughput and network quality improvement. Moreover,
leveraging other kind of resources, especially storage repository, is a promising approach to reduce
communication delay and relieve traffic congestion [3]. In fact, by deploying storage devices at BSs
in the network and pre-fetching popular content/files, which is also referred as content caching, E] to
these storage repositories, one can bring popular contents in closer proximity to UEs. As a result,
the traffic in the backhaul links induced by accessing these contents, which are usually stored in the
CN if they are not cached at the BSs, is also relieved significantly [13]. By doing so, the end-to-end

access latency to these contents is reduced, thus improving users’ quality of service (QoS) [14HI6].

Innovations in enhancing the spectrum efficiency and leveraging emerging resource dimensions,
typically the content caching, are most beneficial if they are engineered jointly with other resource
management frameworks [3, 15, [16]. Yet designing advanced resource management frameworks
that can utilize the advantages of both the spectrum efficiency enhancement and content caching is

challenging and requires much more further research.

1.1.2 Network Slicing - Wireless Network Virtualization

To help the 5G network meet stringent requirements of its diverse service types, it is crucial to design
innovative network architectures (e.g., ultra dense networks (UDN) [I7, [I§], cloud radio access
network (C-RAN) [19]) that not only integrate advanced technologies but also make them work
together in a seamless way. However, deploying and operating these novel network architectures
for 5G systems as well as integrating innovative technologies into these systems require a massive
overhaul in network infrastructure, both in the air interface and in the backhaul network. Such
requirements can incur a surcharge of capital expenditure (CAPEX) and operation costs (OPEX), as
well as slowing down the deployment time of new technologies and network services [7, [8]. Wireless
network virtualization (WNV),; also known as network slicing, has been considered as a promising

networking paradigm for addressing this problem [20].

We use the term content and file interchangeably in this doctoral dissertation.



Chapter 1. Extended Summary 3

In fact, wireless virtualization allows multiple mobile virtual network operators (MVNOs), also
known as service providers (SPs), to share the same network infrastructure and a common resource
pool owned and managed by one (or several) infrastructure provider(s) (InP). On this common
network infrastructure, the InP is in charge of flexibly and efficiently allocating network resources to
MVNOs based on their contracts. Each MVNO in turn uses the rented resources and infrastructure
to provide its own services [2] to its clients including UE or other MVNOs with committed quality
of service (QoS). Accordingly, network slicing helps network operators and SPs reduce CAPEX and
OPEX by utilizing network resource in a flexible and efficient manner while better meeting the
required QoS [20]. Thanks to scalable and flexible characteristics, network slicing also expedites

technology implementation and integration into 5G wireless cellular networks [20].

1.1.3 Economic Aspects of Resource Sharing Among 5G Network Tenants

Network slicing is an important technology for which the monolithic network can be virtually sliced
into multiple network slices to support specialized wireless services. Appropriately designed network
slices, for instance, could be designated for the high-speed streaming services such as YouTube and
Netflix, or the uRLLC services for the factory control applications [22]. Network slicing also provides
a paradigm shift toward multi-tenancy in the next-generation wireless network [23] where individual
tenants (e.g., MVNOs, SPs) own and manage corresponding network slices. By enabling service
trading among tenants, this paradigm shift offers greater business opportunities and greater savings

in CAPEX and OPEX [22].

Accordingly, there exists multilateral interactions between SPs, InPs, and UEs regarding the
economics aspect. Here, the interaction can be an economic competition between the SPs provid-
ing same service type to a market, or it can be a buy-and-sell interaction between the SPs and
their customers such as UEs. These multilateral interactions among the SPs and their customers
constitute to a resource trading market. Designing an appropriate framework for operating such
market is crucial for achieving efficient network serviceability and high profits. Game theory is an

appropriate tool for modeling such market [24].



1.2 Research Contributions

This Ph.D. research focuses on three main objectives. First, we develop a joint radio resource
allocation and content caching framework under small-cell heterogeneous network (HetNet) setting,
where we consider the resource allocation and content caching problem for a single network operator
with its own resource pool. Second, we study the joint resource allocation and content caching in
the virtualized multi-cell network environment where multiple network operators sharing a common
resource pool of wireless channels and storage repositories under the coordination of a centralized
controller. Third, we consider resource allocation problem concerning the multilateral interactions
between SPs as well as between the SPs and their customers in a network slicing setting by using
the Stackelberg game theory. All of the objectives aim to directly address important technical issues
of future network scenario (HetNets) and emerging network paradigms (network slicing). The main

contributions of this Ph.D. dissertation are as follows:

1.2.1 Caching for Heterogeneous Small-Cell Networks with Bandwidth Alloca-

tion and Caching-Aware BS Association

In this contribution, we study the caching problem for heterogeneous small-cell networks with
bandwidth allocation and caching-aware BS association. There are some existing works that study
the caching problem for small-cell networks [I5][16] where they investigate the joint caching, routing,
and channel assignment. However, all these works do not consider the stochastic behavior of content
request and service processes. Meanwhile, authors in |25 26] study the joint caching and resource
allocation design based on the time-varying signal-to-noise ratio (SNR). This design would require
frequent cache updates, which is not cost efficient because the SNR. usually varies quickly over time.
Accordingly, a general caching design for HetNets where mobile users can be associated with either
a small-cell base station (SBS) or macro-cell base station (MBS) and allocated radio resource to
download their desired contents should be considered. BS associations in such the heterogeneous
network should take into caching decisions (i.e., being caching-aware) where users should associate

with BSs which have favorable channel conditions and store their requested contents.

Motivated by the aforementioned issues, we design a joint content caching and bandwidth allo-

cation problem for HetNets where we make the following key contributions.
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e We design a joint content caching and bandwidth allocation framework for minimizing the

request miss ratio.

o We propose a Line-Search-based-Iterative (LSBI) algorithm which determines the solution
by combining the line-search algorithm to obtain the optimal bandwidth allocation with the

iterative caching algorithm to acquire a caching solution.

e Numerical results demonstrate that the LSBI algorithm significantly outperforms existing

caching algorithms, and is on a par with a performance bound.

1.2.1.1 System Model

We consider a heterogeneous small-cell caching system consisting of one MBS denoted as BS 0
and S non-overlapping SBSs in the set My = {1,---,S} deployed within the coverage area of the
MBS. Let M = {0} U M denote the set of all BSs. We assume that the system bandwidth B is
assigned orthogonally to the MBS and SBSs, and all SBSs reuse the same bandwidth. Let By and
B, respectively denote the bandwidth assigned to the MBS and all SBSs, where By + Bs; < B and
we denote B = By, Bs].

Let wy, be the bandwidth required to serve a user in BSm € M. Let K = [Ko, -+, K, -, K]
be the service capacity of the system, where K, represents the maximum number of users that can
be served simultaneously by BS m € M. We also denote K = [Kg, K|, where Ko = [K1,--- , Ky/).
Then, to maintain the required users’ QoS in cell m, K,, should satisfy K,, < Bs/w,, Ym € Mj,

Ky < By/wy, and K,,, € Z*, where Z* denotes the set of non-negative integers.

We consider the following adaptive caching-aware BS association strategy. As user k in the
coverage area of SBS m requests a file, the SBS will serve the user (i.e., user k will be associated
with SBS m) if it is serving less than K, users and the file is currently cached at the SBS. Otherwise,
the request is redirected to the MBS. At the MBS, if the requested file is available in its cache and the
MBS is serving less than K users, the request will be served (i.e., user k will switch its association

to the MBS). Otherwise, the request is missed.

We assume that users request files in set F = {f1,---, fr}. These files are assumed to have the
same size and can be stored in the caches of the BSs for future downloads. We assume that the

popularity distributions of the files in F depend on the service area where users in different areas



can have different file preferences. Let p,, = [pPm1, - , Pmr] denote the file request probabilities of
users in the coverage area of BS m € M where p,,; denotes the probability that file f is requested
by some user in the coverage area of BS m and ||p,,|[1 = 1 Vm € M. We assume that content
requests in BS m € M follow the Poisson process with average rate A, (requests/s). We assume
that p,, and A, are known. Finally, we assume that it takes 7, seconds for BS m to serve one

request (i.e., the file download time).

Let @, = [Tm1, -+, Tmr) and © = [xg, - - - , xg] represent the caching decisions of BS m and all
BSs, respectively. Specifically, ., € {0,1} denotes the caching status of file f at SBS m, where
Typ = 1 means that file f is cached at BS m, x,,y = 0, otherwise. We also denote the caching
vector of all BSs in the system as © = (x4, &) where s and s are the caching vectors of BS s € M

and other BSs, respectively.

1.2.1.2 Problem Formulation

We first analyze the caching performance of a particular SBS, which is used in the problem formu-
lation. Since the request rate associated with SBS m € Mg is \y,, the request rate for file f at
SBS m is Aupmy. If file f is not cached at SBS m, the request is redirected to the MBS. Denote
)\;fl‘}b(a:m) as the redirected rate to the MBS from SBS m for file f due to the unavailability of file
f in the cache. Then, )\;f;}b(mm) can be expressed as )\;,‘i‘}b(azm):)\mpmf(l — Zpf). Consequently,

the average request rate for all files to SBS m can be calculated as

)\;gq(mm) = Z )\mpmfxmf' (1.1)
feF

Note that the aggregate request follows the Poisson process because all individual request pro-
cesses are Poisson [27]. Recall that SBS m can serve at most K, users simultaneously and it
takes T}, (s) to serve one request. Therefore, we can model the request/service at SBS m as an
M/D/K,,/K,, queue, which has Poisson arrivals, deterministic service time, K,, servers, and zero-

length buffer. Hence, the probability a request being blocked [27] at SBS m can be expressed as

-1

req(p Ky [EKm req(p 7
Pl @, o) = @) ) (z 4 ) o) ) | 12)
m: i=0 :
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Note that if the request for file f is blocked by SBS m due to its limited service capability, the
request is redirected to the MBS. Denote )\reda(wm,Km) as the redirected request rate to the
MBS from SBS m due to its limited service capability then this parameter can be calculated
as )\;i‘}a(:nm,Km) A;i}(a:m)P&(a:m,Km). As all requests which are rejected by SBSs due to ei-
ther the limited service capability or the unavailability of requested files at the SBSs’ caches are

redirected to the MBS, we can calculate the total request rate of file f redirected to the MBS as
)\'e (o, Ko)= X ()\'edb(:cm)—l—)\reda(a:m, Km)> Therefore, the total request rate of file f to the
M

me

MBS including original and redirected requests can be expressed as /\Tff (Z0, Ko)=Nopo f+>\53d (zo, Ko).

The request miss rate associated with the MBS due to the unavailability of the files can be
expressed as A2 (z, K¢) = Ster /\;\eff (20, Ko)(1 — xor). Consequently, the request rate for all files
at the MBS can be calculated as

Areqa( 7I_{0) - Z )‘;\?f(a_g()aRO)xOf- (13)
ferF

Note that the requests (with the rate )\'eda(a:m, K,,)) redirected from the SBS m to the MBS
due to the limited service capability at this SBS form an overflow traffic, which is a non-Poisson
process. One can replace this overflow process by an Poisson approximation using several techniques
such as Hayward’s approzimation and equivalent random method [28]. By doing so, we can model
content request/service at the MBS as an M/D/Ky/Ky queue with an input Poisson process.
Consequently, the request miss probability due to limited serving capability of the MBS caln be

reqa o K reqa o i
(A7 (2, K o) Tp) X0 8 (3 (=, Ko0)To)"
M= > il - As

=0
a result, the request miss rate due to the limited serving capability of the MBS can be expressed as
A (z, K) = A5 (2, Ko) Py (A3 (2, Ko), K)). Finally, the total request miss rate of the system

can be calculated as A™*(z, K)=\(x, K)+\P, (w, K 0) Our design problem which minimizes

calculated similar to (L.2)), i.e., Py (A3} ((z, Ko), K)) =

2We omit steps approximating the overflow process to Poisson process in this work due to high computation cost.
Thus the results obtained A\§;(x, K) give optimistic result.



the request miss rate can be formulated as
min  A™(g, K)
z,B,K

s.t. Z Tt < Cp,y Ty € {0,1}
feF (1.4)

Km < Bs/wm VYm € MS,KO < Bo/wo

By+Bs<B,K,, € Z* VYm e M.

Here, C,,, denotes the maximum number of files that can be cached at BS m € M. By minimizing
the request miss rate, we can indirectly reduce the backhaul traffic load and high service delay due

to content download from content servers.

1.2.1.3 Proposed Algorithms

Note that Ky is an integer variable, and it is limited by the system bandwidth, Ky < B/wy.
Therefore, we can perform line search for all possible solutions of Ky. For a given optimal value
K, to obtain the optimal solution of problem , the optimal bandwidth allocation and service
capacity of the SBS can be determined as follows: (i) Bf = Kjwo, (ii) Bf = B — Kjwp, and
(iii) K}, = [(B — K{wo)/wm |, Ym € M;. Substituting B* and K* to problem yields the

following caching optimization problem

min A" (z, K*)
x

st Y Tms < Cm, s € {0,1}.
feF

Based on these observations, we propose Algorithm to solve problem . In particular, it
solves problem by line-searching over possible values of Ky. For a given value of K, Algorithm
calculates the bandwidth allocation and serving capacity vectors B* and K*. Then, it solves
the caching problem using Algorithm explained in the next section. The request miss
rates obtained from solving problem for different values of K* are compared to determine the

optimal solution which achieves the lowest request miss rate.
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Algorithm 1.1. JOINT BANDWIDTH ALLOCATION AND CACHING ALGORITHM (LSBI)

1: Initialization: K§ =0, K" = |B/wg], AJe® = oo.

2: repeat

3 Ki=K;+1

4:  Calculate B*, K* according to (i), (ii), and (iii).

5:  Solve problem by using Algorithm to obtain A™(K™*) and x*.
6.

7

8

9

if Amiss > Amss(K) then

opt
Set )\g‘pifs — AMiSS(K).
Set Topt +— x*, and By < B”
end if
10: until K¢ > K.
11: Output A™ss, Byt and Topt.

In the following, we present an algorithm to solve the caching optimization problem ({1.5)) for a
given K*. We omit K™ in all related notations in the following for brevity. The objective function

of (1.5) can be re-expressed as

)\miSS(:B) _ )\;SIqa(w)Pg()\;\?a(;c)) — )\E\an(w) + Z )\;\e/[qf(iv)
fer

= A+ goAP (@) + D0 gm(A (@) (1.6)
meM
where Ac = 3t Am- Go(A) £ APT(A) =X and g, (\) = AP5,(A)—\, which correspond to the MBS
and SBSs, respectively. Af¢9(zx,,) and A}" (x) are given in equations (1.1 and (1.3)), respectively.

Proposition 1.1. For each m € M, g, () decreases with .

The decreasing property of g,,(\) with respect to \ is leveraged to design the caching algorithm.
Specifically, i1 (x) and A¢9(x,,) are increasing functions of x and @, for all m € M in (L.6).
Hence, to minimize the request miss ratio for a given K*, each BS has to cache to its full storage
capacity to attain higher \. Since solving the caching problem optimally requires an extensive
computation due to binary caching vector @, we propose an iterative algorithm to solve problem
by sequentially solving the caching problem of each BS for a given caching solutions of other

BSs until convergence.

Caching decision for the SBSs: Let x! denote the caching solution in iteration t. Moreover, we

denote F¢ and F} as the sets of cached and un-cached files in the MBS in iteration ¢, respectively.
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Then, the caching decision sub-problem for SBS m in iteration ¢ 4+ 1 can be stated as

min A™(x,,,) = Ac+go( AT (@m)) Fgm (N (2))

TTm
(1.7)
st. Y Tmp < Cm,wmyg € {0,1}, Vf € F.

fer
Problem ([1.7)) is still a mixed integer program which is challenging to solve. Since SBS m should
cache C,, files, we propose a caching scheme in which SBS m caches C,,,—C), and C,, most popular

files in sets F§ and .7:"3, respectively. Denote C, as the optimal value of Cy,,, which can be determined

by a line-search algorithm since C¥, € [0, C,].

Caching decisions for the MBS: The caching problem of the MBS can be stated as

min  Ac + go(A37 (o)) + > g A (@)
meM (1.8)

s.t. ZxofSC(),l'ofE{o,l} VfeF.
feF
The objective function of problem (|1.8) can be written as )\miss(mo):)\y—i-go(f;}_ /\;\?f(:io)xof). As
go(A) is a decreasing function, the optimal solution of problem |D is obtained when 3~ (¢ » /\;\eff (zo)
is maximized. Denote Cj as the set of Cj highest values of )\;\e/[qf(a_co). Then, to obtain the optimal

solution of problem (/1.8), MBS should cache all files in Cj.

Final caching algorithm: From the caching design described in Algorithm we can see that
it creates a sequence of feasible solutions for problem (1.5 where the value of its objective function

monotonically decreases over iterations. Therefore, Algorithm converges to a feasible solution.

Algorithm [I.2] finds caching solutions for the MBS and SBSs. The caching solution for the MBS

has complexity O(MF). The caching solution for the SBSs has complexity O( Y. Cp,) = O(F).
meM

Algorithm has the complexity of O(KJ(MF + F)) ~ O(K§® M F), which is linear with key

system parameters.

1.2.1.4 Numerical Results

We consider a simulation setting with a single MBS and | M| = 9 SBSs, each with coverage radius

d = 50m, deployed within the coverage area of the MBS with coverage radius R = 500m. We set
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Algorithm 1.2. CACHING ALGORITHM

1: Initialization MBS caches its Cy most popular files and SBS m
caches its C,,, most popular files. Set max iteration IV and tolerance e.
t=0
repeat
t=t+1
m =t modulo M
if m = 0 then
Perform caching for MBS to obtain acfﬁ'l*
else
Perform caching for SBS m to obtain ! !
end if
1. xbt = argmin,, - ot AT (), AT ()}

—
@

m - ; m
12: until |A\™SS (i) — \miss(gt )| <eort >N
13: Output x*

B = 20 and w,, = 1, Ym € M bandwidth units. The number of files is set FF = 100 and the
Zipf skew parameter v = 0.8. The storage capacities of the MBS and SBSs are assumed to be
Co = 20 and C,,, = b, respectively. The content request processes at the MBS and SBSs are Poisson
processes with the normalized rates of 107 requests/s/m? and 10~* requests/s/m?, respectively.

The service times of one request for the MBS and SBS are set to 10s and 5s, respectively.

Figs. and [[.Tb| respectively demonstrate the request miss rate versus the system bandwidth
B, the caching capacity of each SBS C,,,. In both figures, the LSBI algorithm outperforms the three
baseline algorithms. Figs. and also show the small performance gap between our proposed
algorithm and the performance bound, which confirms the efficacy of our proposed framework. Fig.
illustrates the request miss rates of the LSBI algorithm versus the MBS’s coverage radius for
different values of «v. The request miss rate of the LSBI algorithm is smaller as v becomes larger.
Moreover, the higher value of R results in increasing request miss rate since larger R leads to the
higher request rate. Finally, Fig. shows the cached files at the MBS and 2 SBSs in one
particular system realization where the z-axis indicates the file indices and the y-axis shows the
request probabilities of different files. We can see that SBSs tend to cache their most popular files
while the caching solution of the MBS contains files ranging from low to high request probabilities.
This is because each SBS would attempt to minimize the redirected request rate to the MBS by
caching its most popular files. Moreover, the MBS accommodates redirected requests from all SBSs;

therefore, its caching solution contains files spreading out from low to high preferences.



12

100 I ====A === A= __ ‘
) [ 4=---- A
§ %0 § 8 A-sMpC ]
n ) Seal -H-MPCWA
2L 80%: 27 U9 -9 MPCNA
E TR IS Segl e ©-LsBI
4 . B I B N Rt TR L
2 | Rl D oagl e SO Tl - % Performance bound
g 0" Acsupc o 69
g -(E!)-MPCWA g
60| -9 MPCNA 62 -
o -©-LSBI o
50 - % Performance bound | | 55 | | |
5 10 15 20 25 30 2 4 6 8 10
System bandwidth (MHz) Caching capacity of each SBS (files)
(a) (b)
100 20.15 - -
= o Caching solution of MBS
Q o - -8 E ° M * Caching solution of SBS 1
S8  p--8- T e g ¢ Caching solution of SBS 5
0 _-8-" " AT 2 01 i
Qo m--c =
f 60F . 3 °
|72 S B O [<)
() > ....... =
2 9.0.05 * ¢
= z
S 40 4| SBIAlg. y= 15 2 o . ¢ N .
) O LSBI Alg. y= 1 =] ° * S PN
-~ ‘ ‘ ‘ . |E-LSBI Alg. y=0.5 g . 9 0000 006 o oo moo o4
300 400 500 600 700 800 900 1000 0 20 40 60 80 100
Coveraae radius of MBS (m) File index

(©)

(d)

Figure 1.1 — Request miss ratio vs (a) system bandwidth B, (b) Caching capacity of each SBS, (c)
Coverage radius of MBS. (d) Caching solution of MBS and SBSs.

1.2.2 Joint Resource Allocation and Content Caching in Virtualized Wireless

Networks

In this contribution, we study the joint resource allocation and content caching problem for vir-
tualized content-centric wireless networks. Recently, different content caching frameworks [29H31]
have been introduced to leverage the evolution of network architectures such as femtocells and C-
RAN based networks. Most of the existing works on content caching, however, do not consider the
highly congested network scenario due to the lack of radio resource and bandwidth in the wireless
access and backhaul links [32]. Furthermore, in the virtualized wireless environment where multiple
MVNOs operate on the shared infrastructure with limited storage capacity, content caching for
network performance improvement could be less significant since the InP likely partitions its lim-
ited storage capacity at BSs to MVNQOs. Therefore, efficient and shareable content caching among

MVNOs and optimization of radio resource allocation can effectively boost the network performance
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EL Motivated by the aforementioned issues, we study the joint radio resource allocation and con-
tent caching design for the virtualized wireless networks (VWN) where we make the following key

contributions.

e We present the problem formulation that minimizes the maximum request outage probability
for all MVNOs at different BSs while avoiding content caching redundancy at the storage

locations.

e To solve the obtained optimization problem, which is a mixed-integer non-linear program
(MINLP), we propose a bisection-search based algorithm that iteratively optimizes the re-

source allocation and content caching placement.

o Extensive numerical results confirm the efficacy of our proposed framework which significantly

reduces the maximum request outage probability compared to other benchmark algorithms.

1.2.2.1 System Model

We consider a downlink virtualized orthogonal frequency-division multiple access (OFDMA ) multi-
cell wireless network with caching repository deployed at each BS. The system consists of a set
K ={1,..., K} of BSs, which are connected to the CN via highly congested backhaul links. It is
assumed that the network has W™®* orthogonal wireless channels of equal bandwidth serving all
the UEs associated with these BSs. This network infrastructure including all BSs, the backhaul and

core networks, radio and storage resources are assumed to be owned and managed by an InP.

The InP serves a set M = {1, ..., M'} of MVNOs, who rent resources and network infrastructure
to serve their UEs. For convenience, we use MVNO (m, k) to denote MVNO m associated with BS k.
For the channel allocation, we denote w = {wi1, ..., Wgm, ..., Wxr} as the channel allocation vector,
whose elements wg,, represent the number of wireless channels allocated to MVNO (m, k). The
UEs of each MVNO m are interested in accessing contents in a common content set F = {f1, ..., fr}
of F files or contents, whose size of each content is normalized by 1 [I3| 25]. Content requests from
UEs of MVNO m in the coverage of BS k are assumed to follow the Poisson process with an average

rate Ay, (requests/s).

3We use the terms file and content exchangeably in this doctoral dissertation.
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Let C} denote the capacity of the storage repository installed at BS k, which can cache up to
Cy files where Cy € Zy. Moreover, Qky = {qkm1s---» Gkmr} denotes the content request proba-
bility distribution where gy, represents the probability that UEs of MVNO (m, k) requests file
fo @km = {Tgm1,---, Tkmp} is the caching decision vectors for BS k € K and MVNO m € M.
x = {®11, ., Tkm, ..., Lx M} to denote the content caching decision vector for all MVNOs (m, k).
Here, zpmy € {0,1} and xpyp = 1 if file f is cached at BS k to serve requests from MVNO m, and
Tpmys = 0, otherwise. Moreover, to ensure some minimum QoS requirement, we assume that one
channel (if available) must be allocated to download a requested file from the associated BS for any

UE.

1.2.2.2 Problem Formulation

We now study the file rejections due to lack of radio resources (i.e., there is no available channel)
for a given caching solution @. The total request rate from MVNO m for all files in F, if they are

cached at BS k, is

hiem () = > Memhm (Z 37kz'f> : (1.9)

fer iEM

Otherwise, the total cache-missed file request rate from MVNO m to all files in F at BS k is

hiem (£) = > Mkmhom s (1 -y xkif) = Mem — hiem () - (1.10)

fer iEM

Assume that it takes Tk, (s) for BS k to serve a cache-hit file request from MVNO m. Tj,,
represents the download time from the content cache to the UE of MVNO (m,k). With wg,,
channels allocated by the InP to MVNO (m, k) to serve requests of UEs, at most wy,, file requests
from MVNO m can be simultaneously served by its associated BS. The file requests from MVNO
m at BS k can be modeled as an M/ D /wgy, /Wiy queue with Poisson arrivals, deterministic service

time, wy,, servers, and no waiting buffer [27].

We assume that all cache-missed file requests are rejected due to high delay for downloading
content from the CN. Additionally, any cache-hit file request from MVNO m at BS k is only rejected
if all wg,, channels are used to service other ongoing wy,, requests. From [27], the probability that

there are wy,, ongoing cache-hit file requests from MVNO m being served by BS k can be calculated
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as

Py (x, w) =

Rt () Thon) "5 ("2 (B () Tho)'\
Wim! = 1!
Consequently, the rejection rate for the cache-hit request from MVNO m at BS k due to channel

unavailability can be expressed as

Lk (2, W) = Ay () Pepy, (2, W) . (1.12)

From ((1.10) and (|1.12)), the total file request outage probability from MVNO m at BS k can be

calculated as

@km (32, w) _ Hkm (.’13, w) + Bkm (CC) ) (1'13)

Akm

To avoid poor QoS and unfair treatment in serving file requests from different MVNOs at
different BSs, we consider the joint channel allocation and content caching optimization problem
which minimizes the highest outage probability among MVNOs at all BSs while accounting for the
file caching redundancy avoidance and other system constraints. This problem can be formulated

as follows:

i ) :
LS (1142)
s.t. > Tims <LVEEKVfEF (1.14b)

meM

> Tpmp < Cr,VE €K (1.14c)
meM feF
Whyy > W V€ K, Ym € M (1.14d)
DD wp < WM (1.14e)
ke meM
Trmys € {0,1} VE € C,VYm € M,Vf € F, (1.14f)

where (1.14b)) and ([1.14c|) capture the file redundancy avoidance and storage capacity constraints,

respectively; ([1.14d)) represents the service-level-agreement (SLA) constraints for MVNO m at BS
k, which guarantees certain minimum number of allocated channels for each MVNO; (|1.14€]) denotes
the bandwidth constraint; and ([{1.14f) denotes the integer caching decision variables at BSs.
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Algorithm 1.3. CHANNEL ALLOCATION FOR A GIVEN CACHING SOLUTION

1: allocate WM channels to MVNO m at BS k to satisfy (1.14d).

calculate Wfree = jymax _ 5~ 5~ jpmin
keK meM

N

3: while W > 0 do

4:  find (k*,m*) = argmax @y, (x, w)
k,m

5 Wh*m* = Wirm* + 1

6 Wfree — Wfree -1

7: end while

8: obtain optimal w*

1.2.2.3 Proposed Algorithms

The main objective of this contribution is to solve problem (1.14)), which is a MINLP due to the
integer variables  and w and the nonlinear function ®,, (z,w). We propose a two-step iterative
algorithm for finding the channel allocation and content caching placement in each iteration. The

overall procedure can be illustrated as

* * * * * *
— —

Optimal p*
Initialization, ©(0) Iteration iv%"(o) ptimal ¢

where the stopping condition is |¢(;y — ¢—1)| < & with 0 < e << 1. Based on the caching solution
x* ;1) obtained in the previous iteration (i —1)., we propose Algorithm which is based on the
property of Pgp,(x*, w) stated in Proposition to find the optimal channel allocation w*;) in

iteration 7.

Proposition 1.2. (i) For a given €*, Py, (x*, w) in (1.11) is a decreasing function of w. (ii) For

a given w*, Py, (x, w*) is an increasing function of x.

Lemma 1.1. For a given caching strateqy x*, Algorithm [1.3 optimally allocates channels to indi-
vidual MVNOs at all BSs to minimize the largest request outage probability in the network.
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After obtaining w* ;), we proceed to find the content caching solution x* ;) in iteration ¢ through

solving the following problem

i o * 1.1
min | mex Qg (@, w") (1.15a)
s.t. > Tpmp <LVEEKVfEF (1.15b)

meM

SN Tpmg < CpVE €K (1.15¢)
meM feF
Trmf € [0,1) Vk € K,YVm € M,Vf € F. (1.15d)

Here, @ is relaxed to continuous variable as shown in (1.15d)). We then rewrite ®g,, (z,w*) as

function of hyy, (), i.e., P (him (), w*).

Proposition 1.3. @, (him (), w*) is a convex function of him,(x) for a given w*. Moreover, it

is a decreasing function of hym(x).

Consequently, popax @ (hiem () ,w) can be considered as the pointwise maximum function
ek, me

)

over hy, (), which is convex [33]. This allows us to transform problem (|1.15)) to the following convex

optimization problem over h, where h = {hy,, (x)},Vk € K,¥Ym € M.

min ¢ (1.16a)

by

st. Dy (hm(x), w*) < ¢, Vk € K,Ym € M (1.16D)
him () € H,Vk € K,¥Ym € M. (1.16¢)

In (1.16]), H denotes the set of all feasible values of hy,, (), which is dependent on the feasible set
of & according to the constraints of problem [I.15
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max Z Z hiem () (1.17a)

kel meM
St A () > AP Ym € M,Vk € K (1.17Db)
> Tpmp <LVEEKVfEF (1.17¢)
meM
Z Z Thmf < Cy,Vk e K (1.17d)
meM feF
Thmys € [0,1]Vm e M, Vf € F. (1.17e)

To solve [I.16, we propose the bisection-search based Algorithm [I.4] to determine the caching
decision solution * ;). With the newly obtained w* ;) and *(;), we compute the maximum request
outage probability ¢ ;) for iteration i. The Newton’s search method for calculating the hit rate hg,
of MVNO m at BS k, given the request outage probability (i, and and channel allocation wgy,.
After that, we solve problem to find the relaxed solution x*;, i.e., *; € [0, 1]. Here, h',;’n"fb is
the output of the inverse function @,;1711 taking ¢ as the input. After executing Algorithm we

proceed to round the obtained caching decision x* into integer values by using Algorithm

1.2.2.4 Numerical Results

In this section, we evaluate the performance of our proposed algorithms through computer simu-
lation under the following setting. We consider the network with 5 BSs serving 3 MVNOs, which
access a list of 100 files, i.e., K =5, M = 3 and F' = 100. The average request rates for each MVNO
are randomly chosen in the range of [1,15], which results in the total of request rates from tens to
hundreds requests arriving to the considered network in one second. We assume that all BSs share
Wmax = 90 wireless channels in the orthogonal manner to serve file requests from MVNOs. Each

SLA requirement is set with WMi" = 2 Vk € KC,Vm € M.

km

Fig. shows that the proposed bisection-search based algorithm (Algorithm [1.4) with cache
sharing consistently achieves the smallest maximum request outage probability. Moreover, the
proposed rounding operation for caching decision variables result in negligible performance loss

compared to the achieved performance before rounding, which confirms the efficacy of our design
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Algorithm 1.4. ITERATIVE CHANNEL ALLOCATION AND CONTENT CACHING PLACEMENT

1: set ¢+ = 1 and tolerance € > 0.

2: initialize x7,, according to most popular caching strategy with equal storage partition.
3: initialize channel allocation w;) using Algorithm given ac’(“i).
4: calculate ®y,,,Vk € K,Vm € M.

5: find largest outage probability ¢ = max D -

6: set A, =1

7: while A, > ¢ do

8 1=1+4+1

9: set¢p?=1

10:  set ¢V =0

11:  while ¢ — ¢ > ¢ do

122 ¢ = (¢ +0') /2

13: find hﬁc"ﬁ from ¢(;y by using Newton’ search method for all m € M and k € K.
14: solve problem to find x*.

15: if x* is feasible then

16: PP = 9

17: m’(“i) =x*

18: else

19: ¢Iow — (b(z)

20: end if

21:  end while
22:  find optimal wf;) by using Algorithm

23: calculate <I>§€ir)n,Vk e K,Ym e M.

24:  find ¢(;) = max @;ﬁ?n

k,m
25:  calculate Ay, = [¢f,) — ¢(;_1)|
26: end while

27: obtain final w* and ™ from Algorithm [I.3| given ;.

Algorithm 1.5. ROUNDING CACHING DECISION VARIABLES

1: initialize small € > 0

2: obtain the optimal request outage probability value ¢ from Algorithm
3: repeat

4 obtain A" Vk € K,Vm € M using Newton’s search method.
5 solve problem with integral constraint.
6 if integral solution xjj; is not found then
7 p=p+ec
8 end if

9: until integral solution )y is found.

(the request outage probability obtained under relaxation from Algorithm 3 is the lower bound of
the optimum value). Moreover, the proposed heuristic algorithm achieves performance very close
to the proposed bisection-search based algorithm in the different-order popularity case, and both

algorithms result in the same solution in the same-order file popularity case.

We present the maximum request outage probability among MVNOs at all BSs versus the total
number of channels, the Zipf parameter 7, and the maximum request rate in Figs.
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Figure 1.2 — Maximum outage probability vs (a) storage capacity, (b) number of channels, (c) Zipf
parameter, and (d) maximum request arrival rate.

and respectively. Similar to Figure [T.2a] Fig. [1.2D] confirms the greatest performance of

our proposed bisection-search based algorithm as it achieves the lowest request outage probability

compared with the remaining baselines. Figures and[I.2b|also imply that instead of partitioning
the available storage space to individual MVNOs, it is better to share it among MVNOs co-located
at the same BS.

1.2.3 Resource Allocation for Multi-Tenant Network Slicing: A Multi-Leader
Multi-Follower Stackelberg Game Approach

Network slicing also provides the paradigm shift toward multi-tenancy in the next-generation wire-
less network [23] where individual tenants (e.g., MVNOs, SPs) own and manage corresponding
network slices. Various game theoretic approaches have been applied to tackle different resource

allocation problems in the network slicing context [34-37]. The multilateral interactions among SPs
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and their customers such as UEs, which constitute to a service trading market, can be modeled by
using the Stackelberg game theory. Numerous works in resource allocation [38-43] and other fields of
industry [44], [45] have applied single-leader-multiple-follower (SLMF) Stackelberg game. The multi-
leader-multi-follower (MLMF) Stackelberg game has been employed in some recent works [46H50].
Nevertheless, studying the interactions among the peer access service providers (ASPs) and between
ASPs and their UEs in the network slicing-based wireless network has not been considered. The
related works above only consider the single-source service selection between the stakeholders, i.e.,
a UE can only select one SP for purchasing service. In our work, we thus study the resource al-
location and pricing problem for network slicing that captures interactions among access/backhaul
service providers and their UEs by using the MLMF Stackelberg game approach. Furthermore,
we allow any UE and ASP to be able to lease services from different ASPs and backhaul service
providers (BSPs) at the same time, respectively, thereby enabling the multiple slice connectivity.

Our contributions in this study are as follows.

o We formulate the interactions among UEs, ASPs as a MLMF Stackelberg game [51].

e We derive the price best-response functions for the ASPs and the throughput best-response
function for the UEs in the access layer. We prove the existence of a unique Stackelberg
game equilibrium. We further prove that these best-response functions belong to the class
of standard functions [52] and they satisfy the so-called two-sided scalability (2.s.s) property
[53].

e These results above are leveraged in developing a distributed algorithm that converges to the

game equilibrium.

o We evaluate the efficacy of our proposed framework and investigate the achievable performance

and strategies of different network stakeholders via extensive numerical studies.

1.2.3.1 System Model

We consider the downlink of a cellular network with both wireless backhaul and access communica-
tions. We assume that the infrastructures and wireless resources of the wireless backhaul and access
layers are owned and manged by a set Z = {1, ..., 4, ..., [} of backhaul servic