
Big Data for a Big Country: The Second Generation Canadian Wetland 1 

Inventory Map at 10 Meters Resolution 2 
 3 

Masoud Mahdianpari1,2,*, Brian Brisco3, Jean Elizabeth Granger1, Fariba Mohammadimanesh1, Bahram 4 

Salehi4,  Sarah Banks5, Saeid Homayouni6, Laura Bourgeau-Chavez7, and Qihao Weng8 5 

1 C-CORE, 1 Morrissey Rd, St. John’s, NL A1B 3X5, Canada; 6 
2 Department of Electrical and Computer Engineering, Memorial University of Newfoundland, St. John’s, NL A1B  3X5, 7 

Canada; 8 
3 The Canada Centre for Mapping and Earth Observation, Ottawa, ON K1S 5K2, Canada; 9 

4 Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, NY  10 
13210, USA; 11 

5 Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON L7S 1A1, Canada; 12 
6 Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Québec, Canada; 13 

7 Michigan Tech Research Institute, Michigan Technological University, Ann Arbor, MI, USA; 14 
8 Center for Urban and Environmental Change, Department of Earth and Environmental Systems, Indiana State University, Terre 15 

Haute, IN 47809, USA. 16 
 17 
Abstract 18 

Recently, there has been a significant increase in efforts to better inventory and manage important 19 
ecosystems across Canada using advanced remote sensing techniques. In this study, we improved the 20 
method used in creating the first generation Canadian wetland inventory map at 10-m resolution. The main 21 
contribution of this study, as it compares to the previous one, is training Random Forest (RF) models on 22 
the Google Earth Engine (GEE) platform within the boundaries of ecozones rather than provinces, in order 23 
to increase wetland classification accuracy. The ecozone boundaries divide the Canadian landscape based 24 
on similar biotic and abiotic factors, i.e., land cover, human activity, climate, wildlife, soil, vegetation, and 25 
geomorphology. Therefore, it should produce more accurate and meaningful wetland classification results. 26 
In the first generation of this product, there was a lack of training data in some ecozones, making it 27 
impossible to apply the classification method at the ecozone level, as training data is a significant bottleneck 28 
in the machine learning algorithms. In this study, a considerable effort has been devoted to data collection, 29 
preparation, standardization of datasets for each ecozone. The result of data cleaning reveals a data gap in 30 
several Northern ecozones. Accordingly, high-resolution optical data, from Worldview-2 and Pleiades, 31 
were acquired to delineate wetland training data based on visual interpretation in those regions. By using 32 
this well-distributed training data, the second generation of a Canadian wetland inventory map was 33 
improved by an overall accuracy approaching 86%. This wetland map represents an improvement of 7% 34 
compared to the first generation map. Accuracy varied from 76% to 91% in different ecozones, depending 35 
on available resources. Furthermore, the results of RF variable importance, which was carried out for each 36 

ecozone, demonstrate that 
|𝑆𝑉𝑉

 |2
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 |2 and NDVI extracted from Sentinel-1 and Sentinel-2 data, respectively, 37 

were the most important features for wetland mapping.  38 
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1. Introduction 43 

Until very recently, land cover mapping at large scales has been a challenging, and in some cases, 44 

an impossible task, given the required costs and resources for image analysis (Hu et al., 2017). In 45 

particular, collecting, storing and processing the datasets required to cover large geographic areas, 46 

and the hardware limitations associated with such data processing, were a significant barrier for 47 

the production of large-scale land cover maps (Mahdianpari et al., 2020; Shelestov et al., 2017). 48 

This issue is often referred to as the geo big data problem and is currently being addressed through 49 

the application of newly available technologies and resources designed for best managing large 50 

volumes of geospatial imagery (Gorelick et al., 2017a).  51 

Fortunately, the ever-increasing availability of high-resolution open-access Earth Observation 52 

(EO) data and powerful cloud computing resources provide unprecedented opportunities for 53 

applications at spatial and temporal scales previously impossible in the geospatial sciences 54 

(Mahdianpari et al., 2018; Zhou et al., 2020).  For example, data collected from the Copernicus 55 

programs by the European Space Agency (ESA) through the Sentinel missions have contributed 56 

significantly to the global monitoring of the environment over the past few years (Aschbacher and 57 

Milagro-Pérez, 2012). The accessibility and usability of these and other open-access EO data 58 

across large geographic areas and at high temporal frequencies has been made possible via 59 

advances in cloud computing resources, such as NASA Earth Exchange, Amazon’s Web Services, 60 

Microsoft’s Azure, and Google cloud platforms (Liu, 2015). Among these cloud computing 61 

resources, Google Earth Engine (GEE) has been recognized as a well-established, open-access tool 62 

that hosts a vast pool of satellite imagery and offers tools for advanced web-based algorithm 63 

developments and result visualization (Shelestov et al., 2017). These developments have now 64 

made it possible for the Earth to be mapped at a large geographical scale, opening up research 65 



possibilities in the ocean and ecological sciences, as well as in natural resource management 66 

(Aschbacher and Milagro-Pérez, 2012; Chen et al., 2017; Mahdianpari et al., 2020, 2018; Sidhu et 67 

al., 2018; Zhou et al., 2020), to name only a few. 68 

Nation-wide wetland inventory development, and in turn wetland management, monitoring, and 69 

conservation, is one of the numerous areas that are expected to benefit from the increasing 70 

availability of big data technologies. This new technology is of particular importance for countries 71 

with extensive wetland coverage, such as Canada (Mahdianpari et al., 2020). Prior to 2019, a 72 

majority of Canada's wetland inventories were created at local, regional, and provincial scales, for 73 

example (DeLancey et al., 2020; Dingle Robertson et al., 2015; Jahncke et al., 2018; Mahdianpari 74 

et al., 2018; Millard and Richardson, 2015; Mohammadimanesh et al., 2018b; Rezaee et al., 2018; 75 

White et al., 2017). Many of these inventories were derived using a variety of methods (e.g., visual 76 

assessment, optical and/or RADAR, topographical, and field-work), wetland definitions (Chen et 77 

al., 2010; van der Kamp et al., 2016) classification systems (Alberta Environment and Sustainable 78 

Resource Development, 2015; Ducks Unlimited Canada, 2014; Gerbeaux et al., 2016; National 79 

Wetlands Working Group, 1997), and under various contexts were constrained by budgets, 80 

available resources, locations, and objectives. While useful under some circumstances, the 81 

methods used and purposes of these inventories impact their applicability within national or global 82 

contexts (Hu et al., 2017). These issues, along with spectral and structural similarities between 83 

various types of wetlands, and the lack of clear-cut borders between successional wetland classes, 84 

have limited the capability of the machine learning tools for large-scale wetland mapping and 85 

resulted in insufficient classification accuracies in some cases (Hu et al., 2017). Other issues arise 86 

when comparing and contrasting spatial wetland information across political, geographical, or 87 



disciplinary boundaries which can in-turn impact the quality, development and assessment of 88 

wetland-related management and policies (Fournier et al., 2007; Hu et al., 2017).  89 

Another major issue related to wetland mapping at national and global scales is the collection of 90 

sufficient high-quality reference data (Mahdianpari et al., 2020). Developing a quality nation-wide 91 

wetland inventory using supervised remote sensing methods requires a large amount of training 92 

and testing data distributed across the entire country, to best represent Canada’s expansive and 93 

diverse landscape (Statistics Canada, 2018). Like many of Canada’s wetland inventories, most 94 

available training and testing data have been collected under a variety of contexts, using different 95 

local and regional wetland definitions, for a number of purposes (often not remote sensing 96 

focused), and using a variety of different methods. Additionally, obtaining such data is not always 97 

a simple task, requiring the willing contribution of numerous collaborators and/or the collection of 98 

freely available data with variable metadata quality or sometimes limited explanatory information. 99 

While these discrepancies are an issue, they are not unexpected and as a result, training and testing 100 

data in a large-scale study will require collaboration, substantial editing, and standardization. Other 101 

issues include gathering accurate non-wetland land cover information which often requires the use 102 

of freely available datasets and visual interpretation of satellite imagery available via Google 103 

Earth. Like the wetland datasets, the non-wetland land cover data requires standardization in terms 104 

of naming conventions, definitions, and polygon boundaries. The development of the training and 105 

testing dataset is of utmost-importance, as the quality and accuracy of these inputs are ultimately 106 

reflected in the final inventory output (Millard and Richardson, 2015; Mui et al., 2015). 107 

In the face of increasing globalization, continued wetland loss, increasing population, urban 108 

sprawl, and human-induced climate change, the importance and availability of consistent and 109 

reliable large-scale wetland inventories both in Canada and around the globe has never been 110 



greater. Such large-scale inventories will contribute to the improvement of the nation- and global-111 

wide wetland management, protection initiatives, and policies, allow for consistent estimations of 112 

yearly trends in wetland loss or gain, analysis of biodiversity, and help improve the outputs of 113 

large-scale climate models and estimates (Erwin, 2009).  114 

Therefore, the overarching goal of the current study was to leverage state-of-the-art remote sensing 115 

tools for the production of large-scale wetland inventory maps for Canada. Specifically, the main 116 

objectives are to: (1) prepare structured, cleaned, consistent, and well-distributed training and 117 

testing data for each of Canada’s ecozones; (2) produce the second generation Canada-wide 118 

wetland inventory; (3) improve the wetland classification accuracy compared to the first 119 

generation Canadian wetland inventory map by running classifications within ecozones rather than 120 

provincial boundaries; and (4) determine the most important features for national wetland mapping 121 

via RF algorithms using built-in capacities in GEE. 122 

2. Methodology  123 

2.1. Study Area  124 

The Ecological Framework of Canada (Statistics Canada, 2018), which delineates ecologically 125 

distinct areas across Canada, defines a total of 15 ecozones. Ecozones represent areas of Canada's 126 

land surface characterized by interacting abiotic and biotic factors. These ecozones are displayed 127 

in Figure 1. The size of these ecozones ranges from 117,240 km2 (Mixed wood Plains) to 1,857,530 128 

km2 (Boreal Shield). Please refer to Table 1 for a summary of the general characteristics of each 129 

ecozone. Note that the three northern ecozones (Southern Arctic, Northern Arctic, and the Arctic 130 

Cordillera) are referred to as the Northern Ecozones throughout the remainder of this study. These 131 

three ecozones are grouped together for purposes of reference data development, processing, and 132 

classification as a result of the limited available wetland data for this area. Additionally, the Boreal 133 



Shield was split into two areas (east and west), and the Boreal and Taiga Cordillera ecozones were 134 

merged into one (Boreal/Taiga Cordillera), for processing and training data development purposes. 135 

The reasoning for this is discussed in section 2.2. 136 

 
 
Figure 1. Canadian ecozones, ecozone sizes, and the processing time and the number of Sentinel-1 and -2 images 

required to produce classifications. Reference data distribution across Canada is displayed in black. 

Table 1. A summary of the typical land cover characteristics of each ecozone (Ecosystem Classification Group, 2010; 137 
Environment and Climate Change Canada, 2016; Federal, Provincial, and Territorial Governments of Canada, 2010; 138 
Smith et al., 2004).  139 

Ecozone Spatial Location Description 

Atlantic 

Maritime 

(AM) 

 

Has a typical maritime climate, generally cool and wet year round. The most 

common land cover type here is the forest. Agricultural activity is the most 

common human activity. The most common wetlands in this area are treed 

(swamp, bog, and fen). 

Boreal and 

Taiga 

Cordillera 

(Boc / TC) 

 

Summers are short and cool, and winters are long and cold. Dominating land 

cover includes extensive mountains and tundra to the north and forests to 

the south. Wetlands, and particularly peatlands, are less common here than 

the neighboring Taiga Plains. Forest and wetlands are most common in 

valleys and slopes. 

Boreal 

Plains (BP) 

 

Has a typical continental climate, with cold winters and cool summers. 

Forest is the most common natural land cover type and agriculture the most 

common anthropogenic land cover. Agricultural activity is largely present 

along the southern edge of the ecozone and to the north-east. The most 

common types of wetlands include conifer swamps, fens, and bogs. 



Boreal 

Shield (BS) 

 

Moderate summer and winter temperatures. The largest ecozone in Canada. 

Low elevation land dominated by forest and shrubland with relatively 

minimal anthropogenic land cover. Peatlands, including bog and fen, are the 

most common, particularly on the eastern side. 

Hudson 

Plains (HP) 

 

Has a maritime climate, and as a result, extensive wetlands are present, 

particularly peatlands. Marsh is more common along with the northern 

coast. This area is often referred to as Canada’s largest wetland complex. 

There is relatively little forest cover present. 

Mixedwood 

Plains (MP) 

 

The most populated ecozone characterized by a climate of warm summers 

and cool winters. The landscape is generally flat and dominated by 

extensive agricultural land cover. Most wetland cover is located along the 

edge of the ecozone and the northeast. Swamp, bog, and fen are the most 

common. 

Montane 

Cordillera 

(MC) 

 

The most diverse topography and climate relative to other ecozones, with 

various mountain ranges present. Forest covers over half of the total land 

surface. There is relatively little wetland coverage and is mostly located 

along rivers and in valleys. 

Northern 

Ecozones 

(NE) 

 

Characterized by very low temperatures, permafrost, and limited vegetation. 

Mountains and glaciers dominate the furthest north, giving way to tundra 

barrens, hills, and plains to the south. There is relatively little human 

presence in these areas. Wetlands, particularly peatlands, are dispersed 

throughout the barrens and along waterways. 

Pacific 

Maritime 

(PM) 

 

Located along the coast of the Pacific Ocean with a mountainous maritime 

climate. The Cost mountains and extensive forests dominate most of this 

ecozone. Most anthropogenic land cover is located at the southern end of 

the ecozone. There are relatively few wetlands here. 

Prairies (Pr) 

 

More variable climate than other ecozones. Almost entirely covered in 

agriculture. The most common natural land cover is grassland. There are 

very few wetlands located here, having been lost to agricultural 

development. Wetlands that are present are very small “prairie potholes.” 

Taiga 

Plains (TP) 

 

Largely flat area. The colder climate in the north part of the ecozone versus 

the warmer south. Most land cover is boreal forest and shrub, and there is a 

relatively small human presence. Wetlands of many types are widespread, 

including large deltas, swamps along rivers, peatlands, and marsh. 

Taiga 

Shield (TS) 

 

Open forest that transitions to shrub and tundra moving north. Temperatures 

are colder in the west versus the east. There is relatively little human activity 

here. Wetlands make up are an estimated 13% of [SH1]in this area, though 

there are trends indicating wetland expansion due to changes in weather 

patterns and permafrost melting.   

 140 

2.2. Reference Data 141 

Broadly, the development of the reference data for this study required, for each ecozone, a dataset 142 

comprised of accurately-delineated polygons representing bog, fen, swamp, and marsh wetland 143 

classes, and polygons representing the most dominant non-wetland land-use. Generally, the 144 



wetland data for this study was gathered from multiple collaborators across Canada, and the non-145 

wetland data was derived via visual polygon delineation with the aid of the Agriculture and Agri-146 

foods Canada 2018 Crop Inventory map (Agriculture and Agri-food Canada, 2018), with some 147 

exceptions which are discussed below. 148 

The wetland data for this study was acquired from a number of sources across Canada. Ultimately, 149 

these wetland data were used to produce training and validation datasets for each ecozone. These 150 

datasets were collected for a variety of purposes, over several years, at different scales, and using 151 

different field, classification, and polygon delineation methods. As a result, the distribution and 152 

amount of data available within each ecozone vary considerably (see Figure 1). For these reasons, 153 

the datasets needed to go through several rounds of editing before being functionally incorporated 154 

into an ecozone final reference dataset.  155 

As a first step, the data were filtered to remove any polygons smaller than 1 hectare and greater 156 

than 100 hectares, as small polygons would not contain any helpful spectral information for the 157 

classifier according to the minimum mapping unit of this study, and the large polygons had a higher 158 

chance of being highly spectrally heterogeneous. Next, some datasets were clipped to ensure that 159 

each ecozone had its own specific dataset associated with it. This is because a number of these 160 

datasets spanned the boundaries of multiple ecozones. Note that some ecozones did not have any 161 

wetland training data located within their boundaries, and as a result, these ecozones were instead 162 

classified using the reference data in an adjacent ecozone. These ecozones include the Taiga 163 

Cordillera and the three northern-most ecozones. The three northern ecozones and the Taiga and 164 

Boreal Cordillera ecozone boundaries were merged to create two broad multi-ecozone boundaries. 165 

Additional data cleaning steps, including the standardization of naming conventions, removal of 166 

some inaccurate polygons, re-classification of some polygons, and boundary modification of 167 



others, were also performed. Additionally, in datasets where there were thousands of wetland 168 

polygons (i.e., local wetland maps), a subset of these polygons was randomly selected for 169 

incorporation into the final reference dataset.  170 

Notably, there was no wetland data available to this study in the northern-most ecozones, and 171 

because google earth has limited or inconsistent imagery in northern Canada, VHR imagery was 172 

acquired for purposes of producing a northern ecozone wetland dataset. Wet areas along the 173 

northern-coast were identified to collect coincident WorldView-2 and Pleaide’s imagery for these 174 

areas. An effort was made to select as the most recent summer imagery as possible, though the 175 

selection was constrained by image availability, cloud cover, and cost. Because cloud-cover is a 176 

significant issue in northern Canada, the most recent summer dates for which we could obtain 177 

cloud-free imagery was during the summers of 2015 and 2016. Figure 2 shows some peatland and 178 

swamp delineation via visual assessment in a WorldView-2 image taken near Kugluktuk, Nunavut 179 

(top), and in a Pleaide’s image near Bathurst Inlet (bottom). Because the assessor did not feel 180 

confident differentiating between bog and fen wetlands in the imagery, all delineated peatlands 181 

were referred to as fen. This imagery was essential for producing wetland data for the northern 182 

ecozones; however, the dataset remained small due to the limited extents of the imagery. Non-183 

wetland classes were delineated using the VHR imagery as well.  184 



 
Figure 2: Wetland delineation using VHR imagery. Top: Peatland delineation using June 29th 2016 Pleaides 

imagery. Bottom: Swamp delineation using June 29th, 2015 WorldView-2 imagery.  

The Agriculture Agri-Food Canada 2018 Annual Crop Inventory map (Agriculture and Agri-food 185 

Canada, 2018) guided the delineation of non-wetland polygons. As a first step, the most common 186 

non-wetland land cover within each ecozone was calculated using the Crop Inventory map. Next, 187 

polygons representing the most common land cover types were manually delineated, using both 188 

Google Earth and the crop inventory map as a visual aid. Some ecozones did not have any coverage 189 

by the crop inventory dataset, most commonly in ecozones located in the northern parts of Canada. 190 

As such, visual identification of some common land cover types was conducted using the 191 

interpretation of very high resolution (VHR) imagery or ancillary land cover datasets, including 192 

multiple local land cover geospatial datasets and the 30 m resolution land cover map of Canada 193 

provided by the Canada Centre for Mapping and Earth Observation (CCMEO). Table 2 194 

summarizes the number of wetland reference polygons and their areal coverage for each ecozone. 195 

To produce the final reference data, the wetland and non-wetland polygons for each ecozone were 196 

randomly divided into two groups: 50% for training and 50% for testing. Specifics of the data 197 

preparation for each ecozone are discussed below. 198 



Table 2. Summary of the reference data employed for each ecozone. 199 

Ecozones 

# 

Wetland 

polygons 

# 

Upland 

polygons 

Discussion 

AM 3000 802 

Majority of the wetland reference data came from a large New Brunswick Wetlands dataset 

containing thousands of polygons. Removing polygons smaller than 1 hectare and greater than 100 

hectares reduced the total size. Non-wetland polygons were produced using the crop inventory 
maps and Google Earth. The areal coverage of the polygons for each wetland class are similar. 

Boc & 

TC 
348 336 

There is no Crop Inventory coverage in this area so non-wetland polygons were produced using 

visual assessment in Google Earth. The dataset is located in and around the Yukon communities of 

Haines Junction and Whitehorse. The dataset contains thousands of wetland polygons. The number 
of bog polygons is much smaller relative to the other classes such as a fen, marsh and swamp. 

BP 200 480 

Wetland data came from five datasets. The crop inventory maps guided all non-wetland land cover 

delineation. Because the reference data for this ecozone were derived from five different sources 
(unlike most of the other ecozones which had testing and training data derived from only one or 

two sources), it is likely that there is great variation in how bog, fen, swamp, and marsh wetlands 

were delineated. 

BS East 612 550 

Wetland data derived from multiple wetland-related datasets across various locations in 

Newfoundland and Labrador, originally for purposes of wetland classification using remote sensing 

data, using similar methods.  Notably, there is a greater amount of bog wetlands, in terms of aerial 
coverage, verses some of the other wetlands. The crop inventory maps guided all non-wetland land 

cover delineation, for which this area had coverage. 

BS West 2154 548 

Wetland information derived from a very large wetland dataset in Ontario. Because the number of 

wetland polygons in this dataset was so great, after removing all wetlands less than 1 hectare and 
greater than 100 hectares in size, a further reduction was made by only keeping those wetlands that 

had been listed as being verified and evaluated. The areal coverage of the polygons in each wetland 

class are relatively similar. The crop inventory maps guided all non-wetland land cover delineation. 

HP 2000 345 

Because a large portion of the Hudson Plains ecozone fell within the province of Ontario, the 

Ontario wetland dataset was used to derive wetland polygons for this ecozone. Please refer to the 

section discussing the data for the Boreal Shield West ecozone for more information. However, 
because this area lacked crop inventory coverage, non-wetland polygons were delineated based on 

a visual assessment of Google Earth imagery. 

MP 1165 600 
The wetlands for this ecozone were derived from the Ontario wetland dataset. Please refer to the 

section discussing the data for the Boreal Shield West ecozone for more information. The crop 

inventory maps guided all non-wetland land cover delineation. 

MC 26 209 

No wetland data sourced for this ecosystem.  As such, the Canadian Wetland Inventory by Ducks 

Unlimited (DCI), which is available online, was referred to. From the DCI, a small number of 
wetland polygons were gathered. Unfortunately, most of the data on the DCI map were very small 

and not useful for this study. Additionally, there were no bog polygons and very few fen polygons. 

As a result, the dataset for this ecozone is very small, relative to all other ecozones that have training 
datasets available. 

NE 120 294 

No available wetland data or crop inventory coverage of the three most northern ecozones.  To 

address this problem, three 50 cm resolution summer images (i.e., one WorldView-2 and two 
Pleiades) were acquired covering some coastal low-land areas within the Southern Arctic ecozone. 

Using these images, visual interpretation was carried out to define wetland and non-wetlands. 

Because the interpreters did not feel confidant in their ability to define bog wetlands in these 
images, only fen, swamp, and marsh polygons are present in the final dataset. While these images 

were certainly helpful, the amount of wetland reference data was limited by their extents. 

PM 117 296 

Wetland polygons for this ecozone was derived from a dataset collected in and around the 

Vancouver area. Relative to the marsh and swamp polygons, there was very little data for the bog 
class. Additionally, most of the bog polygons are derived from a single large bog, known as the 

Burns bog. As a result, these polygons may not be representative of other bog wetlands within the 

ecozone, particularly in the less-populated areas further north. 

Pr 250 600 

Datasets were all gathered around the Assinboine River Valley and Whitewater Lake in Manitoba. 

While these datasets contained a large number of wetland polygons, only a small number of them 

were of the appropriate size. There were also no bog polygons. The crop inventory map was used 
to delineate the non-wetland polygons. 

TP 230 213 

Datasets located within this ecozone were collected around the vicinity of Great Slave Lake in the 

Northwest Territories. Only half of the total polygons fell directly within the Taiga Plains ecozone 

(the other half fell within the Taiga Shield Ecozone). These datasets also provided training polygons 
for non-wetland land cover. This was welcome as this ecozone lacks any coverage by the Crop 

Inventory map. Using Google Earth, some additional non-wetland polygons were delineated. 

TS 220 327 

Wetland polygons obtained from the same dataset discussed in the Taiga Plains ecozone above.  
Only half of the training polygons provided by these datasets fell within the Taiga Shield. These 

datasets also provided training polygons for non-wetland land cover, which was welcome as this 

ecozone had no coverage by the Crop Inventory map. Using Google Earth, some additional non-
wetland polygons were delineated via visual assessment. There was relatively little swamp data. 



2.3. Remote Sensing Data and Image Processing 200 

The Sentinel Earth Observation missions from the Copernicus program managed by the European 201 

Commission in partnership with the ESA, consist of both radar and super-spectral imaging systems 202 

for the land, ocean, and atmospheric monitoring. To improve the revisit time and coverage 203 

capability, each mission benefits from a constellation of two satellites. In this study, the GEE data 204 

catalog was used to obtain satellite imagery over our study area during 2017-2019 from Sentinel-205 

1 and Sentinel-2 data (Gorelick et al., 2017b). A total of 4,813 and 22,955 C-band Level-1 Ground 206 

Range Detected (GRD) images were acquired in the HH-HV and VV-VH polarization modes of 207 

Sentinel-1, respectively. Due to the mission of Sentinel-1, single-(HH) or dual-(HH-HV) polarized 208 

data are collected over sea ice zones and single-(VV) or dual- (VV-VH) polarized data are 209 

collected over all other observation zones (e.g., lands), we have the greater availability of VV-VH 210 

compared to HH-HV polarization mode. Figure 3 demonstrates the spatial distribution of all 211 

available Sentinel-1 observations. 212 

 213 

 
 

 

(a) (b) 
Figure 3. The total number of (a) Sentinel-1in VV/VH mode and (b) Sentinel-1 HH/HV in mode observation during 

the summers of 2017-2019 in Canada. The color bar represents the number of collected images. 
 214 



It should be noted that different pre-processing steps, including noise removal, radiometric 215 

calibration, and terrain correction, were already applied to the Sentinel-1 GRD data available in 216 

the GEE data catalog. To reduce the speckle noise from Sentinel-1 data, an adaptive sigma Lee 217 

filter with a pixel size of 7x7 was then applied. Next, SAR backscatter values and other derivatives 218 

of these values were extracted and incorporated into the classification scheme. Table 3 presents 219 

extracted features from Sentinel-1 and Sentinel-2 imagery for wetland classification. 220 

Table 3. Features extracted from Sentinel-1 and Sentinel-2 imagery in this study. 221 
Sentinel-1 (VV-VH) Sentinel-1 (HH-HV) Sentinel-2 

𝜎𝑉𝑉
0  𝜎𝐻𝐻

0  𝐵𝑙𝑢𝑒: 𝐵2 

𝜎𝑉𝐻
0  𝜎𝐻𝑉

0  𝐺𝑟𝑒𝑒𝑛: 𝐵3 

|𝑆𝑉𝑉
 |2

|𝑆𝑉𝐻
 |2

 
|𝑆𝐻𝐻

 |2

|𝑆𝐻𝑉
 |2

 𝑅𝑒𝑑: 𝐵4 

|𝑆𝑉𝑉
 |2 +  |𝑆𝑉𝐻

 |2 |𝑆𝐻𝐻
 |2 +  |𝑆𝐻𝑉

 |2 𝑁𝐼𝑅: 𝐵8 

  𝑁𝐷𝑉𝐼 =
𝐵8 − 𝐵4

𝐵8 + 𝐵4
 

  𝐺𝐶𝑉𝐼 =
𝐵8

𝐵3
− 1 

 222 

Among the extracted features from a dual-pol SAR data, 𝜎𝐻𝐻
0  is the most useful and frequently 223 

used for wetland mapping (Brisco et al., 2013; Mahdianpari et al., 2017; White et al., 2017; 224 

Mohammadimanesh et al. 2018c). This is because 𝜎𝐻𝐻
0  values are effective for characterizing the 225 

flooding status of wetland vegetation, and it is the most favorable SAR-based derivative for 226 

distinguishing flooded vegetation from herbaceous wetlands (Mohammadimanesh et al., 2018a). 227 

In cases of sparse canopy closure, 𝜎𝑉𝑉
0  values can also be appropriate for discriminating herbaceous 228 

wetland classes. The dominant backscattered signal from wetland’ vegetation canopies is volume 229 

scattering, which is better represented by 𝜎𝐻𝑉
0 . Accordingly, all extracted SAR features in this 230 

study were stacked to generate a seasonal Sentinel-1 data composite using the GEE’s array-based 231 

computational approach, and then, the images from multiple years (2017–2019) were combined. 232 

 233 

We obtained Sentinel-2A and Sentinel-2B Level-1C top of atmosphere images acquired on a tri-234 

monthly period, from June to August. This is because generating a 10-m cloud-free Sentinel-2 235 



composite for Canada over a shorter time was challenging. This period is also an optimum time 236 

for wetland mapping in Canada due to the high value of wetland phenological information 237 

(reflected in the range of spectral signatures for different classes), and the availability of more 238 

cloud-free Sentinel-2 imagery at this time. A total of 72,046 Sentinel-2 images (with cloud-cover 239 

less than 20%) from the summers of 2017-2019 were queried from the GEE data catalog. It should 240 

be noted that in this study, we only used the four multispectral bands with 10m resolution to 241 

produce a high-resolution (10m) wetland inventory map. Compared to our previous study, we 242 

added an optical feature, Green Chlorophyll Vegetation Index (GCVI), to our analysis to 243 

investigate the capability of different vegetation indices extracted from Sentinel-2 imagery. Other 244 

pre-processing steps to prepare multi-spectral features for classification were explained in detail 245 

in our previous work (Mahdianpari et al., 2020). Figure 4 demonstrates the spatial distribution of 246 

all available Sentinel-2 observations. 247 

 
Figure 4: The spatial distribution of all available Sentinel-2 observations during the summers of 2017-2019 in 

Canada. The color bar represents the number of collected images. 



 248 
In this study, an object-based classification scheme consisting of a simple non-iterative clustering 249 

method, and the Random Forest algorithms were used. This classification framework is similar to 250 

our previous work (Mahdianpari et al., 2020); however, we applied the classification models 251 

within each ecozone rather than each province. This is because there is more commonality between 252 

wetland vegetation classes, in terms of climate, landform, human activities, wildlife, soil, and 253 

vegetation, within an ecozone, compared to within each provincial borders (Statistics Canada, 254 

2018). In the first generation of the Canadian wetland inventory map, there was a lack of training 255 

data in some ecozones, making this study impossible at that time, as training data is a major 256 

bottleneck in the machine learning algorithms. The processing time for training RF models in 257 

different ecozones is presented in Figure 1. 258 

3. Results and discussion  259 

Three examples of classified wetland ecozone maps, located in eastern, central, and western 260 

Canada are presented in this section. Figure 5 demonstrates the wetland inventory map of the AM, 261 

HP, and TC. 262 

(a) (b) 



 

(c) 

Figure 5: Classified maps of the (a) Atlantic Maritime, (b) Hudson Plains, and (c) Taiga Cordillera ecozones.[SH2] 

Figure 5(a) shows the results of the AM classification. The most common wetlands in this area are 263 

swamp and marsh, followed by the peatlands (bog and fen). The spatial extent of wetlands, and 264 

dominance of the swamp class here, is consistent with a previous assessment of this ecozone, 265 

which states that treed wetlands are the most common type of wetland in the AM (ESTR 266 

Secretariat, 2014). However, our results likely over-estimate the extent of swamp wetlands, due in 267 

part to the limited number of training data and the difficulty in separating swamp wetlands from 268 

treed uplands (Jahncke et al., 2018). Peatlands tend to be limited to the south-east and centre of 269 

the ecozone. The most common non-wetland land cover in the AM is forest. Human-related land 270 

cover is mostly present along some of the edges of the ecozone.  271 

Figure 5(b) illustrates the results for the HP, which by far, has the broadest wetland coverage 272 

relative to the results of all other ecozones. This is also in line with previous assessments of HP 273 

and reflects its reputation as the largest wetland complex in Canada, and the third-largest wetland 274 



complex in the world (Abraham and McKinnon, 2011).  The most dominant wetland types here 275 

are bog and marsh, followed by fen, while the least dominant is the swamp. Most of the marsh is 276 

located along the coast to the north and north-west. This ecozone is known to have extensive 277 

coastal marshes, including tidal flats and salt marshes in this area (Abraham and McKinnon, 2011). 278 

Bog and fen wetlands are also known to commonly occur in this ecozone and make up a large 279 

portion of the wetland complex. Here, bog and fen occur across much of the ecozone, though they 280 

are mostly concentrated through the centre. Non-wetland land cover types are mostly absent.  281 

Figure 5(c) demonstrates the results for the TC, wherein the most common wetland is the swamp, 282 

followed by the fen. Bog and marsh are much less common. It appears that there is likely an 283 

overestimation of wetland cover in this area if we consider previous descriptions of TC, which 284 

note the limited coverage of wetlands in this area (Ecosystem Classification Group, 2010). The 285 

over-estimation of wetlands, particularly swamp, is likely a result of misclassification of the forests 286 

and shrubby tundra in this region. Additionally, as discussed in section 2.2, there was no wetland 287 

training data available in this ecozone, and as a result, it was classified in tandem with the Boc 288 

ecozone. This lack of training data is reflected by the overall accuracy for this ecozone, which is 289 

the lowest (along with the Boc) overall accuracy of all ecozones (see Table 4.). [SH3]The most 290 

common upland classes are exposed areas, capturing the mountains along the north.  291 

Table 4 shows the overall accuracy, Kappa, producer’s, and user’s accuracies for all ecozones. The 292 

ecozone with the highest overall accuracy is the Prairies, located mainly within southern 293 

Saskatchewan. Note that there was no bog data available within the Prairies ecozone, and most of 294 

this area is dominated by non-wetland agricultural land (Ahern et al., 2013). As previously 295 

mentioned, the ecozones with the lowest accuracies are the Boreal and Taiga Cordillera, at 76% 296 

accuracies. The reasoning for this is discussed in more detail in section 2.2. However, to 297 



summarize, the overall accuracy is likely a result of the lack of training data available for the Taiga 298 

Cordillera and the subsequent need to classify both the Taiga Cordillera and the Boreal Cordillera 299 

(an adjacent ecozone) at the same time, using the dataset only present within the Boreal Cordillera. 300 

Note that outside of the Taiga and Boreal Cordillera, all other ecozones were relatively well 301 

classified, with the overall accuracies higher than 80%, a majority of which (eight ecozones) are 302 

above 85%.  303 

Table 4. Accuracy assessment indices determined for each ecozone. 304 

 

Ecozone 

Bog Fen Swamp Marsh Water Upland 
OA Kappa 

UA PA UA PA UA PA UA PA UA PA UA PA 

AM 0.85 0.90 0.88 0.84 0.87 0.85 0.88 0.86 0.93 0.93 0.90 0.83 0.88 0.87 

Boc/TC 0.55 0.54 0.71 0.72 0.73 0.71 0.65 0.66 0.93 0.93 0.75 0.68 0.76 0.73 

BP 0.94 0.75 0.80 0.90 0.86 0.84 0.78 0.84 0.94 0.94 0.89 0.84 0.87 0.86 

BSE 0.83 0.92 0.81 0.70 0.83 0.81 0.86 0.76 0.93 0.94 0.87 0.83 0.86 0.84 

SW 0.84 0.90 0.87 0.87 0.88 0.87 0.89 0.83 0.93 0.91 0.90 0.80 0.87 0.86 

HP 0.85 0.88 0.87 0.86 0.88 0.86 0.90 0.91 0.94 0.94 0.91 0.76 0.88 0.87 

MP 0.86 0.91 0.86 0.86 0.87 0.86 0.89 0.80 0.92 0.94 0.89 0.85 0.88 0.87 

MC na na 0.94 0.65 0.77 0.63 0.77 0.63 0.94 0.94 0.79 0.77 0.85 0.83 

NE na na 0.69 0.77 0.75 0.80 0.82 0.84 0.94 0.94 0.77 0.83 0.89 0.87 

PM 0.73 0.82 0.91 0.90 0.85 0.59 0.83 0.80 0.93 0.94 0.71 0.74 0.84 0.82 

Pr na na 0.91 0.90 0.85 0.87 0.89 0.88 0.93 0.94 0.91 0.90 0.91 0.90 

TP 0.81 0.78 0.76 0.75 0.71 0.55 0.68 0.78 0.94 0.94 0.81 0.75 0.82 0.79 

TS 0.74 0.72 0.62 0.64 0.54 0.39 0.70 0.66 0.94 0.94 0.76 0.76 0.84 0.79 

 305 
Figure 6 illustrates the second generation of the Canada-wide wetland inventory map at a spatial 306 

resolution of 10m using the object-based RF classification. 307 

 308 



 
Figure 6: The second generation of Canada-wide wetland inventory map. 

 309 
According to our results, peatlands (bog and fen) are the most common wetland class in Canada, 310 

which is reflective of Canada’s reputation of having extensive peatland wetlands (Mahdianpari et 311 

al., 2020). The dominance of peatlands is mostly the result of Canada’s general climate, which 312 

facilitates the build-up of peat (higher precipitation than evaporation). Peatlands appear to be 313 

distributed mainly across the centre portion of Canada, from Newfoundland and Labrador to the 314 

Yukon. The ecozones that contain the highest amount of peatland include the BS, HP, MP, TP, 315 

and TS, which have been reported previously as being the major peatland-containing ecozones in 316 

Canada (Webster et al., 2018). Peatlands occur less frequently in southern Canada, where forest 317 

and anthropogenic land cover seem to dominate. Marsh wetlands are the least common of all 318 

wetland classes, with the most significant coverage by-far occurring in the HP ecozone, where 319 



there are known expansive coastal marshes and tidal flats (Abraham and McKinnon, 2011). The 320 

ecozones with the least marsh are in the MP and Pr ecozones, of which the landscapes ha been 321 

highly modified as a result of human activity, in particular, agriculture. 322 

Swamp wetlands are also estimated as being a typical wetland; however, this must be interpreted 323 

in relation to the known difficulty related to remotely-classifying swamp wetlands and 324 

differentiating this class from the upland forest (Jahncke et al., 2018). Here, swamp appears to be 325 

over-classified versus the other wetland types. However, results may be improved by increasing 326 

upland forest training data, using higher resolution imagery as well as L-band for better swamp 327 

forest separation, or incorporating high-resolution topographic information. However, this is not 328 

always a simple solution at such large scales. Additionally, many of the swamp wetlands occur 329 

along streams and rivers, and as a result, the training data polygons for these wetlands are not 330 

always optimally shaped (long and thin) for use at medium spatial resolutions. Compared to the 331 

first generation results (Mahdianpari et al., 2020), swamp appears to be much more common. This 332 

increase may be attributed to a general increase in available wetland training data versus the first 333 

generation, particularly in the Maritime Provinces. The difficulties in mapping treed wetlands, 334 

such as swamp, using remote sensing has been discussed in similar studies (Jahncke et al., 2018), 335 

and is of even greater difficulty when using 10m resolution imagery, or when topographical data 336 

cannot be applied as is often the case with large-scale studies such as this. Notably, ecozones with 337 

the greatest swamp coverage include the Boc and TC (Figure 5(c)), which, as discussed previously, 338 

were the ecozones with the lowest training data and overall accuracy (Table 4).  339 

One of the significant advantages of the RF classifier is its capability to determine the importance 340 

of input features (i.e., variable ranking). This is beneficial when a large number of input features 341 

are incorporated into the classification scheme. The RF variable ranking has been recently added 342 



to GEE as an output of the random forest classifier. Figure 7 demonstrates the most important 343 

features, by ecozones.  344 

 
Figure 7. Normalized variable importance returned by random forest models trained on each ecozone. 

 345 

Overall, the extracted features from optical data are more helpful for achieving higher accuracies,  346 

compared to SAR features. NDVI is the most important feature in many ecozones, particularly in 347 

ecozones with dominant agricultural activities (e.g., AM and Pr). GCVI and B8 (Near-infrared) are 348 

also important features in several ecozones. This is expected, as forests, wetlands, and agricultural 349 

fields are dominant land cover classes throughout most of Canada’s ecozones. Although B2 is the 350 

least important optical features in most ecozones, it shows greater importance in the NE ecozone, 351 

given the presence of several small and big water bodies across this ecozone. Notably, there was 352 

a lack of dual-polarized HH-HV data in most of Canada ecozones. These features are illustrated 353 



with dark blue in Figure 7 in those regions. Similar to NDVI, albeit with a lower rank,  354 

|𝑆𝑉𝑉
 |2

|𝑆𝑉𝐻
 |2 was identified as an important feature for ecozones with dominant agricultural fields (e.g., 355 

AM). This is expected, as 𝜎𝑉𝑉
0  observations are appropriate for discriminating herbaceous wetland 356 

classes, and dominant scattering mechanisms of vegetation are volume scattering, and they have 357 

the strongest responses in the cross-polarized signal (𝜎𝑉𝐻
0 ). Span or total power, extracted from 358 

dual-polarized VV-VH data, and  𝜎𝑉𝐻
0  are also among the useful SAR features in many ecozones. 359 

 360 
It is often very challenging in the study like this to source a large amount of quality data from such 361 

a wide variety of organizations, collaborators, institutions, and more. The present study would be 362 

impossible without this data. In this study, we have managed to produce a Canada-wide wetland 363 

map with very high overall accuracies. It is important to note, however, that in the case of collected 364 

data such as this[SH4], there will naturally be differences in the methods which were used to collect 365 

and produce the data, the purposes for which the data was collected (many not for originally 366 

produced for application in imagery classification), the years these data were collected and so on. 367 

These issues are entirely expected in studies such as these. [SH5]Referring to section 2.2, there are 368 

large differences in the amount and characteristics of data available across and within individual 369 

ecozones. For example, some datasets may have more spectrally homogenous polygons than 370 

others, depending on their original purpose. Additionally, the distribution of the datasets does not 371 

always adequately represent the entirety of the ecozone area. All of this will have impacts on the 372 

quality of the final classifications and must be considered when interpreting the results. While 373 

effort was made to standardize across datasets, such as removing inappropriately sized polygons, 374 

and removing any obviously out-dated polygons, much more dedicated work is needed to modify 375 



and make these datasets as cohesive as possible, which was beyond the time and resources 376 

available to this study, and is an on-going process. 377 

Nevertheless, these datasets may act as a substantial jumping-off point for the development of a 378 

Canada-wide wetland dataset suitable for applications in remote sensing.  The significant effort 379 

would need to be dedicated to carefully examine all available wetland data, modifying their 380 

boundaries to produce more homogenous polygons, removing out-dated or inaccurate polygons, 381 

and perhaps further dividing the bog, fen, swamp, and marsh polygons into sub-classes based on 382 

broad vegetation characteristics (treed fen, shrub swamp, emergent marsh etc.,), which would also 383 

contribute to improving the homogeny of the polygons. [SH6]This, however, is made more difficult 384 

given the transient nature of wetland boundaries over the years, seasons, and even days. 385 

Incorporation of some hydrological and topographical data may improve the overall classification 386 

as well, particularly that of the swamp. Additionally, greater amounts of non-wetland land cover 387 

would contribute to a better overall-quality remote-sensing centered wetland dataset. 388 

In addition to reference data collection, it is recommended to evaluate land cover change at local, 389 

regional-, or national-scales on a periodic basis, given the inherently dynamic nature of wetlands. 390 

Change detection based on multi-temporal satellite imagery provides a unique opportunity to 391 

monitor these changes in a cost- and time-efficient manner.  392 

4. Conclusions  393 

Wetland mapping and monitoring, especially at large scales, is challenging due to the 394 

inaccessibility and diversity of wetlands, fuzziness of wetland’s boundaries, as well as the cost and 395 

time requirement for field data collection. Nevertheless, recent advances in remote sensing tools, 396 

such as the availability of high-resolution open-access satellite imagery as well as powerful cloud 397 



computing resources, alleviate these issues to the feasible extent, offering unprecedented 398 

opportunities for monitoring these important natural resources using cost and time-efficient 399 

methods. By leveraging the state-of-the-art remote sensing techniques, this study produced the 400 

second generation of 10 m wetland inventory map of Canada using the RF classifier and data 401 

collected from dual-polarimetry Sentinel-1 SAR and multi-spectral Sentinel-2 optical Earth 402 

observations on the GEE cloud computing platform.  403 

Compared to the first generation of this product, RF models were trained for each ecozone rather 404 

than each province or territory, which increased wetland classification accuracy. This 405 

improvement is a result of more commonality between wetland vegetation classes within an 406 

ecozone compared to the provincial administration borders. Furthermore, significant effort has 407 

been devoted to the data collection to prepare structured, cleaned, and consistent training data for 408 

each ecozone, which included data acquisition, labeling, and improvement of existing data. 409 

Because a data gap was identified in the Northern ecozones, high-resolution optical data from 410 

Worldview-2 and Pleiades were used to delineate wetland training data in those regions. Using 411 

this well distributed training data, the whole country was mapped with an overall accuracy 412 

approaching 86%, representing an improvement of 7% compared to the first generation. Accuracy 413 

varied from 76% to 91% in different ecozones, depending on available resources. Overall, the 414 

results of the RF variable ranking demonstrate the greater importance of the optical features 415 

compared to the SAR features in all ecozones. NDVI is found the most important optical feature, 416 

followed by GCVI and NIR band. Among the SAR features, 
|𝑆𝑉𝑉

 |2

|𝑆𝑉𝐻
 |2 and 𝜎𝑉𝐻

𝑜  illustrate the greater 417 

contribution to the overall accuracy relative to others. Nevertheless, there was a lack of dual-418 

polarized HH-HV data in many ecozones. Thus, these results can not compare the capability of 419 

extracted features from HH-HV and VV-VH data with each other.   420 



Future works can investigate the effect of incorporating additional high-quality satellite imagery 421 

collected by advanced SAR missions, such as L-band ALOS-2, L- and S- bands NASA-ISRO 422 

Synthetic Aperture Radar (NISAR), or Hybrid Compact Polarimetry (HCP) data from 423 

RADARSAT Constellation Mission (RCM) satellites. It is expected that adding these valuable 424 

data will improve the classification accuracy considerably. 425 
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