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Abstract: North America is covered in 2.5 million km2 of wetlands, which is the remainder of an
estimated 56% of wetlands lost since the 1700s. This loss has resulted in a decrease in important
habitat and services of great ecological, economic, and recreational benefits to humankind. To better
manage these ecosystems, since the 1970s, wetlands in North America have been classified with
increasing regularity using remote sensing technology. Since then, optimal methods for wetland
classification by numerous researchers have been examined, assessed, modified, and established.
Over the past several decades, a large number of studies have investigated the effects of different
remote sensing factors, such as data type, spatial resolution, feature selection, classification methods,
and other parameters of interest on wetland classification in North America. However, the results of
these studies have not yet been synthesized to determine best practices and to establish avenues for
future research. This paper reviews the last 40 years of research and development on North American
wetland classification through remote sensing methods. A meta-analysis of 157 relevant articles
published since 1980 summarizes trends in 23 parameters, including publication, year, study location,
application of specific sensors, and classification methods. This paper also examines is the relationship
between several remote sensing parameters (e.g., spatial resolution and type of data) and resulting
overall accuracies. Finally, this paper discusses the future of remote sensing of wetlands in North
America with regard to upcoming technologies and sensors. Given the increasing importance and
vulnerability of wetland ecosystems under the climate change influences, this paper aims to provide
a comprehensive review in support of the continued, improved, and novel applications of remote
sensing for wetland mapping across North America and to provide a fundamental knowledge base
for future studies in this field.
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1. Introduction

An estimated 56% of North American wetlands have been lost since the 1700s, with the greatest
loss occurring during the 20th and 21st centuries largely as a result of land-use change [1]. Altough the
rate of wetland loss has slowed in recent decades [2], it remains an ongoing issue, exacerbated by a
changing climate [1,3,4]. Impacts of land-use change and climate change (and the interaction between
both) have resulted in wetlands becoming the most threatened ecosystem on the planet [5]. Thus,
an effective tool is needed for the accurate and efficient monitoring and management of these threatened
ecosystems. Remote sensing is a relatively recent (in the context of wetland loss) development that
allows for improved wetland monitoring and management by providing information on the what,
where, and extent of wetlands at the landscape scale [6]. Classification of wetlands via remote sensing
methods produce maps and inventories, which act as baseline datasets for further applications,
including the development of national and regional wetland policies, identification of wetlands for
restoration or protection, assessment of wetland services, and examination of both historical and future
trends [7–9]. The Ramsar Convention on Wetlands has emphasized the importance of national wetland
inventories produced via remote sensing [10], and many countries have dedicated much research
toward developing and refining related methods. Over the last 40 years, many effective and efficient
remote-sensing based methods have been developed and tested for optimal classification and mapping
of North American wetland ecosystems.

According to [11], wetlands are areas of the landscape where there is a presence of permanent
or seasonal waters, vegetation adapted to wetness, and permanently or seasonally saturated soils.
Wetlands manifest in a variety of forms with different vegetation composition, degree of wetness, and
size. Other colloquial terms for wetlands include, among others, bog, fen, swamp, marsh, mire, moor,
and muskeg. Wetlands manifest in a variety of forms with different vegetation composition, degree
of wetness, and size. The variety inherent to wetlands can be seen in examples such as mangrove
swamps, mossy bogs, lagoons and estuaries, and temporary, seasonal pools, to name only a few.
There are several wetland classification guides available attempting to describe and categorize this
variation based on geography, biology, ecology, hydrology, geomorphology characteristics, and even
political boundaries [12,13]. These classification systems can provide a reference for the development
of wetland-related remote sensing methodologies and help to simplify the diversity present in
wetland habitats.

Importantly, wetlands provide valuable ecosystem services to humans via natural wetland
functioning [14]. These services include, but are not limited to, flood amelioration water filtration,
habitat, biodiversity, and recreation [15–17]. Different kinds of wetlands provide different functions
and services at different rates [18,19]. It is the loss of such services that, in part, triggered efforts to
better protect these ecosystems in North America when hunters noted a decrease in waterfowl [20].
A major wetland service of recent interest is the ability of these ecosystems to store and release carbon.
Wetlands produce and sequester greenhouse gases (nitrous oxide, carbon dioxide, and methane) via
their natural biogeochemical processes and thus have the potential to influence and be influenced by a
changing global climate [3]. As a result, wetlands, and information relating to type, extent, and location
play an important role in discussions and models relating to climate change [21]. Damages to and the
loss of wetlands impact the ability of these ecosystems to provide their valuable services, resulting in a
multitude of ecological and socioeconomic issues, some of which are listed in Figure 1.

A little more than half of the world’s wetlands have been lost since the turn of the 18th century,
with loss occurring on all continents, though at different rates [1], making wetlands amongst the most
endangered ecosystems on the planet. Historical rates of loss were greatest in Europe and North
America, though this loss has slowed but not stopped in the 20th and 21st century [1]. Currently,
North America is covered by approximately 249 million hectares of wetlands, representing one-third
of the globe’s total wetland coverage [22]. There are an estimated 127 million hectares of wetlands in
Canada, 114.6 million in the United States of America (U.S.A.), and 1.6 million wetlands along the
Mexico coast including an estimated 1,600,000 ha of estuarine and marine wetlands, and numerous
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inland wetlands, including floodplains, flooded forests, palm thickets, and other palustrine, riparian,
and lacustrine wetlands [22]. Each country has initiated and participates in multiple wetland protection
and conservation initiatives and has developed national wetland policies. These initiatives have been
partially supported through the development of nation-wide wetland maps by the U.S.A. in the
form of the National Wetlands Inventory (NWI) and Canada in the form of the Canadian Wetland
Inventory (CWI). The creation and maintenance of these large-scale inventories are made possible via
the availability and development of remote sensing imagery and methods [23,24].
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Published research relating to wetland classification via remote sensing originates from all
continents, though the publishing is often dominated by one or a few countries, including the People’s
Republic of China (PRC) [25–28], Canada [29–31], and the U.S.A. [32–34]. Less publications come from
Europe [35,36], South America [37–40], Africa [41,42], and Oceania [43,44]. Globally, recent research
trends include a focus on deep learning methods [45,46], vegetation mapping [45–49], and applications
of low and medium spatial resolution imagery [38,42,47,50,51] and hyperspectral imagery [28]. Very few
reviews relating to country- or continent-based trends in the publication of wetland classification
research exist [39,41,52]. Additionally, a number of bibliometric analyses of remote sensing in general
have been published [53–55]. Notably, none such reviews exist for North America, which is one of the
leading continents in the production of wetland classification-related research.

Wetland classification in North America using aerial- or satellite-based remotely sensed imagery
has been carried out in one form or another since at least the 1950s and 1960s [56,57], although these
efforts often focused only on a small number of wetlands. Prior to the widespread availability
of remotely sensed imagery, the classification and mapping of wetlands was largely conducted
at small scales through the use of questionnaires, soil surveys, field campaigns, and topographic
maps [58,59]. The possibility of classifying all the wetlands in a region at that time was nigh impossible
given the resource requirements, human error potential, weather and landscape restrictions, and the
ever-changing nature of wetlands. The availability of satellite and aerial photo technology was an
important development in wetland management as it allowed for a resource-efficient and repeatable
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method for wetland mapping. This development allowed for mapping the location of wetlands at
national and regional scales, and the elucidation of wetland classes. Since the 1970s, research relating
to wetland classification via remotely sensed imagery has increased, and today, methods for capturing
the diversity of North American wetlands are frequently published today.

The majority of Canadian wetland classification studies were conducted within the province
Ontario starting in 1979 [60]. Topics covered by the various Ontario-based studies includes applications
of multi-temporal imagery [61–63], evaluation of Synthetic Aperture Radar (SAR) features [61,64–68],
object-based image analysis [69–71], Light Detection And Ranging (LiDAR) integration [72,73],
applications of hyperspectral imagery [74], and evaluation of the recently launched RADARSAT
Constellation Mission (RCM) for wetland mapping [75]. After Ontario, the next greatest concentration
of wetlands research in Canada is located in Newfoundland and Labrador, starting in 2017. Research has
focused on the integration of SAR and optical data [76,77], integrations of SAR and Interferometric
SAR (InSAR) features [78–80], feature selection [29,81,82], feature optimization [83,84], object-based
image analysis [29,85], RCM compact polarimetry [86,87], machine learning methods [29,78,83,85],
deep learning models [76,77,88,89], and Geo-big data analysis [52,90].

Similar to Canada, there are many US states lacking peer-reviewed wetland classification research.
Many of these states are located in the central U.S.A. including Arizona and Utah among others.
Notably, these states contain a relatively small number of wetlands, which is largely a result of
the relatively dry climate. For example, wetlands cover only an estimated 0.5% of the land area in
Arizona [91] and 1–2% of Utah [92]. However, the wetlands in these states are ecologically significant,
perhaps even more so given their limited coverage. Other states, including Pennsylvania and New
Jersey, are also lacking in peer-reviewed wetland classification research, despite a significant wetland
presence. Notably, the wetlands in these states have been mapped by the National Wetlands Inventory,
unlike portions of Alaska, which is currently the only U.S.A. state that has not yet been fully mapped
by the NWI [93].

The overarching goal of this review is to provide readers with the “big picture” of the current status
and general trends in remote sensing classification of wetlands in North America over the past 40 years
by conducting a meta-analysis of the results of existing wetland studies. Various wetland-remote
sensing reviews currently exist, including general reviews [94–96], reviews relating to challenges [97],
specific methods and strategies [98,99], and reviews of related work at large geographical scales such
as east East Africa [41] and South America [39]. However, outside of these examples, there is a lack of
review and meta-analysis for most continents, including North America (herein considered Canada,
U.S.A., and Mexico). Continental-scale analysis such as this is important given that wetlands do not
function only at regional and country scales. For example, endangered waterfowl, migrate and occupy
wetlands across countries and large wetland complexes exist in multiple countries at once, such as the
prairie pothole region crossing Canadian and U.S.A. boarders and coastal wetlands along the Gulf of
Mexico. As such, a meta-analysis such as this will prove beneficial given the extensive presence of
wetlands on the continent [22], increasing interest in wetlands and wetland functions, particularly in the
context of climate change [3], an increasing publication trend relating to wetland classification on the
continent, and the increasing availability of spatial data and processing software. Accordingly, the main
objectives of this study are to (1) discuss various North American wetland classification systems that
may be applied in the context of wetland remote sensing; (2) determine trends and briefly summarize
the scientific advances in remote sensing of wetlands in North America; (3) document the development
and application of remote sensing technologies for wetland classification, mapping, and monitoring
over the past 40 years; (4) provide guidelines for prospective users; (5) identify research gaps and
discuss future prospects of mapping wetlands via remote sensing specifically within a North American
context, and (6) provide the first meta-analysis of wetland classification work in North America.
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2. North American Wetland Classification Systems

In order to classify wetlands using remote sensing methods, a system defining the wetland’s
types according to user requirements and purpose should be established. Typically, such systems
have previously been developed for the purpose of grouping wetlands on the basis of biotic, abiotic,
and/or managerial characteristics. Importantly, the selection of an appropriate wetland classification
system will define input and output data to remote sensing methods and will have a large impact on
the final product. The choice of classification system will depend on several factors, including the
original purpose of the wetland classification system, the availability of remote sensing data, and the
ability to produce testing and training data.

Defining differences and similarities amongst wetlands is not a straightforward process given
the ecological variability and transitional nature of these habitats [100–102]. Simply, wetlands can be
grouped as a class versus dry upland. However, this grouping runs into difficulties when one considers
the diversity of wetland habitats, some of which can have different vegetation structure, water presence,
and morphology. Figure 2 demonstrates four ecosystems that are considered to be wetlands, each having
different vegetation structure and hydrology. Consider sprawling peatlands dominated by blankets
of moss, a densely treed wetland, or a bed of thin reeds emerging from the edge of a riverbank.
Another issue arises as a result of the transitional nature of wetland ecosystems. Wetland boundaries
are not visible as obvious lines of demarcation in the landscape, but rather, one wetland habitat may
gradually transition into another wetland habitat or into upland (i.e., non-wetland or deep-water
habitat; see Figure 3). Not only are wetland boundaries inherently blurry, but they are often indefinite
and can change over time, over seasons or during differing weather conditions [103,104]. For example,
some wetlands may be completely flooded or dried out during spring versus summer. Additionally,
wetland vegetation may appear full, lush and vibrant green during some seasons, but brown, wilted,
and de-leafed during others. A final issue arises as a result of the difficulty related to separating
wetland habitats from the hydrological systems with which they are associated and determining where
a wetland starts and ends [105,106]. Wetlands do not exist as units isolated from the surrounding
environment, and they instead are connected to other wetlands and waterbodies within a watershed
via surface and sub-surface water flow. As a result, these habitats share between them nutrients, fauna,
and other chemicals. All of these issues and more make wetland classification a difficult challenge,
which requires making trade-offs in terms of detail in exchange for comprehensiveness, ease of use,
and application.
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Figure 2. Various wetlands in Newfoundland and Labrador, Canada. From top left to bottom right:
marsh wetland, swamp wetland, shallow-water wetland, bog wetland.
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These issues can partially be addressed by producing a hierarchical wetland classification
system, which groups wetlands into defined groups on the basis of hydrology, geomorphology,
vegetation structure, managerial characteristics, etc. Several North American classification systems
exist. These systems include methods that are relevant at continental, provincial, state, or regional scales,
or at the scale of a single wetland. The majority of these classification systems have been developed by
national or provincial organizations for the purposes of improving the management of wetlands or
for better understanding wetland ecology. Some classification systems are designed to encompass all
wetlands found within a designated area and some are designed only to better describe specific wetland
types found within a given area. A number of international, national, and regional classification systems
are applicable in a North American context. The Ramsar Convention on Wetlands developed the
Ramsar Classification System for Wetland Type for identifying and classifying wetlands of importance
at an international level [107]. Each country belonging to the convention, including Canada, the U.S.A.,
Mexico, and several other territories in North America are required to identify and designate wetlands
of importance using this system. The Ramsar Convention Classification describes wetlands first in
terms of three broad wetland habitats and further divides them into 40 classes based on hydrological,
geomorphological, chemical, or biological factors. This classification system includes artificial wetlands
as a broad wetland habitat.

In an attempt to better classify wetlands across multiple regions, [108] classified wetlands at a
global scale on the basis of geomorphic characteristics, including landform and hydroperiod, rather than
vegetation. The purpose was to make this classification applicable to all inland wetlands across the
globe; however, it does not consider marine, estuarine, or deltaic wetland systems. This system
defines five landform types and four water permanence types, resulting in a total of 13 main wetland
types. There are a number of additional descriptor terms, which may explain salinity, geometry, size,
scale, and vegetation. Various national wetland classification systems have been developed to describe
all wetlands within some North American countries. These systems are often touted as being the
standard by which all wetlands in the country can be classified, particularly for applications in the
development of national wetland inventories [2,24]. Of note, some of these systems have been applied
outside of their country of origin, in particular, the system developed by [12]. This system has been
one of the most widely applied classification systems [101] and has also been used as a reference for
development of many classification systems including the Ramsar Classification System [107] and the
Mexican wetland classification system [109].

The Cowardin Classification System was developed in 1979 for the purpose of inventorying
wetlands and deep-water habitats in the U.S.A. [12]. This classification system has been applied by
the National Wetlands Inventory (NWI) conducted by the United States Fish and Wildlife Service [2].
The NWI contains five major systems, each divided into subsystems and each subsystem is further
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split into classes. Such a classification hierarchy is defined based on the influence of similar hydrologic,
geomorphologic, chemical, or biological factors (see Figure 4).
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Figure 4. Cowardin Wetland Classification System.

In Canada, the Canadian Wetland Classification System (CWCS), last updated in 1997 by the
National Wetlands Working Group, was designed to provide a uniform framework for the description
of wetlands across Canada [13]. This system classifies wetlands into five broad classes based on
morphology, hydrology, hydrochemistry, plant communities and structure, and soils and sediment
characteristics. Each of these five classes is further divided into form and sub-forms based on surface
form, soil characteristics, and location in the landscape. These forms can be further described in terms
of Wetland Type, which is determined based on dominant vegetation physiognomy (see Figure 5).
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The Canadian Wetland Inventory initiative suggests that contributing inventories should be carried
out using this classification system [24].
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Figure 5. Canadian Wetland Classification System.

A Hydrogeomorphic Classification for Wetlands is another commonly used wetland classification
system applied at a national level in the U.S.A. The purpose of this system is to classify wetlands on
the basis of abiotic hydrologic and geomorphic controls, both of which are largely responsible for
maintaining wetland functionality [110]. This classification system focuses on abiotic characteristics of
wetlands and is unlike other classification systems (e.g., [12]), which put a greater focus on species
composition and structure. This system is most applicable for classifying wetlands based on their
potential function, and it is often used to assess the provision of ecosystem services.

In Mexico, a wetland classification system was proposed by [109]. This classification system was
developed via a comparative analysis of 18 global inventory systems, but the final classification was
largely based on the Ramsar Convention [107], Cowardin [12], and the Semeniuk and Semeniuk (1995)
classification systems [108]. The resulting hierarchical system describes three domains, five systems,
eight subsystems, and 26 classes (17 of which are natural and 9 of which are artificial). Please refer to
Figure 6 for the proposed Mexican system.
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There are a number of niche classification systems that have been developed to classify wetlands
at the provincial, state, or regional scales. In Canada, the provinces of Alberta and British Columbia
have developed their own classification systems designed to address wetland types and managerial
issues specific to the province [111,112]. Many of these classification systems are compatible with
the national CWCS. A classification system has also been developed by Ducks Unlimited Canada
for the Boreal Plains Ecozone [113] in Canada, which includes parts of the provinces of Manitoba,
Saskatchewan, and Alberta and defines five major and nine minor classes. This system was designed
for resource managers to identify wetlands. Other classifications focus on wetland vegetation structure,
composition, and zonation and typically focus on a single wetland habitat or unit. For example, [114]
describes Atlantic Canadian peatland vegetation in terms of four plant alliances, which are in turn
described in terms of 10 plant associations. [115] describe prairie pond and lake vegetation in terms of
seven zones characterized on the basis of the assemblage of plant species.

The application of various remote sensing methods, including data type and classification
algorithm, will largely depend on the wetland classes of interest, which are often derived from wetland
classification systems previously discussed. For example, if vegetation is a key feature of a wetland
class of interest, then the inclusion of LiDAR-derived elevation may be particularly useful, or if the
water regime of wetlands is of interest, then a multi-temporal approach is likely necessary. Most North
American wetland mapping efforts define wetlands based on the classification systems as listed above,
or using a derivative of these systems. Use of these systems also allow wetland classification products
to better support managerial and conservational efforts, as they provide a standard to facilitate data
exchange (relating to the how much, where, and what kind) across jurisdictional and organizational
boundaries. It should be noted that even when applying these classification systems in the field, it can
sometimes be difficult to determine which class a wetland belongs to, depending on the level of depth
of field work being conducted. For example, some classes of peatland (bog and nutritionally poor
fen) can have very similar vegetation structure, and it may be differentiated via the assessment of
both above- and below-ground water sources, which is often beyond the budget, time, or scope of
many field campaigns. Additionally, some wetlands occur in the landscape not as a single easily
definable class but as a complex mix of the characteristics of various classes, sometimes referred to
as a wetland complex, making these wetlands difficult to accurately classify in the field. Such issues
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when ground-truthing wetlands must be considered when conducting wetland classification using
remote sensing techniques as any inaccuracies present in the ground-truth data will be carried into the
resulting wetland maps.

3. Methods

3.1. Data Collection

To prepare for this review, a query was systematically developed to search Thomson Reuters
Web of Science and Google Scholar for English language articles, review articles, book chapters
and conference papers. Then, Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) were applied for study selection [116]. The search was structured based on the following
basic query: “remote* sens*” AND “wetland*” AND “map*”, with variations on each key term
included via the OR operator (see Table 1). These terms included different types of remote sensing
imagery (optical, hyperspectral, aerial photos, etc.), different types of wetlands (bog, fen, palustrine,
etc.), and various methods- and purpose-related terms (classification, identification, discrimination,
etc.). Although efforts were made to ensure all relevant articles were collected, some articles may not
be. It must also be noted that much operational wetland mapping done across North America is not
reported in peer-reviewed literature and as a result are not captured in this search.

This resulted in a total of 1392 journal papers, review articles, book chapters, and conference
papers. See Figure 7 for a visualization of the most common terms present in North American wetland
classification studies. To identify research findings and to keep a controllable workload, only those
publications that applied remote sensing methods, with study areas located in North America, and that
had been published within a 40-year period between 1980 and 2019 were selected for further analysis.
After assessing the study areas of each of the 1392 publications, a total of 238 publications remained.
From these, only those publications with titles and abstracts related to wetland classification using
remote sensing were selected for final review. In the end, 157 papers were selected to collect data for
further meta-analysis below. A summary of the literature search can be seen in Figure 8.
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Table 1. Search query design (DEM: Digital Elevation Model, LiDAR: Light Detection And Ranging,
SAR: Synthetic Aperture Radar, UAV: Unmanned Aerial Vehicle).
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peatland object-based Radar
flooded vegetation pixel-based SAR

salt marsh* object-oriented multispectral
temperate peatland* invento* hyperspectral

land*cover LiDAR
DEM

3.2. Data

For our systematic review, a database with 22 fields was designed based on the analysis of the
157 publications (see Table 2). This database was also used to perform a comparative meta-analysis
and other quantitative statistical analyses. The database includes general literature identification fields
such as title, publication, and author, as well as specific fields related to wetland mapping, including
study area location, sensor, processing unit, and classifier. Next, both qualitative and quantitative
information were obtained from these publications. Specifically, the final database with 157 records
and 20 fields provided the foundation for further meta-analysis and the systematic review in this paper.

In addition to the general information that was directly extracted from target studies, this review
paper investigated the effect of different parameters on wetland classification results, including (1)
data type, (2) sensor type and spatial resolution of images used, (3) number of features extracted from
remote sensing data, (4) number of classes in final product, (5) classification approaches, (6) minimum
processing unit, and (7) different strategies that have been considered for a classification of remote
sensing data such as pixel- versus object-based approaches and single-date versus multi-temporal
image analysis.
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Table 2. Twenty-two attributes used for the meta-analysis database of wetland mapping in North America.

# Attribute Type Categories

1 Title Free text
2 Authors Free text
3 Publication year Free text
4 Paper type Classes Article; Conference
5 Citation Numeric
6 Research institute Free text
7 Study area Free text Provinces; States
8 Data type Classes Optical; Radar; LiDAR

9 Sensor Classes

Landsat; RADARSAT; WorldView;
Satellite Pour l’Observation de la Terre
(SPOT); GeoEye; Advanced Spaceborne

Thermal Emission and Reflection
Radiometer (ASTER); Others

10 Temporal scope Classes Single Date; Multi Temporal

11 Sampling strategy Classes
Stratified random sampling; simple

random sampling;
Others; Not Available

12 Processing unit Classes Pixel, Object

13 Extracted feature Classes

Original bands; Normalized Difference
Vegetation Index (NDVI); Normalized

Difference Water Index (NDWI);
Soil-adjusted Vegetation Index (SAVI);

Synthetic-Aperture Radar (SAR)
intensities; Total backscattering power

(SPAN); Others

14 Number of
extracted features Numeric

15 Classification method Classes Supervised, Unsupervised

16 Classifier Classes

Support-Vector Machine (SVM);
Random Forest (RF); Convolution

Neural Network (CNN); Decision Tree
(DT); (Maximum Liklihood

Classification (MLC); Iterative
Self-Organizing Data Analysis

Technique Algorithm (ISODATA);
Thresholding; Spectral Angle Mapper

(SAM); Mahalanobis distance;
Others; NA

17 Distinguished wetland
types Numeric

18 Evaluation indices Classes
Overall Accuracy; User’s Accuracy;

Producer’s accuracy; Kappa coefficient;
F1-Score; Not Available

19 Overall accuracy Numeric
20 Map resolution Numeric
21 Study area size Numeric

22 Classification system Classes

Cowardin, Canadian Wetland
Classification System; Zonal; Species;

Functional Group; Others;
Not Available

4. Results

Based on the in-depth review of 157 publications on wetland mapping in North America, relevant
data were extracted via the approach outlined in the previous section. In this section, the results
of the meta-analysis, which is useful for documenting the scope, range, geographic location, trend,
and history of wetland mapping in North America, are presented.
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4.1. General Characteristics of Studies

The distribution of study areas throughout North America can be seen in Figure 9. Note that the
map does not include two large-scale studies [52,117] that mapped Canadian wetlands at a national
scale. The Canadian province of Ontario is the location of the greatest number of wetland classification
studies (23), followed by the Canadian province of Newfoundland and Labrador (20) and the state of
Florida within the U.S.A. (16). The Canadian provinces of Nunavut and British Columbia, roughly half
of the states in the U.S.A., and all but two Mexican states were not included in any of the publications
analyzed as part of this study. Figure 9 shows the average overall accuracy reported by the studies
within various states and provinces. Note that the value of the overall accuracy reports the efficacy of
remotely sensed classification results and the standard for communicating the success of remote sensing
methodologies. The highest overall accuracies were achieved in Texas, Oklahoma, Iowa, Michigan,
Ohio, and New Brunswick. Some studies did not report on overall accuracy, and as a result, they are
not visualized in Figure 9. Common study areas include the prairie pothole region [118–123] and the
Great Lakes, which are both located across the U.S.A. and Canadian border [30,61,63,71,76,124–130],
the Mer Bleue Bog in eastern Ontario, Canada [65–68,73,127,131], the everglades in southern Florida,
U.S.A. [131–137], and various other coastal areas along the Gulf of Mexico [34,127,138–143]. For further
discussion of these results, please refer to Section 5.1, Section 5.2, and Section 5.3.

Among 157 articles, 18 were conference-related journals, and 139 were published in peer-reviewed
journals. Almost 80% of the scientific papers were published in one of these four journals:
Canadian Journal of Remote Sensing (CJRS; 24 papers), Wetlands (19 papers), Remote Sensing
(RS; 18 papers), and International Journal of Remote Sensing (IJRS; 17 papers). Eleven journals
contained only one of the 139 scientific papers and are not shown in Figure 10. Almost half of the all the
Canadian-centered studies (69) were published in CJRS and RS, and half of the all of the U.S.A.-based
studies (84) were published in Wetlands, IJRS, RS, and Photogrammetric Engineering and Remote
Sensing (PERS). The two Mexico-centered papers were published in Remote Sensing of Environment
(RSE) and Ecological Society of America.

More than half of the Canadian studies applied the CWCS directly or derivatively. The most
common classification system used in U.S.A.-based studies was the Cowardin system, and many of
these studies used data collected by the U.S.A. National Wetlands Inventory, for which the Cowardin
system is the standard. Other wetland classifications applied, though much less frequently, include
the Alberta Wetland Classification System, wetland’s zonal classification (high marsh, low marsh),
wetland vegetation species (cattails, phragmites, etc.), wetland vegetation physiognomy (herbaceous,
woody, shrub, tree), and a singular wetland class versus upland. The most commonly occurring
wetland class in these studies was marsh (roughly 68 times, which includes marsh zonal and vegetation
classifications), bog (roughly 45 times), swamp, fen, wetland, shallow-water, emergent, shrub, forested,
and scrub-shrub. The least common wetland classes included mangroves, mudflats, and tidal flats.
Refer to Section 5.4 for more discussion relating to wetland classification systems.

Figure 11 shows yearly trends in wetland publications. The number of studies focusing on wetland
classification in North America has significantly increased over the last 40 years. A small number
of papers were published in the early 1980s as well as between 1990 and 1996, although none were
published from 1985 to 1990. Starting in 1996, papers were published every year until the present,
following an increasing trend. After 2010, almost two-thirds of the total 157 papers were published,
and 2018 was the year with the most papers published, at 25 total papers.
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4.2. Wetland Classification and Data Type

Remote sensing data provide several advantages for wetland classification, including spatial
coverage, repeatability, visualization of inaccessible areas, and time- and cost-efficiency. Early remote
sensing studies have commonly used passive multi-spectral optical data. However, this type of
Earth observation data is ineffective under cloudy or low-light conditions. Therefore, active sensors
such as Synthetic Aperture Radar (SAR) have recently been introduced as valuable data sources for
wetland mapping. SAR sensors include RADARSAT-1 and RADARSAT -2, JERS, ALOS and ALOS-2,
and TerrSAR-X.

Of the three common data types applied in wetland classification studies (see Figure 12) in North
America, most studies used a single data type of optical (61 studies) or radar (33 studies), or dual
combinations of optical and radar (22 studies), or optical and elevation data (17 studies). A total
of 14 studies used a triple combination of optical, radar, and elevation data. Elevation data only
and the combination of radar and elevation were the least commonly applied data types, at 6 and 4
studies, respectively.

As shown in Figure 13, the median overall accuracy of the various data types and data type
combinations (Figure 12) all achieve results greater than 80%. The lowest median overall accuracy
is achieved by radar data only, and the highest median overall accuracy is achieved by the triple
combination of optical, radar, and light detection and ranging (LiDAR) studies using radar only achieved
the greatest range of results, from 97% overall accuracy to 61%. All data types with the exception of
the radar + LiDAR combination achieved overall accuracies greater than 95%. For more discussion
relating to data types used in wetland classification, refer to Section 5.7 and related sub-sections.
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4.3. Wetland Classification and Sensor Type

In 157 North America wetland classification studies, 19 types of sensors were used, all of which
are illustrated in Figure 14. Landsat followed by airborne platforms and RADARSAT-2 are the most
commonly used sensors. Least common sensors include GeoEye and SPOT. All studies using Unmanned
Aerial Vehicle (UAV) sensor data apply it alone, unlike the studies using Sentinel-1, Sentinel-2,
and GeoEye sensors which, based on the results of this review, only use them in combination with
multiple other sensor data sources. All other sensors are applied in both single-and multi-source contexts.
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Figure 14. Application of various sensors in wetland classification studies. The green bar represents
the number of studies that use only the data from a single sensor. The red bar represents the number of
studies that use the data from a sensor in combination with other data sources.

Figure 15 shows the overall accuracies of 17 of 19 sensors. GeoEye and SPOT sensors were
excluded here because they were applied in less than three studies. In general, the sensors show a
diverse range of median overall accuracies. ALOS-2, RapidEye, and TerraSAR-X have the highest
median overall accuracies, followed by ALOS-1, ASTER, RADARSAT-2, and WorldView. The sensors
with the lowest median overall accuracies include ERS, IKONOS, JERS, and RADARSAT-1. UAV and
TerraSAR-X delivered the greatest range of results, while Sentinel-1 and -2 provided the smallest range.
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4.4. Wetland Classification and Spatial Resolution

Spatial resolution is a measure of the smallest object resolved by the sensor, and it is typically
expressed as pixel size. Accordingly, remote sensing data are categorized into three main classes based
on spatial resolution: high (<4 m), medium (4 m to 30 m), and low spatial resolution (>30 m). Figure 16
shows the median overall accuracies obtained by studies using high, medium, and low resolution.
As expected, the potential for achieving higher overall accuracies increases with spatial resolution.
Additionally, studies applying lower resolution imagery produced a greater range of overall accuracies
versus studies using medium resolution imagery, which produced a greater range of overall accuracies
versus studies applying higher resolution imagery. However, it should be taken into consideration
that a greater number of studies used lower resolution imagery versus high and medium resolutions.

Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 42 

 462 

Figure 15. Overall accuracy of various sensors. 463 

4.4. Wetland Classification and Spatial Resolution 464 

Spatial resolution is a measure of the smallest object resolved by the sensor, and it is typically 465 
expressed as pixel size. Accordingly, remote sensing data are categorized into three main classes 466 
based on spatial resolution: high (<4 m), medium (4 m to 30 m), and low spatial resolution (>30 m). 467 
Figure 16 shows the median overall accuracies obtained by studies using high, medium, and low 468 
resolution. As expected, the potential for achieving higher overall accuracies increases with spatial 469 
resolution. Additionally, studies applying lower resolution imagery produced a greater range of 470 
overall accuracies versus studies using medium resolution imagery, which produced a greater range 471 
of overall accuracies versus studies applying higher resolution imagery. However, it should be taken 472 
into consideration that a greater number of studies used lower resolution imagery versus high and 473 
medium resolutions. 474 

 475 

Figure 16. Correlation of overall accuracy and spatial resolution. 476 

  477 

Figure 16. Correlation of overall accuracy and spatial resolution.

4.5. Wetland Classification and Number of Features

Traditional wetland classification methods only applied the original bands provided by
remote sensing data, including the red, blue, green, and near-infrared among others. However,
extracting various features (various measurable properties of the image) from these bands,
including but not limited to band ratios, indices, textural and statistical characteristics and others,
and incorporating them into the classification algorithm has been shown to improve classification
accuracy. Figure 17 presents the correlation of overall accuracy and number of features used in wetland
classification. In general, there is a positive trend, meaning that as the number of features increases,
the overall accuracy increases. However, note that this trend is skewed because of the limited number of
studies with a very large number of features. The cluster of studies located on the left side of Figure 17
shows that most studies applying 10 or fewer features produced overall accuracies ranging from 70%
to 95%. Moving along the figure to the right, there is a trend showing that an increase in the number of
features between 10 and 70 generally results in increasing overall accuracy.
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4.6. Wetland Classification and Number of Classes

The availability of high spatial and spectral resolution remote sensing data as well as
high-performance computing resources allows remote sensing experts to distinguish wetland classes
that are more similar to one another. It is not surprising that discriminating wetland from non-wetland
classes using remote sensing data is often easier than distinguish similar wetland types, such as bog
and fen. Figure 18 shows the correlation of overall accuracy and the number of classes in the final
output. As seen, there is not a clear relationship between the number of classes and resulted overall
accuracy (R2 = 0.0070). However, most studies applied classification to distinguish the lower number
of classes.
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4.7. Wetland Classification and Classification Methods

The main objective of wetland classification based on remote sensing imagery is typically to answer
the following questions: (1) Where are wetlands located? (2) What kinds of wetlands are present?
(3) What number and area of wetlands are present? As such, different classification methods have
been proposed for wetland classification over the years. Specifically, these classification approaches
use spectral and/or spatial information represented by pixels or objects in the image to categorize each
individual pixel into different wetland types.

A total of 17 classification methods were used across the 157 wetland classification studies.
Figure 19 shows the median classification accuracies for 11 of these methods. Six of these methods were
excluded here, as they were applied in less than three studies. There was a range in the median overall
accuracy for each classification method. Convolution Neural Network (CNN) had a median overall
accuracy of 95%, followed by Random Forest (RF), Support Vector Machine (SVM), Classification And
Regression Trees (CART), and Decision Tree (DT). Maximum Likelihood Classification (MLC) had
the lowest median overall accuracy, (slightly over 70%) and K-Nearest Neighbor (KNN) had the next
lowest median overall accuracy (slightly below 75%).Remote Sens. 2020, 12, x FOR PEER REVIEW 21 of 42 
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4.8. Different Strategies for Wetland Classification

In order to improve the result of wetland classification, and depending on the availability of high
spectral and spatial resolution and multi-temporal remote sensing data, different classification scenarios
can be defined such as object-based and multi-temporal image classification. In object-oriented methods,
the geometrical, textural, and contextual information of wetland classes are included along with spectral
content, which is otherwise the only content available in pixel-based methods. Multi-temporal data are
another important source of information that often improves wetland classification results compared
to single-date image classification.

Figure 20 shows the overall accuracy of four general wetland classification strategies: pixel-based
versus object-based and single-date versus multi-temporal imagery. Object-based classification and
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multi-temporal imagery both exhibited greater overall accuracies than pixel-based and single-date,
respectively. Additionally, pixel-based and single-date strategies had a greater range of over accuracy
results and included the lowest overall accuracies.
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In addition, the Mann-Whitney U-test [144] was employed to determine the statistically significant
differences between various classification scenarios in this study. The Mann-Whitney U-test is a
non-parametric test that allows two sample groups to be compared without making the assumption on
samples distribution. The Mann-Whitney U-test revealed that the difference between the median of
pixel-based and object-based image analysis was statistically significant (p = 0.00374 < 0.05). However,
the p-value for the Mann-Whitney U-test of single-date and multi-temporal data is 0.1936, which is not
statistically different.

5. Discussion

This systematic review demonstrates that there are a large number of wetland classification studies
in North America using various remote sensing data and tools. Generally, the main purpose of a
majority of these studies was to find an optimum data set and algorithm for determining the spatial
distribution of different wetland classes.

5.1. Wetland Classification in Canada

Various research in Canadian provinces have illustrated the capability of remote sensing data
and tools for wetland classification [29,61,62,69,73,75,117,145–148]. However, there are a number of
Canadian provinces where novel peer-reviewed wetland classification remains to be implemented,
taking into account the provinces ecology, geomorphology, and anthropogenic landscape. For example,
the Canadian Arctic has no peer-reviewed relevant research conducted within its borders. Though only
covering an estimated 3–5% of the Canadian Arctic, wetlands here are ecologically important and
are currently undergoing what is projected to be significant ecological impacts. Conducting relevant
wetland research in the Canadian Arctic would contribute greatly to an increasing knowledge of
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Arctic wetlands and provide a basis for better addressing growing problems because of an increasing
global temperature.

5.2. Wetland Classification in the U.S.A.

Florida has a total of 16 wetland classification studies, the greatest in the U.S.A., followed by
seven studies in Minnesota. All of the studies captured by this meta-analysis, which applied
UAV imagery, were conducted in Florida, a majority of which were focused on the everglades.
UAV imagery was used in a number of contexts, including implementation of machine-learning [135],
deep learning [149], object-based analysis [150], and the delineation of wetland vegetation
communities [137]. Other Florida-based studies include applications of Landsat [33,138,151–153],
high-resolution satellite imagery [142,151,154], and the evaluation of SAR features [34,131,133]. Topics of
study in Minnesota include analysis of training data impacts [155], integration of LiDAR [121,156],
and integration of optical, SAR, and elevation data [157–160].

5.3. Wetland Classification in Mexico

Very few peer-reviewed wetland classification studies have been conducted in Mexico.
Pope et al. [161] mapped wetlands using Landsat TM images in Chiapas Mexico to understand
the population dynamics of malaria-carrying mosquitos and [162] used RADARSAT-1 data to classify
marsh wetlands in Tamaulipas. Most recently, [163] used Landsat Enhanced Thematic Mapper imagery
and aerial photos to map wetland vegetation and assess ecosystem functions and services in the
Colorado River delta. The general lack of research in this country proves to be a notable knowledge
gap given that Mexico contains wetlands of great ecological and economic importance [164,165].
More classification studies conducted here could provide essential information on these valuable
ecosystems and perhaps aid in improving related protection-related policies.

5.4. Application of Wetland Classification Systems

Many of the studies reviewed by this meta-analysis defined wetland classes using previously
designed wetland classification systems, including the CWCS in Canada and the Cowardin system
in the U.S.A. However, differences in terms and definitions across classification systems makes it
difficult to compare research results across countries and sometimes even across provinces or states.
For example, the Cowardin system defines classes based largely on association with larger hydrological
systems (i.e., lakes, rivers estuaries and oceans). This differs from the CWCS, which defines five wetland
classes based largely focused on vegetation composition. For example, a wetland classified as a bog
and a wetland classified as a fen, using the CWCS, may both be referred to as a palustrine system
dominated by moss and lichen using the Cowardin system.

Although differences between the classification systems are understandable given different
purposes and funding levels, it makes it difficult to obtain a cohesive understanding of wetlands at
a continental or global level. A necessary next step to not only promote continental-scale wetland
management and conservation, but to improve the results of wetland classification using remote sensing
across North America would be to devise a classification system that consolidates the country-based
systems. Future efforts could be dedicated toward producing a classification system applicable at a
continental scale. This would allow for greater ease in comparing and tracking wetland resources across
country boundaries. It would also allow for the assessment of wetlands at a grander scale, which is
important given the global scale of human-related impacts, such as climate change, on wetlands.

5.5. Reference Data

Of the reviewed studies, the description of the procurement and/or production of reference
(e.g., training or calibration/validation) data were varied, and as a result, it was difficult to assess
trends and perform comparisons. This is in contrast to the description of other remote sensing data,
such as imagery, which is often described in a standardized way in terms of resolution, date of
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procurement, preprocessing, etc. However, this discrepancy is understandable given that reference
data are not as simple to obtain and may be collected from multiple sources that applied different
data collection standards. For example, some reference data may have been visually interpreted from
imagery, and other data may have been collected during field campaigns. Similarly, data collection
may have been originally been carried out for non-remote sensing purposes. Parameters of interest in
descriptions of wetland classification reference data include classes of interest, collection date, spatial
scale, how the data were collected, how the data were prepared or modified, how much data in total
and per class, methods for division into testing and training groups for validation, and the spatial
independence of the data.

Many studies described how reference data obtained from previously developed datasets,
such as the NWI, were altered to better meet research purposes, such as checking to ensure that
the data was up to date when using recent imagery, etc. [166]. However, fewer studies described
how field-collected ground-truth data were suitably transformed for input into a remote sensing
methodology. Commonly absent as well were descriptions on how reference data were divided into
testing and training groups in supervised classification studies. It is important that information on the
development and processing of reference data be well communicated in a research publication because
any issues present in the reference data can propagate throughout the methodology, ultimately being
reflected in the classification results and reported accuracy of the dataset.

5.6. Wetland Classification Methods

Early wetland mapping studies in North America widely applied unsupervised clustering,
such as K-means [161], ISODATA [167] and C-mean [168], as well as supervised approaches, such as
Maximum Likelihood Classifier (MLC) [169,170]. This is largely because these classifiers were commonly
available at that time [171]. The next generation of well-known classifiers used in wetland mapping
included decision tree-based classifiers [65,172–175], Artificial Neural Network (ANN) [176–178],
Support Vector Machine (SVM) [179,180], and later Random Forest (RF) [29,30,172]. Since these
classifiers are non-parametric, they do not need input data to be normally distributed. This is especially
beneficial when various sources of input data (e.g., spectral, geometrical, textural, and vegetation
indices) are incorporated into the classification scheme to improve the accuracy of classification.
Significant improvements were later observed when object-based classification was introduced as
not only spectral but spatial and contextual features. [61,72,133,152,155,157,181–185]. Recent studies
examined the ability of deep learning models and, in particular, the Convolutional Neural Network
(CNN) to improve the accuracy of wetland classification [76,186,187]. Generally, CNN models are
more common in remote sensing applications than are other deep learning methods such stacked
autoencoder (SAE) and deep belief network (DBN). This is because CNNs have the capability to
maintain spatial relationships in different processing levels, as spatial filtering takes place in each layer
without flattening data to a vector form [77]. In contrast, the spatial relationship between neighboring
pixels is flattened and concatenated to spectral data in the first part of the model. Although spatial
information is incorporated in these models, the spatial relationship between pixels is lost in a vector
form. Table 3 presents the most cited papers that studied wetland mapping in North America based
on the number of citations, which are standardized to reflect elapsed time since publication. As seen,
RF and CNN received more attention among other classification methods for wetland mapping in
North America.
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Table 3. Wetland classification articles ranked by number of citations normalized by years (as of
18 September 2019).

Rank Average Number of
Citations per Year Classifier First Author-Year

[Reference]

1 32 Random Forest (RF) Millard-2015 [31]
2 23 Random Forest (RF) Mahdianpari-2017 [29]
3 22 Convolutional Neural Networks (CNN) Mahdianpari-2018 [78]
4 18 Thresholding White-2015 [188]
5 17 Spectral Angle Mapper (SAM) Zomer-2009 [189]
6 17 Decision Tree (DT) Baker-2006 [190]
7 14 Random Forest (RF) Mahdianpari-2018 [81]
8 14 Convolutional Neural Networks (CNN) Rezaee-2018 [76]
9 13 Random Forest (RF) Corcoran-2013 [155]

10 12 Mahalanobis Distance Töyrä-2005 [191]

5.7. Data Types for Wetland Classification

Remote sensing platforms can be categorized as ground, airborne, or satellite based. Ground-based
platforms include UAVs, while airborne include aerial photography, airborne SAR, and LiDAR.
Satellite platforms include many space-borne sensors such as Landsat. UAVs are the least commonly
used platforms in North American wetland classification studies. They have only been applied in four
of the 157 studies reviewed, which are all located in Florida. UAV imagery has the benefit of being high
in spatial resolution; however, some drawbacks include its cost and coverage. UAV is best used when
classifying wetlands in a small area or when classifying wetland vegetation down to the level of growth
form or species [135,137]. UAV has limited applicability at regional scales. Although it has recently
become feasible for UAV sensors to acquire data using multi-spectral and hyperspectral sensors, most
of the commonly used UAVs are limited to three, or at best, four spectral bands (visible and NIR).
This relatively low spectral resolution, as well as the limited inclusion of bands outside the visible
portion of the electromagnetic spectrum, restricts the utility of UAV data. Importantly, UAVs can play
an important role in the collection of reference data particularly in areas where ground access to a
wetland site is difficult.

Compared to other types of remote sensing platforms, satellite-based platforms are most commonly
used for wetland classification, specifically optical satellite data. This is in large part because optical
satellite imagery has been available since the 1970s, and it has recently been available made available
to the public for free (e.g., Landsat and Sentinel data). Moreover, much optical imagery requires less
preprocessing than other data types such as radar or LiDAR, thus requiring less technical expertise to
apply. Additionally, processing software packages (either commercial or open access ones) for optical
imagery are more widely available than SAR or LiDAR processing software.

5.7.1. Optical Data for Wetland Classification

Optical sensors collect imagery in the visible, near-infrared, shortwave infrared,
and thermal-infrared regions of the electromagnetic spectrum [96]. Previous studies demonstrated the
relatively low contribution of visible bands for discriminating wetland classes, as these classes are
visually very similar in the context of the wetland vegetation [70,76,77,187]. However, the near-infrared
band proved to be a different case. Mutanga in [192] carefully examined WorldView-2 spectral bands
to determine their relevance for wetland mapping and demonstrated that the near-infrared band could
be more useful for wetland vegetation mapping due to the high reflectance of green vegetation at
that wavelength [192]. They also reported that a red-edge band, which is located between the red and
near-infrared bands, is important for wetland studies. However, this band is not available in all optical
sensors. The red-edge band was found to be sensitive to biochemical and biophysical characteristics
of wetland vegetation. Additionally, water deficiency in vegetation biomass can be captured using
the red-edge band [192]. Imagery collected in the shortwave-infrared region of the electromagnetic
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spectrum showed high sensitivity to soil and vegetation moisture and, as such, they could be useful
for wetland studies. Overall, the low spatial resolution of optical data collected in the thermal-infrared
region makes it less useful for wetland studies [187].

The most frequently applied optical imagery in North American wetland classification studies
by far is obtained via Landsat sensors. This is to be expected, given that Landsat imagery is freely
available and has a large historical database, allowing for the easy application of a multi-temporal
methodology. Although far less common than Landsat, Sentinel-2 imagery also provides a free optical
data source, but at a higher resolution (10 m versus the Landsat 30 m). Importantly, Sentinel-2 provides
additional bands, including Red-Edge, which are effective in wetland mapping (discussed above).
Studies using Landsat imagery have a median overall accuracy of above 85% which is comparable
to studies that applied Sentinel-2 (see Figure 14). However, studies that applied Sentinel-2 imagery
seem to have a greater chance of obtaining higher accuracies versus those applying Landsat imagery,
although much fewer studies used Sentinel imagery, as it only been available since 2015.

Within the peer-reviewed literature, high spatial resolution optical satellite data, provided by
sensors such as WorldView and GeoEye, are less commonly applied in wetland classification studies
compared to lower spatial resolution data, such as Landsat. This is likely due to the higher cost
and reduced availability of the higher spatial resolution datasets. However, studies applying these
high-resolution data can obtain, on average, higher overall accuracies. For example, Campbell and
Wang in 2019, classified salt marsh wetland vegetation at a resolution of 1 meter using a combination
of Worldview-2, Worldview-3, and LiDAR data, obtaining an accuracy of 92.75% [182]. McCarthy et al.
(2015) also examined the applicability of high-resolution multi-spectral optical imagery (WorldView-2)
for wetland mapping in two regions of interest in Tampa Bay Florida, USA. As such, they reported
that the multi-spectral bands of WorldView-2 (2 m) achieved a 36% improvement in overall accuracy
compared to 30 m Landsat-8 [154]. Note that most high-resolution studies tend to focus on wetland
vegetation classes versus broad wetland classes, as this type of data is capable of capturing detail down
to the level of plant functional groups.

5.7.2. SAR Data for Wetland Classification

Optical sensors fail to map wetlands under certain conditions (e.g., a cloudy day) and are
insensitive to the physical characteristics of vegetation. As a result, wetland classification studies using
SAR data have become increasingly prominent in North America, particularly in Canada. Based on the
results of this review paper, SAR sensors appeared approximately 15% more frequently in Canadian
wetland studies than in the U.S.A.. This is likely due in part to the fact that RADARSAT is a Canadian
satellite series, and these data are often easier or less expensive to obtain by Canadian scientists.
This pattern may also be partially explained by the fact that SAR data can be collected regardless
of solar illumination, and much of Canada lacks daylight during part of the year. The advantages
of SAR sensors, such as collecting data in all weather conditions as well as penetrating through
cloud and the vegetation canopy, make them a unique source of data for wetland classification [193].
Wavelength, polarization, and incidence angle are the main characteristics of SAR sensors, and these
features determine the backscattering response of different wetland types. To date, most SAR satellites
have operated in X-, C-, and L-bands with wavelengths of approximately 3.1, 5.6, and 23.5 cm,
respectively. Data collected by X-band TerraSAR-X, C-band ERS, RADARSAT, and Sentinel-1, as well
as L-band JERS and ALOS PALSAR has been widely used in wetland mapping studies in North
America (see Figure 13). Among 73 studies that used SAR data, C-band was the most frequently
used band (66%) followed by L (19%) and X (5%). Notably, the most common source of SAR data in
North American wetland classification studies comes from the RADARSAT-2 sensor (see Figure 13),
which was launched in 2007. Other commonly applied SAR sensors include ALOS PALSAR-1 and
RADARSAT-1 [32,141,194,195].

Several studies have demonstrated that L-band is more appropriate for mapping forested wetlands,
while C-band is preferred for classifying herbaceous wetlands [160,172,195]. This is attributed to the
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longer wavelength of the L-band signal compared to the C-band signal, making it advantageous for
woody wetlands. Overall, most studies have reported the superiority of L-band compared to C or X,
although a few studies have demonstrated that C-band SAR data could be useful in leaf-off and low
biomass conditions [196–198]. This fact illustrates that the selection of an appropriate SAR frequency
to map different wetland types presumably depends on several factors, such as plant structure and
phenology. Nevertheless, the integration of multiple wavelengths in wetland studies typically results in
significant improvements in classification results, as reported by [29]. In particular, that study proposed
a novel hierarchical classification scheme and compared the capability of different SAR wavelengths
for wetland mapping. Several classification scenarios were designed based on data collected from
X-band TerraSAR-X, C-band RADARSAT-2, and L-band ALOS-2 sensors. The results demonstrated
that the synergistic use of multi-frequency data is advantageous compared to single-source data.

Another characteristic of SAR data that plays a vital role in wetland mapping is polarization.
The relationship between the type of scattering mechanism of wetland classes (specular, double-bounce,
and volume) and polarization is complicated. As reported by several studies, HH is the most appropriate
polarization channel for wetland mapping [96,118]. Notably, the HH polarization is more sensitive
to double-bounce scattering occurring within wetland vegetation with vertical structure, such as
freshwater marshes and swamp forest. In particular, the HH polarized signal is better able to distinguish
wetland vegetation from water under calm water conditions [145,189]. This is because HH is less
sensitive to waves created from wind; thus, open water results in less scattering in HH compared
to VV and HV. Consequently, HH produces the greatest backscattering differences between wetland
vegetation and water [199]. Although VV polarization is not as effective as HH polarization for mapping
flooded vegetation, it is useful for mapping herbaceous wetlands (e.g., bog) in their early stages of
development, especially low and sparsely vegetated areas. Cross-polarized channels (HV and VH)
are more sensitive to the structure of vegetation, and they occur due to the volume scattering inside
the vegetation canopy that tends to depolarize the signal and has been shown to be effective for
discriminating herbaceous from woody wetlands [196].

Recent studies mostly focused on the application of multi-polarization SAR data for wetland
mapping because a single polarized signal is less useful for discriminating complex wetland classes.
Importantly, multi-polarized SAR data often allow for the application of advanced polarimetric
decomposition techniques, which are of particular interest for discriminating complex wetland classes.
These decomposition parameters increase the accuracy of wetland classification by incorporating
more information about the scattering behaviors of different wetland types into the classifier [190,200].
Several studies demonstrated the capability of different decomposition methods, including Cloud and
Pottier [201], Freeman-Durden [202], Van Zyl [203], Yamaguchi [204], An-Yang [205], and H&W [206] for
wetland mapping. For example, Brisco et al. [118] compared the capability of different decomposition
methods, including Cloude and Pottier, Freeman-Durden, Pauli, and Van Zyl, and they found that
Freeman-Durden was the most effective decomposition approach for delineating wetland land-cover
types. Similarly, [190] studied the ability of different decomposition approaches, namely Cloude
and Pottier, Freeman-Durden, Van Zyl, An-yang, and Yamaguchi decompositions to discriminate
complex wetland classes. This study found that Yamaguchi decomposition parameters were the most
important features for wetland landcover mapping among others. They reported that the superiority
of Yamaguchi decomposition compared to Freeman-Durden decomposition is because of the existing
man-made structure in the study area.

The scattering behavior of different wetland types also varies with incidence angle. Overall,
relatively steep incidence angles are preferred for mapping flooded vegetation given their deeper
penetration depth [118,206,207]. Moderate incidence angles could also be useful when the imagery is
collected with high spatial resolution. Marti-Cardona in [208] examined the effect of different incidence
angles for wetland mapping using 43 ASAR images of Doñana wetland in Spain [208]. They concluded
that steep to mid-incidence angles were appropriate for wetland mapping in an area with high elevation.
Intermediate incidence angles were the most suitable for distinguishing bare soil from deep water
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in the marshland areas. Shallow incidence angles were suggested for accurate wetland delineation
during growing seasons in medium elevation zones. Nevertheless, the application of images close in
time with varying incidence angles was found to be optimum for wetland mapping [208]. This is in
agreement with the results of [75], who reported that single-date and single-incidence angle SAR data
could not accurately classify all wetland types. Despite the results of previous studies, the effect of
different incidence angles for wetland studies under different environmental conditions needs to be
further studied in order to reach a more decisive conclusion.

5.7.3. Optical and SAR Data Integration for Wetland Classification

The fusion of optical with SAR data has been of interest to wetland classification studies since the
mid-1990s, following the availability of multiple SAR sensors, including JERS-1 and RADARSAT-1.
In general, overall accuracy is higher in cases of the integration of optical and SAR data than in cases
where either are used alone (Figure 12). This is to be expected, given that both SAR and optical sensors
are capable of capturing different types of information related to the spectral and physical attributes of
wetlands. In turn, this allows for improved wetland class discrimination. Additionally, the ability of
SAR to penetrate cloud cover can allow for increased multi-temporal ability versus optical alone.

Many studies have found that a fusion of optical and SAR can effectively discriminate between
classes that have typically proven difficult to separate using multi-spectral information exclusively.
Franklin et al. [145], for example, demonstrated that a fusion of Landsat-8 and RADARSAT-2 data in an
object-based classification resulted in better producers’ accuracies for bog peatlands and fen peatlands
than either data type alone. Bog and fen have been shown to be difficult to discriminate due to their
ecological similarities, and the inclusion of SAR data may improve bog/fen discrimination results.

5.7.4. Elevation Data for Wetland Classification

Low-resolution digital elevation models (DEM) have been used in several wetland
studies [147,209,210]. Many studies use lower resolution DEMs because they are relatively inexpensive
or freely available, as is the case with the Canadian DEM or the USGS National Elevation Dataset,
which are available nationally at resolutions between 10 and 30 m (and 3 m in some regions of
the US). However, an increasing number of studies are applying the higher-resolution LiDAR data,
although it can be more costly. LiDAR is capable of providing three-dimensional information on the
Earth’s surface by measuring return signals from different surfaces at resolutions as high as 10 cm.
From LiDAR data, a number of elevation- and structure-related features of wetlands can be captured.
Notably, LiDAR can penetrate the vegetation canopy and allows for the characterization of wetland
vegetation structure, which is much less feasible using optical satellite imagery or when using SAR
in high-biomass areas [211]. Several studies have examined and applied LiDAR data to wetland
classification [123,127,146,212–215]. Millard and Richardson (2015) for example, classified peatland
wetlands using various LiDAR derivatives [73]. Through a variable reduction analysis, 15 of 32 LiDAR
derivatives were selected via Random Forest as the most important variables for peatland classification.
These variables included maximum vegetation height, vegetation density, and elevation, among others.
Lang et al. [216] investigated several LiDAR-derived metrics including topographic wetness indices
and normalized relief among others to determine which were most effective for mapping forested
wetlands. Their results supported the hypothesis that LiDAR derivatives are effective in improving
wetland mapping predictive power and that the utility of different derivatives is largely controlled by
geomorphology, lithology, weather, and anthropogenic alteration. Although LiDAR derivatives are
often used to identify areas where wetlands are likely to occur, studies also commonly use DEM-derived
masks of relatively high slope areas to reduce errors of commission in portions of the study area where
wetlands are not likely to occur.

A less common, but often highly effective use of LiDAR, is based not on the timing of LiDAR signal
return (i.e., elevation) but the strength of LiDAR returns. Along with information on elevation, LiDAR
intensity is also often provided to users. Although these data are often largely uncalibrated, they can
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provide critical information regarding inundation status below the plant canopy [217]. This information
is particularly helpful when mapping forested wetlands, which are the most common wetland type
in the U.S.A., but they are also among the most challenging to detect. Although this information is
not commonly available for large areas of North America, it can be used to enhance the accuracy of
products with a much broader spatial extent through the calibration/validation of satellite derived
products [218–220].

5.7.5. Multi-Source Data for Wetland Classification

The fusion of LiDAR with optical and SAR can produce the best overall accuracies compared to
any data type alone or any other combination of data types. The results of this review show that studies
using fusion data sets, including optical, SAR and LiDAR are comparable to the best results using
any data type alone (Figure 12). The inclusion of LiDAR derivatives improved the overall accuracy
results of a number of studies, including that of Franklin and Ahmed (2017), where the addition of a
number of derivatives from 1 m LiDAR data produced an overall accuracy of 91% which was almost a
10% increase compared to the use of RADARSAT-2 and Landsat-8 data alone, and an improvement
of about 5% over the fusion of both RADARSAT-2 and Landsat-8 [145]. The inclusion of LiDAR
derivatives such as roughness, surface relief ratio, potential wetness, and various topographic indices
specifically helped to improve the separability of bog and fen and swamp and upland, and the top
five variables for separating each wetland class were composed of at least one feature from each data
type. Jahncke et al. (2018) stated that the LiDAR DEM-derived data was the most important input into
their wetland classification, explaining that topography largely controls the distribution of water and,
in turn, largely controls the location of wetlands [213]. Additional considerations need to be made when
using a multi-source approach, which requires the resampling of imagery spatial resolution to allow
for image-to-image registration. Overall, there appears to be a weak negative relationship between
spatial resolution and overall accuracy. As spatial resolution decreases, the overall accuracy increases.

Wetlands are dynamic features that can change in terms of inundation and soil saturation extent
and vegetation phenology/composition within the span of months. This has made wetlands one of the
more difficult landscape features to map. Traditionally, wetlands were often mapped using a single date
of aerial photography. Although expert knowledge was often used to help infer average conditions,
this could be challenging. However, more recently, the availability of numerous sensors and data
types has allowed the dynamic nature of wetlands to be better represented through the use of data
fusion and time-series methods. As discussed above, optical, SAR, and elevation data are all uniquely
capable of capturing various traits of wetlands that are beneficial for wetland class discrimination
and delineation. Ignoring one of these features may affect the possibility of adequately distinguishing
wetland classes.

Datasets of interest for future research include Sentinel-1 and -2, LiDAR, and the RADARSAT
Constellation Mission. Sentinel’s SAR and optical imagery, available since 2014 and 2015, represent a
comparatively understudied source of free remote sensing data that offers a moderately high resolution
at 10 m and a band that captures spectral information at the red edge, which has frequently been
cited as an important feature for wetland classification [192]. Few studies have already examined
the applicability of Sentinel data in wetland classification with successful results [146,148,221,222].
Given that only five of the studies captured in this review employ the use of Sentinel-1 or -2 data, these
sensors represent a potential area of future wetland classification research. Similarly, although the data
is not always freely available, the application of LiDAR in wetland studies is relatively understudied,
occurring in only 13 studies captured in this review. Many of these studies emphasize the importance
of LiDAR derivatives in their classifications. Currently, there are a number of sources of LiDAR data
for the U.S.A., including Open Topography and USGS Earth Explorer, although coverage is patchy.
Although LiDAR is a beneficial source of information for wetland classification, it is not likely that
LiDAR data will be available for all of North America in the near future. Other potential sources of
high-quality elevation data may be found via the upcoming EarthDEM [223], the development of
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which is based on methods previously used to produce high-resolution terrain DEMs for the arctic with
resolutions varying between 2 and 5m. Finally, the RADARSAT Constellation Mission, launched in
June 2019, offers C-band SAR, compact polarimetry as a polarization option, and a short 4-day revisit
cycle, providing coverage over Canada with 350 km swaths. These studies [30,87,224] previously
demonstrated the successful potential of RCM data for mapping.

Given the increasing availability of higher spatial resolution data, the increasing scale of coverage,
and advancements in computing capabilities and speed, the last two years have seen research applying
remote sensing methodology and cloud computing to the classification of wetlands at the scale of
entire provinces and countries. For example, [148] recently produced a province-wide inventory map
of wetlands in Newfoundland and Labrador using Sentinel-1 SAR data, Sentinel-2 optical imagery,
and a Random Forest classification implemented in the Google Earth Engine (GEE). Additionally,
Campbell and Wang in [225] demonstrated that GEE can effectively be used to assess changes in
wetlands over large geographical areas and over long periods of time, as GEE allows for the effective
and efficient use of large numbers of images. These studies represent a recent shift toward generating
on-demand, large-scale classification maps, which were not previously possible given the difficulty of
collecting, storing and processing large amounts of remotely sensed data. It is likely that additional
wetland classifications will be implemented using cloud computing platforms, such as the GEE, in the
future. Cloud computing represents an important area of future research [226]. To date, all land-cover
mapping studies, including wetland mapping, have used machine learning algorithms to classify
satellite imagery in GEE. In September 2019, Google announced a new integration of GEE with Google
Cloud’s AI platform that allows remote sensing researchers to use deep learning models directly on
GEE data. This platform builds a potential road to investigate the capability of deep learning models
(e.g., Fully Convolutional Networks) for mapping wetlands on large scales.

6. Conclusions

This study was motivated by the popularity of wetland classification using remotely sensed data
in North America, and it should support the advancement of wetland classification methods. It is
important that the scientific community assesses historical methodological trends before deciding
which approaches to pursue in the future. This article facilitates this analysis. However, the impact of
classification on wetland conservation, restoration, and other important societal endeavors can also
be magnified by considering application requirements and the logistical limitations of operational
mapping programs when developing classification protocols. For example, some airborne imagery
may not be widely available, and some protocols may be impractical to implement at the regional,
yet alone national or continental scale. Furthermore, methods may work well at one study site, but not
another. This broader perspective can also help guide the development of classification protocols.

This study produced a database with general and specific fields related to wetland classification
generated from a meta-analysis of 157 scientific publications producing during the past 40 years.
Several conclusions can be drawn from these data as follows:

• The number of published North American wetland classification studies has been on the rise since
the mid-1990s. This trend is expected to continue, given the increasing availability of quality remote
sensing data, the launch of new remote sensing platforms, increases in computing capability,
and increasing interest in wetlands in the context of climate change research.

• Many locations in the U.S.A., Canada, and particularly Mexico offer novel locations for
wetlands classification research. In particular, within the U.S.A. and Canada, areas that contain
a lower density of wetlands and are further away from population centers have been mapped
less frequently.

• Landsat and RADARSAT-2 are the most commonly used optical and SAR datasets, respectively.
This is likely partially due to their relatively long history and low/no cost availability.
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• Unsurprisingly, high correlation was observed between spatial resolution and wetland
classification overall accuracy. This demonstrates that the higher spatial resolution of remote
sensing imagery may increase the overall accuracy of wetland mapping, at least until some
minimum threshold of resolution is met.

• Object-based and multi-temporal image analyses provide a distinct advantage for wetland
classification compared to pixel-based and single date image analysis. However, it should also be
noted that object-based analysis can be challenging to employ at the national or continental scale.

• Among different classification methods, CNN as a deep learning model, as well as RF and SVM,
as machine learning algorithms are the most successful classifiers for wetland mapping.

• Better overall accuracy is obtained when applying a fusion of data types, including optical, SAR,
and elevation data versus using any of these data types alone.

• Wetland classification studies in North America using Sentinel-1 and Sentinel-2 optical imagery is
sparse despite being freely available, providing 10 m resolution and a red-edge band important for
wetland classification. More research using these data are suggested. Similarly, LiDAR-derived
elevation data provide high spatial-resolution information on elevation, which is an important
contributor to wetland formation, but it is understudied compared to other data types. Therefore,
more research using LiDAR is suggested.

• Google Earth Engine offers an integrative platform for wetland classification via remote sensing.
The very recent ability to apply deep learning models has opened up new possibilities for
large-scale wetland classification research.

• This review has demonstrated that much of Mexico and large parts of the U.S.A. and Canada
have not had significant wetland classification efforts completed using remote sensing approaches.
As the number of satellites continues to increase and data are made more widely available, there is
the potential for more studies to be completed in these areas. Addressing these geographical gaps
would facilitate continental-scale wetland analysis, which may be of particular help to migratory
bird management and climate change research.

• Wetland classification through remote sensing technology at a continental scale is indeed feasible
given the development of machine learning algorithms and big data. This classification may be
facilitated by the development of a continental-scale wetland classification system.

• The future of wetland classification in North America will likely focus on the application of
multi-sensor, multi-temporal data available via cloud-based applications, including GEE and
Amazon Web Services (AWS).
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