See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/339292055

# Modeling hydrological inflow persistence using paleoclimate reconstructions on the Québec-Labrador (Canada) Peninsula

Article in Water Resources Research · February 2020



Some of the authors of this publication are also working on these related projects:

Millennial multi-proxy reconstruction of summer PDSI for southern south america View project

Statistical post-processing of ensemble weather forecasts View project

| 1  | Modeling hydrological inflow persistence using paleoclimate                                                                                   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | reconstructions on the Québec-Labrador (Canada) Peninsula                                                                                     |
|    |                                                                                                                                               |
| 3  | <b>B. R. Nasri</b> <sup>1</sup>                                                                                                               |
|    |                                                                                                                                               |
| 4  | É. Boucher <sup>2</sup>                                                                                                                       |
|    |                                                                                                                                               |
| 5  | L. Perreault <sup>3</sup>                                                                                                                     |
|    |                                                                                                                                               |
| 6  | B. N. Rémillard <sup>4</sup>                                                                                                                  |
|    | 5                                                                                                                                             |
| 7  | D. Huard                                                                                                                                      |
|    | A NP                                                                                                                                          |
| 8  | A. Nicault °                                                                                                                                  |
| 0  | Members of the ARCHIVES-PERSISTENCE projects $^7$                                                                                             |
| 9  | members of the meetin v LS-1 Excite 1 Englets                                                                                                 |
| 10 | <sup>1</sup> Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montréal, Québec, CANADA, H3A 0B9       |
| 11 | <sup>2</sup> Department of Geography, GEOTOP and Centre d'études nordiques, Université du Québec à Montréal, 1255 St-Denis, Montréal, Québec, |
| 12 | CANADA, H2X 3R9                                                                                                                               |
| 13 | <sup>3</sup> Hydro-Québec Research Institute                                                                                                  |
| 14 | <sup>4</sup> Department of Decision Sciences, HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montréal, Québec, CANADA, H3T 2A7        |
| 15 | <sup>5</sup> Ouranos, 550 Rue Sherbrooke W. West Tower, 19th floor Montréal, Québec, H3A 1B9                                                  |
| 16 | <sup>6</sup> ECCOREV, FR 3098, CNRS/Aix-Marseille Université, Europôle Méditerranéen de l'Arbois, BP 80, 13545 Aix-en-Provence cedex 4,       |
| 17 | France                                                                                                                                        |
| 18 | <sup>7</sup> Dominique Arseneault (Université du Québec à Rimouski), Christian Bégin (Geological Survey of Canada, Natural Resources Canada), |
| 19 | Martine M. Savard (Geological Survey of Canada, Natural Resources Canada), Yves Bégin (Institut National de la Recherche Scientifique,        |
| 20 | centre Eau-Terre-Environnement), Pierre Francus (Institut National de la Recherche Scientifique, centre Eau-Terre-Environnement), Patrick     |
| 21 | Lajeunesse (Université Laval).                                                                                                                |

\_\_\_\_

Corresponding author: Bouchra R. Nasri, bouchra.nasri@mail.mcgill.ca

## 22 Key Points:

| 23 | • Reservoir inflows have been reconstructed from tree-ring proxies over the last 200 years for four |
|----|-----------------------------------------------------------------------------------------------------|
| 24 | large watersheds on the Québec-Labrador Peninsula.                                                  |
| 25 | · Gaussian hidden Markov models accurately describe the regime-switching behavior seen in the       |
| 26 | observed and reconstructed inflow time series.                                                      |
| 27 | • A formal goodness-of-fit test is used to estimate the number of regimes of the Gaussian hidden    |
| 28 | Markov models.                                                                                      |
| 29 | • The accuracy of annual inflow forecasts can be improved by extending observational time series    |
| 30 | with 200-year paleoclimatic reconstructions.                                                        |

#### 31 Abstract

Annual inflow forecasts are often based on historical time series, where every year is considered equally 32 likely to reoccur. This process ignores the persistence of dry/wet conditions often observed in time se-33 ries, behavior that is of utmost importance for hydroelectric energy producers. However, the model-34 ing of persistence properties is challenging when only short time series are available for calibration. 35 Here, we use Gaussian hidden Markov models to describe the regime-switching behavior, where the 36 next year's inflow depends on the current estimated regime. For four large hydropower reservoirs on the 37 Québec-Labrador Peninsula, a Gaussian hidden Markov model is calibrated on both a 30-year obser-38 vational record and a 190-year paleoclimatic inflow reconstruction. Each reconstruction is a composite 39 of three reconstruction methods drawing on five different tree-ring proxies (ring widths, minimal wood 40 density, maximal wood density,  $\delta^{13}$ C and  $\delta^{18}$ O ). The calibration on the reconstructed series finds two 41 hydrological regimes, while the calibration on the observed data has only one regime for three out of 42 four watersheds. Yearly hindcasts with the two calibrated Gaussian hidden Markov models suggest that 43 for all four watersheds, extending the time series with reconstructions improves the model's predictive 44 accuracy. This approach does not explicitly account for the differing accuracy of the observational and 45 reconstructed time series or compare hidden Markov models to other models of persistence. 46

#### 47 **1 Introduction**

In Canada, the provinces of Québec, Manitoba and British Columbia rely almost exclusively on hydropower generation to meet electricity demand [*National Energy Board*, 2017]. Because space and water heating constitute a large fraction of the electrical load, power demand peaks in winter during cold snaps [*Hydro-Québec Distribution*, 2014]. By contrast, water inflows peak a few months later with the snow melt. This timing mismatch between water inflows and energy demand can be compensated by using reservoirs to build up stocks in preparation for winter. The largest reservoirs can regulate flows over multiple years, providing some measure of resilience to prolonged droughts.

<sup>55</sup> Management rules for reservoir operations are guided by the historical interplay between energy <sup>56</sup> demand and the water regime, accounting for natural fluctuations around average hydrological condi-<sup>57</sup> tions. For example, in the case of Hydro-Québec, Québec's provincial electric utility, reservoir levels <sup>58</sup> are regulated by the Québec Energy Board [*Hydro-Québec Production*, 2018] to ensure that the electric <sup>59</sup> utility has sufficient reserves to meet power demand in the event of prolonged low inflows. Persistent <sup>60</sup> dry conditions pose risks not only for power generation, but also for groundwater availability, forest <sup>61</sup> fires and ecosystems [*Diffenbaugh et al.*, 2015].



Figure 1. Observed 1960-2016 annual water supply time series for watersheds La Grande 2 (LG2), La Grande 4 (LG4),
 Caniapiscau (CAN) and Churchill Falls (CHU) located on the Québec-Labrador Peninsula, Canada.

In Québec-Labrador, reservoir inflows are based on historical streamflow records dating back to 62 the 1950's, and management rules implicitly assume that any past year is equally likely to reoccur next 63 year. This assumes independence and stationarity hypotheses that, as in many hydrologic time series, 64 are partially falsified by autocorrelation and climate change. Indeed, several authors have noted that the 65 behavior of hydroclimatic historical records often exhibits persistence in several distinct states with oc-66 casional transitions between these states; see e.g., Thyer and Kuczera [2000]. Figure 1 illustrates the 67 historical annual water supplies measured for four important watersheds in the Québec-Labrador re-68 gion. The geographical locations of these basins are presented in Figure 2. After examining these time 69 series, one may suspect the presence of local nonstationarity. Dry and wet sequences appear to have oc-70 curred, which may suggest that the annual inflows of these basins exhibit distinct shifting regimes. The 71 mid 1980's change-point corresponds to the beginning of the longest period of consecutive low flows in 72 Hydro-Québec's historical water supply time series. Moreover, these time series also appear to exhibit 73 abrupt changes in variability, for instance, in the early 1970's. These characteristics have led a num-74 ber of authors to study the available hydroclimatic time series in the region by using different types of 75 change-point and mixture models [Perreault et al., 2000; Perreault, 2001; Perreault et al., 2007; Jand-76 hyala et al., 2009; Evin et al., 2011; Merleau, 2017, 2018]. 77

Although the hypothesis of a stationary process for these time series should be questioned, the 80 relatively short length of observation records limit our ability to adequately describe the naturally-81 occurring hydrological fluctuations, especially when regime lengths span a decade or more [Wilhelm 82 et al., 2018]. Indeed, the perspective gained from observed records is limited to a few decades. From 83 an operational forecasting point of view, having a reliable model to describe the likelihood of prolonged 84 wet or dry periods is valuable, and being able to extend the hydrological time series would improve our 85 knowledge of long-term variability and persistence. Ideally, long time series (at least more than 100 86 years) that cover a broad spectrum of hydrological variability, from yearly to multidecadal variations, 87 would be used to adequately characterize long-term persistence, possible nonstationarity, and feed into 88 operational forecasting models. In addition, as shown in Thyer et al. [2006] in the context of Gaussian 89 hidden Markov models and autoregressive models, longer series significantly reduce model and para-90 metric uncertainties. 91

Where regimes cannot be accurately described and modeled from observed records, proxy data 92 may be used to extend the length of the hydrological time series beyond the period covered by instru-93 ments [Loaiciga et al., 1993]. In particular, moisture-sensitive tree-ring series provide annually resolved 94 records that cover a broad spectrum of hydrological variability. Tree-ring widths have been used to re-95 construct past hydrological conditions in arid regions in which the growth-limiting factor was water 96 availability [Stockton and Fritts, 1973; Smith and Stockton, 1981; Meko et al., 2001; Woodhouse and 97 Lukas, 2006; Woodhouse et al., 2013; Nicault et al., 2008]. In boreal regions, although water availabil-98 ity is not the main factor limiting tree growth, recent research has shown that the use of a multiproxy 99 approach (incorporating tree-ring widths, discrete markers of wood density and stable isotope fraction-100 ation of tree-ring cellulose) considerably strengthens hydrological reconstructions produced in high-101 latitude areas [Nicault et al., 2014a; Boucher et al., 2011a; Brigode et al., 2016; Boreux et al., 2009]. 102

Here, we show how multicentury tree-ring-based reconstructions may be used to shed light on 103 the characteristics of hydrological regimes in the context of intensive hydroelectric production. We use 104 an extensive, multiproxy tree-ring network to explore both the spatial and temporal variability of hy-105 drological regimes in large hydroelectric infrastructure, namely the La Grande (Québec, Canada) and 106 the Churchill Falls (Newfoundland-Labrador, Canada) hydroelectric facilities. Our objectives are (i) to 107 reconstruct water supplies to major hydroelectric generating stations over the past two centuries, (ii) 108 to use those reconstructions to characterize regime properties (average flow, variability, duration) and 109 model the probability of regime change under Gaussian hidden Markov models with a formal goodness-110 of-fit test, and (iii) to investigate the predictive ability of the selected Gaussian hidden Markov model 111 for each basin, using scoring rules suited for probabilistic forecasts. 112

-5-

#### **113 2** Methods and data

The reconstruction, conducted over four basins located in Québec and Labrador (Section 2.1), is based on both recent observations (1960–2000) of reservoir inflows and paleoclimatic reconstructions (1800–2000) made from a combination of three dendrochronological proxies (Section 2.2). The persistence analysis within the observed and reconstructed inflow time series until 1990 is analyzed through the prism of Gaussian HMMs (Section 2.3). The performance of these models when calibrated on observations and reconstructions are compared by performing hindcast experiments over the period 1991– 2016.

121

#### 2.1 Study area and hydrological data

Four watersheds draining into major hydropower reservoirs located in Québec and Labrador (Canada) 122 are considered in this study to illustrate our approach: La Grande 2 (LG2), La Grande 4 (LG4), Ca-123 niapiscau (CAN) and Churchill Falls (CHU). The watersheds all drain large areas, ranging from 28,440  $km^2$ 124 for the LG4 watershed to 69,141  $km^2$  for the CHU watershed. These basins feed major hydropower fa-125 cilities, and in this context, strategic management decisions are based on hydrological historical time 126 series and forecasts produced for these sites. Figure 2 illustrates the geographical location of the four 127 watersheds considered in this study. Watersheds LG2, LG4 and CAN are parts of the La Grande wa-128 ter resources system, one of the largest hydropower systems in North America. The CAN watershed 129 is the farthest upstream on the La Grande river. Each basin has a large reservoir and a power plant at 130 their outlet. The CHU basin also has a reservoir at its outlet and a single power plant. The total in-131 stalled capacity in these river basins constitutes approximately 30% of Hydro-Québec's total capacity. 132 The streamflow regime of these four watersheds is dominated by a northern climate, which favors snow 133 accumulation and low streamflow during winter (December to February), followed by high streamflow 134 during spring. 135

Generation planners face a variety of decisions in operating these systems. Two issues that are 136 common to every installation are safety and the respect of environmental laws and regulations. Since 137 these watersheds have large reservoirs to store water, the other main concerns are long-term energy 138 planning and optimization. Clearly, the future state of inflows plays a major role in the decisions, namely 139 for long-term strategies to set energy safety margins. Long hydrological informative time series and a 140 thorough knowledge of their statistical characteristics, such as persistence, are thus of paramount impor-141 tance. Daily observed streamflow data for all four basins have been provided by Hydro-Québec for the 142 1960-2016 period. The corresponding annual inflow time series are presented in Figure 1. Using these 143

-6-

observed data and dendrochonological tree-ring proxies, we reconstruct 200 years of annual inflows in
 order to overcome the lack of streamflow data for the last two centuries.

146

147

#### 2.2 Tree-ring reconstruction of water supplies

#### 2.2.1 Tree-ring proxies description

In total, 39 black spruce sites across the Québec-Labrador Peninsula were sampled for dendrochrono-148 logical analysis (Table 1). All sites are located between 53°N and 56°N and are found primarily in 149 open spruce-lichen woodlands, the most widely distributed forest ecosystem in Québec-Labrador's bo-150 real zone [Girard et al., 2008]. The locations are presented in Figure 2. A minimum of 10 trees were 151 sampled at each site. Only dominant trees with a symmetrical shape that were free from major growth 152 anomalies were selected. Collected cross sections were dried and finely sanded. At each of the 39 sites, 153 tree-rings were cross-dated and measured (two or three radii) using a micrometer with an accuracy of 154 0.001 mm (Velmex Inc., Bloomfield, NY). The dating accuracy was validated with the COFECHA soft-155 ware [Holmes, 1983]. 156

Wood densitometry measurements were performed on selected trees from 20 sites across the net-163 work (Table 1) based on standard procedures [Schweingruber et al., 1978, 1996]. Only discs without 164 anomalies (reaction wood, branches, rotten wood, etc.) were selected. Three wood samples per tree 165 were cut precisely into 1 mm laths, placed in a Soxhlet apparatus with ethanol for resin extraction, and 166 then X-rayed. To measure density, X-ray micrographs were analyzed on a DENDRO 2003 microdensit-167 ometer (Walesch, Switzerland). A cellulose acetate calibration wedge was used to convert the lightness 168 measurement into density  $(g.cm^{-3})$  values. The time series retained from this densitometry analysis 169 provided time series of the maximum (MXD) and minimum (MND) wood density. The tree-ring width 170 and density series were standardized using the age-band approach [Briffa et al., 2001]. 171

Analysis of carbon and oxygen stable isotopes ( $\delta^{13}$ C and  $\delta^{18}$ O) was performed at three sites 172 (DA1, HM1 and POOL). At each site, four radii were selected and subsampled on each disc. Growth 173 rings covering the 1800–2004 period were manually separated using stainless steel blades. For the 174 1940-2000 period, tree-rings were cut at an annual resolution. Before 1940, the resolution was bian-175 nual to reduce the number of analyses performed in periods where no climatic data were available. 176 Separated wood material from the same year was pooled, ground and homogenized.  $\alpha$ -cellulose was 177 extracted following Savard et al. [2004] to remove components that could create artifacts in the  $\delta^{13}$ C sig-178 nal due to their proportion changes in the wood (e.g., resin lipids, lignin).  $\delta^{13}$ C values were measured 179 from the  $\alpha$ -cellulose samples via elemental analysis (Carlo Erba) in a continuous-flow isotope ratio 180

\_7\_



Figure 2. The locations of the four watersheds are highlighted in dark grey (LG2 [La Grande 2], LG4 [La Grande 4], CAN
 [Caniapiscau], CHU [Churchill Falls]), and a tree-ring multiproxy network is used to reconstruct the annual water supplies at
 these sites and all the basins managed by Hydro-Québec.

**Table 1.** Tree-ring chronologies from Québec-Labrador, extending back to at least AD 1800, used to reconstruct wa-

ter supplies over the study area. RW: ring widths, MND: minimal wood density, MXD: maximal wood density,  $\delta^{13}$ C and

 $^{162}$   $\delta^{18}$ O stable isotope ratios.

| ID     | Site             | Latitude | Longitude | Elevation (m) | Distance to<br>Nb<br>sea (km) |    | EPS  | Proxy |     |     |              |   |
|--------|------------------|----------|-----------|---------------|-------------------------------|----|------|-------|-----|-----|--------------|---|
|        |                  |          |           |               |                               |    |      | RW    | MND | MXD | $\mathbb{C}$ | 0 |
| CANE   | Caniapiscau East | 54.44    | -68.37    | 688           | 450                           | 18 | 0.85 | Х     | х   | Х   |              |   |
| CEA    | Eaton Canyon     | 55.56    | -68.12    | 175           | 305                           | 28 | 0.91 | Х     | Х   | х   |              |   |
| CORILE | Corvette 1       | 53.37    | -74.05    | 324           | 323                           | 21 | 0.84 | Х     |     |     |              |   |
| CORPL  | Corvette 2       | 53.37    | -74.12    | 324           | 328                           | 29 | 0.94 | Х     |     |     |              |   |
| DA1M   | DA1 1            | 53.86    | -72.41    | 525           | 367                           | 14 | 0.85 | Х     | Х   | Х   | Х            | Х |
| DA1R   | DA1 2            | 53.86    | -72.41    | 523           | 367                           | 17 | 0.82 | Х     |     |     |              |   |
| DA1X   | DA1 3            | 53.86    | -72.41    | 523           | 367                           | 15 | 0.76 | Х     | Х   | Х   |              |   |
| HER    | Hervey           | 54.42    | -70.27    | 530           | 450                           | 17 | 0.82 | Х     |     |     |              |   |
| HH1    | Hurault 1A       | 54.24    | -70.82    | 541           | 432                           | 20 | 0.87 | Х     |     |     |              |   |
| HM1    | Hurault 1        | 54.25    | -70.78    | 551           | 434                           | 17 | 0.91 | Х     | Х   | Х   | Х            | Х |
| HM2    | Hurault 2        | 54.24    | -70.79    | 518           | 434                           | 18 | 0.86 | Х     | Х   | Х   |              |   |
| HUR    | Hurst            | 55.52    | -67.86    | 419           | 307                           | 13 | 0.74 | Х     |     |     |              |   |
| LAB17  | Churchill N      | 53.97    | -62.98    | 517           | 263                           | 13 | 0.80 | Х     | Х   | Х   |              |   |
| LAB19  | Trans Lab 1      | 53.29    | -62.62    | 440           | 300                           | 15 | 0.79 | Х     | Х   | Х   |              |   |
| LAB32  | Goose-Bay        | 53.61    | -60.89    | 265           | 200                           | 30 | 0.83 | Х     | Х   | Х   |              |   |
| LAB35  | Trans Lab 2      | 53.07    | -61.63    | 372           | 273                           | 14 | 0.83 | Х     | Х   | Х   |              |   |
| LAB42  | Esker road       | 53.83    | -66.40    | 490           | 400                           | 16 | 0.83 | Х     |     |     |              |   |
| LAB56  | Manic5           | 51.29    | -68.12    | 465           | 168                           | 13 | 0.89 | Х     |     |     |              |   |
| LAB65  | Manic5-2         | 51.29    | -68.12    | 462           | 173                           | 16 | 0.83 | Х     | Х   | Х   |              |   |
| LECA   | Clearwater 2     | 56.01    | -73.75    | 327           | 205                           | 19 | 0.87 | Х     | Х   | Х   |              |   |
| LJ2    | Jourdin2         | 54.37    | -73.79    | 445           | 261                           | 13 | 0.80 | Х     |     |     |              |   |
| NFL1V  | NFL1 V           | 53.52    | -77.63    | 218           | 94                            | 21 | 0.92 | Х     |     |     |              |   |
| NFL610 | NFL610           | 53.75    | -77.58    | 170           | 94                            | 10 | 0.66 | Х     |     |     |              |   |
| NFLR1  | NFL1C            | 53.63    | -77.70    | 201           | 87                            | 21 | 0.87 | Х     |     |     |              |   |
| NFLR2  | NFL1D            | 53.57    | -76.25    | 227           | 94                            | 29 | 0.93 | Х     |     |     |              |   |
| NFT75  | Trans-Taiga75    | 53.54    | -76.48    | 210           | 173                           | 10 | 0.76 | Х     |     |     |              |   |
| NIT    | Nitchequon       | 53.29    | -70.94    | 736           | 471                           | 17 | 0.82 | Х     |     |     |              |   |
| POOL   | Pool             | 55.72    | -66.89    | 485           | 285                           | 16 | 0.81 | Х     | Х   | Х   | Х            | Х |
| ROZM   | Roz 2            | 54.84    | -72.98    | 451           | 275                           | 21 | 0.86 | Х     | Х   | Х   |              |   |
| ROZX   | Roz 4            | 54.79    | -72.99    | 451           | 275                           | 21 | 0.82 | Х     | Х   | Х   |              |   |
| RT426  | Transtaïga 426   | 53.97    | -72.03    | 470           | 373                           | 10 | 0.77 | Х     | Х   | Х   |              |   |
| RT485  | Transtaïga 485   | 54.26    | -71.42    | 447           | 393                           | 16 | 0.83 | Х     | Х   | Х   |              |   |
| RT630  | Transtaïga 680   | 54.67    | -70.27    | 559           | 448                           | 12 | 0.78 | Х     | Х   | Х   |              |   |
| T1     | Tilly1           | 53.89    | -73.89    | 432           | 294                           | 22 | 0.71 | Х     | Х   | Х   |              |   |
| T4S    | Tilly 4          | 53.92    | -73.77    | 464           | 296                           | 10 | 0.89 | Х     |     |     |              |   |
| THH    | Thiers           | 53.74    | -72.30    | 556           | 380                           | 22 | 0.91 | Х     | Х   | х   |              |   |
| TI26   | TI26             | 54.00    | -71.92    | 500           | 370                           | 12 | 0.71 | Х     |     |     |              |   |
| TI41   | TI41             | 53.92    | -72.32    | 485           | 363                           | 12 | 0.81 | Х     |     |     |              |   |
| TIDA1  | TIDA1            | 53.86    | -72.41    | 529           | 345                           | 15 | 0.78 | х     |     |     |              |   |

mass spectrometer (CF-IRMS; Fisons Prism III). The external precision of the  $\delta^{13}$ C ratios obtained on duplicate samples (treatment and analysis) was 0.08 ‰. All  $\delta^{13}$ C values were corrected for the Suess effect and for changes in atmospheric [CO<sub>2</sub>] (PIN correction; *McCarroll et al.* [2009]). The oxygen isotopic ratios ( $\delta^{18}$ O) were measured with a pyrolysis-CF-IRMS (Delta plus XL), giving an external precision of 0.1‰.

186

### 2.2.2 Reconstruction methods

Previous annual water supplies to each of the four drainage basins (LG2, LG4, CAN, CHU) were 187 reconstructed back to 1800. The reconstruction approach applied here was the same as that in Nicault 188 et al. [2014a], and readers are referred to the original text for more detailed information on the meth-189 ods. In short, three different statistical modelling approaches were used to perform annual hydrological 190 reconstructions (Figure 3). Method 1 was based on the partial least squares approach, which represents 191 an extension of the principal components regression [Tenenhaus, 1998]. For Method 1, an initial re-192 construction was performed using the complete set of proxy series available in a 200-km radius around 193 each hydroelectric power generating station. Method 2 used the same partial least square approach, but 194 a selection of proxy series was performed based on the stepwise regression method. Only variables 195 with P-values smaller than 0.01 were retained and included in the reconstruction (Table 2). Automatic 196 selection of proxy records among the pool of available series was performed separately for each basin 197 for tree-ring widths, MXD and stable isotope proxies to ensure that each proxy type was represented 198 in the reconstructions. Selected proxy series were recombined into a single predictor matrix that was 199 used as an input for the partial least square method. Method 3 was performed based on the best ana-200 logue method, which aimed at identifying, for each year i in the past for which no inflow value existed, 201 the year k within the observed record that had the most similar proxy vector, according to an Euclidean 202 distance metric [Guiot et al., 2005; Nicault et al., 2008; Boucher et al., 2011b; Guiot et al., 2010]. 203

All reconstruction methods were calibrated with annual hydrological records from the 1961–2000 period, i.e., the maximal period covered by both tree-rings and hydrological data (Figure 3). Calibration (coefficient of determination:  $R^2$ , root-mean-squared error: RMSE) and validation (coefficient of determination for prediction:  $R_p^2$ , root-mean-squared error of prediction: RMSE<sub>p</sub>) statistics were calculated based on a jackknife (Method 1 and Method 2) or a bootstrap procedure (Method 3).

The reconstruction produced by each of the three approaches were combined into a single, more robust reconstruction that accounts for shortcomings associated with each calibration method and proxy series selection. As shown in LeBlanc and Tibshirani [1996] and in Chapter 16 of Hastie et al. [2009],

combining a collection of estimators can improve validation performance. Here, we applied the method 212 proposed by Nicault et al. [2014a] to obtain the final reconstruction. First, for each year reconstructed, 213 three Gaussian distributions were fitted based on the mean and standard deviation of each reconstruc-214 tion (Figure 3). Second, 500 samples were randomly drawn from an equally weighted mixture of these 215 Gaussian distributions. The composite reconstruction (COMP) corresponds to the mode of the mix-216 ture of distributions obtained for each year (Figure 3). The illustrated 90% confidence interval for the 217 composite reconstruction is given by the  $5^{th}$  and  $95^{th}$  percentiles of the mixture of distributions. All 218 analyses were performed in the R-project environment [R Core Team, 2017]. The validation statistics  $R_p^2$ 219 and  $RMSE_p$  for COMP were computed using a jackknife method. 220

230

231

#### 2.3 Time series modeling, persistence analysis, and forecasting

#### 2.3.1 Persistence

In hydrological time series, persistence is often associated with long memory through an autore-232 gressive fractionally integrated moving average model (ARFIMA); see, e.g., Hosking [1984]. In this 233 case, long memory is measured by the fractional differentiation parameter of the ARFIMA model and 234 is related to the Hurst exponent [Mandelbrot and Wallis, 1968]. This approach has largely been used 235 to detect long memory effects in hydroclimatological time series [Pelletier and Turcotte, 1997; Ault 236 et al., 2013, 2014; Koutsoyiannis, 2005]. However, by definition, the Hurst exponent may exist with-237 out implying long memory [Beran, 1994]. An interesting alternative to describe persistence in time 238 series is to use regime-switching models [Hamilton, 1990]. As shown in Diebold and Inoue [2001], 239 regime-switching models can exhibit long memory. In addition, these models are easy to interpret and 240 can easily be fitted to data. This type of model has also been used to detect long memory in hydro-241 climatological observed data [Thyer and Kuczera, 2000, 2003; Evin et al., 2011] and to model climatic 242 reconstructions from tree-ring time series [Bracken et al., 2014; Gennaretti et al., 2014]. Although the 243 class of regime-switching models is large, we restrict our attention to the simple model of Hamilton 244 [1990], which is also called a Gaussian hidden Markov model (HMM), since the annual reconstructed 245 and observed inflows in our study are well fitted by this model. Note that this model is the same as 246 that used by Thyer and Kuczera [2000, 2003]. In the Gaussian HMM setting, there are m hidden (non-247 observable) states or regimes, denoted  $\tau_t$  for period t, and the observations in each regime (annual in-248 flows) are distributed as an independent Gaussian distribution with its own mean  $\mu_i$  and standard devia-249 tion  $\sigma_j$ ,  $j \in 1, ..., m$ . The dynamics of regime switches are modeled by a Markov chain with transition 250 matrix denoted by Q, where  $Q_{ij}$  is the probability that the next regime is j given the current regime i. 251 In this model, persistence is measured by the number of switches between regimes. 252

-11-



Figure 3. The hydrological reconstruction approach used to reconstruct historical water supplies back to 1800. An illustration of the approach is presented for LG2 only, but the method remains the same for LG4, CAN and CHU. The three reconstructions were then combined into a single composite reconstruction. 500 samples were drawn from a mixture of three Gaussian distributions fitted for each year and for each method. The reconstructed water supply value corresponds to the mode of the mixture distribution. The confidence intervals represent the  $5^{th}$  and  $95^{th}$  percentiles. The composite reconstruction is illustrated separately for 1837, 1913, and 1948.

- Table 2. Available tree-ring proxies for each basin where annual water supplies were reconstructed. Method 1 (partial least
- square method) reconstruction used all available tree-ring proxies. Proxy series selected based on the stepwise regression

approach for Method 2 (partial least squares) and Method 3 (best analogue method) are in bold.

| ID     | LG2                                                             | LG4                                                                     | CAN                                                                     | СНИ                                                                     |
|--------|-----------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|
| NFLR1  | RW                                                              |                                                                         |                                                                         |                                                                         |
| NFL1V  | RW                                                              |                                                                         |                                                                         |                                                                         |
| NFL610 | RW                                                              |                                                                         |                                                                         |                                                                         |
| NFT75  | RW                                                              |                                                                         |                                                                         |                                                                         |
| NFLR2  | RW                                                              |                                                                         |                                                                         |                                                                         |
| CORPL  | RW                                                              | RW                                                                      |                                                                         |                                                                         |
| CORILE | RW                                                              | RW                                                                      |                                                                         |                                                                         |
| Т1     | RW, MXD, MND                                                    | RW, MXD, MND                                                            | RW, MXD, MND                                                            |                                                                         |
| LJ2    | RW                                                              | RW                                                                      | RW                                                                      |                                                                         |
| T4S    | RW                                                              | RW                                                                      | RW                                                                      |                                                                         |
| LECA   | RW, MXD, MND                                                    | RW, MXD, MND                                                            |                                                                         |                                                                         |
| ROZX   | RW, MXD, MND                                                    | RW, MXD, MND                                                            | RW, MXD, MND                                                            |                                                                         |
| ROZM   | RW, MXD, MND                                                    | RW, MXD, MND                                                            | RW, MXD, MND                                                            |                                                                         |
| TIDA1  | RW                                                              | RW                                                                      |                                                                         |                                                                         |
| DA1M   | RW, MXD, MND, $\delta^{13}\mathbf{C}$ , $\delta^{18}\mathbf{O}$ | RW, MXD, <b>MND</b> , $\delta^{13}\mathrm{C}$ , $\delta^{18}\mathrm{O}$ | RW, MXD, <b>MND</b> , $\delta^{13}\mathrm{C}$ , $\delta^{18}\mathrm{O}$ |                                                                         |
| DA1R   | RW,                                                             | RW,                                                                     | RW,                                                                     |                                                                         |
| DA1X   | RW, MXD, MND                                                    | RW, MXD, MND                                                            | RW, MXD, MND                                                            |                                                                         |
| TI41   | RW                                                              | RW                                                                      |                                                                         |                                                                         |
| THH    | RW, MXD, MND                                                    | RW, MXD, MND                                                            | RW                                                                      |                                                                         |
| RT426  | RW, MXD, MND                                                    | RW, MXD, MND                                                            | RW                                                                      |                                                                         |
| TI26   | RW                                                              | RW                                                                      |                                                                         |                                                                         |
| RT485  | RW, MXD, MND                                                    | RW, MXD, MND                                                            | RW                                                                      |                                                                         |
| NIT    | RW                                                              | RW                                                                      | RW                                                                      |                                                                         |
| HH1    |                                                                 | RW                                                                      | RW                                                                      | RW                                                                      |
| HM2    |                                                                 | RW, <b>MXD</b> , MND                                                    | RW, MXD, MND                                                            | RW, MXD, MND                                                            |
| HM1    |                                                                 | RW, MXD, MND, $\delta^{13}\mathrm{C}$ , $\delta^{18}\mathrm{O}$         | RW, MXD, MND, $\delta^{13}\mathrm{C}$ , $\delta^{18}\mathrm{O}$         | RW, <b>MXD</b> , MND, $\delta^{13}\mathrm{C}$ , $\delta^{18}\mathrm{O}$ |
| RT630  |                                                                 | RW                                                                      | RW                                                                      | RW                                                                      |
| HER    |                                                                 | RW                                                                      | RW                                                                      | RW                                                                      |
| CANE   |                                                                 | RW, MXD, MND                                                            | RW, MXD, MND                                                            | RW, MXD, MND                                                            |
| LAB56  |                                                                 |                                                                         |                                                                         | RW                                                                      |
| CEA    |                                                                 | RW, MXD, MND                                                            | RW, MXD, MND                                                            | RW, MXD, MND                                                            |
| HUR    |                                                                 | RW                                                                      | RW                                                                      | RW                                                                      |
| POOL   |                                                                 | RW, MXD, MND, $\delta^{13}\mathrm{C}$ , $\delta^{18}\mathrm{O}$         | RW, MXD, MND, $\delta^{13}\mathrm{C}$ , $\delta^{18}\mathrm{O}$         | RW, MXD, MND, $\delta^{13}{\rm C}$ , $\delta^{18}{\rm O}$               |
| LAB42  |                                                                 |                                                                         | RW                                                                      | RW                                                                      |
| LAB17  |                                                                 |                                                                         |                                                                         | RW, MXD, MND                                                            |
| LAB19  |                                                                 |                                                                         |                                                                         | RW, MXD, MND                                                            |
| LAB35  |                                                                 |                                                                         |                                                                         | RW, MXD, MND                                                            |
| LAB32  |                                                                 |                                                                         |                                                                         | RW, MXD, MND                                                            |

For example, if we take the simplest case of a Gaussian HMM with two regimes, the observations 253 in Regime 1 (resp. Regime 2) follow a Gaussian distribution with mean  $\mu_1$  (resp.  $\mu_2$ ) and standard de-254 viation  $\sigma_1$  (resp.  $\sigma_2$ ), and the transition probability matrix Q is given by  $Q_{11}$  (probability of remaining 255 in Regime 1),  $Q_{22}$  (probability of remaining in Regime 2) and  $Q_{12} = 1 - Q_{11}$  and  $Q_{21} = 1 - Q_{22}$ 256 (probabilities of switching from Regime 1 to Regime 2 and from Regime 2 to Regime 1). Figure 4 257 illustrates the dynamics of a two-regime Markov chain. Furthermore, on the right-hand side, we gen-258 erated a Markov chain of length 200 with  $Q_{11} = 0.98$  and  $Q_{22} = 0.96$ . In this case, we see that there 259 are 5 switches. In the next two sections, we develop the estimation and forecasting procedures for the 260 Gaussian HMM. All computations and estimations described next are done using the CRAN package 261 GaussianHMM1d (https://CRAN.R-project.org/package=GaussianHMM1d) [Nasri and Rémil-262 lard, 2019b]. 263

![](_page_14_Figure_2.jpeg)

Figure 4. Simulation of a hidden Markov model with two regimes and  $2 \times 2$  transition matrix Q where  $Q_{11} = 0.98$ ,  $Q_{12} = 0.02$ ,  $Q_{21} = 0.04$ , and  $Q_{22} = 0.96$ .

266

#### 2.3.2 Gaussian HMM

Let *Y* be the variable of interest and let  $y_1, \ldots, y_n$  be the observations for periods  $t \in \{1, \ldots, n\}$ . Further let  $\tau_1, \ldots, \tau_n$  be the non-observable regimes, modeled by a homogeneous discrete-time Markov chain on  $S = \{1, \ldots, m\}$  with transition probability matrix *Q* on *S*×*S*. Given  $\tau_1, \ldots, \tau_n$ , the observations  $y_1, \ldots, y_n$  are independent with densities  $f_{\beta_{\tau_t}}, t \in \{1, \ldots, n\}$ . Set  $\theta = (\beta_1, \ldots, \beta_m, Q)$ , where in the Gaussian HMM,  $\beta_j = (\mu_j, \sigma_j)$  (the parameters of the Gaussian distribution),  $j \in 1, \ldots, m$ . Then, the joint density of  $(\tau_1, \ldots, \tau_n)$  and  $(y_1, \ldots, y_n)$  is given by

$$f_{\boldsymbol{\theta}}(\tau_1,\ldots,\tau_n,y_1,\ldots,y_n) = \left(\prod_{t=1}^n Q_{\tau_{t-1},\tau_t}\right) \times \prod_{t=1}^n f_{\boldsymbol{\beta}_{\tau_t}}(y_t),\tag{1}$$

where  $\tau_0$  is the first hidden state.

Since the regimes  $\tau_1, \ldots, \tau_n$  are not observable, an easy way to estimate the parameters for a

fixed number of regimes *m* is to use the Expectation-Maximization (EM) algorithm [*Dempster et al.*,

<sup>276</sup> 1977], which proceeds in two steps: the E step, during which

$$E_{y_1,\ldots,y_n}\left(\boldsymbol{\theta},\boldsymbol{\theta}^{(k)}\right) = \mathbb{E}_{\boldsymbol{\theta}^{(k)}}\left\{\log f_{\boldsymbol{\theta}}(\tau_1,\ldots,\tau_n,y_1,\ldots,y_n)|Y_1=y_1,\ldots,Y_n=y_n\right\}$$
(2)

is computed, and the M step, where we compute

$$\boldsymbol{\theta}^{(k+1)} = \arg \max_{\boldsymbol{\theta}} E_{y_1, \dots, y_n} \left( \boldsymbol{\theta}, \boldsymbol{\theta}^{(k)} \right), \tag{3}$$

for k = 0, ..., N. Here N, fixed by the user, is the maximum number of iterations allowable to reach 278 the optimality tolerance (eps), also fixed by the user. In this paper, we chose N = 10000 and eps = 279  $10^{-4}$ . The equations related to the EM algorithm for the Gaussian HHM are described in Appendix A. 280 They are implemented in the function *EstHMM1d.R* of the package *GaussianHMM1d*. To choose an 281 optimal number of regimes m based on a given dataset, we can use the formal goodness-of fit test pro-282 posed by *Rémillard* [2013], who suggests choosing the smallest m for which the *P*-value is greater than 283 5%. In the literature, the selection of the number of regimes is usually based on a maximum likelihood 284 criterion, such as AIC or BIC, see, e.g., Bracken et al. [2016]. This selection procedure only compares 285 models without any knowledge of their validity. Note that this goodness-of-fit test is described in Ap-286 pendix B and is implemented in the function GofHMM1d.R of the package GaussianHMM1d. 287

There are two ways to estimate the probability of being in regime j at period t: we can con-288 sider only the observations up to period t, and compute  $\eta_t(j) = P(\tau_t = j | Y_1 = y_1, \dots, Y_t = y_t)$ , 289  $j \in \{1, \ldots, m\}$ , using formulas (A.2)–(A.3), or we can consider all the observations and compute 290  $\lambda_t(j) = P(\tau_t = j | Y_1 = y_1, \dots, Y_n = y_n)$ , using formula (A.6). In both cases, the estimated regime at 291 period t, denoted by  $\hat{\tau}_t$ , is the regime with the largest probability, i.e.,  $\eta_t(\hat{\tau}_t) \geq \max_{j \in \{1,...,m\}} \eta_t(j)$  (resp. 292  $\lambda_t(\hat{\tau}_t) \geq \max_{j \in \{1,...,m\}} \lambda_t(j)$ . Generally  $\lambda_t$  is used for estimating the regimes while  $\eta_t$  is used for pre-293 diction purposes since computing  $\lambda_t$  requires all observations. Note that both  $\eta_t$  and  $\lambda_t$  can be cal-294 culated using the function EstHMM1d.R, while the regimes can be estimated using the function Es-295 tRegime.R of package GaussianHMM1d. After selecting the optimal number of regimes and estimating 296 the parameters, persistence can be measured in terms of the number of switches during the observed 297 period, using the estimated regimes  $\hat{\tau}_1, \ldots, \hat{\tau}_n$ . More precisely, the number of switches is defined as 298

 $R_n = \sum_{t=2}^n \mathbb{I}(\hat{\tau}_{t-1} \neq \hat{\tau}_t)$ . It can also be calculated with the function *EstRegime.R* of package *GaussianHMM1d*. The smaller  $R_n$  is, the more persistent the series. We can also approximate the long-term probability  $v_j$  of being in each regime  $j \in \{1, ..., m\}$  by using the transition matrix and the definition of the stationary distribution of a Markov chain. These probabilities represent the average percentage of time spent in each regime.

304

#### 2.3.3 Forecasting using Gaussian HMM

Suppose that we observed  $Y_1, \ldots, Y_t$  and we want to forecast  $Y_{t+k}$ . Then the conditional density  $f_{t+k|1:t}$ of  $Y_{t+k}$  given  $Y_1, \ldots, Y_t$  is expressed as a mixture of the Gaussian densities  $f_{\beta_i}$ , viz.

$$f_{t+k|1:t}(y,\boldsymbol{\theta}) = \sum_{i=1}^{m} f_{\boldsymbol{\beta}_i}(y) \left\{ \sum_{j=1}^{m} \eta_t(j) \left( \boldsymbol{Q}^k \right)_{ji} \right\},\tag{4}$$

which is also a mixture of the Gaussian densities  $f_{\beta_i}$  with weights  $P(\tau_{t+k} = i|Y_1 = y_1, ..., Y_t =$   $y_t) = \sum_{j=1}^m \eta_t(j) (Q^k)_{ji}$ , for  $i \in \{1, ..., m\}$ . The conditional distribution function  $F_{t+k|1:t}$  of  $Y_{t+k}$  given  $Y_1, ..., Y_t$  is then expressed as

$$F_{t+k|1:t}(y,\boldsymbol{\theta}) = \sum_{i=1}^{m} \boldsymbol{\Phi}\left(\frac{y-\mu_i}{\sigma_i}\right) \left\{ \sum_{j=1}^{m} \eta_t(j) \left(\boldsymbol{Q}^k\right)_{ji} \right\}.$$
(5)

where  $\Phi$  is the cumulative distribution function of the standard Gaussian distribution. Using Equation 310 (5) we can compute the conditional median and more generally the conditional quantile function as 311 the inverse of the conditional distribution function  $F_{t+k|1:t}$ , for which there is no explicit expression; 312 the inverse must be computed numerically. A 95% prediction confidence interval for  $Y_{t+k}$  is given by 313  $\left|F_{t+k|1:t}^{-1}(.025), F_{t+k|1:t}^{-1}(.975)\right|$ . Note that as k increases, the behavior of  $Y_{t+k}$  becomes independent of its 314 past [Rémillard, 2013, p.382-383], leading to constant prediction intervals. This is due to the fact that 315 if the Markov chain with transition matrix Q is ergodic, then the conditional distribution of  $Y_{t+k}$  given 316  $Y_1, \ldots, Y_t$ , converges, as  $k \to \infty$ , to the stationary distribution with density  $f(y) = \sum_{i=1}^m v_i f_{\beta_i}(y)$  and 317 distribution function  $F(y) = \sum_{i=1}^{m} v_i \Phi\left(\frac{y-\mu_i}{\sigma_i}\right)$ . The next period forecast is obtained by letting k = 1. 318 Finally, note that formulas (4)-(5), including the conditional quantile function, are implemented in the 319 functions ForecastHMMPdf.R, ForecastHMMPdf.R, GaussianMixtureCdf.R, and GaussianMixtureInv.R 320 of the package GaussianHMM1d. 321

322

#### 2.3.4 Application of Gaussian HMM to our case study

In this paper, we consider the Gaussian HMM for modeling inflows for four basins: LG2, LG4, CAN, and CHU. For each basin, we have two times series: reconstructed data from 1800 to 2000, and observed data from 1960 to 2016. A logarithm transformation of the inflows (observed and recon-

![](_page_17_Figure_1.jpeg)

$$\hat{D}(u) = \frac{1}{26} \sum_{t=1991}^{2016} \mathbf{1}\{F_{t|1:t-1}(Y_t, \theta_n) \le u\}, \quad u \in [0, 1].$$
(6)

<sup>349</sup> Under the hypothesis that the model is appropriate,  $\hat{D}$  should be uniformly distributed. Note that here, <sup>350</sup> instead of using only one statistic, we use the full distribution of the predicted values. As a result, we <sup>351</sup> define two scoring rules based on  $\hat{D}$ , namely the Kolmogorov-Smirnov (*ks*) and the Cramér-von Mises <sup>352</sup> (*cvm*) statistics defined respectively by

$$ks = \max_{u \in [0,1]} \sqrt{26} \left| \hat{D}(u) - u \right|$$
(7)

353 and

$$cvm = 26 \int_0^1 \left\{ \hat{D}(u) - u \right\}^2 du.$$
 (8)

-17-

These metrics, which can only be used for the one-period prediction since  $F_{t+k|1:t-1}(Y_t, \theta)$  is not uni-

form [Bai, 2003], are negatively oriented, in the sense that smaller values of ks and cvm indicate more

reliable probabilistic forecasts. Note that Equations (6)–(8) can be used for any dynamic model, not just

<sup>357</sup> Gaussian HMM. Finally, we use these statistics only as metric scores, not for goodness-of fit testing.

#### 358 3 Results

After calibration and verification of the reconstructions from the individual proxies, the time series are combined into a single reconstruction for each basin (Section 3.1). Gaussian HMMs are then fitted to the reconstructions and to the recent observation time series (Section 3.2). These Gaussian HMMs are used to hindcast water inflows to compare the benefits, if any, of using longer, less accurate, annual inflow reconstructions in an operational setting (Section 3.3).

#### 364

#### 3.1 Calibration and validation of the reconstructions

Calibration statistics between tree-ring series and annual (Jan-Dec) inflow data (1960-2000) in-370 dicate that our proxy network and modeling approach can be used to reconstruct past water supplies 371 beyond hydrological observations across the Québec-Labrador Peninsula. In LG2 and LG4, Method 1 372 yields the highest calibration  $R^2$  statistics (0.74 and 0.79, respectively, see Table 3). In CAN and CHU, 373 the highest calibration R<sup>2</sup> statistics are obtained by Method 2. The RMSE values (Table 3) are gener-374 ally smaller than the standard deviations calculated for the 1960-2000 period for most methods (Table 375 4), which indicates that the reconstruction models are more accurate than the mean for prediction pur-376 poses. However, the verification  $R_p^2$  and  $RMSE_p$  statistics suggest that Method 1 generally has lower 377 predictive skill (lower  $R_p^2$ , higher RMSE<sub>p</sub>). By contrast, Method 3 has the best predictive skill, with 378 the highest  $R_p^2$  and lowest RMSE<sub>p</sub>. Combining the three reconstructions for each basin produces re-379 constructions with high calibration  $R^2$  statistics: 0.70 (LG2), 0.75 (LG4), 0.64 (CAN) and 0.76 (CHU) 380 (Table 3). Except for CHU, these statistics are well within the bounds of those of the three models used 381 to compute the individual reconstructions, indicating that the composite reconstructions (COMP) inte-382 grate the strengths and possible weaknesses associated with each method and proxy selection. The four 383 composite reconstructions extend the inflow records back to 1800 CE for each hydroelectric reservoir 384 under study (Figure 5). 385

From Table 4, we see that the main descriptive statistics are comparable for the reconstructed and the observed data, with the exception of the standard deviations, which are about 33% larger for the

-18-

in each method,  $R^2$  (resp.,  $R_p^2$ ) is the determination coefficient calculated on calibration data (resp., verification data), and

RMSE (resp.,  $RMSE_p$ ) is the root-mean-square error calculated on calibration data (resp., verification data).

| Statistics | series_nb | $\mathbb{R}^2$ | $R_p^2$ | RMSE | RMSE <sub>p</sub> | series_nb | $\mathbb{R}^2$ | $R_p^2$ | RMSE | RMSE <sub>p</sub> |
|------------|-----------|----------------|---------|------|-------------------|-----------|----------------|---------|------|-------------------|
| Basin      |           |                | LG2     |      |                   |           |                | LG4     |      |                   |
| Method 1   | 43        | 0.74           | 0.38    | 0.14 | 0.22              | 60        | 0.79           | 0.20    | 0.13 | 0.25              |
| Method 2   | 14        | 0.63           | 0.46    | 0.17 | 0.21              | 12        | 0.72           | 0.46    | 0.15 | 0.21              |
| Method 3   | 14        | 0.53           | 0.53    | 0.18 | 0.17              | 12        | 0.50           | 0.54    | 0.20 | 0.18              |
| COMP       | -         | 0.70           | 0.69    | 0.15 | 0.16              | -         | 0.75           | 0.75    | 0.14 | 0.14              |
| Basin      |           |                | CAN     |      |                   |           |                | CHU     |      |                   |
| Method 1   | 50        | 0.68           | 0.40    | 0.15 | 0.20              | 61        | 0.71           | 0.45    | 0.17 | 0.20              |
| Method 2   | 10        | 0.70           | 0.52    | 0.14 | 0.18              | 12        | 0.75           | 0.60    | 0.12 | 0.14              |
| Method 3   | 10        | 0.69           | 0.66    | 0.14 | 0.18              | 12        | 0.68           | 0.68    | 0.15 | 0.15              |
| COMP       | -         | 0.64           | 0.65    | 0.17 | 0.18              | -         | 0.76           | 0.77    | 0.12 | 0.13              |

Table 4. Descriptive statistics for each basin and for two time periods: observations (1960–2000) and reconstructions

369 (1800–2000). NS= Not significant. \*= *P*-value <0.05

|       |                          | 1960-2000                 |       | 1800-2000                 |       |
|-------|--------------------------|---------------------------|-------|---------------------------|-------|
| Basin | Area ( km <sup>2</sup> ) | Mean (Std.Dev.) (mm /day) | Trend | Mean (Std.Dev.) (mm /day) | Trend |
| LG2   | 30 989                   | 1.20 (0.28)               | NS    | 1.16 (0.21)               | NS    |
| LG4   | 28 440                   | 1.67 (0.28)               | NS    | 1.65 (0.21)               | 0.03* |
| CAN   | 37 330                   | 1.73 (0.28)               | NS    | 1.72 (0.21)               | NS    |
| CHU   | 69 141                   | 1.73 (0.26)               | NS    | 1.74 (0.21)               | NS    |

observed data. However, these differences will have no significant impact in the results of the next two
 sections.

393

#### 3.2 Regimes and persistence for the reconstructed and observed data

Following Section 2.3.4, we choose the appropriate Gaussian HMM for observed and reconstructed data. Based on the goodness-of-fit test proposed in *Rémillard* [2013] and described in Ap-

Table 3. Statistical results for the annual water inflows reconstructions: series\_nb represents the number of series involved

![](_page_20_Figure_1.jpeg)

Figure 5. Composite reconstructions of annual water supply (mm/day) back to 1800 CE for each watershed. For each year reconstructed, the bold line corresponds to the mode of the joint distribution (see Figure 3) and the envelope represents the 90% bootstrap confidence interval. Observed annual water supplies are overlaid in black.

pendix B, the selected model for the reconstructed log-transformed data is a Gaussian HMM with two 396 regimes. The P-values, listed in Table 5, are estimated with B = 10000 bootstrap samples, and all 397 P-values for the reconstructed data and HMM with two regimes are larger than 5%. Note that for the 398 LG4 watershed, we could not reject the Gaussian HMM with only one regime. Since the P-value is 399 only slightly greater than 5%, the Gaussian HMM with two regimes is preferable. Therefore, the mean 400 for the original reconstructed data for regime j is given by  $\mu_{dat_i} = \exp(\mu_j + \sigma_i^2/2), j \in \{1, 2\}$ , and 401 Regime 1 is defined as the wetter regime. Table 6 gives the estimated parameters for the selected mod-402 els for each reconstructed time series. The behavior of the four studied stations is quite different in 403 terms of persistence. In fact, as measured by the number of switches, the persistence decreases from 404 western (LG2,  $R_n = 6$ ; LG4,  $R_n = 12$ ) to eastern watersheds (CAN,  $R_n = 20$ ; CHU,  $R_n = 30$ ). 405 Similar behavior is observed in terms of the average time spent in the wetter regimes before switch-406 ing as a function of  $Q_{11}$ , which is larger for LG2 ( $Q_{11} = 0.975$ ) and LG4 ( $Q_{11} = 0.937$ ) than for CAN 407  $(Q_{11} = 0.867)$  and CHU  $(Q_{11} = 0.804)$ . Furthermore, for the LG2 and LG4 basins, as measured by  $v_1$ , 408 at least 60% of the time is spent in the wetter regime. For CAN, the opposite behavior is observed, i.e., 409 41% of the time is spent in Regime 1. For the CHU basin, the percentage of time spent in Regime 1 is 410

not significantly different from that spent in Regime 2 (50%). The difference in the number of switches 411 of the four studied time series is also displayed graphically in Figure 6. 412

Next, for the observed data, Table 5 shows that a Gaussian HMM model with one regime is se-413 lected for the LG4, CAN and CHU watersheds, while for LG2, two regimes are selected. Table 6 also 414 shows the statistical results related to the observed data. Note that during the overlapping period, the 415 reconstructed data and observed data for the LG2 basin behave similarly in terms of the number of 416 switches. 417

Table 5. P-values in percentage for the Gaussian HMM for each basin and for two time periods: observations (1960–1990) 418 and reconstructions (1800-1990), the symbol \* indicates that the P-values for the HMM are very close to 5%; in this case, 419 420 one might also use the model with one more regime.

|       | 1960– | 1990  | 1800-1990 |        |       |  |  |  |  |
|-------|-------|-------|-----------|--------|-------|--|--|--|--|
| Basin | HMM1  | HMM2  | HMM1      | HMM2   | HMM3  |  |  |  |  |
| LG2   | 4.18  | 25.47 | 0.03      | 21.23  | 10.53 |  |  |  |  |
| LG4   | 38.80 | 5.29  | 5.35      | 50.06* | 55.22 |  |  |  |  |
| CAN   | 89.09 | 70.59 | 1.75      | 8.11   | 38.85 |  |  |  |  |
| CHU   | 20.39 | 74.80 | 1.54      | 17.20  | 67.06 |  |  |  |  |

430

Finally, to illustrate the fit of the reconstructed data with the proposed GHMM models, for each station, we estimated the density of the log data using the kernel method, we plotted the Gaussian den-431 sities for each of the two regimes, and we plotted the mixture of these two regimes using the weights 432  $v_1, v_2$  given in Table 6 since the density obtained using the kernel method is an estimation of the sta-433 tionary density. These results are displayed in Figure 7. We can see that the density estimated with the 434 kernel method is always close to the density estimated by the mixture. 435

436

#### 3.3 Hindcast experiments

In this section, we evaluate the predictive ability of Gaussian HMMs in hindcast experiments. 437 We compare observation data with 1-year hindcasts and longer-term hindcasts based on the predictive 438 distribution functions expressed by Equation (5). In the former case, we used the observed data to im-439 prove the hindcast. In addition, we compute the Kolmogorov-Smirnov and Cramér-von Mises scores 440

![](_page_22_Figure_1.jpeg)

Figure 6. Estimated regimes for the four stations over 190 years. The dashed lines represent the regime jumps, where the horizontal parts are the mean of each regime.

to compare the quality of the 1-year hindcasts provided by the chosen models using the observed and reconstructed data.

The 95% prediction intervals for the period 1991-2016 are displayed in Figure 8. Based on the 443 left-hand side graphs, we can see that the prediction intervals are almost constant after three years, 444 which shows that the predictive distribution converges rapidly to the stationary distribution. By con-445 trast, for 1-year hindcasts, the prediction intervals on the right-hand side for the Gaussian HMM model 446 with two regimes vary considerably since we incorporate new information each year. Furthermore, the 447 prediction intervals for the Gaussian HMM with only one regime are constant over time and are much 448 less informative. The most important feature of Figure 8 is that the prediction intervals computed with 449 the reconstructed data are more precise than those based on the observed data, mainly due to the fact 450 that the reconstructed datasets are longer, and as a result, they help in building more accurate models. 451

Table 6. Estimated parameters for the Gaussian HMM with two regimes for the four reconstructed time series from 1800 to 1990 and the four observed data from 1960 to 1990.  $\mu_j$  (mm/day) and  $\sigma_j$  (mm/day) are, respectively, the mean and standard deviation of regime *j* for the logarithmic-transformed series,  $\mu_{dat j}$  (mm/day) is the mean of regime *j* for the series,  $Q_{jj}$  is the probability of staying in regime *j*,  $\tau_j = \frac{Q_{jj}}{1-Q_{jj}}$  (year) is the average time spent in regime *j* before changing regimes,  $v_j$ 

| 427 | (%) is t | he proportion | of time | spent in | regime | <i>j</i> , and | $R_n$ | is | the | number | of | switch | es. |
|-----|----------|---------------|---------|----------|--------|----------------|-------|----|-----|--------|----|--------|-----|
|-----|----------|---------------|---------|----------|--------|----------------|-------|----|-----|--------|----|--------|-----|

|              |       | 19     | 960–1990 | )     |       | 1800-1990 |        |       |       |       |       |       |       |  |
|--------------|-------|--------|----------|-------|-------|-----------|--------|-------|-------|-------|-------|-------|-------|--|
| Station      | LC    | 62     | LG4      | CAN   | CHU   | LC        | 62     | LG    | 4     | CA    | N     | СН    | J     |  |
| Regime       | 1     | 2      | 1        | 1     | 1     | 1         | 2      | 1     | 2     | 1     | 2     | 1     | 2     |  |
| $\mu_j$      | 0.267 | -0.165 | 0.511    | 0.564 | 0.556 | 0.206     | -0.046 | 0.554 | 0.394 | 0.634 | 0.475 | 0.632 | 0.452 |  |
| $\mu_{datj}$ | 1.321 | 0.876  | 1.692    | 1.781 | 1.765 | 1.241     | 0.976  | 1.750 | 1.490 | 1.892 | 1.613 | 1.887 | 1.576 |  |
| $\sigma_{j}$ | 0.151 | 0.261  | 0.171    | 0.160 | 0.150 | 0.135     | 0.211  | 0.101 | 0.097 | 0.084 | 0.074 | 0.073 | 0.082 |  |
| $Q_{jj}$     | 0.962 | 0.996  | _        | _     | _     | 0.975     | 0.950  | 0.937 | 0.904 | 0.867 | 0.916 | 0.836 | 0.804 |  |
| $	au_j$      | 25.76 | 271.8  | _        | _     | _     | 39.52     | 19.17  | 14.97 | 9.44  | 6.566 | 10.92 | 5.109 | 4.116 |  |
| $\nu_j$      | 86.63 | 13.3   | _        | _     | _     | 73.21     | 26.78  | 63.43 | 36.56 | 40.99 | 59.00 | 55.48 | 44.51 |  |
| $R_n$        | 2     |        | -        | _     | _     | 6         |        | 12    | 2     | 20    | )     | 30    |       |  |

This conclusion is consolidated by the results displayed in Table 7 for 1-year forecasts, which show 452 that the ks and cvm scores are all smaller for the model based on reconstructed data. In addition, we 453 computed the mean absolute deviation (MAD) and the root mean square error (RMSE) between the 454 predicted means and the observations from 1991 to 2016. The results are given in Table 8. The MAD 455 values are all smaller for the reconstructed values. The same is true for the RMSE for all stations but 456 LG4, but the difference between the two RMSE values is quite small (0.008). The overall conclusion 457 from Tables 7 and 8 is that the model based on the reconstruction yields in general better predictions 458 that the model based on the observed data. 459

Using the results of 1-year forecasts, we computed the 26 years predictive probabilities of being in Regime 2 (dry). Figure 10 shows these probabilities for the four basins. Note that the LG2 and LG4 basins spend respectively 16 and 18 years in the wet regime (probability of being in Regime 2 below 0.5), while CAN and CHU spend respectively 10 and 5 years in the wet regime. Over the predictive period, LG2 has only one regime switch, while the others have almost 9 regime switches. To assess the performance of the regime prediction, we performed 10,000 Monte Carlo simulations using

-23-

![](_page_24_Figure_1.jpeg)

Figure 7. Estimated densities for the log data using the kernel method, together with the Gaussian densities for each of the
 two regimes and the stationary density.

the same estimated parameters obtained for the four basins over the period 1800–1990. We found that 468 using a series of length 190 for the estimation of the parameters and with 26 observations used for the 469 predictions, the regimes are predicted correctly about 90% of the time. It means, in our case, that on 470 average less than 3 regimes might be incorrectly predicted. Finally, as a complement of information, 471 we included in the Supplementary Material a video showing the evolution of the predictive densities for 472 the four basins calculated using Equation (4) for the reconstructed and the observed data. We can see 473 clearly that when there is a large probability of being in Regime 1 (resp. 2), the predictive density from 474 the reconstructed data is shifted to the right (resp. left) and has basically mean  $\mu_{dat}$  given in Table 6. 475 For the observed data, we can see that for LG2, the predictive densities have similar behavior as for the 476 reconstructed data, while for the other three basins the predictive densities from the observed data are 477 constant since the best model in these cases are Gaussian HMM with one regime. 478

Finally, we computed the prediction densities for each model and each station for 2005 and 2015, together with the observed value for the year. These graphs are displayed in Figure 9.

- Table 7. Scores for 1-year forecasts for the period 1991-2016 based on the selected models for reconstructed data (1800-460
- 1990) and for observed data (1960-1990). 461

| Score         |       | ks    | 5     |       |       | cvn   | 1     |       |
|---------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Station       | LG2   | LG4   | CAN   | CHU   | LG2   | LG4   | CAN   | CHU   |
| Reconstructed | 1.396 | 0.622 | 1.000 | 0.787 | 0.630 | 0.102 | 0.216 | 0.159 |
| Observed      | 1.563 | 0.664 | 1.056 | 1.571 | 0.807 | 0.102 | 0.269 | 0.611 |

Table 8. Mean absolute deviation (MAD) and root mean square errors (RMSE) for 1-year forecasts for the period 1991-479 2016 based on the selected models for reconstructed data (1800–1990) and for observed data (1960–1990).

| Score         |       | MA    | ۰D    |       | RMSE  |       |       |       |  |  |
|---------------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| Station       | LG2   | LG4   | CAN   | CHU   | LG2   | LG4   | CAN   | CHU   |  |  |
| Reconstructed | 0.192 | 0.175 | 0.187 | 0.125 | 0.237 | 0.232 | 0.223 | 0.166 |  |  |
| Observed      | 0.208 | 0.179 | 0.190 | 0.138 | 0.251 | 0.224 | 0.226 | 0.190 |  |  |

#### 4 Discussion 490

480

This study used an extensive and well-replicated multiproxy tree-ring network to produce the first, 491 spatially explicit, hydrological reconstructions across the Québec-Labrador Peninsula. The reconstruc-492 tions shed light on the fundamental properties of multidecadal hydrological variability in one of North 493 America's largest hydroelectric facilities. The reconstructions result from the combination of three ap-494 proaches based on partial least squares, stepwise partial least squares, and the best analogue method. 495 Considered individually, all approaches yield satisfactory calibration ( $\mathbb{R}^2$ , RMSE) and verification ( $\mathbb{R}^2_p$ , 496  $RMSE_p$ ) statistics (Table 3). Combining the reconstructions into a single reconstruction (for each basin) 497 produced 200-year time series that integrate the strengths and weaknesses of each approach, while ex-498 plaining between 65% and 76% of the variance in the original water supply series. Hence, for each 499 basin, the variance explained by the combined reconstructions appears to be well within the bounds of 500 other works that used tree-rings to reconstruct streamflow in river systems used for hydroelectric pro-501 duction [Woodhouse and Lukas, 2006]. 502

Our new 200-year reconstructed datasets were used to highlight and hindcast several hydrologi-503 cal regimes by using the Gaussian HMM. In fact, this type of model has been used in several studies 504

to represent hydrological time series, including reconstructed data as in Bracken et al. [2016]. The ad-505 vantage of such models is that they are not only able to detect hydrological regimes and classify the 506 observations into regimes, but they can also produce short-term and long-term forecasts for the future 507 regimes. In this study, we used the Gaussian HMM, which is the simplest regime-switching model. 508 The originality of our statistical approach is the selection procedure of the number of regimes, which 509 is based on a recent goodness-of-fit test proposed by [Rémillard, 2013]. Usually, the selection of the 510 number of regimes is based on a maximum likelihood criterion, such as AIC or BIC, which only rank 511 models without verifying if they are valid. In our approach, we test the validity of the models when 512 choosing the number of regimes. However, as expected, detecting more than one regime requires longer 513 datasets, which is true for any stochastic model. The power of the goodness-of-fit test has been studied 514 in a similar context [Nasri et al., 2019] and the authors showed that the selection procedure based on 515 *P*-values is valid and efficient. 516

The inference and model selection results presented in Section 3.2 for the reconstructed time se-517 ries confirm that the annual inflows of the four basins exhibit persistence in several distinct states with 518 occasional transitions between these states. Such information can be very useful for electric utilities, 519 such as Hydro-Québec. For instance, these results can be used to define energy reliability criteria that 520 could take into account possible switching hydrological regimes and events of prolonged low inflows. 521 In this case, access to longer series (reconstructed data) helps to identify more accurate models and 522 clearly improves forecasts. Moreover, taking into account new data reduces the uncertainty in the fore-523 casts. The hindcast experiments performed in Section 3.3 with observed data from 1991 to 2016 clearly 524 show that we can trust the reconstructed data and use them for short-term, as well as for medium-term 525 predictions. In particular, for 1-year ahead forecasts, according to the ks and cvm scores, as well as 526 the MAD and RMSE scores, the approach based on the reconstructed data outperforms the standard 527 method which relies only upon the observed data. For instance, the cvm scoring rule shows a clear ad-528 vantage for our approach for basins LG2, CAN and CHU. These results are in agreement with the con-529 clusions of Thyer et al. [2006] who showed that the uncertainty around the estimation of parameters of 530 Gaussian HMMs is quite large for short time series. As a result, the identification of the correct model 531 is very difficult. In our case, for the observed data, we used only 31 observations, which is too small 532 to perform an efficient calibration. However, based on the hindcast experiments, we showed that the 533 reconstructed data can be combined with observed data to get more accurate and precise predictions. 534 This result is perhaps the most important result from this study. 535

As an example of the usefulness of the proposed model, we can also predict future regimes, as illustrated in Figure 10, where we compute the probability of dry regimes for each station, using both

-26-

reconstructed and new observed data. Note that the dry regime (Regime 2) is much less recurrent for 538 stations LG2 and LG4 than for stations CAN and CHU, which is important information for the man-539 agement of water resources. In fact, the ability to issue such medium-term forecasts with respect to 540 hydroelectric generation at the beginning of the year is of particular interest to water resources planners 541 and managers. Such knowledge can be used for making decisions about future releases during the win-542 ter, contributing to more proactive water management that may prove very useful in extreme dry or wet 543 years. For example, the explicit integration of basin-specific regime properties in Table 6 could allow 544 hydroelectric producers to make informed inflow predictions based on the current hydrological regime 545 (Regime 1 or Regime 2), taking into account the flow characteristics (mean and variability of a given 546 regime) and the regime-switching probabilities associated with each basin. In turn, the proposed model 547 improves the quality of predictions by lowering the risk of mismatches between energy production and 548 demand. 549

#### 552 **5 Conclusion**

The objective of this study was threefold. First, we reconstructed 200 years of annual water-553 supplies at four basins in the Québec-Labrador Peninsula, which are among the largest in North Amer-554 ica in terms of hydroelectric capacity. We used tree-ring proxies to extend the climatic series beyond 555 recent 40 years observations of reservoir inflows. The reconstructed data were based on the combina-556 tion of three statistical methods, as in Nicault et al. [2014a]. Second, for the reconstructed and observed 557 data, we used Gaussian HMM to characterize the persistence in terms of regime switches. Two regimes 558 were found for the reconstructed series, while only one regime was found for the observed data, in 559 three out of four basins. As for the number of regime switches, we noticed that they increase signifi-560 cantly from west to east. In Quebec-Labrador, hydroclimate variability over decadal to multi-decadal 561 time scales can, at least party, be related to ocean-atmosphere interactions occurring in the western 562 North-Atlantic region [O'Reilly et al., 2017]. Indeed, oscillations in sea surface temperatures (SST) 563 exhibit a significant persistence which has been shown to impact surrounding landmasses climate, most 564 particularly low-frequency temperature variability over northeastern North-America. Whether this influ-565 ence results from a direct thermodynamical influence or an indirect change in large-scale atmospheric 566 circulation patterns, however, remains unclear. The analysis of such oscillatory modes nevertheless con-567 firms their potential relevance for streamflow predictability in Quebec-Labrador region [Sveinsson et al., 568 2008a,b]. 569

Third, we evaluated the predictive ability of the selected Gaussian HMM for each basin. The results showed that the predictions are better using the reconstructed data, when combined with the new

-27-

observed data. This is mainly due to the fact that the reconstructed datasets are longer and reliable, 572 allowing therefore efficient model selection and more accurate probabilistic forecasts. However, the 573 expectations of water resource manager's are considerably higher. Performance over a longer recon-574 structed period and a rigorous assessment of the hindcast skill against other approaches are required. 575 This assessment would include comparing different persistence models and providing a theoretical foun-576 dation connecting them to continental climate patterns. Indeed, future research may lead to millennial-577 scale reconstructions, taking into account the serial dependence of tree-ring proxies, which will enable 578 us to produce more efficient reconstructions, and in particular reduce the difference between the vari-579 ances of the reconstruction and the observed data. Also, longer reconstructed datasets will allow to 580 consider other persistence models, such as the well-known ARFIMA models, which require very long 581 datasets [Bhardwaj and Swanson, 2006]. Ideally, persistence models would also include climate change 582 considerations, along with the uncertainty of climate sensitivity to greenhouse gases concentrations. 583 Adding predictors that drive multidecadal variation to the model, such as large-scale climate indices, 584 would certainly help to better explain the variability in regimes [Sveinsson et al., 2008a,b]. One way 585 to do this would be to incorporate a probit model for the hidden regimes of the HMM [Perreault et al., 586 2007; Bracken et al., 2014]. Finally, in a forthcoming paper, we will develop goodness-of-fit tests to 587 rigorously compare ARFIMA to HMM, and we will attempt to account for the uncertainties inherent to 588 reconstruction procedures to provide a more robust foundation for risk analysis. 589

#### 590 Acknowledgments

We would like to thank the Associate Editor and two referees for their comments that lead to an im-591 proved version of the manuscript. This research is partially supported by the Canadian Statistical Sci-592 ences Institute (CANSSI), the Groupe d'étude et de recherche en analyse des décisions (GERAD), the 593 Fonds québécois de la recherche sur la nature et les technologies (FRQNT), the Natural Sciences and 594 Engineering Research Council of Canada (NSERC), Ouranos, Hydro-Québec and Manitoba Hydro. We 595 thank Frédéric Guay for his help with Figure 2. All data used in this paper, with the exception of ob-596 served inflows, are available at site www.dendro-qc-lab.ca. Inflow observations are proprietary to 597 Hydro-Québec and are strategic information for the company. They can only be made available on re-598 quest from Hydro-Québec. 599

### 600 References

Allen, D. T., V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E.
 Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld (2013),

-28-

| 603 | Measurements of methane emissions at natural gas production sites in the United States, Proceedings     |
|-----|---------------------------------------------------------------------------------------------------------|
| 604 | of the National Academy of Sciences, 110(44), 17,768-17,773, doi:10.1073/pnas.1304880110.               |
| 605 | Ault, T. R., J. E. Cole, J. T. Overpeck, G. T. Pederson, S. St. George, B. Otto-Bliesner, C. A. Wood-   |
| 606 | house, and C. Deser (2013), The continuum of hydroclimate variability in western North America          |
| 607 | during the last millennium, Journal of Climate, 26(16), 5863-5878.                                      |
| 608 | Ault, T. R., J. E. Cole, J. T. Overpeck, G. T. Pederson, and D. M. Meko (2014), Assessing the risk of   |
| 609 | persistent drought using climate model simulations and paleoclimate data, Journal of Climate, 27(20),   |
| 610 | 7529–7549.                                                                                              |
| 611 | Axelson, J. N., D. J. Sauchyn, and J. Barichivich (2009), New reconstructions of streamflow variability |
| 612 | in the South Saskatchewan River Basin from a network of tree-ring chronologies, Alberta, Canada,        |
| 613 | Water Resources Research, 45(9).                                                                        |
| 614 | Bai, J. (2003). Testing parametric conditional distributions of dynamic models. The Review of Eco-      |
| 615 | nomics and Statistics, 85(3):531–549.                                                                   |
| 616 | Beran, J. (1994), Statistics for Long-Memory Processes, Monographs on Statistics and Applied Probabil-  |
| 617 | ity, vol. 61, Chapman and Hall, New York.                                                               |
| 618 | Bhardwaj, G., and N. R. Swanson (2006), An empirical investigation of the usefulness of ARFIMA          |
| 619 | models for predicting macroeconomic and financial time series, Journal of Econometrics, 131(1), 539     |
| 620 | - 578.                                                                                                  |
| 621 | Boreux, JJ., P. Naveau, O. Guin, L. Perreault, and J. Bernier (2009), Extracting a common high fre-     |
| 622 | quency signal from northern Québec black spruce tree-rings with a Bayesian hierarchical model, Cli-     |
| 623 | mate of the Past, 5(4), 607–613.                                                                        |
| 624 | Boucher, É., T. B. Ouarda, Y. Bégin, and A. Nicault (2011a), Spring flood reconstruction from continu-  |
| 625 | ous and discrete tree-ring series, Water Resources Research, 47(7).                                     |
| 626 | Boucher, E., J. Guiot, and E. Chapron (2011b), A millennial multi-proxy reconstruction of summer pdsi   |
| 627 | for Southern South America, Climate of the Past, 7, 957–974.                                            |
| 628 | Boucher, E., A. Nicault, D. Arseneault, Y. Bégin, and M. P. Karami (2017), Decadal variations in East-  |
| 629 | ern Canada's taiga wood biomass production forced by ocean-atmosphere interactions, Scientific Re-      |
| 630 | ports, 7(1), 2457.                                                                                      |
| 631 | Bracken, C., B. Rajagopalan, and E. Zagona (2014), A hidden markov model combined with climate          |
| 632 | indices for multidecadal streamflow simulation, Water Resources Research, 50(10), 7836-7846.            |
| 633 | Bracken, C., Rajagopalan, B., and Woodhouse, C. (2016). A Bayesian hierarchical nonhomoge-              |
| 634 | neous hidden Markov model for multisite streamflow reconstructions. Water Resources Research,           |
| 635 | 52(10):7837–7850.                                                                                       |

- Briffa, K. R., T. J. Osborn, F. H. Schweingruber, I. C. Harris, P. D. Jones, S. G. Shiyatov, and E. A.
- <sup>637</sup> Vaganov (2001), Low-frequency temperature variations from a northern tree-ring density network,
   <sup>638</sup> *Journal of Geophysical Research: Atmospheres*, *106*(D3), 2929–2941.
- <sup>639</sup> Brigode, P., F. Brissette, A. Nicault, L. Perreault, A. Kuentz, T. Mathevet, and J. Gailhard (2016),
- <sup>640</sup> Streamflow variability over the 1881–2011 period in Northern Québec: comparison of hydrological
- reconstructions based on tree rings and geopotential height field reanalysis, *Climate of the Past*, *12*(9), 1785–1804.
- <sup>643</sup> Dempster, A. P., N. M. Laird, and D. B. Rubin (1977), Maximum likelihood from incomplete data via the EM algorithm, *J. Roy. Statist. Soc. Ser. B*, *39*, 1–38.
- <sup>645</sup> Diebold, F. X., and A. Inoue (2001), Long memory and regime switching, *Journal of Econometrics*, <sup>646</sup> *105*(1), 131 – 159.
- <sup>647</sup> Diffenbaugh, N. S. D. L. Swain and D. Touma (2015), Anthropogenic warming has increased drought <sup>648</sup> risk in California, *Proceedings of the National Academy of Sciences*, *112*(13), 3931–3936.
- Evin, G., J. Merleau, and L. Perreault (2011), Two-component mixtures of normal, gamma, and gumbel
   distributions for hydrological applications, *Water Resources Research*, 47(8).
- Genest, C., B. Rémillard, and D. Beaudoin (2009), Omnibus goodness-of-fit tests for copulas: A review and a power study, *Insurance Math. Econom.*, *44*, 199–213.
- 653 Gennaretti, F., D. Arseneault, A. Nicault, L. Perreault, and Y. Bégin (2014), Volcano-induced regime
- shifts in millennial tree-ring chronologies from Northeastern North America, *Proceedings of the Na- tional Academy of Sciences*, 111(28), 10,077–10,082.
- Girard, F., S. Payette, and R. Gagnon (2008), Rapid expansion of lichen woodlands within the closedcrown boreal forest zone over the last 50 years caused by stand disturbances in Eastern Canada, *Journal of Biogeography*, *35*(3), 529–537.
- Guiot, J., A. Nicault, C. Rathgeber, J.-L. Edouard, F. Guibal, G. Pichard, and C. Till (2005), Last-
- millennium summer-temperature variations in Western Europe based on proxy data, *The Holocene*, 15(4), 489–500.
- Guiot, J., C. Corona, et al. (2010), Growing season temperatures in Europe and climate forcings over the past 1400 years, *PloS one*, *5*(4), e9972.
- https://www.overleaf.com/project/5bd71625cd89984c92d5e477
- Hamilton, J. D. (1990), Analysis of time series subject to changes in regime, *J. Econometrics*, 45(1-2),
   39–70.
- Hastie, T., Tibshirani, R., and Friedman, J. (2009). *The Elements of Statistical Learning*. Springer Series
   in Statistics. Springer, New York, Second Edition.

- Hoel, P. G., Port, S. C., and Stone, C. J. (1972). *Introduction to Stochastic Processes*. Houghton Mifflin
- <sup>670</sup> Co., Boston, Mass. The Houghton Mifflin Series in Statistics.
- Hofgaard, A., J. Tardif, and Y. Bergeron (1999), Dendroclimatic response of picea mariana and pinus
- <sup>672</sup> banksiana along a latitudinal gradient in the Eastern Canadian boreal forest, *Canadian Journal of* <sup>673</sup> *Forest Research*, 29(9), 1333–1346.
- Holmes, R. L. (1983), Computer-assisted quality control in tree-ring dating and measurement, *Tree-ring bulletin*.
- <sup>676</sup> Hosking, J. R. M. (1984), Modeling persistence in hydrological time series using fractional differenc <sup>677</sup> ing, *Water Resources Research*, 20(12), 1898–1908.
- Hydro-Québec Distribution (2014), 2014 Québec Balancing Authority Area Comprehensive Review of
   Resource Adequacy, *Tech. rep.*, NPCC.
- Hydro-Québec Production (2018), Annexe A Respect du critère de fiabilité en énergie pour les appro visionnements provenant d'Hydro-Québec Production, *Tech. rep.*, Hydro-Québec.
- Jandhyala, V. K., P. Liu, and S. B. Fotopoulos (2009), River stream flows in the Northern Québec
- Labrador region: A multivariate change point analysis via maximum likelihood, *Water resources research*, 45(2).
- Koutsoyiannis, D. (2005), Hydrologic persistence and the Hurst phenomenon, in *Water Encyclopedia*,

edited by J. H. Lehr and J. Keeley, pp. 210–221, Wiley, New York.

<sup>687</sup> Lara, A., A. Bahamondez, A. González-Reyes, A. A. Muñoz, E. Cuq, and C. Ruiz-Gómez (2015), Re-<sup>688</sup> constructing streamflow variation of the Baker River from tree-rings in Northern Patagonia since

<sup>689</sup> 1765, *Journal of Hydrology*, 529(P2), 511–523, doi:10.1016/j.jhydrol.2014.12.007.

- LeBlanc, M. and Tibshirani, R. (1996). Combining estimates in regression and classification. *Journal of the American Statistical Association*, 91(436):1641–1650.
- <sup>692</sup> Loaiciga, H. A., L. Haston, and J. Michaelsen (1993), Dendrohydrology and long-term hydrologic phe-<sup>693</sup> nomena, *Reviews of Geophysics*, *31*(2), 151–171.
- Mandelbrot, B. B., and J. R. Wallis (1968), Noah, Joseph, and operational hydrology, *Water Resources Research*, 4(5), 909–918.
- McCarroll, D., M. H. Gagen, N. J. Loader, I. Robertson, K. J. Anchukaitis, S. Los, G. H. Young,
- <sup>697</sup> R. Jalkanen, A. Kirchhefer, and J. S. Waterhouse (2009), Correction of tree-ring stable carbon iso-
- tope chronologies for changes in the carbon dioxide content of the atmosphere, *Geochimica et Cos*-
- <sup>699</sup> *mochimica Acta*, 73(6), 1539–1547.
- Meko, D. M., and C. A. Woodhouse (2005), Tree-ring footprint of joint hydrologic drought in Sacra mento and Upper Colorado river basins, Western USA, *Journal of Hydrology*, *308*(1-4), 196–213.

- Meko, D. M., M. D. Therrell, C. H. Baisan, and M. K. Hughes (2001), Sacramento river flow recon-
- structed to ad 869 from tree-rings, *Journal of the American Water Resources Association*, 37(4),
   1029–1039.
- Merleau, J. (2017), Analyse probabiliste des moyennes historiques des apports énergétiques de certains
   systèmes hydriques du parc d'Hydro-Québec aux échelles temporelles mensuelle, saisonnière et an nuelle, *Tech. Rep. IREQ-2017-XXX*, Hydro-Québec Research Institute.
- Merleau, J. (2018), Analyse probabiliste des moyennes historiques des apports énergétiques de certains
   systèmes hydriques du parc d'Hydro-Québec aux échelles temporelles mensuelle, saisonnière et an nuelle Partie II, *Tech. Rep. IREQ-2018-XXX*, Hydro-Québec Research Institute.
- Mundo, I. A., M. H. Masiokas, R. Villalba, M. S. Morales, R. Neukom, C. Le Quesne, R. B. Urrutia,
   and A. Lara (2012), Multi-century tree-ring based reconstruction of the Neuquén River streamflow,
- Northern Patagonia, Argentina, *Climate of the Past*, 8(2), 815–829.
- Nasri, B. R., and B. N. Remillard (2019), Copula-based dynamic models for multivariate time series,
   *Journal of Multivariate Analysis*, *172*, 102–121.
- Nasri, B. R., and B. N. Rémillard (2019), *GaussianHMM1d*, R package version 1.0.1.
- Nasri, B. R., Rémillard, B. N., and Thioub, M. Y. (2020). Goodness-of-fit for regime-switching cop ula models with application to option pricing. *The Canadian Journal of Statistics*, in press.
- Nasri, B. R., Rémillard, B. N., and Thioub, M. Y. (2019). Goodness-of-fit for regime-switching cop ula models with application to option pricing. Technical report, SSRN Working Paper Series No.
   3347348.
- National Energy Board (2017), Canada's Renewable Power Landscape Energy Market Analysis, *Tech. rep.*, National Energy Board, doi:10.1016/j.msea.2008.10.047.
- Naulier, M., M. M. Savard, C. Bégin, J. Marion, D. Arseneault, and Y. Bégin (2014), Carbon and oxy gen isotopes of lakeshore black spruce trees in Northeastern Canada as proxies for climatic recon-
- struction, *Chemical Geology*, 374, 37–43.
- Nicault, A., S. Alleaume, S. Brewer, M. Carrer, P. Nola, and J. Guiot (2008), Mediterranean drought
   fluctuation during the last 500 years based on tree-ring data, *Climate dynamics*, *31*(2-3), 227–245.
- 729 Nicault, A., E. Boucher, C. Bégin, J. Guiot, J. Marion, L. Perreault, R. Roy, M. Savard, and Y. Bégin
- (2014a), Hydrological reconstruction from tree-ring multi-proxies over the last two centuries at the
   Caniapiscau Reservoir, northern Québec, Canada, *Journal of Hydrology*, *513*, 435–445.
- <sup>732</sup> Nicault, A., E. Boucher, D. Tapsoba, D. Arseneault, F. Berninger, C. Bégin, J.-L. DesGranges, J. Guiot,
- J. Marion, S. Wicha, et al. (2014b), Spatial analysis of black spruce (picea mariana (mill.) bsp) radial
- <sup>734</sup> growth response to climate in northern Québec–Labrador Peninsula, Canada, *Canadian Journal of*

- <sup>735</sup> *Forest Research*, 45(3), 343–352.
- <sup>736</sup> O'Reilly, C. H., Woollings, T., and Zanna, L. (2017). The dynamical influence of the atlantic multi-<sup>737</sup> decadal oscillation on continental climate. *Journal of Climate*, 30(18):7213–7230.
- Pelletier, J. D., and D. L. Turcotte (1997), Long-range persistence in climatological and hydrological time series: analysis, modeling and application to drought hazard assessment, *Journal of Hydrology*, 203(1-4), 198–208.
- Perreault, L. (2001), Analyse bayésienne de la stationnarité des apports naturels annuels agrégés des
   complexes Côte-Nord et La Grande, *Tech. Rep. 99-05-45-30*, Hydro-Québec Production.
- Perreault, L., J. Bernier, B. Bobée, and E. Parent (2000), Bayesian change-point analysis in hydromete orological time series. part 1. the normal model revisited, *Journal of Hydrology*, 235(3-4), 221–241.
- Perreault, L., R. Garçon, and J. Gaudet (2007), Modelling hydrologic time series using regime switch ing models and measures of atmospheric circulation (in french), *La Houille Blanche*, (6), 111–123.
- R Core Team (2017), *R: A Language and Environment for Statistical Computing*, R Foundation for Statistical Computing, Vienna, Austria.
- Rémillard, B. (2013), *Statistical Methods for Financial Engineering*, Chapman and Hall/CRC Financial
   Mathematics Series, Taylor & Francis.
- <sup>751</sup> Savard, M., C. Bégin, M. Parent, A. Smirnoff, and J. Marion (2004), The environmental impact of
- smelter So 2 emissions–a time and space perspective recorded by carbon isotope ratios in tree-ring
   cellulose, *Journal of Environmental Quality*, *33*, 13–26.
- Schweingruber, F., H. Fritts, O. Bräker, L. Drew, and E. Schär (1978), The x-ray technique as applied
   to dendroclimatology, *Tree-Ring Bulletin*.
- 756 Schweingruber, F. H., et al. (1996), tree-rings and Environment: Dendroecology., Paul Haupt AG Bern.
- <sup>757</sup> Smith, L. P., and C. W. Stockton (1981), Reconstructed stream flow for the Salt and Verde rivers from
- tree-ring data, JAWRA Journal of the American Water Resources Association, 17(6), 939–947.
- Stockton, C. W., and H. C. Fritts (1973), Long-term reconstruction of water level changes for lake
   Athabasca by analysis of tree-rings, *JAWRA Journal of the American Water Resources Association*,
   9(5), 1006–1027.
- 762 Sveinsson, O. G., Lall, U., Fortin, V., Perrault, L., Gaudet, J., Zebiak, S., and Kushnir, Y. (2008a).
- Forecasting spring reservoir inflows in Churchill Falls basin in Québec, canada. *Journal of Hydro- logic Engineering*, 13(6):426–437.
- Sveinsson, O. G., Lall, U., Gaudet, J., Kushnir, Y., Zebiak, S., and Fortin, V. (2008b). Analysis of cli matic states and atmospheric circulation patterns that influence Québec spring streamflows. *Journal of Hydrologic Engineering*, 13(6):411–425.

- <sup>768</sup> Tenenhaus, M. (1998), *La régression PLS: théorie et pratique*, Editions technip.
- Thyer, M., Frost, A. J., and Kuczera, G. (2006). Parameter estimation and model identification for
   stochastic models of annual hydrological data: Is the observed record long enough? *Journal of Hy- drology*, 330(1):313–328.
- Thyer, M., and G. Kuczera (2000), Modeling long-term persistence in hydroclimatic time series using a
  hidden state Markov model, *Water Resources Research*, *36*(11), 3301–3310.
- Thyer, M., and G. Kuczera (2003), A hidden Markov model for modelling long-term persistence in
   multi-site rainfall time series 1. Model calibration using a Bayesian approach, *Journal of Hydrology*,
   275(1-2), 12–26.
- Wilhelm, B., J. A. B. Canovas, J. P. C. Aznar, L. Kämpf, T. Swierczynski, M. Stoffel, E. Støren, and
  W. Toonen (2018), Recent advances in paleoflood hydrology: From new archives to data compilation
- and analysis, *Water Security*, *3*, 1–8.
- Woodhouse, C., D. Meko, D. Griffin, and C. Castro (2013), tree-rings and multiseason drought variabil ity in the lower Rio grande basin, USA, *Water Resources Research*, 49(2), 844–850.
- Woodhouse, C. A., and J. J. Lukas (2006), Multi-century tree-ring reconstructions of Colorado stream-
- <sup>783</sup> flow for water resource planning, *Climatic Change*, 78(2-4), 293–315.
- **A:** Estimation of the HMM models
- The EM algorithm for estimating parameters consists of two steps, expectation and maximization:
- <sup>786</sup> 1. (E-Step) Compute the conditional probabilities.

$$\lambda_t(i) = P(\tau_t = i | Y_1, \dots, Y_n)$$
 and  $\Lambda_t(i, j) = P(\tau_t = i, \tau_{t+1} = j | Y_1, \dots, Y_n),$  (A.1)

for all  $1 \le t \le n$  and  $i, j \in \{1, ..., m\}$ .

<sup>788</sup> 2. (M-Step) Estimate the new parameters.

<sup>789</sup> First, a rough estimate of the parameters must be provided. Then, the two-step procedure is repeated

- <sup>790</sup> until a stopping criterion is satisfied. The E-Step is described next for any densities, while the M-Step
- <sup>791</sup> is stated only for Gaussian densities.

#### 792 A.1 Conditional distribution of the regimes (E-Step)

#### First, define, for all $i \in \{1, \ldots, m\}$ ,

$$\eta_0(i) = 1/m,$$
(A.2)
$$\eta_t(i) = \frac{f_{\beta_i}(Y_t) \sum_{j=1}^m \eta_{t-1}(j) Q_{ji}}{f_{\beta_i}(Y_t) \sum_{j=1}^m \eta_{t-1}(j) Q_{ji}}, \quad t = 1, \dots, n,$$
(A.3)

$$\eta_t(i) = \frac{\int \beta_i(T_t) \, \Delta_{j=1} \, \eta_{t-1}(j) \mathcal{Q}_{jt}}{\sum_{k=1}^m \sum_{j=1}^m f_{\beta_k}(Y_t) \eta_{t-1}(j) \mathcal{Q}_{jk}}, \quad t = 1, \dots, n,$$
(A.3)

$$\bar{\eta}_n(i) = 1/m, \tag{A.4}$$

$$\bar{\eta}_t(i) = \frac{\sum_{k=1}^m \bar{\eta}_{t+1}(k) Q_{ik} f_{\beta_k}(Y_{t+1})}{\sum_{\alpha=1}^m \sum_{k=1}^m \bar{\eta}_{t+1}(k) Q_{\alpha k} f_{\beta_k}(Y_{t+1})}, \quad t = 1, \dots, n-1.$$
(A.5)

Then, for all  $i, j \in \{1, ..., m\}$ , one can verify that

$$\lambda_t(i) = \frac{\eta_t(i)\bar{\eta}_t(i)}{\sum_{\alpha=1}^m \eta_t(\alpha)\bar{\eta}_t(\alpha)}, \quad t = 1, \dots, n,$$
(A.6)

$$\Lambda_t(i,j) = \frac{Q_{ij}\eta_t(i)\bar{\eta}_{t+1}(j)f_{\beta_j}(Y_{t+1})}{\sum_{\alpha=1}^m \sum_{k=1}^m Q_{\alpha k}\eta_t(\alpha)\bar{\eta}_{t+1}(k)f_{\beta_k}(Y_{t+1})}, \quad t = 1, \dots, n-1,$$
(A.7)

$$\Lambda_n(i,j) = \lambda_n(i)Q_{ij}. \tag{A.8}$$

795

794

We can now verify that Equations (A.6) and (A.7) are consistent. Indeed, for all  $1 \le t \le n - 1$ ,

$$\sum_{j=1}^{m} \Lambda_{t}(i,j) = \frac{\eta_{t}(i) \left( \sum_{j=1}^{m} Q_{ij} \bar{\eta}_{t+1}(j) f_{\beta_{j}}(Y_{t+1}) \right)}{\sum_{\alpha=1}^{m} \eta_{t}(\alpha) \left( \sum_{k=1}^{m} Q_{\alpha k} \bar{\eta}_{t+1}(k) f_{\beta_{k}}(Y_{t+1}) \right)} = \lambda_{t}(i),$$
(A.9)

<sup>796</sup> using the definition of  $\bar{\eta}_t$ . Also,  $\sum_{j=1}^m \Lambda_n(i,j) = \sum_{j=1}^m \lambda_n(i)Q_{ij} = \lambda_n(i)$ . Similarly, for all  $1 \le t \le n-1$ , <sup>797</sup>  $\sum_{i=1}^l \Lambda_t(i,j) = \lambda_{t+1}(j)$ .

#### 798

#### A.2 Estimation for Gaussian regime-switching models (M-Step)

For the estimation procedure, we assume the densities  $f_{\beta_1}, \ldots, f_{\beta_m}$  are Gaussian with means  $(\mu_i)_{i=1}^m$  and covariance matrices  $(A_i)_{i=1}^m$ . The M-step consists of updating the parameters  $(\nu_i)_{i=1}^m$ ,  $(\mu_i)_{i=1}^m$ ,  $(A_i)_{i=1}^m$  and Q according to

$$\nu_i' = \sum_{t=1}^n \lambda_t(i)/n, \tag{A.10}$$

$$\mu_i' = \sum_{t=1}^n x_t w_t(i), \tag{A.11}$$

$$A'_{i} = \sum_{t=1}^{n} (x_{t} - \mu'_{i})(x_{t} - \mu'_{i})^{\mathsf{T}} w_{t}(i), \qquad (A.12)$$

$$Q'_{ij} = \sum_{t=1}^{n} \Lambda_t(i,j) \Big/ \sum_{t=1}^{n} \lambda_t(i) = \frac{1}{n} \sum_{t=1}^{n} \Lambda_t(i,j) \Big/ \nu'_i,$$
(A.13)

for all  $i, j \in \{1, ..., m\}$  and where  $w_t(i) = \lambda_t(i) / \sum_{m=1}^n \lambda_m(i)$ . Note that  $\nu'$  is not the stationary distribution for Q' since for any  $j \in \{1, ..., m\}$ ,

$$\sum_{i=1}^{m} v_i' Q_{ij}' = \frac{1}{n} \sum_{t=1}^{n} \sum_{i=1}^{m} \Lambda_t(i,j) = \frac{1}{n} \sum_{t=2}^{n+1} \lambda_t(j) = v_j' + \frac{\lambda_{n+1}(j) - \lambda_1(j)}{n} \neq v_j'.$$
(A.14)

However,  $\max_{1 \le j \le l} \left| \sum_{i=1}^{m} v'_i Q'_{ij} - v'_j \right| \le 1/n$ . Hence, when *n* is large, v' is close to the stationary distribution of *Q'*. In practice, we estimate the stationary distribution from *Q'*, rather than v', for consistency.

#### **B:** Goodness-of-fit test for the HMM

Suppose that  $Y_1, \ldots, Y_n$  is a size *n* sample of a unidimensional vector drawn from a continuous distribution **P** belonging to a parametric family of univariate regime-switching models with *m* regimes. Formally, the hypothesis to be tested is  $\mathcal{H}_0 : \mathbf{P} \in \mathcal{P} = {\mathbf{P}_{\theta}; \theta \in O}$  vs  $\mathcal{H}_1 : \mathbf{P} \notin \mathcal{P}$ . Under the null hypothesis, it follows that  $V_t = F_{t|1:t-1}(Y_t, \theta)$  is independent and uniformly distributed over (0, 1), where  $F_{t|1:t-1}(\cdot, \theta)$  is the conditional distribution function for the true parameters  $\theta \in O$ , as defined by Equation (5).

#### **B.1 Test statistics**

Following *Nasri and Remillard* [2019a], define the empirical process

$$D_n(u) = \frac{1}{n} \sum_{t=1}^n \mathbb{1}\left(V_{n,t} \le u\right), \quad u \in [0,1],$$
(B.1)

where  $V_{n,t} = F_{t|1:t-1}(Y_t, \theta_n)$  and  $\theta_n$  is the consistent estimator of  $\theta$ . Following, *Genest et al.* [2009], to test  $\mathcal{H}_0$  against  $\mathcal{H}_1$ , it is suggested to use the Cramér-von Mises type statistic because it appears to be much more powerful and easier to compute than the Kolmogorov-Smirnov type statistic. The Cramérvon Mises type statistic is given by  $S_n = B_n(V_{n,1}, \dots, V_{n,n}) = n \int_0^1 \{D_n(u) - u\}^2 du$ .

819

#### **B.2** Parametric bootstrap

If a goodness-of-fit test is based on a statistic  $S_n$  of the observations  $Y_1, \ldots, Y_n$  with distribution  $\mathbf{P}_{\theta}$  for some unknown parameter  $\theta$  estimated by  $\theta_n$ , the parametric bootstrap approach consists of generating a large number B of sequences  $Y_1^{(k)}, \ldots, Y_n^{(k)}$  with distribution  $\mathbf{P}_{\theta_n}$ ,  $k = 1, \ldots, B$ , evaluating the goodness-of-fit statistic  $S_n^{(k)}$  each time, and approximating the P-value as the percentage of values  $S_n^{(k)}$ that are greater than  $S_n$ , assuming that the null hypothesis is rejected for large values of  $S_n$ . Hence, to perform the goodness-of-fit test, we use the following algorithm: Algorithm 1 For a given number of regimes m, obtain estimator  $\theta_n$  of  $\theta$  using the EM algorithm. Then,

compute the statistic  $S_n = B_n(V_{n,1}, \ldots, V_{n,n})$  using the pseudo-observations  $V_{n,t} = F_{t|1:t-1}(Y_t, \theta_n), t \in V_{t}(Y_t, \theta_n)$ 

- $\{1, \ldots, n\}$ . Next, for  $k = 1, \ldots, B$ , with sufficiently large B, repeat the following steps:
- Generate a random sample  $Y_1^*, \ldots, Y_n^*$  from a Gaussian HMM with parameter  $\theta_n$ .
  - Obtain the estimator  $\theta_n^*$  from  $Y_1^*, \ldots, Y_n^*$ .

830

- Compute the pseudo-observations  $V_{n,t}^* = F_{t|1:t-1}(Y_t^*, \theta_n^*), t \in \{1, \dots, n\}$  and calculate  $S_n^{(k)} = B_n(V_{n,1}^*, \dots, V_{n,n}^*).$
- Then, an approximate P-value for the test based on the Cramér-von Mises statistic  $S_n$  is given by

$$\frac{1}{B}\sum_{k=1}^{B}\mathbb{1}\left(S_{n}^{(k)} > S_{n}\right).$$
(B.2)

- <sup>834</sup> The goodness-of-fit test methodology produces *P*-values from a Cramér-von Mises type statistic for a
- given number of regimes *m*. As suggested in *Rémillard* [2013], it makes sense to choose the optimal
- number of regimes,  $m^*$ , as the first *m* for which the *P*-value is larger than 5%.

![](_page_38_Figure_1.jpeg)

Figure 8. The graphs in the left column display the long-term predictions from 1991 to 2016, while the right column displays 1-year-ahead forecasts. The blue lines show the observed data, the dash-dot lines represent the predicted median from the reconstruction models, and the dotted lines represent the predicted median from the observed data models. Finally, the dashed lines are the 95% confidence intervals estimated by using the models from the reconstructed data.

![](_page_39_Figure_1.jpeg)

Figure 9. Plotted predictive densities for stations LG2, LG4, CAN, and CHU for 2005 and 2015, using the reconstructed
 and observed data. The vertical lines represent the observed values for the year.

![](_page_40_Figure_1.jpeg)

Figure 10. One-year-ahead predicted probabilities for the dry regime (Regime 2), estimated from the reconstructed data.
 Predicted probabilities estimated from observed data are shown only for LG2.

View publication stats