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Key Points:22

• Reservoir inflows have been reconstructed from tree-ring proxies over the last 200 years for four23

large watersheds on the Québec-Labrador Peninsula.24

• Gaussian hidden Markov models accurately describe the regime-switching behavior seen in the25

observed and reconstructed inflow time series.26

• A formal goodness-of-fit test is used to estimate the number of regimes of the Gaussian hidden27

Markov models.28

• The accuracy of annual inflow forecasts can be improved by extending observational time series29

with 200-year paleoclimatic reconstructions.30
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Abstract31

Annual inflow forecasts are often based on historical time series, where every year is considered equally32

likely to reoccur. This process ignores the persistence of dry/wet conditions often observed in time se-33

ries, behavior that is of utmost importance for hydroelectric energy producers. However, the model-34

ing of persistence properties is challenging when only short time series are available for calibration.35

Here, we use Gaussian hidden Markov models to describe the regime-switching behavior, where the36

next year’s inflow depends on the current estimated regime. For four large hydropower reservoirs on the37

Québec-Labrador Peninsula, a Gaussian hidden Markov model is calibrated on both a 30-year obser-38

vational record and a 190-year paleoclimatic inflow reconstruction. Each reconstruction is a composite39

of three reconstruction methods drawing on five different tree-ring proxies (ring widths, minimal wood40

density, maximal wood density, δ13C and δ18O ). The calibration on the reconstructed series finds two41

hydrological regimes, while the calibration on the observed data has only one regime for three out of42

four watersheds. Yearly hindcasts with the two calibrated Gaussian hidden Markov models suggest that43

for all four watersheds, extending the time series with reconstructions improves the model’s predictive44

accuracy. This approach does not explicitly account for the differing accuracy of the observational and45

reconstructed time series or compare hidden Markov models to other models of persistence.46

1 Introduction47

In Canada, the provinces of Québec, Manitoba and British Columbia rely almost exclusively on48

hydropower generation to meet electricity demand [National Energy Board, 2017]. Because space and49

water heating constitute a large fraction of the electrical load, power demand peaks in winter during50

cold snaps [Hydro-Québec Distribution, 2014]. By contrast, water inflows peak a few months later with51

the snow melt. This timing mismatch between water inflows and energy demand can be compensated52

by using reservoirs to build up stocks in preparation for winter. The largest reservoirs can regulate53

flows over multiple years, providing some measure of resilience to prolonged droughts.54

Management rules for reservoir operations are guided by the historical interplay between energy55

demand and the water regime, accounting for natural fluctuations around average hydrological condi-56

tions. For example, in the case of Hydro-Québec, Québec’s provincial electric utility, reservoir levels57

are regulated by the Québec Energy Board [Hydro-Québec Production, 2018] to ensure that the electric58

utility has sufficient reserves to meet power demand in the event of prolonged low inflows. Persistent59

dry conditions pose risks not only for power generation, but also for groundwater availability, forest60

fires and ecosystems [Diffenbaugh et al., 2015].61
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Figure 1. Observed 1960-2016 annual water supply time series for watersheds La Grande 2 (LG2), La Grande 4 (LG4),

Caniapiscau (CAN) and Churchill Falls (CHU) located on the Québec-Labrador Peninsula, Canada.

78

79

In Québec-Labrador, reservoir inflows are based on historical streamflow records dating back to62

the 1950’s, and management rules implicitly assume that any past year is equally likely to reoccur next63

year. This assumes independence and stationarity hypotheses that, as in many hydrologic time series,64

are partially falsified by autocorrelation and climate change. Indeed, several authors have noted that the65

behavior of hydroclimatic historical records often exhibits persistence in several distinct states with oc-66

casional transitions between these states; see e.g., Thyer and Kuczera [2000]. Figure 1 illustrates the67

historical annual water supplies measured for four important watersheds in the Québec-Labrador re-68

gion. The geographical locations of these basins are presented in Figure 2. After examining these time69

series, one may suspect the presence of local nonstationarity. Dry and wet sequences appear to have oc-70

curred, which may suggest that the annual inflows of these basins exhibit distinct shifting regimes. The71

mid 1980’s change-point corresponds to the beginning of the longest period of consecutive low flows in72

Hydro-Québec’s historical water supply time series. Moreover, these time series also appear to exhibit73

abrupt changes in variability, for instance, in the early 1970’s. These characteristics have led a num-74

ber of authors to study the available hydroclimatic time series in the region by using different types of75

change-point and mixture models [Perreault et al., 2000; Perreault, 2001; Perreault et al., 2007; Jand-76

hyala et al., 2009; Evin et al., 2011; Merleau, 2017, 2018].77
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Although the hypothesis of a stationary process for these time series should be questioned, the80

relatively short length of observation records limit our ability to adequately describe the naturally-81

occurring hydrological fluctuations, especially when regime lengths span a decade or more [Wilhelm82

et al., 2018]. Indeed, the perspective gained from observed records is limited to a few decades. From83

an operational forecasting point of view, having a reliable model to describe the likelihood of prolonged84

wet or dry periods is valuable, and being able to extend the hydrological time series would improve our85

knowledge of long-term variability and persistence. Ideally, long time series (at least more than 10086

years) that cover a broad spectrum of hydrological variability, from yearly to multidecadal variations,87

would be used to adequately characterize long-term persistence, possible nonstationarity, and feed into88

operational forecasting models. In addition, as shown in Thyer et al. [2006] in the context of Gaussian89

hidden Markov models and autoregressive models, longer series significantly reduce model and para-90

metric uncertainties.91

Where regimes cannot be accurately described and modeled from observed records, proxy data92

may be used to extend the length of the hydrological time series beyond the period covered by instru-93

ments [Loaiciga et al., 1993]. In particular, moisture-sensitive tree-ring series provide annually resolved94

records that cover a broad spectrum of hydrological variability. Tree-ring widths have been used to re-95

construct past hydrological conditions in arid regions in which the growth-limiting factor was water96

availability [Stockton and Fritts, 1973; Smith and Stockton, 1981; Meko et al., 2001; Woodhouse and97

Lukas, 2006; Woodhouse et al., 2013; Nicault et al., 2008]. In boreal regions, although water availabil-98

ity is not the main factor limiting tree growth, recent research has shown that the use of a multiproxy99

approach (incorporating tree-ring widths, discrete markers of wood density and stable isotope fraction-100

ation of tree-ring cellulose) considerably strengthens hydrological reconstructions produced in high-101

latitude areas [Nicault et al., 2014a; Boucher et al., 2011a; Brigode et al., 2016; Boreux et al., 2009].102

Here, we show how multicentury tree-ring-based reconstructions may be used to shed light on103

the characteristics of hydrological regimes in the context of intensive hydroelectric production. We use104

an extensive, multiproxy tree-ring network to explore both the spatial and temporal variability of hy-105

drological regimes in large hydroelectric infrastructure, namely the La Grande (Québec, Canada) and106

the Churchill Falls (Newfoundland-Labrador, Canada) hydroelectric facilities. Our objectives are (i) to107

reconstruct water supplies to major hydroelectric generating stations over the past two centuries, (ii)108

to use those reconstructions to characterize regime properties (average flow, variability, duration) and109

model the probability of regime change under Gaussian hidden Markov models with a formal goodness-110

of-fit test, and (iii) to investigate the predictive ability of the selected Gaussian hidden Markov model111

for each basin, using scoring rules suited for probabilistic forecasts.112
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2 Methods and data113

The reconstruction, conducted over four basins located in Québec and Labrador (Section 2.1), is114

based on both recent observations (1960–2000) of reservoir inflows and paleoclimatic reconstructions115

(1800–2000) made from a combination of three dendrochronological proxies (Section 2.2). The persis-116

tence analysis within the observed and reconstructed inflow time series until 1990 is analyzed through117

the prism of Gaussian HMMs (Section 2.3). The performance of these models when calibrated on ob-118

servations and reconstructions are compared by performing hindcast experiments over the period 1991–119

2016.120

2.1 Study area and hydrological data121

Four watersheds draining into major hydropower reservoirs located in Québec and Labrador (Canada)122

are considered in this study to illustrate our approach: La Grande 2 (LG2), La Grande 4 (LG4), Ca-123

niapiscau (CAN) and Churchill Falls (CHU). The watersheds all drain large areas, ranging from 28,440 km2
124

for the LG4 watershed to 69,141 km2 for the CHU watershed. These basins feed major hydropower fa-125

cilities, and in this context, strategic management decisions are based on hydrological historical time126

series and forecasts produced for these sites. Figure 2 illustrates the geographical location of the four127

watersheds considered in this study. Watersheds LG2, LG4 and CAN are parts of the La Grande wa-128

ter resources system, one of the largest hydropower systems in North America. The CAN watershed129

is the farthest upstream on the La Grande river. Each basin has a large reservoir and a power plant at130

their outlet. The CHU basin also has a reservoir at its outlet and a single power plant. The total in-131

stalled capacity in these river basins constitutes approximately 30% of Hydro-Québec’s total capacity.132

The streamflow regime of these four watersheds is dominated by a northern climate, which favors snow133

accumulation and low streamflow during winter (December to February), followed by high streamflow134

during spring.135

Generation planners face a variety of decisions in operating these systems. Two issues that are136

common to every installation are safety and the respect of environmental laws and regulations. Since137

these watersheds have large reservoirs to store water, the other main concerns are long-term energy138

planning and optimization. Clearly, the future state of inflows plays a major role in the decisions, namely139

for long-term strategies to set energy safety margins. Long hydrological informative time series and a140

thorough knowledge of their statistical characteristics, such as persistence, are thus of paramount impor-141

tance. Daily observed streamflow data for all four basins have been provided by Hydro-Québec for the142

1960–2016 period. The corresponding annual inflow time series are presented in Figure 1. Using these143

–6–
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observed data and dendrochonological tree-ring proxies, we reconstruct 200 years of annual inflows in144

order to overcome the lack of streamflow data for the last two centuries.145

2.2 Tree-ring reconstruction of water supplies146

2.2.1 Tree-ring proxies description147

In total, 39 black spruce sites across the Québec-Labrador Peninsula were sampled for dendrochrono-148

logical analysis (Table 1). All sites are located between 53°N and 56°N and are found primarily in149

open spruce-lichen woodlands, the most widely distributed forest ecosystem in Québec-Labrador’s bo-150

real zone [Girard et al., 2008]. The locations are presented in Figure 2. A minimum of 10 trees were151

sampled at each site. Only dominant trees with a symmetrical shape that were free from major growth152

anomalies were selected. Collected cross sections were dried and finely sanded. At each of the 39 sites,153

tree-rings were cross-dated and measured (two or three radii) using a micrometer with an accuracy of154

0.001 mm (Velmex Inc., Bloomfield, NY). The dating accuracy was validated with the COFECHA soft-155

ware [Holmes, 1983].156

Wood densitometry measurements were performed on selected trees from 20 sites across the net-163

work (Table 1) based on standard procedures [Schweingruber et al., 1978, 1996]. Only discs without164

anomalies (reaction wood, branches, rotten wood, etc.) were selected. Three wood samples per tree165

were cut precisely into 1 mm laths, placed in a Soxhlet apparatus with ethanol for resin extraction, and166

then X-rayed. To measure density, X-ray micrographs were analyzed on a DENDRO 2003 microdensit-167

ometer (Walesch, Switzerland). A cellulose acetate calibration wedge was used to convert the lightness168

measurement into density (g.cm−3) values. The time series retained from this densitometry analysis169

provided time series of the maximum (MXD) and minimum (MND) wood density. The tree-ring width170

and density series were standardized using the age-band approach [Briffa et al., 2001].171

Analysis of carbon and oxygen stable isotopes (δ13C and δ18O ) was performed at three sites172

(DA1, HM1 and POOL). At each site, four radii were selected and subsampled on each disc. Growth173

rings covering the 1800–2004 period were manually separated using stainless steel blades. For the174

1940–2000 period, tree-rings were cut at an annual resolution. Before 1940, the resolution was bian-175

nual to reduce the number of analyses performed in periods where no climatic data were available.176

Separated wood material from the same year was pooled, ground and homogenized. α-cellulose was177

extracted following Savard et al. [2004] to remove components that could create artifacts in the δ13C sig-178

nal due to their proportion changes in the wood (e.g., resin lipids, lignin). δ13C values were measured179

from the α-cellulose samples via elemental analysis (Carlo Erba) in a continuous-flow isotope ratio180

–7–
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Figure 2. The locations of the four watersheds are highlighted in dark grey (LG2 [La Grande 2], LG4 [La Grande 4], CAN

[Caniapiscau], CHU [Churchill Falls]), and a tree-ring multiproxy network is used to reconstruct the annual water supplies at

these sites and all the basins managed by Hydro-Québec.

157

158

159
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Table 1. Tree-ring chronologies from Québec-Labrador, extending back to at least AD 1800, used to reconstruct wa-

ter supplies over the study area. RW: ring widths, MND: minimal wood density, MXD: maximal wood density, δ13C and

δ18O stable isotope ratios.

160

161

162

ID Site Latitude Longitude Elevation (m)
Distance to

sea (km)
Nb EPS Proxy

RW MND MXD C O

CANE Caniapiscau East 54.44 -68.37 688 450 18 0.85 X X X

CEA Eaton Canyon 55.56 -68.12 175 305 28 0.91 X X X

CORILE Corvette 1 53.37 -74.05 324 323 21 0.84 X

CORPL Corvette 2 53.37 -74.12 324 328 29 0.94 X

DA1M DA1 1 53.86 -72.41 525 367 14 0.85 X X X X X

DA1R DA1 2 53.86 -72.41 523 367 17 0.82 X

DA1X DA1 3 53.86 -72.41 523 367 15 0.76 X X X

HER Hervey 54.42 -70.27 530 450 17 0.82 X

HH1 Hurault 1A 54.24 -70.82 541 432 20 0.87 X

HM1 Hurault 1 54.25 -70.78 551 434 17 0.91 X X X X X

HM2 Hurault 2 54.24 -70.79 518 434 18 0.86 X X X

HUR Hurst 55.52 -67.86 419 307 13 0.74 X

LAB17 Churchill N 53.97 -62.98 517 263 13 0.80 X X X

LAB19 Trans Lab 1 53.29 -62.62 440 300 15 0.79 X X X

LAB32 Goose-Bay 53.61 -60.89 265 200 30 0.83 X X X

LAB35 Trans Lab 2 53.07 -61.63 372 273 14 0.83 X X X

LAB42 Esker road 53.83 -66.40 490 400 16 0.83 X

LAB56 Manic5 51.29 -68.12 465 168 13 0.89 X

LAB65 Manic5-2 51.29 -68.12 462 173 16 0.83 X X X

LECA Clearwater 2 56.01 -73.75 327 205 19 0.87 X X X

LJ2 Jourdin2 54.37 -73.79 445 261 13 0.80 X

NFL1V NFL1 V 53.52 -77.63 218 94 21 0.92 X

NFL610 NFL610 53.75 -77.58 170 94 10 0.66 X

NFLR1 NFL1C 53.63 -77.70 201 87 21 0.87 X

NFLR2 NFL1D 53.57 -76.25 227 94 29 0.93 X

NFT75 Trans-Taiga75 53.54 -76.48 210 173 10 0.76 X

NIT Nitchequon 53.29 -70.94 736 471 17 0.82 X

POOL Pool 55.72 -66.89 485 285 16 0.81 X X X X X

ROZM Roz 2 54.84 -72.98 451 275 21 0.86 X X X

ROZX Roz 4 54.79 -72.99 451 275 21 0.82 X X X

RT426 Transtaïga 426 53.97 -72.03 470 373 10 0.77 X X X

RT485 Transtaïga 485 54.26 -71.42 447 393 16 0.83 X X X

RT630 Transtaïga 680 54.67 -70.27 559 448 12 0.78 X X X

T1 Tilly1 53.89 -73.89 432 294 22 0.71 X X X

T4S Tilly 4 53.92 -73.77 464 296 10 0.89 X

THH Thiers 53.74 -72.30 556 380 22 0.91 X X X

TI26 TI26 54.00 -71.92 500 370 12 0.71 X

TI41 TI41 53.92 -72.32 485 363 12 0.81 X

TIDA1 TIDA1 53.86 -72.41 529 345 15 0.78 X
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mass spectrometer (CF-IRMS; Fisons Prism III). The external precision of the δ13C ratios obtained on181

duplicate samples (treatment and analysis) was 0.08 ‰. All δ13C values were corrected for the Suess182

effect and for changes in atmospheric [CO2] (PIN correction; McCarroll et al. [2009]). The oxygen183

isotopic ratios (δ18O ) were measured with a pyrolysis-CF-IRMS (Delta plus XL), giving an external184

precision of 0.1‰.185

2.2.2 Reconstruction methods186

Previous annual water supplies to each of the four drainage basins (LG2, LG4, CAN, CHU) were187

reconstructed back to 1800. The reconstruction approach applied here was the same as that in Nicault188

et al. [2014a], and readers are referred to the original text for more detailed information on the meth-189

ods. In short, three different statistical modelling approaches were used to perform annual hydrological190

reconstructions (Figure 3). Method 1 was based on the partial least squares approach, which represents191

an extension of the principal components regression [Tenenhaus, 1998]. For Method 1, an initial re-192

construction was performed using the complete set of proxy series available in a 200-km radius around193

each hydroelectric power generating station. Method 2 used the same partial least square approach, but194

a selection of proxy series was performed based on the stepwise regression method. Only variables195

with P-values smaller than 0.01 were retained and included in the reconstruction (Table 2). Automatic196

selection of proxy records among the pool of available series was performed separately for each basin197

for tree-ring widths, MXD and stable isotope proxies to ensure that each proxy type was represented198

in the reconstructions. Selected proxy series were recombined into a single predictor matrix that was199

used as an input for the partial least square method. Method 3 was performed based on the best ana-200

logue method, which aimed at identifying, for each year i in the past for which no inflow value existed,201

the year k within the observed record that had the most similar proxy vector, according to an Euclidean202

distance metric [Guiot et al., 2005; Nicault et al., 2008; Boucher et al., 2011b; Guiot et al., 2010].203

All reconstruction methods were calibrated with annual hydrological records from the 1961–2000204

period, i.e., the maximal period covered by both tree-rings and hydrological data (Figure 3). Calibration205

(coefficient of determination: R2, root-mean-squared error: RMSE) and validation (coefficient of deter-206

mination for prediction: R2
p , root-mean-squared error of prediction: RMSEp) statistics were calculated207

based on a jackknife (Method 1 and Method 2) or a bootstrap procedure (Method 3).208

The reconstruction produced by each of the three approaches were combined into a single, more209

robust reconstruction that accounts for shortcomings associated with each calibration method and proxy210

series selection. As shown in LeBlanc and Tibshirani [1996] and in Chapter 16 of Hastie et al. [2009],211
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combining a collection of estimators can improve validation performance. Here, we applied the method212

proposed by Nicault et al. [2014a] to obtain the final reconstruction. First, for each year reconstructed,213

three Gaussian distributions were fitted based on the mean and standard deviation of each reconstruc-214

tion (Figure 3). Second, 500 samples were randomly drawn from an equally weighted mixture of these215

Gaussian distributions. The composite reconstruction (COMP) corresponds to the mode of the mix-216

ture of distributions obtained for each year (Figure 3). The illustrated 90% confidence interval for the217

composite reconstruction is given by the 5th and 95th percentiles of the mixture of distributions. All218

analyses were performed in the R-project environment [R Core Team, 2017]. The validation statistics R2
p219

and RMSEp for COMP were computed using a jackknife method.220

2.3 Time series modeling, persistence analysis, and forecasting230

2.3.1 Persistence231

In hydrological time series, persistence is often associated with long memory through an autore-232

gressive fractionally integrated moving average model (ARFIMA); see, e.g., Hosking [1984]. In this233

case, long memory is measured by the fractional differentiation parameter of the ARFIMA model and234

is related to the Hurst exponent [Mandelbrot and Wallis, 1968]. This approach has largely been used235

to detect long memory effects in hydroclimatological time series [Pelletier and Turcotte, 1997; Ault236

et al., 2013, 2014; Koutsoyiannis, 2005]. However, by definition, the Hurst exponent may exist with-237

out implying long memory [Beran, 1994]. An interesting alternative to describe persistence in time238

series is to use regime-switching models [Hamilton, 1990]. As shown in Diebold and Inoue [2001],239

regime-switching models can exhibit long memory. In addition, these models are easy to interpret and240

can easily be fitted to data. This type of model has also been used to detect long memory in hydro-241

climatological observed data [Thyer and Kuczera, 2000, 2003; Evin et al., 2011] and to model climatic242

reconstructions from tree-ring time series [Bracken et al., 2014; Gennaretti et al., 2014]. Although the243

class of regime-switching models is large, we restrict our attention to the simple model of Hamilton244

[1990], which is also called a Gaussian hidden Markov model (HMM), since the annual reconstructed245

and observed inflows in our study are well fitted by this model. Note that this model is the same as246

that used by Thyer and Kuczera [2000, 2003]. In the Gaussian HMM setting, there are m hidden (non-247

observable) states or regimes, denoted τt for period t, and the observations in each regime (annual in-248

flows) are distributed as an independent Gaussian distribution with its own mean µj and standard devia-249

tion σj , j ∈ 1, . . . ,m. The dynamics of regime switches are modeled by a Markov chain with transition250

matrix denoted by Q, where Qi j is the probability that the next regime is j given the current regime i.251

In this model, persistence is measured by the number of switches between regimes.252
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1800 1960 2000

Calibration (1961-2000)Reconstruction (1800-1960)

43 proxy
series

Jacknife
verif.

14 proxy
series

Jacknife
verif.

14 proxy
series

Boostrap
verif.

5th

90th

One Gaussian
distribution fitted for
each reconstruction

Mixture of
distributions
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Tree
Ring
Proxies

Hydrol.
time
series

5th

90th
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Composite
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Year
1837

Year
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1948

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

Figure 3. The hydrological reconstruction approach used to reconstruct historical water supplies back to 1800. An il-

lustration of the approach is presented for LG2 only, but the method remains the same for LG4, CAN and CHU. The three

reconstructions were then combined into a single composite reconstruction. 500 samples were drawn from a mixture of

three Gaussian distributions fitted for each year and for each method. The reconstructed water supply value corresponds

to the mode of the mixture distribution. The confidence intervals represent the 5th and 95th percentiles. The composite

reconstruction is illustrated separately for 1837, 1913, and 1948.
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Table 2. Available tree-ring proxies for each basin where annual water supplies were reconstructed. Method 1 (partial least

square method) reconstruction used all available tree-ring proxies. Proxy series selected based on the stepwise regression

approach for Method 2 (partial least squares) and Method 3 (best analogue method) are in bold.

227

228

229

ID LG2 LG4 CAN CHU

NFLR1 RW

NFL1V RW

NFL610 RW

NFT75 RW

NFLR2 RW

CORPL RW RW

CORILE RW RW

T1 RW, MXD, MND RW, MXD, MND RW, MXD, MND

LJ2 RW RW RW

T4S RW RW RW

LECA RW, MXD, MND RW, MXD, MND

ROZX RW, MXD, MND RW, MXD, MND RW, MXD, MND

ROZM RW, MXD, MND RW, MXD,MND RW, MXD, MND

TIDA1 RW RW

DA1M RW, MXD, MND, δ13C , δ18O RW, MXD,MND, δ13C , δ18O RW, MXD, MND, δ13C , δ18O

DA1R RW, RW, RW,

DA1X RW, MXD, MND RW,MXD,MND RW,MXD, MND

TI41 RW RW

THH RW, MXD, MND RW, MXD, MND RW

RT426 RW, MXD, MND RW, MXD, MND RW

TI26 RW RW

RT485 RW, MXD, MND RW, MXD, MND RW

NIT RW RW RW

HH1 RW RW RW

HM2 RW, MXD, MND RW, MXD, MND RW, MXD, MND

HM1 RW,MXD,MND, δ13C , δ18O RW, MXD, MND, δ13C , δ18O RW, MXD, MND, δ13C , δ18O

RT630 RW RW RW

HER RW RW RW

CANE RW, MXD, MND RW, MXD, MND RW, MXD, MND

LAB56 RW

CEA RW, MXD, MND RW, MXD, MND RW, MXD, MND

HUR RW RW RW

POOL RW, MXD, MND, δ13C , δ18O RW, MXD, MND, δ13C , δ18O RW, MXD, MND, δ13C , δ18O

LAB42 RW RW

LAB17 RW, MXD, MND

LAB19 RW, MXD, MND

LAB35 RW, MXD, MND

LAB32 RW, MXD, MND
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For example, if we take the simplest case of a Gaussian HMM with two regimes, the observations253

in Regime 1 (resp. Regime 2) follow a Gaussian distribution with mean µ1 (resp. µ2) and standard de-254

viation σ1 (resp. σ2), and the transition probability matrix Q is given by Q11 (probability of remaining255

in Regime 1), Q22 (probability of remaining in Regime 2) and Q12 = 1 − Q11 and Q21 = 1 − Q22256

(probabilities of switching from Regime 1 to Regime 2 and from Regime 2 to Regime 1). Figure 4257

illustrates the dynamics of a two-regime Markov chain. Furthermore, on the right-hand side, we gen-258

erated a Markov chain of length 200 with Q11 = 0.98 and Q22 = 0.96. In this case, we see that there259

are 5 switches. In the next two sections, we develop the estimation and forecasting procedures for the260

Gaussian HMM. All computations and estimations described next are done using the CRAN package261

GaussianHMM1d ( https://CRAN.R-project.org/package=GaussianHMM1d) [Nasri and Rémil-262

lard, 2019b].263

1 2

Q11

Q12

Q21

Q22

0 20 40 60 80 100 120 140 160 180 200

1

2

Regime=1
Regime=2
Switches

Figure 4. Simulation of a hidden Markov model with two regimes and 2 × 2 transition matrix Q where Q11 = 0.98, Q12 =

0.02, Q21 = 0.04, and Q22 = 0.96.

264

265

2.3.2 Gaussian HMM266

Let Y be the variable of interest and let y1, . . . , yn be the observations for periods t ∈ {1, . . . , n}.267

Further let τ1, . . . , τn be the non-observable regimes, modeled by a homogeneous discrete-time Markov268

chain on S = {1, . . . ,m} with transition probability matrix Q on S×S. Given τ1, . . . , τn, the observations269

y1, . . . , yn are independent with densities fβτt
, t ∈ {1, . . . , n}. Set θ = (β1, . . . , βm,Q), where in the270

Gaussian HMM, β j = (µj, σj) (the parameters of the Gaussian distribution), j ∈ 1, . . . ,m. Then, the271
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joint density of (τ1, . . . , τn) and (y1, . . . , yn) is given by272

fθ(τ1, . . . , τn, y1, . . . , yn) =

(
n∏
t=1

Qτt−1,τt

)
×

n∏
t=1

fβτt
(yt ), (1)

where τ0 is the first hidden state.273

Since the regimes τ1, . . . , τn are not observable, an easy way to estimate the parameters for a274

fixed number of regimes m is to use the Expectation-Maximization (EM) algorithm [Dempster et al.,275

1977], which proceeds in two steps: the E step, during which276

Ey1,...,yn

(
θ, θ(k)

)
= Eθ(k) {log fθ(τ1, . . . , τn, y1, . . . , yn)|Y1 = y1, . . . ,Yn = yn} (2)

is computed, and the M step, where we compute277

θ(k+1) = arg max
θ

Ey1,...,yn

(
θ, θ(k)

)
, (3)

for k = 0, . . . , N . Here N , fixed by the user, is the maximum number of iterations allowable to reach278

the optimality tolerance (eps), also fixed by the user. In this paper, we chose N = 10000 and eps =279

10−4. The equations related to the EM algorithm for the Gaussian HHM are described in Appendix A.280

They are implemented in the function EstHMM1d.R of the package GaussianHMM1d. To choose an281

optimal number of regimes m based on a given dataset, we can use the formal goodness-of fit test pro-282

posed by Rémillard [2013], who suggests choosing the smallest m for which the P-value is greater than283

5%. In the literature, the selection of the number of regimes is usually based on a maximum likelihood284

criterion, such as AIC or BIC, see, e.g., Bracken et al. [2016]. This selection procedure only compares285

models without any knowledge of their validity. Note that this goodness-of-fit test is described in Ap-286

pendix B and is implemented in the function GofHMM1d.R of the package GaussianHMM1d.287

There are two ways to estimate the probability of being in regime j at period t: we can con-288

sider only the observations up to period t, and compute ηt ( j) = P(τt = j |Y1 = y1, . . . ,Yt = yt ),289

j ∈ {1, . . . ,m}, using formulas (A.2)–(A.3), or we can consider all the observations and compute290

λt ( j) = P(τt = j |Y1 = y1, . . . ,Yn = yn), using formula (A.6). In both cases, the estimated regime at291

period t, denoted by τ̂t , is the regime with the largest probability, i.e., ηt (τ̂t ) ≥ max
j∈{1,...,m}

ηt ( j) (resp.292

λt (τ̂t ) ≥ max
j∈{1,...,m}

λt ( j)). Generally λt is used for estimating the regimes while ηt is used for pre-293

diction purposes since computing λt requires all observations. Note that both ηt and λt can be cal-294

culated using the function EstHMM1d.R, while the regimes can be estimated using the function Es-295

tRegime.R of package GaussianHMM1d. After selecting the optimal number of regimes and estimating296

the parameters, persistence can be measured in terms of the number of switches during the observed297

period, using the estimated regimes τ̂1, . . . , τ̂n. More precisely, the number of switches is defined as298
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Rn =
∑n

t=2 I(τ̂t−1 , τ̂t ). It can also be calculated with the function EstRegime.R of package Gaus-299

sianHMM1d. The smaller Rn is, the more persistent the series. We can also approximate the long-term300

probability νj of being in each regime j ∈ {1, . . . ,m} by using the transition matrix and the definition301

of the stationary distribution of a Markov chain. These probabilities represent the average percentage of302

time spent in each regime.303

2.3.3 Forecasting using Gaussian HMM304

Suppose that we observed Y1, . . . ,Yt and we want to forecast Yt+k . Then the conditional density ft+k |1:t305

of Yt+k given Y1, . . . ,Yt is expressed as a mixture of the Gaussian densities fβi , viz.306

ft+k |1:t (y, θ) =
m∑
i=1

fβi (y)


m∑
j=1

ηt ( j)
(
Qk

)
ji

 , (4)

which is also a mixture of the Gaussian densities fβi with weights P(τt+k = i |Y1 = y1, . . . ,Yt =307

yt ) =
∑m

j=1 ηt ( j)
(
Qk

)
ji , for i ∈ {1, . . . ,m}. The conditional distribution function Ft+k |1:t of Yt+k given308

Y1, . . . ,Yt is then expressed as309

Ft+k |1:t (y, θ) =
m∑
i=1

Φ

(
y − µi
σi

) 
m∑
j=1

ηt ( j)
(
Qk

)
ji

 . (5)

where Φ is the cumulative distribution function of the standard Gaussian distribution. Using Equation310

(5) we can compute the conditional median and more generally the conditional quantile function as311

the inverse of the conditional distribution function Ft+k |1:t , for which there is no explicit expression;312

the inverse must be computed numerically. A 95% prediction confidence interval for Yt+k is given by313 [
F−1
t+k |1:t (.025), F−1

t+k |1:t (.975)
]
. Note that as k increases, the behavior of Yt+k becomes independent of its314

past [Rémillard, 2013, p.382-383], leading to constant prediction intervals. This is due to the fact that315

if the Markov chain with transition matrix Q is ergodic, then the conditional distribution of Yt+k given316

Y1, . . . ,Yt , converges, as k → ∞, to the stationary distribution with density f (y) =
∑m

i=1 νi fβi (y) and317

distribution function F(y) =
∑m

i=1 νiΦ
(
y−µi
σi

)
. The next period forecast is obtained bi letting k = 1.318

Finally, note that formulas (4)–(5), including the conditional quantile function, are implemented in the319

functions ForecastHMMPdf.R, ForecastHMMPdf.R, GaussianMixtureCdf.R, and GaussianMixtureInv.R320

of the package GaussianHMM1d.321

2.3.4 Application of Gaussian HMM to our case study322

In this paper, we consider the Gaussian HMM for modeling inflows for four basins: LG2, LG4,323

CAN, and CHU. For each basin, we have two times series: reconstructed data from 1800 to 2000, and324

observed data from 1960 to 2016. A logarithm transformation of the inflows (observed and recon-325
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structed) was applied to obtain observations that are more suitable for a mixture of normal probabil-326

ity distributions, since fitting Gaussian or a mixture of Gaussian to the original data which are positive327

can lead to inconsistencies since the probability of observing a negative value under these models is328

nonzero. Therefore data log-transform is needed in our case. Data up to 1990 will be used to choose329

the appropriate Gaussian HMM according to the methodology described in Section 2.3.2. More pre-330

cisely, for both log-inflows from the observed data (1960-1990) and reconstructed data (1800-1990), we331

• set the number of regimes (starting at 1) and estimate the Gaussian HMM parameters;332

• compute the P-value of the goodness-of-fit test;333

• choose the model with the smallest number of regimes for which the P-value is larger than 5%;334

• compute the probabilities λt according to formula (A.6) and estimate the regime τ̂t ;335

• calculate the number of switches Rn.336

The observed inflows from 1991 to 2016 will be used to evaluate the performance of the chosen337

models in hindcast experiments, as described in Section 2.3.3. Hindcasts are forecasts for past events,338

which enable models to be compared to observations to assess their skill. Here, for both inflows models339

for the observed data and reconstructed data, we340

• compute 95% long-term prediction intervals for the inflows Yt , t ∈ {1991, . . . , 2016} using Equation341

(5) and data up to 1990;342

• compute 95% 1-year prediction intervals for the inflows Yt , t ∈ {1991, . . . , 2016} using Equation343

(5) with k = 1 and past data Y1, . . . ,Yt−1; ηt is upgraded each time using formula (A.3) .344

To assess the performance of each model for the prediction, two criteria were used. They are both345

based on the fact that if a model is appropriate, then Ft |1:t−1(Yt, θ) are i.i.d. uniform variables [Bai,346

2003] for the true parameter θ. Then, using observed values Y1991, . . . ,Y2016, we define the empirical347

distribution function348

D̂(u) =
1

26

2016∑
t=1991

1{Ft |1:t−1(Yt, θn) ≤ u}, u ∈ [0, 1]. (6)

Under the hypothesis that the model is appropriate, D̂ should be uniformly distributed. Note that here,349

instead of using only one statistic, we use the full distribution of the predicted values. As a result, we350

define two scoring rules based on D̂, namely the Kolmogorov-Smirnov (ks) and the Cramér-von Mises351

(cvm) statistics defined respectively by352

ks = max
u∈[0,1]

√
26

��D̂(u) − u
�� (7)

and353

cvm = 26
∫ 1

0

{
D̂(u) − u

}2
du. (8)
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These metrics, which can only be used for the one-period prediction since Ft+k |1:t−1(Yt, θ) is not uni-354

form [Bai, 2003], are negatively oriented, in the sense that smaller values of ks and cvm indicate more355

reliable probabilistic forecasts. Note that Equations (6)–(8) can be used for any dynamic model, not just356

Gaussian HMM. Finally, we use these statistics only as metric scores, not for goodness-of fit testing.357

3 Results358

After calibration and verification of the reconstructions from the individual proxies, the time se-359

ries are combined into a single reconstruction for each basin (Section 3.1). Gaussian HMMs are then360

fitted to the reconstructions and to the recent observation time series (Section 3.2). These Gaussian361

HMMs are used to hindcast water inflows to compare the benefits, if any, of using longer, less accurate,362

annual inflow reconstructions in an operational setting (Section 3.3).363

3.1 Calibration and validation of the reconstructions364

Calibration statistics between tree-ring series and annual (Jan-Dec) inflow data (1960–2000) in-370

dicate that our proxy network and modeling approach can be used to reconstruct past water supplies371

beyond hydrological observations across the Québec-Labrador Peninsula. In LG2 and LG4, Method 1372

yields the highest calibration R2 statistics (0.74 and 0.79, respectively, see Table 3). In CAN and CHU,373

the highest calibration R2 statistics are obtained by Method 2. The RMSE values (Table 3) are gener-374

ally smaller than the standard deviations calculated for the 1960–2000 period for most methods (Table375

4), which indicates that the reconstruction models are more accurate than the mean for prediction pur-376

poses. However, the verification R2
p and RMSEp statistics suggest that Method 1 generally has lower377

predictive skill (lower R2
p , higher RMSEp). By contrast, Method 3 has the best predictive skill, with378

the highest R2
p and lowest RMSEp . Combining the three reconstructions for each basin produces re-379

constructions with high calibration R2 statistics: 0.70 (LG2), 0.75 (LG4), 0.64 (CAN) and 0.76 (CHU)380

(Table 3). Except for CHU, these statistics are well within the bounds of those of the three models used381

to compute the individual reconstructions, indicating that the composite reconstructions (COMP) inte-382

grate the strengths and possible weaknesses associated with each method and proxy selection. The four383

composite reconstructions extend the inflow records back to 1800 CE for each hydroelectric reservoir384

under study (Figure 5).385

From Table 4, we see that the main descriptive statistics are comparable for the reconstructed and386

the observed data, with the exception of the standard deviations, which are about 33% larger for the387
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Table 3. Statistical results for the annual water inflows reconstructions: series_nb represents the number of series involved

in each method, R2 (resp., R2
p) is the determination coefficient calculated on calibration data (resp., verification data), and

RMSE (resp., RMSEp) is the root-mean-square error calculated on calibration data (resp., verification data).

365

366

367

Statistics series_nb R2 R2
p RMSE RMSEp series_nb R2 R2

p RMSE RMSEp

Basin LG2 LG4

Method 1 43 0.74 0.38 0.14 0.22 60 0.79 0.20 0.13 0.25

Method 2 14 0.63 0.46 0.17 0.21 12 0.72 0.46 0.15 0.21

Method 3 14 0.53 0.53 0.18 0.17 12 0.50 0.54 0.20 0.18

COMP - 0.70 0.69 0.15 0.16 - 0.75 0.75 0.14 0.14

Basin CAN CHU

Method 1 50 0.68 0.40 0.15 0.20 61 0.71 0.45 0.17 0.20

Method 2 10 0.70 0.52 0.14 0.18 12 0.75 0.60 0.12 0.14

Method 3 10 0.69 0.66 0.14 0.18 12 0.68 0.68 0.15 0.15

COMP - 0.64 0.65 0.17 0.18 - 0.76 0.77 0.12 0.13

Table 4. Descriptive statistics for each basin and for two time periods: observations (1960–2000) and reconstructions

(1800–2000). NS= Not significant. *= P-value <0.05

368

369

1960-2000 1800-2000

Basin Area ( km2 ) Mean (Std.Dev.) (mm /day) Trend Mean (Std.Dev.) (mm /day) Trend

LG2 30 989 1.20 (0.28) NS 1.16 (0.21) NS

LG4 28 440 1.67 (0.28) NS 1.65 (0.21) 0.03*

CAN 37 330 1.73 (0.28) NS 1.72 (0.21) NS

CHU 69 141 1.73 (0.26) NS 1.74 (0.21) NS

observed data. However, these differences will have no significant impact in the results of the next two388

sections.389

3.2 Regimes and persistence for the reconstructed and observed data393

Following Section 2.3.4, we choose the appropriate Gaussian HMM for observed and recon-394

structed data. Based on the goodness-of-fit test proposed in Rémillard [2013] and described in Ap-395
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Figure 5. Composite reconstructions of annual water supply (mm/day) back to 1800 CE for each watershed. For each year

reconstructed, the bold line corresponds to the mode of the joint distribution (see Figure 3) and the envelope represents the

90% bootstrap confidence interval. Observed annual water supplies are overlaid in black.

390

391

392

pendix B, the selected model for the reconstructed log-transformed data is a Gaussian HMM with two396

regimes. The P-values, listed in Table 5, are estimated with B = 10000 bootstrap samples, and all397

P-values for the reconstructed data and HMM with two regimes are larger than 5%. Note that for the398

LG4 watershed, we could not reject the Gaussian HMM with only one regime. Since the P-value is399

only slightly greater than 5%, the Gaussian HMM with two regimes is preferable. Therefore, the mean400

for the original reconstructed data for regime j is given by µdatj = exp
(
µj + σ

2
j /2

)
, j ∈ {1, 2}, and401

Regime 1 is defined as the wetter regime. Table 6 gives the estimated parameters for the selected mod-402

els for each reconstructed time series. The behavior of the four studied stations is quite different in403

terms of persistence. In fact, as measured by the number of switches, the persistence decreases from404

western (LG2, Rn = 6; LG4, Rn = 12) to eastern watersheds (CAN, Rn = 20; CHU, Rn = 30).405

Similar behavior is observed in terms of the average time spent in the wetter regimes before switch-406

ing as a function of Q11, which is larger for LG2 (Q11 = 0.975) and LG4 (Q11 = 0.937) than for CAN407

(Q11 = 0.867) and CHU (Q11 = 0.804). Furthermore, for the LG2 and LG4 basins, as measured by ν1,408

at least 60% of the time is spent in the wetter regime. For CAN, the opposite behavior is observed, i.e.,409

41% of the time is spent in Regime 1. For the CHU basin, the percentage of time spent in Regime 1 is410
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not significantly different from that spent in Regime 2 (50%). The difference in the number of switches411

of the four studied time series is also displayed graphically in Figure 6.412

Next, for the observed data, Table 5 shows that a Gaussian HMM model with one regime is se-413

lected for the LG4, CAN and CHU watersheds, while for LG2, two regimes are selected. Table 6 also414

shows the statistical results related to the observed data. Note that during the overlapping period, the415

reconstructed data and observed data for the LG2 basin behave similarly in terms of the number of416

switches.417

Table 5. P-values in percentage for the Gaussian HMM for each basin and for two time periods: observations (1960–1990)

and reconstructions (1800–1990), the symbol * indicates that the P-values for the HMM are very close to 5%; in this case,

one might also use the model with one more regime.

418

419

420

1960–1990 1800-1990

Basin HMM1 HMM2 HMM1 HMM2 HMM3

LG2 4.18 25.47 0.03 21.23 10.53

LG4 38.80 5.29 5.35 50.06* 55.22

CAN 89.09 70.59 1.75 8.11 38.85

CHU 20.39 74.80 1.54 17.20 67.06

Finally, to illustrate the fit of the reconstructed data with the proposed GHMM models, for each430

station, we estimated the density of the log data using the kernel method, we plotted the Gaussian den-431

sities for each of the two regimes, and we plotted the mixture of these two regimes using the weights432

ν1, ν2 given in Table 6 since the density obtained using the kernel method is an estimation of the sta-433

tionary density. These results are displayed in Figure 7. We can see that the density estimated with the434

kernel method is always close to the density estimated by the mixture.435

3.3 Hindcast experiments436

In this section, we evaluate the predictive ability of Gaussian HMMs in hindcast experiments.437

We compare observation data with 1-year hindcasts and longer-term hindcasts based on the predictive438

distribution functions expressed by Equation (5). In the former case, we used the observed data to im-439

prove the hindcast. In addition, we compute the Kolmogorov-Smirnov and Cramér-von Mises scores440
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Figure 6. Estimated regimes for the four stations over 190 years. The dashed lines represent the regime jumps, where the

horizontal parts are the mean of each regime.

421

422

to compare the quality of the 1-year hindcasts provided by the chosen models using the observed and441

reconstructed data.442

The 95% prediction intervals for the period 1991-2016 are displayed in Figure 8. Based on the443

left-hand side graphs, we can see that the prediction intervals are almost constant after three years,444

which shows that the predictive distribution converges rapidly to the stationary distribution. By con-445

trast, for 1-year hindcasts, the prediction intervals on the right-hand side for the Gaussian HMM model446

with two regimes vary considerably since we incorporate new information each year. Furthermore, the447

prediction intervals for the Gaussian HMM with only one regime are constant over time and are much448

less informative. The most important feature of Figure 8 is that the prediction intervals computed with449

the reconstructed data are more precise than those based on the observed data, mainly due to the fact450

that the reconstructed datasets are longer, and as a result, they help in building more accurate models.451
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Table 6. Estimated parameters for the Gaussian HMM with two regimes for the four reconstructed time series from 1800 to

1990 and the four observed data from 1960 to 1990. µj (mm/day) and σj (mm/day) are, respectively, the mean and standard

deviation of regime j for the logarithmic-transformed series, µdat j (mm/day) is the mean of regime j for the series, Q j j is

the probability of staying in regime j, τj =
Q j j

1−Q j j
(year) is the average time spent in regime j before changing regimes, νj

(%) is the proportion of time spent in regime j, and Rn is the number of switches.

423

424

425

426

427

1960–1990 1800-1990

Station LG2 LG4 CAN CHU LG2 LG4 CAN CHU

Regime 1 2 1 1 1 1 2 1 2 1 2 1 2

µ j 0.267 -0.165 0.511 0.564 0.556 0.206 -0.046 0.554 0.394 0.634 0.475 0.632 0.452

µdat j 1.321 0.876 1.692 1.781 1.765 1.241 0.976 1.750 1.490 1.892 1.613 1.887 1.576

σj 0.151 0.261 0.171 0.160 0.150 0.135 0.211 0.101 0.097 0.084 0.074 0.073 0.082

Q j j 0.962 0.996 – – – 0.975 0.950 0.937 0.904 0.867 0.916 0.836 0.804

τj 25.76 271.8 – – – 39.52 19.17 14.97 9.44 6.566 10.92 5.109 4.116

νj 86.63 13.3 – – – 73.21 26.78 63.43 36.56 40.99 59.00 55.48 44.51

Rn 2 – – – 6 12 20 30

This conclusion is consolidated by the results displayed in Table 7 for 1-year forecasts, which show452

that the ks and cvm scores are all smaller for the model based on reconstructed data. In addition, we453

computed the mean absolute deviation (MAD) and the root mean square error (RMSE) between the454

predicted means and the observations from 1991 to 2016. The results are given in Table 8. The MAD455

values are all smaller for the reconstructed values. The same is true for the RMSE for all stations but456

LG4, but the difference between the two RMSE values is quite small (0.008). The overall conclusion457

from Tables 7 and 8 is that the model based on the reconstruction yields in general better predictions458

that the model based on the observed data.459

Using the results of 1-year forecasts, we computed the 26 years predictive probabilities of be-462

ing in Regime 2 (dry). Figure 10 shows these probabilities for the four basins. Note that the LG2 and463

LG4 basins spend respectively 16 and 18 years in the wet regime (probability of being in Regime 2464

below 0.5), while CAN and CHU spend respectively 10 and 5 years in the wet regime. Over the pre-465

dictive period, LG2 has only one regime switch, while the others have almost 9 regime switches. To466

assess the performance of the regime prediction, we performed 10,000 Monte Carlo simulations using467
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Figure 7. Estimated densities for the log data using the kernel method, together with the Gaussian densities for each of the

two regimes and the stationary density.

428

429

the same estimated parameters obtained for the four basins over the period 1800–1990. We found that468

using a series of length 190 for the estimation of the parameters and with 26 observations used for the469

predictions, the regimes are predicted correctly about 90% of the time. It means, in our case, that on470

average less than 3 regimes might be incorrectly predicted. Finally, as a complement of information,471

we included in the Supplementary Material a video showing the evolution of the predictive densities for472

the four basins calculated using Equation (4) for the reconstructed and the observed data. We can see473

clearly that when there is a large probability of being in Regime 1 (resp. 2), the predictive density from474

the reconstructed data is shifted to the right (resp. left) and has basically mean µdat given in Table 6.475

For the observed data, we can see that for LG2, the predictive densities have similar behavior as for the476

reconstructed data, while for the other three basins the predictive densities from the observed data are477

constant since the best model in these cases are Gaussian HMM with one regime.478

Finally, we computed the prediction densities for each model and each station for 2005 and 2015,488

together with the observed value for the year. These graphs are displayed in Figure 9.489
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Table 7. Scores for 1-year forecasts for the period 1991-2016 based on the selected models for reconstructed data (1800–

1990) and for observed data (1960–1990).

460

461

Score ks cvm

Station LG2 LG4 CAN CHU LG2 LG4 CAN CHU

Reconstructed 1.396 0.622 1.000 0.787 0.630 0.102 0.216 0.159

Observed 1.563 0.664 1.056 1.571 0.807 0.102 0.269 0.611

Table 8. Mean absolute deviation (MAD) and root mean square errors (RMSE) for 1-year forecasts for the period 1991-

2016 based on the selected models for reconstructed data (1800–1990) and for observed data (1960–1990).

479

480

Score MAD RMSE

Station LG2 LG4 CAN CHU LG2 LG4 CAN CHU

Reconstructed 0.192 0.175 0.187 0.125 0.237 0.232 0.223 0.166

Observed 0.208 0.179 0.190 0.138 0.251 0.224 0.226 0.190

4 Discussion490

This study used an extensive and well-replicated multiproxy tree-ring network to produce the first,491

spatially explicit, hydrological reconstructions across the Québec-Labrador Peninsula. The reconstruc-492

tions shed light on the fundamental properties of multidecadal hydrological variability in one of North493

America’s largest hydroelectric facilities. The reconstructions result from the combination of three ap-494

proaches based on partial least squares, stepwise partial least squares, and the best analogue method.495

Considered individually, all approaches yield satisfactory calibration (R2, RMSE) and verification (R2
p ,496

RMSEp) statistics (Table 3). Combining the reconstructions into a single reconstruction (for each basin)497

produced 200-year time series that integrate the strengths and weaknesses of each approach, while ex-498

plaining between 65% and 76% of the variance in the original water supply series. Hence, for each499

basin, the variance explained by the combined reconstructions appears to be well within the bounds of500

other works that used tree-rings to reconstruct streamflow in river systems used for hydroelectric pro-501

duction [Woodhouse and Lukas, 2006].502

Our new 200-year reconstructed datasets were used to highlight and hindcast several hydrologi-503

cal regimes by using the Gaussian HMM. In fact, this type of model has been used in several studies504
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to represent hydrological time series, including reconstructed data as in Bracken et al. [2016]. The ad-505

vantage of such models is that they are not only able to detect hydrological regimes and classify the506

observations into regimes, but they can also produce short-term and long-term forecasts for the future507

regimes. In this study, we used the Gaussian HMM, which is the simplest regime-switching model.508

The originality of our statistical approach is the selection procedure of the number of regimes, which509

is based on a recent goodness-of-fit test proposed by [Rémillard, 2013]. Usually, the selection of the510

number of regimes is based on a maximum likelihood criterion, such as AIC or BIC, which only rank511

models without verifying if they are valid. In our approach, we test the validity of the models when512

choosing the number of regimes. However, as expected, detecting more than one regime requires longer513

datasets, which is true for any stochastic model. The power of the goodness-of-fit test has been studied514

in a similar context [Nasri et al., 2019] and the authors showed that the selection procedure based on515

P-values is valid and efficient.516

The inference and model selection results presented in Section 3.2 for the reconstructed time se-517

ries confirm that the annual inflows of the four basins exhibit persistence in several distinct states with518

occasional transitions between these states. Such information can be very useful for electric utilities,519

such as Hydro-Québec. For instance, these results can be used to define energy reliability criteria that520

could take into account possible switching hydrological regimes and events of prolonged low inflows.521

In this case, access to longer series (reconstructed data) helps to identify more accurate models and522

clearly improves forecasts. Moreover, taking into account new data reduces the uncertainty in the fore-523

casts. The hindcast experiments performed in Section 3.3 with observed data from 1991 to 2016 clearly524

show that we can trust the reconstructed data and use them for short-term, as well as for medium-term525

predictions. In particular, for 1-year ahead forecasts, according to the ks and cvm scores, as well as526

the MAD and RMSE scores, the approach based on the reconstructed data outperforms the standard527

method which relies only upon the observed data. For instance, the cvm scoring rule shows a clear ad-528

vantage for our approach for basins LG2, CAN and CHU. These results are in agreement with the con-529

clusions of Thyer et al. [2006] who showed that the uncertainty around the estimation of parameters of530

Gaussian HMMs is quite large for short time series. As a result, the identification of the correct model531

is very difficult. In our case, for the observed data, we used only 31 observations, which is too small532

to perform an efficient calibration. However, based on the hindcast experiments, we showed that the533

reconstructed data can be combined with observed data to get more accurate and precise predictions.534

This result is perhaps the most important result from this study.535

As an example of the usefulness of the proposed model, we can also predict future regimes, as536

illustrated in Figure 10, where we compute the probability of dry regimes for each station, using both537
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reconstructed and new observed data. Note that the dry regime (Regime 2) is much less recurrent for538

stations LG2 and LG4 than for stations CAN and CHU, which is important information for the man-539

agement of water resources. In fact, the ability to issue such medium-term forecasts with respect to540

hydroelectric generation at the beginning of the year is of particular interest to water resources planners541

and managers. Such knowledge can be used for making decisions about future releases during the win-542

ter, contributing to more proactive water management that may prove very useful in extreme dry or wet543

years. For example, the explicit integration of basin-specific regime properties in Table 6 could allow544

hydroelectric producers to make informed inflow predictions based on the current hydrological regime545

(Regime 1 or Regime 2), taking into account the flow characteristics (mean and variability of a given546

regime) and the regime-switching probabilities associated with each basin. In turn, the proposed model547

improves the quality of predictions by lowering the risk of mismatches between energy production and548

demand.549

5 Conclusion552

The objective of this study was threefold. First, we reconstructed 200 years of annual water-553

supplies at four basins in the Québec-Labrador Peninsula, which are among the largest in North Amer-554

ica in terms of hydroelectric capacity. We used tree-ring proxies to extend the climatic series beyond555

recent 40 years observations of reservoir inflows. The reconstructed data were based on the combina-556

tion of three statistical methods, as in Nicault et al. [2014a]. Second, for the reconstructed and observed557

data, we used Gaussian HMM to characterize the persistence in terms of regime switches. Two regimes558

were found for the reconstructed series, while only one regime was found for the observed data, in559

three out of four basins. As for the number of regime switches, we noticed that they increase signifi-560

cantly from west to east. In Quebec-Labrador, hydroclimate variability over decadal to multi-decadal561

time scales can, at least party, be related to ocean-atmosphere interactions occurring in the western562

North-Atlantic region [O’Reilly et al., 2017]. Indeed, oscillations in sea surface temperatures (SST)563

exhibit a significant persistence which has been shown to impact surrounding landmasses climate, most564

particularly low-frequency temperature variability over northeastern North-America. Whether this influ-565

ence results from a direct thermodynamical influence or an indirect change in large-scale atmospheric566

circulation patterns, however, remains unclear. The analysis of such oscillatory modes nevertheless con-567

firms their potential relevance for streamflow predictability in Quebec-Labrador region [Sveinsson et al.,568

2008a,b].569

Third, we evaluated the predictive ability of the selected Gaussian HMM for each basin. The re-570

sults showed that the predictions are better using the reconstructed data, when combined with the new571
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observed data. This is mainly due to the fact that the reconstructed datasets are longer and reliable,572

allowing therefore efficient model selection and more accurate probabilistic forecasts. However, the573

expectations of water resource manager’s are considerably higher. Performance over a longer recon-574

structed period and a rigorous assessment of the hindcast skill against other approaches are required.575

This assessment would include comparing different persistence models and providing a theoretical foun-576

dation connecting them to continental climate patterns. Indeed, future research may lead to millennial-577

scale reconstructions, taking into account the serial dependence of tree-ring proxies, which will enable578

us to produce more efficient reconstructions, and in particular reduce the difference between the vari-579

ances of the reconstruction and the observed data. Also, longer reconstructed datasets will allow to580

consider other persistence models, such as the well-known ARFIMA models, which require very long581

datasets [Bhardwaj and Swanson, 2006]. Ideally, persistence models would also include climate change582

considerations, along with the uncertainty of climate sensitivity to greenhouse gases concentrations.583

Adding predictors that drive multidecadal variation to the model, such as large-scale climate indices,584

would certainly help to better explain the variability in regimes [Sveinsson et al., 2008a,b]. One way585

to do this would be to incorporate a probit model for the hidden regimes of the HMM [Perreault et al.,586

2007; Bracken et al., 2014]. Finally, in a forthcoming paper, we will develop goodness-of-fit tests to587

rigorously compare ARFIMA to HMM, and we will attempt to account for the uncertainties inherent to588

reconstruction procedures to provide a more robust foundation for risk analysis.589
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A: Estimation of the HMMmodels784

The EM algorithm for estimating parameters consists of two steps, expectation and maximization:785

1. (E-Step) Compute the conditional probabilities.786

λt (i) = P(τt = i |Y1, . . . ,Yn) and Λt (i, j) = P(τt = i, τt+1 = j |Y1, . . . ,Yn), (A.1)

for all 1 ≤ t ≤ n and i, j ∈ {1, . . . ,m}.787

2. (M-Step) Estimate the new parameters.788

First, a rough estimate of the parameters must be provided. Then, the two-step procedure is repeated789

until a stopping criterion is satisfied. The E-Step is described next for any densities, while the M-Step790

is stated only for Gaussian densities.791
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A.1 Conditional distribution of the regimes (E-Step)792

First, define, for all i ∈ {1, . . . ,m},793

η0(i) = 1/m, (A.2)

ηt (i) =
fβi (Yt )

∑m
j=1 ηt−1( j)Q ji∑m

k=1
∑m

j=1 fβk
(Yt )ηt−1( j)Q jk

, t = 1, . . . , n, (A.3)

η̄n(i) = 1/m, (A.4)

η̄t (i) =
∑m

k=1 η̄t+1(k)Qik fβk
(Yt+1)∑m

α=1
∑m

k=1 η̄t+1(k)Qαk fβk
(Yt+1)

, t = 1, . . . , n − 1. (A.5)

Then, for all i, j ∈ {1, . . . ,m}, one can verify that794

λt (i) =
ηt (i)η̄t (i)∑m

α=1 ηt (α)η̄t (α)
, t = 1, . . . , n, (A.6)

Λt (i, j) =
Qi jηt (i)η̄t+1( j) fβ j (Yt+1)∑m

α=1
∑m

k=1 Qαkηt (α)η̄t+1(k) fβk
(Yt+1)

, t = 1, . . . , n − 1, (A.7)

Λn(i, j) = λn(i)Qi j . (A.8)

We can now verify that Equations (A.6) and (A.7) are consistent. Indeed, for all 1 ≤ t ≤ n − 1,795

m∑
j=1

Λt (i, j) =
ηt (i)

( ∑m
j=1 Qi j η̄t+1( j) fβ j (Yt+1)

)
∑m
α=1 ηt (α)

( ∑m
k=1 Qαk η̄t+1(k) fβk

(Yt+1)

) = λt (i), (A.9)

using the definition of η̄t . Also,
∑m

j=1 Λn(i, j) =
∑m

j=1 λn(i)Qi j = λn(i). Similarly, for all 1 ≤ t ≤ n − 1,796

l∑
i=1

Λt (i, j) = λt+1( j).797

A.2 Estimation for Gaussian regime-switching models (M-Step)798

For the estimation procedure, we assume the densities fβ1, . . . , fβm are Gaussian with means799

(µi)
m
i=1 and covariance matrices (Ai)

m
i=1. The M-step consists of updating the parameters (νi)mi=1, (µi)

m
i=1,800

(Ai)
m
i=1 and Q according to801

ν′i =

n∑
t=1

λt (i)/n, (A.10)

µ′i =

n∑
t=1

xtwt (i), (A.11)

A′i =
n∑
t=1
(xt − µ′i)(xt − µ

′
i)
>wt (i), (A.12)

Q′i j =
n∑
t=1

Λt (i, j)
/ n∑

t=1
λt (i) =

1
n

n∑
t=1

Λt (i, j)
/
ν′i, (A.13)
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for all i, j ∈ {1, . . . ,m} and where wt (i) = λt (i)
/ ∑n

m=1 λm(i). Note that ν′ is not the stationary distribu-802

tion for Q′ since for any j ∈ {1, . . . ,m},803

m∑
i=1

ν′iQ
′
i j =

1
n

n∑
t=1

m∑
i=1

Λt (i, j) =
1
n

n+1∑
t=2

λt ( j) = ν′j +
λn+1( j) − λ1( j)

n
, ν′j . (A.14)

However, max
1≤ j≤l

����� m∑
i=1

ν′iQ
′
i j − ν

′
j

����� ≤ 1/n. Hence, when n is large, ν′ is close to the stationary distribution804

of Q′. In practice, we estimate the stationary distribution from Q′, rather than ν′, for consistency.805

B: Goodness-of-fit test for the HMM806

Suppose that Y1, . . . ,Yn is a size n sample of a unidimensional vector drawn from a continuous807

distribution P belonging to a parametric family of univariate regime-switching models with m regimes.808

Formally, the hypothesis to be tested is H0 : P ∈ P = {Pθ ; θ ∈ O} vs H1 : P < P. Under the809

null hypothesis, it follows that Vt = Ft |1:t−1(Yt, θ) is independent and uniformly distributed over (0, 1),810

where Ft |1:t−1(·, θ) is the conditional distribution function for the true parameters θ ∈ O, as defined by811

Equation (5).812

B.1 Test statistics813

Following Nasri and Remillard [2019a], define the empirical process814

Dn(u) =
1
n

n∑
t=1

1
(
Vn,t ≤ u

)
, u ∈ [0, 1], (B.1)

where Vn,t = Ft |1:t−1(Yt, θn) and θn is the consistent estimator of θ. Following, Genest et al. [2009], to815

test H0 against H1, it is suggested to use the Cramér-von Mises type statistic because it appears to be816

much more powerful and easier to compute than the Kolmogorov-Smirnov type statistic. The Cramér-817

von Mises type statistic is given by Sn = Bn

(
Vn,1, . . . ,Vn,n

)
= n

∫ 1

0
{Dn(u) − u}2 du.818

B.2 Parametric bootstrap819

If a goodness-of-fit test is based on a statistic Sn of the observations Y1, . . . ,Yn with distribution820

Pθ for some unknown parameter θ estimated by θn, the parametric bootstrap approach consists of gen-821

erating a large number B of sequences Y (k)1 , . . . ,Y (k)n with distribution Pθn , k = 1, . . . , B, evaluatingthe822

goodness-of-fit statistic S(k)n each time, and approximating the P-value as the percentage of values S(k)n823

that are greater than Sn, assuming that the null hypothesis is rejected for large values of Sn. Hence, to824

perform the goodness-of-fit test, we use the following algorithm:825
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Algorithm 1 For a given number of regimes m, obtain estimator θn of θ using the EM algorithm. Then,826

compute the statistic Sn = Bn

(
Vn,1, . . . ,Vn,n

)
using the pseudo-observations Vn,t = Ft |1:t−1(Yt, θn), t ∈827

{1, . . . , n}. Next, for k = 1, . . . , B, with sufficiently large B, repeat the following steps:828

• Generate a random sample Y ∗1 , . . . ,Y
∗
n from a Gaussian HMM with parameter θn.829

• Obtain the estimator θ∗n from Y ∗1 , . . . ,Y
∗
n .830

• Compute the pseudo-observations V∗n,t = Ft |1:t−1
(
Y ∗t , θ

∗
n

)
, t ∈ {1, . . . , n} and calculate S(k)n =831

Bn

(
V∗
n,1, . . . ,V

∗
n,n

)
.832

Then, an approximate P-value for the test based on the Cramér-von Mises statistic Sn is given by833

1
B

B∑
k=1

1
(
S(k)n > Sn

)
. (B.2)

The goodness-of-fit test methodology produces P-values from a Cramér-von Mises type statistic for a834

given number of regimes m. As suggested in Rémillard [2013], it makes sense to choose the optimal835

number of regimes, m∗, as the first m for which the P-value is larger than 5%.836
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Figure 8. The graphs in the left column display the long-term predictions from 1991 to 2016, while the right column

displays 1-year-ahead forecasts. The blue lines show the observed data, the dash-dot lines represent the predicted median

from the reconstruction models, and the dotted lines represent the predicted median from the observed data models. Finally,

the dashed lines are the 95% confidence intervals estimated by using the models from the observed data and the dashed lines

with circles are the 95% confidence intervals estimated by using the models from the reconstructed data.
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Figure 9. Plotted predictive densities for stations LG2, LG4, CAN, and CHU for 2005 and 2015, using the reconstructed

and observed data. The vertical lines represent the observed values for the year.
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Figure 10. One-year-ahead predicted probabilities for the dry regime (Regime 2), estimated from the reconstructed data.

Predicted probabilities estimated from observed data are shown only for LG2.
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