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A B S T R A C T

Electrical Resistivity Tomography (ERT) is one of the oldest geophysical techniques, and due to the advances
of numerical techniques along with computational resources, it is widely used for geophysical prospecting. It
has found various domains of application as it is easy to implement and fast to image the ground resistivity
heterogeneity. However, anisotropy, which is another key resistivity parameter, is seldom considered. Although
being a well-known phenomenon, its consideration in the characterization process is only recent. Amongst
the reasons behind this is the absence of available anisotropic resistivity modeling tools. We present aim4res
(Anisotropic Inverse Modeling for RESisitivity) to that end. This open-source MATLAB library allows for 2.5D
forward and inverse anisotropic resistivity modeling based on a finite differences scheme. The inverse problem
is solved with a Gauss–Newton algorithm. The regularization coefficient, initial model and constraints can be
adjusted from prior knowledge in order to avoid local minima during optimization. Analytical and synthetic
studies have been carried out to prove the reliability of aim4res. The results demonstrate its ability to identify
anisotropy, along with the correct geometry and resistivity amplitude. It is also able to correctly detect isotropy,
as the inversion comparison with a previous toolbox already proven working showed. A real case study
inversion is carried out to demonstrate that aim4res is a relevant tool to use on the field, able to reveal strong
anisotropy fields even at short scales.

1. Introduction

Electrical resistivity tomography (ERT) is widely used to image
the subsurface at different scales in a non-destructive manner. ERT
has been successfully applied to numerous geoscientific domains such
as hydrology (Kemna et al., 2002; Hubbard and Rubin, 2005; Ismail
et al., 2005), mining and oil exploration (Singh et al., 2004; Bauman,
2005), environmental studies (Chambers et al., 2006; de Franco et al.,
2009), geotechnical studies (Santarato et al., 2011), agriculture (Cor-
win and Lesch, 2003), archeology (Xu and Noel, 1991; Papadopoulos
et al., 2010). While electrical resistivity anisotropy of the subsurface
is well-known (Maillet, 1947), current modeling practice generally
assumes isotropic electrical resistivity fields for 1D (Singh et al., 2005;
Ingeman-Nielsen and Baumgartner, 2006) 2D or 3D inversion (Dey
and Morrison, 1979; Polydorides and Lionheart, 2002; Binley and
Kemna, 2005; Pidlisecky et al., 2006; Pidlisecky and Knight, 2008;
Günther and Rücker, 2009; Neyamadpour et al., 2009; Amatyakul
et al., 2017) and more recently 4D inversion, repeating the 2D or 3D
acquisition at different time steps (Cassiani et al., 2006; LaBrecque
and Yang, 2001; Loke et al., 2013; Johnson et al., 2017). However,
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preferential deposition modes of the sediments and discrete tectonic
constraints on bedrock producing directional fractures may result in
an important degree of anisotropy at the investigation scale of an
ERT experiment (Al-Hazaimay et al., 2016). For instance, Gernez et al.
(2019) observed for sediments in a littoral environment that the ratio of
horizontal to vertical resistivity can be up to two orders of magnitude.
An erroneous assumption of isotropic conditions may thus result in
an incorrect interpretation of the subsurface (Maillet, 1947; Keller
and Frischknecht, 1966; Asten, 1974). Anisotropy is therefore a key
characterization parameter.

It is only recent that electrical anisotropy is being considered model-
wise (Greenhalgh et al., 2010; Herwanger et al., 2004), it is seldom
considered for interpretation or in the characterization process (Pain
et al., 2003). No available numerical algorithms can handle anisotropic
electrical fields to our knowledge, and the existing modeling schemes
are usually based on finite elements (Pain et al., 2003; Herwanger et al.,
2004; Greenhalgh et al., 2010). We present the development of aim4res
(Anisotropic Inverse Modeling for RESistivity), a 2.5D forward and
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inverse modeling MATLAB library to infer electrical anisotropy. This
library is the first publicly available to use a full numerical finite dif-
ferences (FD) scheme to estimate anisotropy. Aim4res is made publicly
available on github (https://github.com/Simoger/AIM4RES). In this
paper, we first briefly present the theory behind electrical anisotropy.
Then, we detail our FD implementation, followed by a demonstration
of its practical use through synthetic and real cases.

2. Anisotropic electrical conductivity

This section summarizes the theoretical development of electrical
anisotropy that is thoroughly detailed by Greenhalgh et al. (2010)
and Pain et al. (2003). Anisotropic Electrical Resistivity Tomography
(AERT) refers to electric potential measurements generated by a direct
current injection with a set of electrodes in an anisotropic domain, and
their numerical inversion. Mathematically, electrical anisotropy con-
sists in replacing the scalar electrical conductivity 𝜎 (or its reciprocal,
electrical resistivity 𝜌) by a tensor expressing the directional variation
of the subsurface electrical conductivity. In 2D, it can be defined in the
principal frame 𝜎𝑃 , with the axis defined by the maximum (𝜎1) and the
minimum (𝜎3) conductivity directions, or eigenvectors:

𝜎𝑃 =
[

𝜎1 0
0 𝜎3

]

with 𝜎1 ≥ 𝜎3 (1)

and the geometric frame 𝜎𝐺, with the axis defined by the horizontal
and the vertical:

𝜎𝐺 =
[

𝜎𝑥𝑥 𝜎𝑥𝑧
𝜎𝑥𝑧 𝜎𝑧𝑧

]

(2)

A rotation allows switching from one domain to another:
[

𝜎𝑥𝑥 𝜎𝑥𝑧
𝜎𝑥𝑧 𝜎𝑧𝑧

]

=
[

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

]

⋅
[

𝜎1 0
0 𝜎3

]

⋅
[

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]

(3)

The angle of anisotropy 𝜃 is the angle between the horizontal (𝜎𝐻 ) and
the highest (𝜎1) conductivity directions. It is then equivalent to use the
conductivity in the principal frame or geometrical frame, as we will
do in order to take advantage of the benefits of both frames in the
calculation and discretization. Note that the isotropic case corresponds
to 𝜎1 = 𝜎3. The conductivity is also linked to the potential by Ohm’s
law:

𝑱 = 𝜎𝑬 (4)

Where 𝑱 is the current density, 𝑬 is the electric field and 𝜎 is the
conductivity tensor. It leads to the 2.5D forward formulation in the
anisotropic case (Zhou et al., 2009):

− ∇ ⋅
[

𝜎(𝑥, 𝑧) ⋅ ∇𝜙(𝑥, 𝑘𝑦, 𝑧)
]

+ 𝑘2𝑦𝜎𝑦𝑦(𝑥, 𝑧)𝜙(𝑥, 𝑘𝑦, 𝑧)

= − 𝐼
2
𝛿
(

𝐫(𝑥, 𝑧) − 𝐫𝐬(𝑥𝑠, 𝑧𝑠)
)

(5)

where 𝜙 is the potential in the frequency domain, 𝑘𝑦 is the wavenum-
ber, 𝐫(𝑥, 𝑧) are the coordinates in the computational domain or on its
boundaries, I is the current source intensity located at 𝐫𝐬(𝑥𝑠, 𝑧𝑠) and 𝛿 is
the Dirac function. In the 2.5D problem, the missing dimension is taken
into account by assuming the 3D nature of the point source current by
partially transforming Eq. (5) into the Fourier domain (wavenumber
𝑘𝑦). To that end, 𝜎𝑦𝑦 is maintained constant and equal to the higher
eigenvalue (𝜎𝑦𝑦 = 𝜎2 = 𝜎1). In addition, the coefficient of anisotropy 𝜆
is used to describe the anisotropy (Maillet, 1947):

𝜆 =
√

𝜎1
𝜎3

(6)

3. Finite differences implementation for forward and inverse mod-
eling

In this section, we present the finite differences discretization with
surface area modeling algorithm for the forward (Section 3.1) and
inverse (Section 3.2) models. Final equations differ from the isotropic
case albeit reasoning is similar.

3.1. Forward modeling

This forward modeling section presents the general equations used
in the model interior, followed by the boundaries equations.

3.1.1. Model interior
To discretize the Eq. (5), we use a weak finite volumes formulation

where the electrical potential is obtained by integrating it over a surface
area defined around each potential node (Fig. 1). More precisely, we
extend the finite differences area discretization formulation of Dey and
Morrison (1979) to the anisotropic case. The model is composed of 𝑛𝑐
horizontal nodes and 𝑛𝑟 vertical nodes. The conductivity tensor 𝜎𝑖,𝑗 is
defined in the whole white cell of area 𝛥𝑥𝑖 ∗ 𝛥𝑧𝑗 . The potential 𝜙𝑖,𝑗
is defined in the whole gray cell of area 𝛥𝐴𝑖, 𝑗 = 1∕2𝛥𝑥𝑖−1 ∗ 1∕2𝛥𝑥𝑖 ∗
1∕2𝛥𝑧𝑗−1 ∗ 1∕2𝛥𝑧𝑗 and contour 𝐿. We solve the problem integrating
Eq. (5) over the surface:

−∬𝛥𝐴𝑖,𝑗

[

𝛁 ⋅
(

𝜎 ⋅ ∇𝜙
)

+ 𝑘2𝑦𝜎𝑦𝑦𝜙
]

𝑑𝑥 𝑑𝑧 = ∬𝛥𝐴𝑖,𝑗

𝐼
2
𝛿(𝒓)𝑑𝑥 𝑑𝑧 (7)

Eq. (6) stands for any position inside the model space 𝛺 = {(𝑥𝑖, 𝑦𝑗 )|𝑖 =
2,… , 𝑛 − 1; 𝑗 = 2,… , 𝑚 − 1}. We integrate it over the shaded area 𝛥𝐴𝑖,𝑗
presented on the Fig. 1. Using the two-dimensional divergence theorem,
the first term of Eq. (7) becomes:

−∬𝛥𝐴𝑖,𝑗

𝛁 ⋅
(

𝜎 ⋅ ∇𝜙
)

𝑑𝑥 𝑑𝑧 = −∮𝐿

(

𝜎 ⋅ ∇𝜙
)

⋅ 𝒏 𝑑𝑙 (8)

With 𝒏 the outer normal at each point on the contour 𝐿. In particular,
the anisotropic form of the previous dot product is:

𝜎 ⋅ ∇𝜙 =
⎡

⎢

⎢

⎣

𝜎𝑥𝑥
𝜕𝜙
𝜕𝑥 + 𝜎𝑥𝑧

𝜕𝜙
𝜕𝑧

𝜎𝑥𝑧
𝜕𝜙
𝜕𝑥 + 𝜎𝑧𝑧

𝜕𝜙
𝜕𝑧

⎤

⎥

⎥

⎦

(9)

This contour integral is calculated over segments 1 to 8 (Fig. 1). We
detail here the discretization on segment 1:

𝒏 =
[

0
−1

]

(

𝜎 ⋅ ∇𝜙
)

⋅ 𝒏 = −𝜎𝑥𝑧
𝜕𝜙
𝜕𝑥

− 𝜎𝑧𝑧
𝜕𝜙
𝜕𝑧

(10)

The derivative of 𝜙 with respect to 𝑧 is calculated using a first-order
difference scheme:

𝜕𝜙
𝜕𝑧

=
𝜙𝑖,𝑗 − 𝜙𝑖,𝑗−1

𝛥𝑧𝑗−1
(11)

As the first-order difference approximation of the derivative of 𝜙 with
respect to 𝑥 at segment 1 position is not defined, we used the second-
order difference scheme (van Es et al., 2014):

𝜕𝜙
𝜕𝑥

=
𝜙𝑖+1,𝑗 − 𝜙𝑖−1,𝑗 + 𝜙𝑖+1,𝑗−1 − 𝜙𝑖−1,𝑗−1

2 (𝛥𝑥𝑖−1 + 𝛥𝑥𝑖)
(12)

Eq. (10) integration along the edge segment 1 results in:

−∫𝐿1

( ̄̄𝜎 ⋅ ∇�̃�
)

⋅ 𝑛 𝑑𝑙 =
[

𝜎𝑥𝑧𝑖,𝑗−1
𝜙𝑖+1,𝑗 − 𝜙𝑖−1,𝑗 + 𝜙𝑖+1,𝑗−1 − 𝜙𝑖−1,𝑗−1

2 (𝛥𝑥𝑖−1 + 𝛥𝑥𝑖)
+ 𝜎𝑧𝑧𝑖,𝑗−1

𝜙𝑖,𝑗 − 𝜙𝑖,𝑗−1

𝛥𝑧𝑗−1

]

𝛥𝑥𝑖
2

(13)

Integrating Eq. (7) along all the segments forming contour 𝐿 (Eq. (8)
and Fig. 1), the following general finite differences equation is ob-
tained:
𝐶𝑃
𝑖𝑗 ⋅ 𝜙𝑖,𝑗 + 𝐶𝐿

𝑖𝑗 ⋅ 𝜙𝑖−1,𝑗 + 𝐶𝑅
𝑖𝑗 ⋅ 𝜙𝑖+1,𝑗 + 𝐶𝑇

𝑖𝑗 ⋅ 𝜙𝑖,𝑗−1

+ 𝐶𝐵
𝑖𝑗 ⋅ 𝜙𝑖,𝑗+1 + 𝐶𝑇𝐿

𝑖𝑗 ⋅ 𝜙𝑖−1,𝑗−1

+ 𝐶𝐵𝐿
𝑖𝑗 ⋅ 𝜙𝑖−1,𝑗+1 + 𝐶𝑇𝑅

𝑖𝑗 ⋅ 𝜙𝑖+1,𝑗−1 + 𝐶𝐵𝑅
𝑖𝑗 ⋅ 𝜙𝑖+1,𝑗+1 =

𝐼
2
𝛿(𝑥𝑠)𝛿(𝑧𝑠)

(14)

or under its matrix equivalent formulation:

𝐶𝜙 = 𝑆 (15)

https://github.com/Simoger/AIM4RES
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Fig. 1. Regular grid. Regular grid used for the computational discretization. The conductivity 𝜎 is defined inside the white cells (4 conductivity values are displayed: 𝜎𝑖,𝑗 , 𝜎𝑖−1,𝑗 ,
𝜎𝑖−1,𝑗−1, 𝜎𝑖,𝑗−1), the potential 𝜙𝑖,𝑗 is defined in the gray cell of area 𝛥𝐴𝑖,𝑗 delimited by the contour L (in red), cut into eight segments numbered from 1 to 8. Segments a to d are
used in the boundary calculus.

where 𝐶 is the capacitance matrix composed of the coupling coef-
ficients 𝐶𝑋 , 𝜙 is the unknown potentials vector at grid nodes and
𝑆 is the source vector containing 𝐼∕2 at the current electrode posi-
tions. The full finite differences formulations of Eqs. (7) and (14) are
given in Appendix A in order to preserve the readability of the paper.
As the formulation of 𝐶 is generally not symmetric, the solution of
Eq. (15) is obtained by LU decomposition. Nevertheless, remarkable
anisotropy distributions, like vertically transverse isotropy (VTI), cancel
the cross component 𝜎𝑥𝑧 of the conductivity tensor, making C symmet-
ric and allowing the use of Cholesky decomposition, faster than LU
decomposition.

3.1.2. Model boundaries
The surface nodes (𝑖 = 2,… , 𝑛 − 1; 𝑗 = 1) are considered as a free

surface. A Neumann condition is imposed on this edge, represented by
the segments 𝑎 and 𝑏 in Fig. 1:

𝜎𝑖,1
𝜕𝜙𝑖,1

𝜕𝒏
= 0 𝑖 = 2,… , 𝑛 − 1 (16)

The left and right limits (segments 𝑐 and 𝑑 in Fig. 1) and bottom limits
(segments 𝑎 and 𝑏 in Fig. 1) are controlled by a mixed boundary con-
dition on the nodes {(𝑥𝑖, 𝑦𝑗 ) ∣ 𝑖 = 1,… , 𝑛 and 𝑗 = 1; 𝑖 = 1,… , 𝑛 and 𝑗 =
𝑚; 𝑖 = 1 and 𝑗 = 1,… , 𝑚; 𝑖 = 𝑛 and 𝑗 = 1,… , 𝑚} as proposed by Zhou
et al. (2009):
(

̄̄𝜎 ⋅ ∇𝜙
)

⋅ 𝒏 + 𝜈𝜙 = 0 (17)

where

𝜈 =
𝑘𝑦
2
√

𝑎
⋅
𝐾1(𝑘𝑦

√

𝑎)

𝐾0(𝑘𝑦
√

𝑎)

( ̄̄𝜎 ⋅ ∇𝑎
)

⋅ 𝒏 (18)

with

𝑎 = 1
𝜌𝑦𝑦

(

𝑥2𝜌𝑥𝑥 + 2𝑥𝑧𝜌𝑥𝑧 + 𝑧2𝜌𝑧𝑧
)

= 1
𝜌𝑦𝑦

⋅ [𝑥 𝑧]
[

𝜌𝑥𝑥 𝜌𝑥𝑧
𝜌𝑥𝑧 𝜌𝑧𝑧

] [

𝑥
𝑧

]

(19)

3.2. Inverse modeling

The AERT inverse problem is ill-posed, nonlinear and generally
underdetermined. Also, the number of parameters to be determined is
two or three times (𝜎1, 𝜎3, 𝜃) greater than for ERT inverse problem. In
our implementation, inversion is solved using Tikhonov regularization
method (Tikhonov and Arsenin, 1977) . It involves the minimization of
a functional that is the sum of a nonlinear data misfit term and a reg-
ularization term. The latter prevents the overfit of unwanted features
like the noise and support the a priori on the spatial distribution of the
parameters (LaBrecque et al., 1996):

𝑂(𝑚) = ‖

‖

‖

𝐹 (𝛴) − 𝜙‖‖
‖

2

2
+ 𝛾 ‖

‖

𝑊𝑐𝐶 ⋅ 𝛴‖

‖

2
2 (20)

Where 𝐹 is the forward problem operator, 𝜙 is the vector of measured
potentials, 𝐶 is the regularization matrix, 𝛴 is the parameters vector
(𝛴 = [𝜎1, 𝜎3, 𝜃]), 𝑊𝑐 is the weighting parameters matrix and 𝛾 is the
regularization parameter. The first term of Eq. (20) represents the misfit
between the observed data and the computed data. The second term
is the regularization term. The regularization matrix has the following
form:

𝐶 = 𝛼𝑥𝐷𝑥 + 𝛼𝑧𝐷𝑧 + 𝛼𝑠𝐼 (21)

where 𝐼 is the identity matrix and 𝐷𝑥 and 𝐷𝑧 are the first or second
derivative matrices in the 𝑥 and 𝑧 directions respectively, smoothed
by the 𝛼 coefficients. As ERT is a nonlinear problem, the solution
is iteratively computed by approximating 𝐹 with a first-order Taylor
expansion (Tikhonov and Arsenin, 1977; Menke, 1989). Eq. (20) thus
becomes:

𝑂(𝑚) = ‖

‖

‖

𝐽𝛥𝛴 − 𝜙‖‖
‖

2

2
+ 𝛾 ‖

‖

𝑊𝑐𝐶 ⋅ 𝛴‖

‖

2
2 (22)

where 𝛥𝛴 is the model variation and 𝐽 the sensitivity matrix. The
problem is iteratively solved using a Gauss–Newton algorithm. The
sensitivity matrix is calculated using the adjoint equation approach as
proposed by Greenhalgh et al. (2009). For the 2.5D case, the sensitivity
expression is given by:

𝜕𝜙
𝜕𝑝

=

−2

{

𝜕𝜎𝑥𝑥
𝜕𝑝

𝜕𝜙
𝜕𝑥

𝜕𝐺
𝜕𝑥

+
𝜕𝜎𝑧𝑧
𝜕𝑝

𝜕𝜙
𝜕𝑧

𝜕𝐺
𝜕𝑧

+
𝜕𝜎𝑥𝑧
𝜕𝑝

(

𝜕𝜙
𝜕𝑥

𝜕𝐺
𝜕𝑧

+
𝜕𝜙
𝜕𝑧

𝜕𝐺
𝜕𝑥

)

+ 𝑘2𝑦𝑦
𝜕𝜎𝑦𝑦
𝜕𝑝

𝜙𝐺

}

(23)

where 𝜙 and 𝐺 are respectively the potential and the Green’s function,
and 𝑝 assumes any of the values 𝜎1, 𝜎3, 𝜃. Its explicit finite differences
development is given in Appendix B. To speed up the convergence
and to avoid any bad conditioning of the capacitance matrix, logarith-
mic values of conductivity are considered (Bouchedda, 2010). It also
ensures positive values for the inverted conductivity parameters. In
vertically transverse isotropic (VTI) medium, the angle of anisotropy
is zero. In this case, the anisotropic inversion problem can be carried
out using only the first two parameters 𝜎1 and 𝜎3. AERT inversion
efficiency relies upon the sensitivity of the used array configurations.
A weighting matrix 𝑊𝑐 is implemented to penalize the oversensitive
regions in the model. Two formulations (distance-based and sensitivity-
based) have been implemented for 𝑊𝑐 (both from Li and Oldenburg
(1996)). By default, the initial model 𝛴 is an anisotropic homogeneous
model, and can be replaced by a user defined initial model. Finally, we
have also implemented a constrained inverse modeling using well log
resistivities. Note that our algorithm allows to choose to invert only the



Computers and Geosciences 135 (2020) 104401

4

S. Gernez et al.

Fig. 2. Forward modeling validation, model 1. [a] Synthetic resistivity model. White dots represent the electrode locations at the surface. [b] Analytical and numerical values of
apparent resistivity (𝜌𝑎) from a surface Wenner sounding and [c] their relative error.

Fig. 3. Forward modeling validation, model 2. [a] Synthetic resistivity model. White dots represent the electrode locations at the surface and in depth. [b] Analytical and numerical
values of apparent resistivity (𝜌𝑎) and [c] their relative error. Combination of arrays used: measures 1 to 206 correspond to a Wenner array, measures 207 to 344 correspond to
borehole quadrupoles and measures 345 to 666 correspond to surface-borehole quadrupoles. [d] Histogram of the relative error ([c]). 92% of the error values are lower than 5%.

two conductivity parameters in the case of a vertical transverse isotropy
(VTI), forcing the angle of anisotropy to be zero. When this assumption
can be made, based on complementary knowledge of the subsurface
(e.g., geology), the underdetermination of the problem is lowered and
the problem is better solved.

4. Forward and inverse model validation

4.1. Forward modeling

To verify the accuracy of our forward modeling code, the numerical
response was compared to the analytic response from two synthetic
models. In the first experiment, a two-layer anisotropic VTI resistiv-
ity model is considered. The horizontal and vertical resistivities are
100 Ω m and 400 Ω m respectively for the first layer, and 10 Ω m
and 40 Ω m respectively for the second layer. The angle of anisotropy
is null in the whole space. 1D vertical electrical sounding data were
simulated using Wenner array by varying 𝐴𝐵∕2 from 3 m to 150 m.
The model is discretized using a 0.25 m×0.25 m squared cells grid. The
results are compared to the analytic solution from Telford et al. (1990).
The comparison between numerical and analytical solutions shows an
error below 2% (Fig. 2). In the second experiment, we consider a
homogeneous anisotropic model with an angle of anisotropy 𝜃 = 30◦.
Resistivity values are 𝜌1 = 100 Ω m and 𝜌3 = 400 Ω m. A combination of
multiple arrays (206 data from surface Wenner; 138 data from borehole
quadrupoles and 322 data from surface-borehole quadrupoles) is used.
The comparison between numerical and analytical (Li and Uren, 1998)
solutions shows a low error (92% of the error is lower than 5%,
Fig. 3). These two models demonstrate the capacity of our numerical
modeling tool to handle anisotropic electrical flow. The difference
between analytical and numerical solutions is very low as shown by the
error measurement. Further analysis of the error shows that the highest
error values on Fig. 3 correspond to apparent resistivities associated
with large geometric factors with potential measures very close to zero.
A smaller grid step improves the error at the cost of an increased

computational time, and a compromise between admissible precision
and time cost has to be found. Another way to reduce the error is to
use adapted quadrupole configurations presenting smaller geometric
factors when possible.

4.2. Inverse modeling

4.2.1. Anisotropic case
We use the same model as in Fig. 2 to validate our inverse modeling

test. The horizontal and vertical resistivities are 𝜌𝐻 = 100 Ω m and
𝜌𝑉 = 400 Ω m respectively for the first layer, and 𝜌𝐻 = 10 Ω m and
𝜌𝑉 = 40 Ω m respectively for the second layer. 𝜆 = 2 in the whole
section. 50 one meter spaced electrodes are used at the surface and 15
one meter spaced electrodes are used in the borehole. The protocol used
is made of:

− 1 surface Wenner array (392 quadrupoles),
− 1 in-hole dipole–dipole array (138 quadrupoles),
− 1 surface-borehole array (322 quadrupoles).

The synthetic potentials are inverted using the following numerical
parameters:

− 𝛾 = 1,
− 𝜆𝑖 = 2 (anisotropy of the initial model),
− 𝜌𝑥𝑥𝑖 = 𝑀 and 𝜌𝑧𝑧𝑖 = 𝜆𝑖 ∗ 𝜌𝑥𝑥𝑖 . The initial model is homogeneous,

where M is the apparent resistivity median.

The results of the inversion are shown in Fig. 4. The length and the
depth of the model are 50 m and 15 m, respectively. However, the
presented inverted model is cropped to be displayed between 𝑥 = 15 m
and 𝑥 = 35 m, and 𝑧 = 0 m and 𝑧 = 15 m. The sensitivity of the
protocol is weak outside this area and therefore the inverted model
poorly resolved. Let us notice that from 𝑧 = 10 m and deeper, the
sensitivity of the protocol used drop due to the lack of measurement.
The inverted model reproduces the layer well with a correct thickness
and a consistent resistivity amplitude. Anisotropy is homogeneously
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Fig. 4. Synthetic anisotropic study. [a] Anisotropic resistivity model. The white dots represent the electrode locations. [b, c, d] are respectively the horizontal resistivity component
𝜌𝐻 , the vertical resistivity component 𝜌𝑉 and the anisotropy 𝜆 sections displayed between 𝑥 = 15 m and 𝑥 = 35 m, and between 𝑧 = 0 m and 𝑧 = 15 m. Note the logarithmic color
scale. [e] Anisotropy distribution. [f] Relative error between the true synthetic and computed apparent resistivities.

equal to 2 in the whole section (Fig. 4.d), and well defined in the
inverted anisotropy section as shown in Figs. 4.b and 4.c. The histogram
Fig. 4.e shows anisotropy values closely distributed around 2, which is
the true anisotropy value. The final relative error is obtained comparing
the true apparent resistivity to the apparent resistivity computed from
the inverted model (Fig. 4.f). It shows a small error between the true
and computed apparent resistivities, confirming the validity of the
inverted model.

4.2.2. Isotropic case
The anisotropic inversion of an isotropic model is also calculated

to demonstrate the algorithm ability to correctly adjust any degree of
anisotropy of the subsurface. The isotropic synthetic model is composed
of a 4 m thick layer over a semi-infinite space. The horizontal and
vertical resistivities are 𝜌𝐻 = 200 Ω m and 𝜌𝑉 = 200 Ω m respectively
for the first layer, and 𝜌𝐻 = 20 Ω m and 𝜌𝑉 = 20 Ω m respectively
for the second layer. 𝜆 = 1 in the whole section. 50 one meter spaced
electrodes are used at the surface and 15 one meter spaced electrodes
are used in the borehole. The protocol used is made of:

− 1 surface Wenner array (184 quadrupoles),
− 1 in-hole dipole–dipole array (72 quadripoles),
− 1 surface-borehole array (326 quadrupoles).

Fig. 5 shows the results of the inversion of the synthetic potentials
using the following numerical parameters: 𝛾 = 1, 𝜆𝑖 = 1 and 𝜌𝑥𝑥𝑖 =
𝜌𝑧𝑧𝑖 = 𝑀 with M being the apparent resistivity median obtained with
the forward model. Figs. 5.b and 5.c show that isotropy is well defined
in the cropped section, despite the apparition of a weak artifact in
the deepest section of the 𝜌𝐻 section (Fig. 5.b). This artifact is due to
the lack of sensitivity of the array used. Nevertheless, Fig. 5.e shows
that anisotropy is closely distributed around the value 𝜆 = 1. In
Figs. 5.b and 5.c, the layer is well defined with the correct thickness,
and consistent resistivity values on both the horizontal and vertical
components. Finally, Fig. 5.f shows the relative error between the true
original apparent resistivities and the apparent resistivities computed

on the inverted model. As much as 8% of the measures have an error
lower than 10%, and 67% of the measures have an error lower than 5%.
The inverted model corresponds to the true synthetic model, and the
apparent resistivities comparison both show the ability of our algorithm
to produce good quality inverted models.

The inverted isotropic model with the anisotropic algorithm is
also compared to ert2d, the original isotropic algorithm upon which
the anisotropic algorithm was built on (Bouchedda, 2010). The same
apparent resistivities from the anisotropic forward modeling are used
(the model resistivities still are 𝜌 = 200 Ω m for the first layer and
𝜌 = 20 Ω m for the second layer). Fig. 6.b shows a consistent inverted
model, with very weak artifacts. The computed apparent resistivities
from the inverted model are very close to the true apparent resistivities
Fig. 6.c. Both isotropic and anisotropic modeling lead to a good charac-
terization of the subsurface resistivity, with correct layer thickness and
consistent resistivity amplitudes. The isotropic inverse modeling shows
a smaller error and artifacts less marked than the model resulting from
the anisotropic inverse modeling. The residual analysis from Fig. 6.f
shows that the highest errors come from the deepest surface-borehole
measurements. The deepest part of the model is the least well solved
as it is characterized by the fewest measurements. The error is also
increased by two additional effects. First, the underdetermination is
higher for the anisotropic problem, resulting in a greater variability
in the least sensitive areas, and the bottom of the model is less sensi-
tive. Then, the protocol measurements are not equally sensitive to the
different components of the resistivity tensor. Surface measurements
are sensitive to both 𝜌𝐻 and 𝜌𝑉 , the in-hole measurements are more
sensitive to 𝜌𝐻 , and the surface-borehole measurements are variably
sensitive to both 𝜌𝐻 and 𝜌𝑉 according to their geometry. These vari-
able sensitivities increase the inconsistencies between the horizontal
and vertical resistivity sections where they differ the most, increas-
ing the error associated with the measurements performed in these
areas. Nevertheless, anisotropic inverse modeling errors are low and
inverted model consistent with the synthetic true model, demonstrating
the ability of our algorithm to solve both isotropic and anisotropic
problems.
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Fig. 5. Synthetic isotropic study. [a] Isotropic resistivity model. The white dots represent the electrode locations. [b, c, d] Respectively the horizontal resistivity component 𝜌𝐻 ,
the vertical resistivity component 𝜌𝑉 and the anisotropy 𝜆 sections displayed between 𝑥 = 15 m and 𝑥 = 35 m, and between 𝑧 = 0 m and 𝑧 = 15 m. Note the logarithmic color scale.
[e] Anisotropy distribution. [f] Relative error between true synthetic and computed apparent resistivities.

Fig. 6. Isotropic inverse modeling. Results from conventional isotropic inverse modeling from the same synthetic model as Fig. 5 ([a]). [b] Resistivity section. Note the logarithmic
color scale. [c] Relative error between true synthetic and computed apparent resistivities.

The presented models have all been run on the same computing
environment: MATLAB R2016b 64-bits run on a Intel(R) Core(TM) i9
9820X CPU (10 cores/20 threads, 3.3–4.10 GHz, 16.5 MB cache) with
128 GB of RAM. On this setup, it takes 120 s to perform the forward
modeling shown in Fig. 2 and 67 s to perform the forward modeling
shown in Fig. 3. Using the for-loop calculation, the anisotropic inverse
modeling takes 380 s per iteration, while the conventional inverse
modeling is faster with 80 s per iteration. Both Aim4res and ert2d
can take advantage of parallel calculation using a parfor-loop for the
sensitivity calculation. Using it on 10 cores, the anisotropic inverse
modeling takes 165 s per iteration and the conventional inverse mod-
eling takes 49 s per iteration. The difference in the iteration execution
time is explained by two factors. First, the anisotropic inverse problem
is a more underdetermined problem that shows a slower convergence
and needs more iterations. Second, in the inverse modeling iteration,
the sensitivity matrix size doubles between isotropic and anisotropic
modeling, making the inverse calculation requiring more time. The
sensitivity matrix is around 500 MB, showing that the CPU (clock rate

and cores number) has a greater influence on the calculation speed than
the RAM amount.

5. Real case application

The proposed anisotropic algorithm was applied for a real case
study at Saint-Lambert-de-Lauzon (Quebec, Canada). This site is an
extensively characterized littoral aquifer system composed of finely in-
terdigitated sandy and silty sediments that create important anisotropic
groundwater flow (Paradis et al., 2014). The region is composed of hor-
izontal to sub-horizontal layers, and we consider the angle of anisotropy
𝜃 to be zero. We then perform an ERT acquisition on an 9 m ×
8 m area, delimited by the surface and two wells in which bore-
hole electrodes were used. A multi-array combination of 975 surface,
in-hole, cross-hole and surface-borehole measurements has been ac-
quired and inverted using our algorithm (Gernez et al., 2019). The
inverted anisotropy section and distribution in Figs. 7.a and 7.b, respec-
tively, show a strong degree of anisotropy varying by several orders



Computers and Geosciences 135 (2020) 104401

7

S. Gernez et al.

Fig. 7. Real case anisotropic study. Inverted results from apparent resistivity data acquired at Saint-Lambert-de-Lauzon, Quebec, Canada. [a] inverted anisotropy section. [b]
anisotropy distribution. [c, d] respectively horizontal and vertical resistivity sections. Note the logarithmic color scale. [e] residual relative error.

of magnitude over short distances. Moreover, horizontal and vertical
components of the resistivity tensor (Fig. 7.c and Fig. 7.d) show distinct
patterns, highlighting the non-trivial relationship linking them. This
was also observed by Paradis et al. (2016) with hydraulic conduc-
tivity for the same section using anisotropic inversion of hydraulic
tomography data. Fig. 7.e shows the residual relative error between the
observed and computed apparent resistivities. This error is higher for
the real case study than for the synthetic study, for the obvious reason
that the acquired data are not perfect as several noisy sources damage
their quality. Nevertheless, 76% of the data shows a relative residual
error lower than 15%, and 63% shows an error lower than 10%, and
are acceptable considering a real case study.

6. Summary

Geological materials are inherently anisotropic due to the pro-
cesses that lead to their deposition, and this anisotropy affects the
geophysical techniques as Electrical Resistivity Tomography. This study
presented aim4res, a fully functional finite-differences forward and in-
verse anisotropic modeling open source MATLAB library we developed
to obtain more realistic estimates of the subsurface electrical resistivity.
After aim4res implementation was detailed, we demonstrated its ability
to properly infer the resistivity tensor through inversion, and hence to
properly estimate the subsurface resistivity anisotropy. This was done
with the help of a simple but realistic two layered synthetic example on
which was used conventional borehole and surface ERT measurements.
We showed that aim4res leads to accurate in situ characterization of
the subsurface structures whether isotropic or moderately anisotropic.
The isotropic inverted model from aim4res presented artifacts more pro-
nounced than the isotropic inverted model from conventional modeling
FD tools, due to the higher complexity of the anisotropic problem. How-
ever, these artifacts remain weak and the inverted model is consistent
with the synthetic true model. The real case experiment revealed a
strong degree of anisotropy varying by several orders of magnitude over
short distances, suggesting that anisotropy may be a common property

of the subsurface, and demonstrating the ability of aim4res to handle
anisotropy well. Gernez et al. (2019) have shown that anisotropy is
well estimated even considering complex anisotropic environments,
highlighting in this work the importance of the used arrays. It tends to
prove that anisotropy should be considered in any electrical study when
its presence is assumed, since considering it leads to more accurate
electrical characterizations and better interpretations.

The source code, paper experiment scripts and general documenta-
tion are hosted on GitHub (https://github.com/Simoger/AIM4RES)
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Appendix A. Explicit forward finite differences

Considering the same development for the edges 2 to 8 as for
the edge 1 (Eq. (13)), we obtain the following fully discretized finite
differences equation:

−∮𝐿

(

̄̄𝜎 ⋅ ∇𝜙
)

⋅ 𝒏 𝑑𝑙 =

[

𝜎𝑥𝑧
𝑖,𝑗−1

𝜙𝑖+1,𝑗 − 𝜙𝑖−1,𝑗 + 𝜙𝑖+1,𝑗−1 − 𝜙𝑖−1,𝑗−1

2 (𝛥𝑥𝑖−1 + 𝛥𝑥𝑖)
+ 𝜎𝑧𝑧

𝑖,𝑗−1

𝜙𝑖,𝑗 − 𝜙𝑖,𝑗−1

𝛥𝑧𝑗−1

]

𝛥𝑥𝑖
2

+

[

𝜎𝑥𝑥
𝑖,𝑗−1

𝜙𝑖,𝑗 − 𝜙𝑖+1,𝑗

𝛥𝑥𝑖
+ 𝜎𝑥𝑧

𝑖,𝑗−1

𝜙𝑖,𝑗−1 − 𝜙𝑖,𝑗+1 + 𝜙𝑖+1,𝑗−1 − 𝜙𝑖+1,𝑗+1

2 (𝛥𝑧𝑗−1 + 𝛥𝑧𝑗 )

]

𝛥𝑧𝑗−1
2

+

[

𝜎𝑥𝑥
𝑖,𝑗

𝜙𝑖,𝑗 − 𝜙𝑖+1,𝑗

𝛥𝑥𝑖
+ 𝜎𝑥𝑧

𝑖,𝑗

𝜙𝑖,𝑗−1 − 𝜙𝑖,𝑗+1 + 𝜙𝑖+1,𝑗−1 − 𝜙𝑖+1,𝑗+1

2 (𝛥𝑧𝑗−1 + 𝛥𝑧𝑗 )

]

𝛥𝑧𝑗
2

+

[

𝜎𝑥𝑧
𝑖,𝑗

𝜙𝑖−1,𝑗 − 𝜙𝑖+1,𝑗 + 𝜙𝑖−1,𝑗+1 − 𝜙𝑖+1,𝑗+1

2 (𝛥𝑥𝑖−1 + 𝛥𝑥𝑖)
+ 𝜎𝑧𝑧

𝑖,𝑗
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𝛥𝑧𝑗

]

𝛥𝑥𝑖
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(A.1)

+

[

𝜎𝑥𝑧
𝑖−1,𝑗

𝜙𝑖−1,𝑗 − 𝜙𝑖+1,𝑗 + 𝜙𝑖−1,𝑗+1 − 𝜙𝑖+1,𝑗+1

2 (𝛥𝑥𝑖−1 + 𝛥𝑥𝑖)
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+
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]

𝛥𝑧𝑗−1
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+

[
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𝑖−1,𝑗−1

𝜙𝑖+1,𝑗 − 𝜙𝑖−1,𝑗 + 𝜙𝑖+1,𝑗−1 − 𝜙𝑖−1,𝑗−1

2 (𝛥𝑥𝑖−1 + 𝛥𝑥𝑖)
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2

Let us now integrate the second term of Eq. (7) left part:

∬𝛥𝐴𝑖,𝑗

𝑘2𝑦𝑦𝜎𝑖,𝑗𝜙𝑖,𝑗 d𝑥𝑖d𝑦𝑗 = 𝑘2𝑦𝑦

[

𝜎𝑦𝑦𝑖−1,𝑗−1𝛥𝑥𝑖−1𝛥𝑧𝑗−1
4

+
𝜎𝑦𝑦𝑖,𝑗−1𝛥𝑥𝑖𝛥𝑧𝑗−1

4

+
𝜎𝑦𝑦𝑖,𝑗𝛥𝑥𝑖𝛥𝑧𝑗

4
+

𝜎𝑦𝑦𝑖−1,𝑗𝛥𝑥𝑖−1𝛥𝑧𝑗
4

]

𝜙𝑖,𝑗

= A
(

𝜎𝑦𝑦𝑖,𝑗 ,𝛥A𝑖,𝑗

)

𝜙𝑖,𝑗 (A.2)

We factorize Eqs. (A.1) and (A.2) under the form of Eq. (14):

𝐶𝑃
𝑖𝑗 ⋅ 𝜙𝑖,𝑗 + 𝐶𝐿

𝑖𝑗 ⋅ 𝜙𝑖−1,𝑗 + 𝐶𝑅
𝑖𝑗 ⋅ 𝜙𝑖+1,𝑗 + 𝐶𝑇

𝑖𝑗 ⋅ 𝜙𝑖,𝑗−1 + 𝐶𝐵
𝑖𝑗 ⋅ 𝜙𝑖,𝑗+1

+ 𝐶𝑇𝐿
𝑖𝑗 ⋅ 𝜙𝑖−1,𝑗−1

+ 𝐶𝐵𝐿
𝑖𝑗 ⋅ 𝜙𝑖−1,𝑗+1 + 𝐶𝑇𝑅

𝑖𝑗 ⋅ 𝜙𝑖+1,𝑗−1 + 𝐶𝐵𝑅
𝑖𝑗 ⋅ 𝜙𝑖+1,𝑗+1 =

𝐼
2
𝛿(𝑥𝑠)𝛿(𝑧𝑠)

(14)

where

𝐶𝐿
𝑖𝑗 =

−𝜎𝑥𝑧𝑖,𝑗−1𝛥𝑥𝑖 + 𝜎𝑥𝑧𝑖,𝑗 𝛥𝑥𝑖 + 𝜎𝑥𝑧𝑖−1,𝑗𝛥𝑥𝑖−1 − 𝜎𝑥𝑧𝑖−1,𝑗−1𝛥𝑥𝑖−1
4(𝛥𝑥𝑖 + 𝛥𝑥𝑖−1)

−
𝛥𝑧𝑗𝜎𝑥𝑥𝑖−1,𝑗 + 𝛥𝑧𝑗−1𝜎𝑥𝑥𝑖−1,𝑗−1

2𝛥𝑥𝑖−1

(A.3a)

is the coupling coefficient between nodes (𝑖, 𝑗) and (𝑖 − 1, 𝑗),

𝐶𝑅
𝑖𝑗 =

𝜎𝑥𝑧𝑖,𝑗−1𝛥𝑥𝑖 − 𝜎𝑥𝑧𝑖,𝑗 𝛥𝑥𝑖 − 𝜎𝑥𝑧𝑖−1,𝑗𝛥𝑥𝑖−1 + 𝜎𝑥𝑧𝑖−1,𝑗−1𝛥𝑥𝑖−1
4(𝛥𝑥𝑖 + 𝛥𝑥𝑖−1)

−
𝛥𝑧𝑗𝜎𝑥𝑥𝑖,𝑗 + 𝛥𝑧𝑗−1𝜎𝑥𝑥𝑖,𝑗−1

2𝛥𝑥𝑖

(A.3b)

is the coupling coefficient between nodes (𝑖, 𝑗) and (𝑖 + 1, 𝑗),

𝐶𝑇
𝑖𝑗 =

𝜎𝑥𝑧𝑖,𝑗−1𝛥𝑧𝑗−1 + 𝜎𝑥𝑧𝑖,𝑗 𝛥𝑧𝑗 − 𝜎𝑥𝑧𝑖−1,𝑗𝛥𝑧𝑗 − 𝜎𝑥𝑧𝑖−1,𝑗−1𝛥𝑧𝑗−1
4(𝛥𝑧𝑗−1 + 𝛥𝑧𝑗 )

−
𝛥𝑥𝑖𝜎𝑧𝑧𝑖,𝑗−1 + 𝛥𝑥𝑖−1𝜎𝑧𝑧𝑖−1,𝑗−1

2𝛥𝑧𝑗−1

(A.3c)

is the coupling coefficient between nodes (𝑖, 𝑗) and (𝑖, 𝑗 − 1),

𝐶𝐵
𝑖𝑗 =

−𝜎𝑥𝑧𝑖,𝑗−1𝛥𝑧𝑗−1 − 𝜎𝑥𝑧𝑖,𝑗 𝛥𝑧𝑗 + 𝜎𝑥𝑧𝑖−1,𝑗𝛥𝑧𝑗 + 𝜎𝑥𝑧𝑖−1,𝑗−1𝛥𝑧𝑗−1
4(𝛥𝑧𝑗−1 + 𝛥𝑧𝑗 )

−
𝛥𝑥𝑖𝜎𝑧𝑧𝑖,𝑗 + 𝛥𝑥𝑖−1𝜎𝑧𝑧𝑖−1,𝑗

2𝛥𝑧𝑗

(A.3d)

is the coupling coefficient between nodes (𝑖, 𝑗) and (𝑖, 𝑗 + 1),

𝐶𝑇𝐿
𝑖𝑗 = −

𝜎𝑥𝑧𝑖,𝑗−1𝛥𝑥𝑖 + 𝜎𝑥𝑧𝑖−1,𝑗−1𝛥𝑥𝑖−1
4(𝛥𝑥𝑖−1 + 𝛥𝑥𝑖)

−
𝜎𝑥𝑧𝑖−1,𝑗𝛥𝑧𝑗 + 𝜎𝑥𝑧𝑖−1,𝑗−1𝛥𝑧𝑗−1

4(𝛥𝑧𝑗−1 + 𝛥𝑧𝑗 )
(A.3e)

is the coupling coefficient between nodes (𝑖, 𝑗) and (𝑖 − 1, 𝑗 − 1),

𝐶𝐵𝐿
𝑖𝑗 =

𝜎𝑥𝑧𝑖,𝑗 𝛥𝑥𝑖 + 𝜎𝑥𝑧𝑖−1,𝑗𝛥𝑥𝑖−1
4(𝛥𝑥𝑖−1 + 𝛥𝑥𝑖)

+
𝜎𝑥𝑧𝑖−1,𝑗𝛥𝑧𝑗 + 𝜎𝑥𝑧𝑖−1,𝑗−1𝛥𝑧𝑗−1

4(𝛥𝑧𝑗−1 + 𝛥𝑧𝑗 )
(A.3f)

is the coupling coefficient between nodes (𝑖, 𝑗) and (𝑖 − 1, 𝑗 + 1),

𝐶𝑇𝑅
𝑖𝑗 =

𝜎𝑥𝑧𝑖,𝑗−1𝛥𝑥𝑖 + 𝜎𝑥𝑧𝑖−1,𝑗−1𝛥𝑥𝑖−1
4(𝛥𝑥𝑖−1 + 𝛥𝑥𝑖)

+
𝜎𝑥𝑧𝑖,𝑗 𝛥𝑧𝑗 + 𝜎𝑥𝑧𝑖,𝑗−1𝛥𝑧𝑗−1

4(𝛥𝑧𝑗−1 + 𝛥𝑧𝑗 )
(A.3g)

is the coupling coefficient between nodes (𝑖, 𝑗) and (𝑖 + 1, 𝑗 − 1),

𝐶𝐵𝑅
𝑖𝑗 = −

𝜎𝑥𝑧𝑖,𝑗 𝛥𝑥𝑖 + 𝜎𝑥𝑧𝑖−1,𝑗𝛥𝑥𝑖−1
4(𝛥𝑥𝑖−1 + 𝛥𝑥𝑖)

−
𝜎𝑥𝑧𝑖,𝑗 𝛥𝑧𝑗 + 𝜎𝑥𝑧𝑖,𝑗−1𝛥𝑧𝑗−1

4(𝛥𝑧𝑗−1 + 𝛥𝑧𝑗 )
(A.3h)

is the coupling coefficient between nodes (𝑖, 𝑗) and (𝑖 + 1, 𝑗 + 1), and
finally

𝐶𝑃
𝑖𝑗

= −
[

𝐶𝐿
𝑖𝑗 + 𝐶𝑅

𝑖𝑗 + 𝐶𝑇
𝑖𝑗 + 𝐶𝐵

𝑖𝑗 + 𝐶𝑇𝐿
𝑖𝑗 + 𝐶𝐵𝐿

𝑖𝑗 + 𝐶𝑇𝑅
𝑖𝑗 + 𝐶𝐵𝑅

𝑖𝑗 − A
(

𝜎𝑦𝑦𝑖,𝑗 ,𝛥A𝑖,𝑗

)]

(A.3i)

These equations are implemented in the function matrix_coeff_anis.m.

Appendix B. Explicit inverse finite differences

The sensitivity is obtained discretizing Eq. (23).

𝜕𝜙
𝜕𝑝

=

−

{

𝜕𝜎𝑥𝑥
𝜕𝑝

𝜕𝜙
𝜕𝑥

𝜕𝐺
𝜕𝑥

+
𝜕𝜎𝑧𝑧
𝜕𝑝

𝜕𝜙
𝜕𝑧

𝜕𝐺
𝜕𝑧

+
𝜕𝜎𝑥𝑧
𝜕𝑝

(

𝜕𝜙
𝜕𝑥

𝜕𝐺
𝜕𝑧

+
𝜕𝜙
𝜕𝑧

𝜕𝐺
𝜕𝑥

)

+ 𝑘2𝑦𝑦
𝜕𝜎𝑦𝑦
𝜕𝑝

𝜙𝐺

}

(B.1)

We explicit here the needed gradient products, as they are implemented
in gradient_product_anis.m.

The horizontal gradient product is:

𝜕𝜙
𝜕𝑥

𝜕𝐺
𝜕𝑥

=

[

(

𝜙𝑖+1,𝑗 − 𝜙𝑖,𝑗

)(

𝐺𝑖+1,𝑗 − 𝐺𝑖,𝑗

)

+
(

𝜙𝑖+1,𝑗+1 − 𝜙𝑖,𝑗+1

)(

𝐺𝑖+1,𝑗+1 − 𝐺𝑖,𝑗+1

)
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+

(

𝜙𝑖+1,𝑗 + 𝜙𝑖+1,𝑗+1 − 𝜙𝑖−1,𝑗 − 𝜙𝑖−1,𝑗+1

)

4

(

𝐺𝑖+1,𝑗 + 𝐺𝑖+1,𝑗+1 − 𝐺𝑖−1,𝑗 − 𝐺𝑖−1,𝑗+1

)

4

+

(

𝜙𝑖+2,𝑗 + 𝜙𝑖+2,𝑗+1 − 𝜙𝑖,𝑗 − 𝜙𝑖,𝑗+1

)

4

(

𝐺𝑖+2,𝑗 + 𝐺𝑖+2,𝑗+1 − 𝐺𝑖,𝑗 − 𝐺𝑖,𝑗+1

)

4

]

𝛥𝑥𝑖𝛥𝑧𝑗

(B.2)

The vertical gradient product is:

𝜕𝜙
𝜕𝑧

𝜕𝐺
𝜕𝑧

=

[

(

𝜙𝑖,𝑗+1 − 𝜙𝑖,𝑗

)(

𝐺𝑖,𝑗+1 − 𝐺𝑖,𝑗

)

+
(

𝜙𝑖+1,𝑗+1 − 𝜙𝑖+1,𝑗

)(

𝐺𝑖+1,𝑗+1 − 𝐺𝑖+1,𝑗

)

+

(

𝜙𝑖+1,𝑗 + 𝜙𝑖+1,𝑗+1 − 𝜙𝑖,𝑗−1 − 𝜙𝑖+1,𝑗−1

)

4

(

𝐺𝑖+1,𝑗 + 𝐺𝑖+1,𝑗+1 − 𝐺𝑖,𝑗−1 − 𝐺𝑖+1,𝑗−1

)

4

+

(

𝜙𝑖,𝑗+2 + 𝜙𝑖+1,𝑗+2 − 𝜙𝑖,𝑗 − 𝜙𝑖+1,𝑗

)

4

(

𝐺𝑖,𝑗+2 + 𝐺𝑖+1,𝑗+2 − 𝐺𝑖,𝑗 − 𝐺𝑖+1,𝑗

)

4

]

𝛥𝑥𝑖𝛥𝑧𝑗

(B.3)

The sum of the cross gradient product is:

𝜕𝜙
𝜕𝑥

𝜕𝐺
𝜕𝑧

+
𝜕𝜙
𝜕𝑧

𝜕𝐺
𝜕𝑥

=
(

𝜙𝑖+1,𝑗 − 𝜙𝑖,𝑗

)(

𝐺𝑖,𝑗+1 + 𝐺𝑖+1,𝑗+1 − 𝐺𝑖,𝑗−1 − 𝐺𝑖+1,𝑗−1

)

+
(

𝜙𝑖+1,𝑗+1 − 𝜙𝑖,𝑗+1

)(

𝐺𝑖,𝑗+2 + 𝐺𝑖+1,𝑗+2 − 𝐺𝑖,𝑗 − 𝐺𝑖+1,𝑗

)

+
(

𝜙𝑖,𝑗+1 − 𝜙𝑖,𝑗

)(

𝐺𝑖+1,𝑗 + 𝐺𝑖+1,𝑗+1 − 𝐺𝑖−1,𝑗 − 𝐺𝑖−1,𝑗+1

)

+
(

𝜙𝑖+1,𝑗+1 − 𝜙𝑖+1,𝑗

)(

𝐺𝑖+2,𝑗+1 + 𝐺𝑖+2,𝑗 − 𝐺𝑖,𝑗+1 − 𝐺𝑖,𝑗

)

+
(

𝐺𝑖+1,𝑗 − 𝐺𝑖,𝑗

)(

𝜙𝑖,𝑗+1 + 𝜙𝑖+1,𝑗+1 − 𝜙𝑖,𝑗−1 − 𝜙𝑖+1,𝑗−1

)

+
(

𝐺𝑖+1,𝑗+1 − 𝐺𝑖,𝑗+1

)(

𝜙𝑖,𝑗+2 + 𝜙𝑖+1,𝑗+2 − 𝜙𝑖,𝑗 − 𝜙𝑖+1,𝑗

)

+
(

𝐺𝑖,𝑗+1 − 𝐺𝑖,𝑗

)(

𝜙𝑖+1,𝑗 + 𝜙𝑖+1,𝑗+1 − 𝜙𝑖−1,𝑗 − 𝜙𝑖−1,𝑗+1

)

+
(

𝐺𝑖+1,𝑗+1 − 𝐺𝑖+1,𝑗

)(

𝜙𝑖+2,𝑗+1 + 𝜙𝑖+2,𝑗 − 𝜙𝑖,𝑗+1 − 𝜙𝑖,𝑗

)

(B.4)

The details of 𝜕𝜎𝑖
𝑝 are found in Greenhalgh et al. (2009) and are

implemented in calcul_u_S_anis.m.
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