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Abstract 22 

As water temperature is projected to increase in the next decades and its rise is clearly identified 23 

as a threat for cold water fish species, it is necessary to adapt and optimize the tools allowing to 24 

assess the quantity and quality of habitats with the inclusion of temperature. In this paper, a fuzzy 25 

logic habitat model was improved by adding water temperature as a key determinant of juvenile 26 

Atlantic salmon parr habitat quality. First, salmon experts were consulted to gather their 27 

knowledge of salmon parr habitat, then the model was validated with juvenile salmon 28 

electrofishing data collected on the Sainte-Marguerite, Matapedia and Petite-Cascapedia rivers 29 

(Québec, Canada). The model indicates that when thermal contrasts exist at a site, cooler 30 

temperature offered better quality of habitat. Our field data show that when offered the choice, 31 

salmon parr significantly preferred to avoid both cold areas (<15 °C) and warm areas (> 20.5 °C). 32 

Because such thermal contrasts were not consistently present among the sites sampled, the model 33 

was only validated for less than 60% of the sites. The results nevertheless indicate a significant 34 

correlation between median Habitat Quality Index and parr density for the Sainte-Marguerite 35 

River (R2 = 0.38). A less important, albeit significant (F-test; p=0.036) relationship was observed 36 

for the Petite-Cascapedia river (R2 = 0.14). In all instances, the four-variable (depth, velocity, 37 

substrate size and temperature) model provided a better explanation of parr density than a similar 38 

model excluding water temperature. 39 

 40 

Keywords: Fuzzy logic, Habitat quality model, Atlantic salmon, parr, water temperature 41 

 42 

 43 
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 44 

1. INTRODUCTION 45 

Anticipated water temperature increase in rivers linked to climatic and anthropic changes is a 46 

threat to aquatic ecosystems (Isaak et al., 2018). In the recent past summers, water temperature in 47 

many Eastern Canadian rivers exceeded critical thermal thresholds for many cold water fish 48 

species, such as Atlantic salmon (Salmo salar) (i.e. >27.8°C; Gendron, 2013; Jeong et al., 2013). 49 

Even if Atlantic salmon is commonly recognized as a relatively thermally tolerant species 50 

(Garside, 1973; Jonsson et al., 2009), it is known that juvenile salmon parr become thermally 51 

stressed when water temperature exceeds 23°C (Breau et al., 2011; Elliott, 1991).  A continuous 52 

exposure to extreme temperatures can cause massive mortalities or alter considerably the health 53 

of ectotherm fishes (Garside, 1973; McCullough, 1999). Despite the relative paucity of river 54 

thermal information available for North America, predictions suggest a general increase of river 55 

temperature, which depends in part on latitudinal position (Morrill et al., 2005; van Vliet et al., 56 

2013).   57 

 58 

In this context, habitat models are key tools to optimize management and conservation programs. 59 

In habitat modelling, classical approaches determine the quantity and quality of area potentially 60 

useful for a species’ life stage or guild based either on expert knowledge or on observed habitat 61 

use and physical data (Yi et al., 2017). Classical variables used in habitat model for juvenile 62 

Atlantic salmon include flow velocity, water depth and substrate size (Table 1). When the model 63 

is based on habitat use solely (i.e. not taking into account habitat availability), univariate Habitat 64 

Suitability Indices (HSI) are defined from field measurements of presence-absence or 65 

abundance/density of fish in sampling parcels. A composite HSI is calculated by combining the 66 
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univariate HSIs, using different methods (additive function, arithmetic mean, lowest HSI, etc.). 67 

The most commonly used method thus far has been the geometric mean. A HSI of 0 describes a 68 

poor habitat, while a HSI of 1 describes an optimal habitat. Multiplying the composite HSI by the 69 

surface area on which it applies provides a Weighted Usable Area (WUA). This approach is often 70 

used in combination with hydraulic models to provide estimates of usable areas at difference 71 

river discharges (e.g. Instream Flow Incremental Methodology Bovee et al., 1998; DeGraaf et al., 72 

1986; Morantz et al., 1987).  73 

Combining univariate HSIs usually rely on two assumptions. First, that habitat variables are 74 

independent, and second, that they exert an equal influence on habitat selection (Ahmadi‐75 

Nedushan et al., 2008). However, those assumptions cannot be validated in most cases, as some 76 

habitat variables (e.g. depth and velocity) are clearly interdependent, and some variables are more 77 

important than others in the habitat selection decision. Furthermore, classical methods based on 78 

field data typically require large amounts of data that are costly to acquire. They are also 79 

generally obtained from a relatively small area (e.g. a single river or catchment), which makes the 80 

model poorly transferable to rivers other than the one which served for calibration (Guay et al., 81 

2003; Millidine et al., 2016). 82 

 83 

To overcome these gaps, Ahmadi‐Nedushan et al. (2008) and Mocq et al. (2013) worked with 84 

fuzzy systems inspired by the work of Jorde et al. (2001) who developed the Computer Aided 85 

Simulation Model for Instream Flow Requirements (CASIMIR) habitat model. Those authors 86 

developed salmonids fuzzy habitat models considering the classical habitat variables of water 87 

depth, flow velocity and substrate size. Ahmadi‐Nedushan et al. (2008) tested the models for two 88 

Atlantic salmon life stages - spawning adults and parr - and conducted a sensitivity analysis of 89 

the fuzzy rules of the system based on six expert opinions. Their suggestion was to further 90 
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validate the model, increase the number of experts and add other habitat variables. Mocq et al. 91 

(2013) improved the model by adding a life stage (young of the year) and a considerable amount 92 

of experts (30 experts in total) with European and North American experience. The authors 93 

partially validated their model and compared the output to a classical habitat model (Ayllón et al., 94 

2012; Bourgeois et al., 1996; Gibbins and Acornley, 2000) based on Weighted Usable Areas. 95 

Both models were used to assess the variation of WUA as a function of discharge and uncertainty 96 

around the relations were estimated using a bootstrap method. The results indicated that relations 97 

of WUA as a function of discharge were similar on both instances, even though the fuzzy model 98 

was based on expert knowledge only. Mocq et al. (2015) also showed that the geographical 99 

origin of the experts influenced the uncertainty associated with the delimitation of the categories 100 

and they hypothesized that experts from different countries were mostly drawing their knowledge 101 

from their experience from local rivers.  The fuzzy logic approach also offers other advantages: 102 

1) it helps describe imprecise processes through qualitative knowledge and human interpretation, 103 

2) it is unimpaired by dependence between variables, and 3) it allows the easy addition of new 104 

predictors or expert knowledge to the model.  105 

 106 

Beyond the shortcomings of classical habitat models that could be addressed by fuzzy logic, there 107 

are other deficiencies in current Atlantic salmon habitat models. One such deficiency is that 108 

models generally neglect water temperature despite its importance for the physiology and 109 

phenology of the salmon.  Indeed, water temperature has rarely been included in habitat models 110 

of this species (but see Stanley et al., 1995) and when it was included, it was through 111 

approximation from air temperature (Caron et al., 1999). Although this deficiency was probably 112 

due in the past to the lack of suitable water temperature data, there are now monitoring networks 113 

of river temperature existing in the Pacific Northwest and in Eastern Canada (RivTemp, 114 
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www.rivtemp.ca; Boyer et al., 2016), which offer the opportunity to improve salmon habitat 115 

models by adding water temperature.  116 

 117 

The aim of this paper is to improve Atlantic salmon parr habitat modelling in Eastern Canada 118 

using a fuzzy logic approach. First, a multi-expert model that includes water temperature is 119 

developed to infer juvenile salmon parr habitat quality. The model is then partially validated by 120 

comparing values of habitat suitability obtained from the model with parr density data collected 121 

in thermally contrasted river reaches.  122 

 123 

2. METHODOLOGY 124 

2.1 Multi-experts model 125 

2.1.1 Fuzzy sets and rules 126 

In the context of juvenile salmon habitat modelling, fuzzy logic is used to codify 127 

experts' knowledge regarding the role of flow velocity, water depth, substrate size and water 128 

temperature salmon parr habitat quality.  129 

 130 

The first step in designing a fuzzy model is called “fuzzification”. The purpose of this step is to 131 

divide each input variable into categories. In this case, input and output variables were classified 132 

as “low”, “medium” or “high”. As an example, flow velocity was categorized as either “slow”, 133 

“medium” or “fast”. The fuzzyfication was completed by interviewing experts on the selected 134 

habitat variables and their impact on the suitability of parr habitat. The experts were ask to divide 135 

the range of possible values of each variable into three categories using more or less precise 136 
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ranges of values. The separation of variables into categories is done by assigning a membership 137 

degree to the values, thereby creating a membership function (Figure 1). A habitat variable (e.g. 138 

velocity) value with a membership degree of 0 means that it does not belong to the category. 139 

Conversely, a membership degree of 1 means that this habitat variable value belongs totally to 140 

the category. For each variable, the experts targeted ranges of values for which they were certain 141 

of full membership (i.e., membership degree =1) in the categories. 142 

 143 

As working with nominal categories leads to uncertainties, the experts were given the opportunity 144 

to leave a range of values that can belong to two categories, thereby representing the uncertainty 145 

(or fuzziness) of the expert on the definition of boundaries between categories (e.g. for velocity, 146 

0.3-0.5 m/s; 0.7-0.9 m/s; Figure 1). The uncertain intervals are called the “fuzzy zones”. It is 147 

possible to model a value in a fuzzy zone by attributing it proportionally to two categories at the 148 

same time. To help the expert delineate the categories, we asked them to think about parr habitat 149 

in a context of survival. We did not predetermine upper boundary values for the variables. The 150 

experts had to fix them themselves according to their experience. 151 

 152 

Once the categories were delimited, the experts had to qualify the habitat resulting from the 153 

combination of each category of variables. The fuzzy rules are all constructed using the following 154 

format: IF the substrate size is large, AND IF velocity is medium AND IF depth is low AND 155 

temperature is warm THEN habitat suitability is... either "poor", "medium" or "high" according 156 

to experts. Considering three categories for each of the four variables, there are a total of 81 157 

combinations and their consequences (habitat suitability) are defined based on the experience of 158 

the respondent. Some habitat variables combinations are not found or are very rare in nature and 159 

therefore, are rarely used in the model. For example, if an expert determined that a fast velocity is 160 
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greater than 2 m/s and a small substrate is less than 2mm. All the rules involving a fast velocity 161 

and a small substrate would be unrealistic because in rivers, the water flowing at such high 162 

velocity would most likely flush out such fine substrate.  163 

 164 

2.1.2 Experts selection 165 

From April to October 2017, we interviewed experts with a concrete knowledge of Atlantic 166 

salmon parr habitat in order to gather and codify this knowledge (Mocq et al., 2015). We 167 

gathered the opinions of 22 experts through meetings of which 18 answered the questions on 168 

their own. Two teams of two were also counted as one expert each. Among the participants, 17 169 

work in the public sector, while five are in the private sector. Public organizations include 170 

teaching and research institutions (8), government departments (5) and non-profit organizations 171 

(5). There were eight technicians, three professors, eleven managers and three graduate students. 172 

Some of them occupied more than one position. Our primary criterion for selecting an expert was 173 

that the person had at least one year of hands-on experience with Atlantic salmon parr in Eastern 174 

Canada to optimize the model for this region, as the origin of the expert has been shown to 175 

influence the model outcome (Mocq et al., 2015). The geographic origin of the expert's 176 

experience has been separated into seven different groups: Saguenay (15 experts; Qc), North 177 

Shore (10 experts; Qc), Ungava (3 experts; Qc) and Québec City area (1 expert; Qc) which are 178 

located on the north shore of the St. Lawrence River. Lower-St.Lawrence (6 experts; Qc), 179 

Gaspésie (10 experts; Qc) and New-Brunswick (3 experts; NB) are located south of the St. 180 

Lawrence River. Their knowledge about habitat preferences could come either from literature or 181 

field experience. We did not measure their level of expertise, however experts were asked to rate 182 

their level of confidence in their response from 1 (low confidence) to 10 (high confidence). We 183 
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also contacted some of the experts who had already done a similar exercise with Mocq et al. 184 

(2013).  185 

 186 

2.2 Field sampling 187 

2.2.1 Sites selection and description 188 

The second  specific objective of the project was to validate whether the experts’ opinion was 189 

consistent with what we could observe in the river. Site selection was based on three main 190 

criteria. The first was presence of parr in the site area. The second criterion refers to the initial 191 

hypothesis of the study, i.e. that water temperature influences the quality of parr habitat as 192 

defined by the expert and that it influences habitat selection. Thus, we looked for sites where 193 

there was a potential thermal contrast such as a confluence of a river with a colder or warmer 194 

tributary. Since the hypothesis guiding the study was temperature-related, we defined the two 195 

compared areas as the “warm area” and the “cold area”. To better understand the sampling 196 

protocol, Figure 2 illustrates the definition of what is considered in this project as a site, an area 197 

(cold or warm) and a patch. The last criterion to choose the site was that similar habitats (depth, 198 

velocity and substrate size) exist in the warm and the cold areas. Comparing similar habitat types 199 

in both areas is an attempt to isolate the effect of water temperature.  200 

 201 

The warm and the cold areas had to be more than two meters wide and no less than 40 m2 each. 202 

The sampled area could be located directly in the tributary, in the tributary plume downstream of 203 

the confluence, upstream or downstream in the main channel, as long as the temperature was 204 

different and the other variables were comparable. According to those criteria, four sites were 205 

selected. The A and B sites are in the Sainte-Marguerite River (SMA). This 100 km long river is 206 
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in a mainly forested area between Chicoutimi and Sacré-Coeur on the Quebec North shore, 207 

Canada. The salmon population for this river was about 360 spawning adults in 2016 (MFFP, 208 

2017) and the regional average summer air temperature for the last ten years is about 20.8 °C. 209 

The C and D sites are in the Matapedia River catchment on the Quebec South shore, Canada. 210 

Mean summer air temperature is about 21.6 °C. Spawning adult population on this river was 211 

about 1940 in 2016 (MFFP, 2017). Figure 3 gives more details about the geographic position of 212 

the sites. In total 12 surveys were completed, which consist of electrofishing and habitat 213 

characterization.  214 

 215 

2.2.2 Electrofishing protocol 216 

A field campaign was undertaken from July 20th to September 26th 2017. We sampled five times 217 

site A, three times site B, three times site C and one time site D to compare parr densities in two 218 

thermally contrasted areas (see Figure 3). Only a partial validation was performed since, as 219 

previously explained, it is not the full suite of 81 fuzzy rules that were found to apply when using 220 

variable values measured in the field during the sampling campaign. Furthermore, the 221 

electrofishing method restricted the sampling areas to relatively shallow reaches with relatively 222 

slow flowing water. We could not fish in an area deeper than hip height or when the water 223 

velocity was greater than 1.5 m/s with water depth higher than the knees. 224 

 225 

When arriving at a fishing site, the area was scanned using the Seek Thermal Compact XR device 226 

to visualize water temperature spatial variability. Figure 4 shows a typical site picture taken with 227 

the thermal camera. This infrared camera picture was assessed against spot measurements of 228 

temperature using a digital thermometer. Depending on the availability of contrasted habitat 229 
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observed by thermal camera, warm and cold areas were delimited to form fishing zones, each 230 

with an area between 50 and 150 m2 (Figure 2). In a designated site, we tried to compare areas 231 

with roughly the same surface area. Habitat use was evaluate by electrofishing in groups of three 232 

people. The team included one person handling the electrofisher (Smith-Root LR-42 model) 233 

accompanied with two catchers holding a net. The electrofisher parameters (voltage, frequency, 234 

duty cycle) were programmed in “Direct Current” and according to water conductivity with the 235 

automatic “Quick set-up” option in the menu. The voltage was adjusted in increments of 20 V 236 

until the optimum fish response was achieved, that is, galvanotaxi (e.g.  237 

involuntary swimming towards the anode) followed by a vigorous recovery in the following 20 238 

seconds. The electrofisher holder was placed upstream and perpendicular to the catchers to 239 

perform a large sweeping gesture with the anode (“M” shaped motion) in front of them, shocking 240 

an area of approximately 0.80 m2. The electrofishing was repeated and carried out to cover the 241 

entire delimited area. 242 

 243 

When a parr was caught, its location was identified with a tag, the temperature was measured and 244 

the fish was placed in a container. The captured specimens were all weighed and measured. If 245 

two individuals were captured in the same 0.5 m radius patch (Keeley et al., 1995; Lindeman et 246 

al., 2015), they were associated with the same habitat measurements. Once the measurements 247 

were made, fish were returned to the river, downstream of the sampling area. The electrofishing 248 

was made from downstream to upstream while taking care never to trample the patches before 249 

fishing. The same exercise was performed in the cold and the warm area. We noted the total 250 

fishing time in each thermally contrasted area to ensure a constant fishing effort and the number 251 

of parr caught in each area have been used to calculate a density over a surface of 100 m2.  252 



 12

 253 

2.2.3 Habitat  254 

In the sampling areas, habitat variables were also surveyed in at least ten patches where no fish 255 

was caught or observed. While performing the electrofishing, patches were selected in a stratified 256 

random manner, so that the range of available velocities, depth and substrate were covered in the 257 

samples. The selected patches for characterization were also identified with tags. Temperature 258 

was measured instantly because it is a variable that can change over the fishing period. Once 259 

electrofishing was completed in the areas, the other habitat variables were measured at each 260 

location. The diameter (B-axis) of the dominant substrate was evaluate out of the 0.79 m2 261 

window around the tag. Depth and velocity at 40% of the total depth of the water column from 262 

the bed (Marsh McBirney flowmeter) was taken at the focal location of the tag. Sampling tags 263 

(placed for fishing and/or characterisations) were never located in the same 0.79 m2 habitat patch. 264 

At every site, two temperatures sensors (Hobo Pendant Temperature/Light Data Logger) were 265 

also placed, one in the main channel and one in the tributary. Water temperature ± 0.5 °C was 266 

recorded every 15 minutes from July 4th to September 20th 2017 to characterize the plume at sites 267 

A and B and to assess the thermal contrast between the receiving river and the tributary at sites C 268 

and D. 269 

 270 
2.3 Model application 271 

All field measurements were used as inputs in the fuzzy logic model to calculate Habitat 272 

Suitability Indices (HSI) using the Fuzzy logic toolbox in Matlab R2016b software. The toolbox 273 

is used for the construction of fuzzy sets using linear functions defined by the experts. The rules 274 

defining how each combination of habitat variables lead to different HIS categories are also 275 
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entered. Like Mocq et al. (2013) and Ahmadi‐Nedushan et al. (2008), the Mamdani inference 276 

was used to calculate HSI of patches sampled in the summer of 2017. This implies that when two 277 

fuzzy sets are combined in a rule, with specific membership function values, the minimum is 278 

used to quantify the membership function value of the HSI. When more than one rule is needed 279 

to describe the combination of habitat variables, the resulting fuzzy set is a sum of the HSI 280 

membership functions. 281 

 282 

The two main steps in the fuzzy inference used to calculate HSI are called the implication and the 283 

defuzzification. This latter step allows to convert a fuzzy HSI set to a real HSI value. Those 284 

operations were completed for all sampled habitat patches, considering individual expert fuzzy 285 

sets and rules separately.  When the values of all the habitat variables in the patch have a full 286 

membership to their respective category (membership degree of 1), a single fuzzy rule is 287 

involved. In this case, the conclusion function is defined by the full range of the consequence of 288 

the rule determined by the expert (low, medium or high habitat quality). As illustrated in 289 

Figure 5, considering a substrate of 12 mm, a velocity of 0.1 m/s, depth: 1.4 m and a temperature 290 

of 10°C, an expert model would considerer that his patch has a small substrate, low velocity, high 291 

depth, medium temperature and the consequence of this combination is low HSI. Since all the 292 

variables in the parcel have a membership degree (MD) of 1, the minimum of the conclusion 293 

function (implication) is also 1 or 100%. The numerical HSI of the patch will be determined by 294 

defuzzifying using the center of gravity of the area under the curve of the conclusion function. 295 

 296 

Sometimes, many rules are necessary to describe a patch. Depending on the expert, the number of 297 

fuzzy rules applying to a habitat patch can vary between one to a maximum of 16. For instance, if 298 
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the values of three variables (out of four) in the patch are in a fuzzy zone (i.e. having membership 299 

in two categories), eight rules will be needed to describe the patch. As seen on Figure 5, when 300 

one value is in the fuzzy zone, two rules are necessary to describe the patch. Supposing a patch 301 

with a median substrate diameter of 100 mm, a velocity of 0.5 m/s, a depth of 1.2 m and a 302 

temperature of 6 °C (in the fuzzy zone). According to this expert this patch has a small substrate, 303 

low velocity, high depth.  Temperature belongs partly to the medium and partly to the high 304 

categories and the consequence of this combination is an aggregation of medium and high habitat 305 

quality. As the minimum membership degree (MD) among the variables for the first rule is 0.4, 306 

the membership of the partial conclusion function is also 0.4 and it is 0.6 for the second rule. 307 

Making an aggregation, by combining the fuzzy sets representing the conclusion functions of 308 

each rule, provides the total conclusion set. The center of gravity of the area under the curve of 309 

this resulting aggregated fuzzy set becomes the numerical value of the HSI.  310 

 311 

2.4 Model validation  312 

2.4.1 Validation in a thermal contrast    313 

The partial validation of the model was completed for every electrofishing and habitat survey 314 

(one day, one site), considering all experts’ fuzzy models separately. A HSI was calculated for 315 

each sampled habitat patch, in presence and in absence of parr. Then, a non-parametric Kruskal-316 

Wallis test was used to verify the null hypothesis that the median HSI of the warm and cold areas 317 

of a fishing survey were equal with a confidence level α=0.05.  To facilitate the description of the 318 

results, we identified so-called “significant experts” when the experts’ model rejected the null 319 

hypothesis for an electrofishing survey, i.e. the model showed a significant difference in HSI 320 

values between thermally contrasted habitats. The global model was considered validated when 321 
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the majority of the significant experts express a higher HSI in the area where higher parr density 322 

was measured.  323 

 324 

2.4.2 Validation of observed densities 325 
 326 
A second partial model validation was conducted using a different data set from field surveys 327 

undertaken during summer 2017 between July 27th and September 16th on the Sainte-Marguerite 328 

(previously described in Section 2.2.1) and the Petite-Cascapedia rivers located in the Gaspésie 329 

region (Eastern Québec). See Figure 6 for rivers location. On these rivers, various sites were 330 

surveyed to cover a wide heterogeneity of salmon habitat.  In total, 30 sites were surveyed on the 331 

Petite-Cascapedia River whereas 27 sites were surveyed on the Sainte-Marguerite River. These 332 

sites were at least separated by 500 m along watercourse to ensure independence between sites.  333 

At each site, 30 equally spaced 4 m2 patches along 5 transects (6 patches per transect) were 334 

electrofished and physically characterized as illustrated on Figure 6. The same physical habitat 335 

variables were measured at each of those patches (depth, velocity, substrate size and water 336 

temperature). The only difference is that the velocity and temperature were measured using an 337 

acoustic velocity meter (Sontek Flow Tracker 2) on the Petite-Cascapedia River. After all 338 

measurements were completed in all patches, the mean value of these measurements was used as 339 

an input for the expert’s models to obtain a HSI value for each of the sites. Finally, electrofishing 340 

was conducted using also the Smith-Root LR24 Electrofisher at each of these 30 patches. The 341 

parr density for a site was then obtained by summing the individual parr densities at each patch 342 

within the site. Hence, the relation between the HSI given by the experts and the relative parr 343 

density at each site can be investigated as another validation of the developed expert model. 344 

 345 
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3. RESULTS 346 

3.1 Experts based model 347 

All 20 experts had to design fuzzy sets for each of the four input variables (temperature, velocity, 348 

depth and substrate) with three categories (low, medium, high). Table 2 shows the medians and 349 

ranges (maximum and minimum) of selected limits for fuzzy sets defining the categories of 350 

habitat variables. It can be seen that typically the variability (median/range) is between 0.2 and 351 

2 %. For instance, experts defined roughly the “low” category for temperatures between 0 and 8 352 

°C, “medium” category between 12 and 18 °C and “high” category over 22 °C. 353 

 354 

The 20 experts had to assign a consequent Habitat Suitability (poor, medium or high) for each 355 

combination of velocity, depth, substrate and temperature categories. Like Mocq et al. (2013), we 356 

identified the most frequently selected consequent HSI category as the “consensus” response and 357 

we calculated how many experts were part of this consensus. Considering the 81 rules, experts 358 

have a mean consensus of 63.7 %. In others words, about 13 experts out of 20 generally agree on 359 

rules consequence. Experts attributed a poor habitat for 64% of the rules, with a consensus of 360 

68%. For half of those rules, there is about 11% of the experts that conclude, conversely, that 361 

these same rules lead to a high habitat quality. About 25 % of the rules have “medium” HSI as 362 

consequence, with a consensus of 53%. Only 9% of the rules have been associated with a “high” 363 

HSI and about 56% of experts were part of this consensus. For 71 % of the rules with a high HSI 364 

consequence, a minority (2.8 %) of the experts concluded the opposite, i.e. that habitat was of 365 

poor quality. Two rules have no consensus, i.e. different consequent categories were selected by 366 

an equal number of experts. 367 
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 368 

3.2 Habitat characterization 369 

During the summer, water temperature was measured every 15 minutes for July 7th to September 370 

20th. The average summer water temperature in the main channel and in the tributary as well as 371 

the maximum temperature reached for study sites are compiled in Table 3. For all surveys, 372 

physical habitat variables measurements were taken. Median values measured for the velocity 373 

ranged from 0.11 to 0.76 m/s, depths ranged from 0.11 to 0.38 m and substrate sizes ranged from 374 

85 to 190 mm. Median temperatures ranged from 13.1 °C to 19.5 °C in the cold areas and from 375 

16.1 °C to 21.8 °C in the warm areas.  The thermal contrasts (median temperature differences) 376 

between cold and warm areas varied from 1.4 °C to 6.0 °C. For all electrofishing surveys 377 

completed, this thermal difference was statistically significant (Kruskal-Wallis; p < 0.05).  378 

Despite efforts to sample areas with similar values for habitat variables other than temperature, 379 

for four electrofishing surveys, there were two significantly different habitat variables including 380 

water temperature and three surveys had three significantly different variables between cold and 381 

warm areas, when the Kruskall-Wallis test was applied. Table 4 gives more details about the 382 

median values of the variables sampled for each electrofishing survey..  383 

We characterized a total of 451 patches. From these measurements, a HSI value was calculated 384 

for each of the 20 experts. The analysis of the 451 patches also generated 21 031 applications of 385 

66 different rules. The other 15 rules were never used. The most frequently used rule (3 798 386 

times) is when the values of the four variables belong the medium category, represents 18% of 387 

uses and 80% of experts agree on the consequent HSI for this rule (high HSI). The seven most 388 

frequently used rules are shown in Table 5. They represent 63% of rule applications, with a mean 389 
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expert consensus of 60%.  390 

As already stated, HSI for each of the 20 experts were calculated for each sampled habitat patch. 391 

The mean standard deviation for HSI was 0.18 (HSI varies between 0 and 1). Only expert models 392 

that expressed a significant difference between median habitat quality in the colder and the 393 

warmer area were considered to partially validate the model. As shown in Table 6, four experts 394 

expressed significant differences for more than 90% of the fishing surveys, two experts never 395 

expressed significant differences and two other expressed differences for less than 10 % of 396 

fishing surveys. For 50% of the surveys, experts that concluded to significant differences were 397 

unanimous to determine that the colder area had the highest habitat quality. For 17% of the 398 

surveys, opinions were more split. Respectively for site A day 269 and site B day 201 (Table 5), 399 

56% and 57% of the significant experts agreed that the cold area was of better quality compared 400 

to 44% and 43% who said the opposite. For the other surveys, over 70% of the experts agreed on 401 

the model conclusion. 402 

 403 

3.3 Electrofishing  404 

For our analysis, we considered only the specimens with fork length >55 mm as parr. A total of 405 

226 parr (1+ and 2+), in 201 different patches were captured or clearly observed during the 406 

summer. For all the electrofishing surveys, we standardized the number of fish that we caught in 407 

each area (colder vs warmer) by prorating densities for an area of 100 m2. As seen in Table 4, 408 

among all the electrofishing surveys, the highest density of fish was found in median temperature 409 

ranges of 15.2 to 20.2 °C, which is in agreement with the known temperature optimum for parr 410 

feeding (15 to 19 °C according to the literature; DeCola, 1970; Elliott, 1991; Elson, 1969; Stanley 411 

et al., 1983). We did not find any fish in the warmest area (21.8°C). Moreover, when the warm 412 
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areas exceeded 20.9 °C, 42% more fish were caught in the colder area. We also saw that when 413 

the colder area offers temperatures lower than the feeding optimum range (<15.0 °C), parr were 414 

mostly found (48% more) in the warm area. 415 

 416 

3.4 Model application and validation 417 

3.4.1 Validation in a thermal contrast 418 
 419 
As indicated in Table 4, the model was partially validated seven times and was shown to be 420 

inconclusive five times. As already explained, validation was conclusive when the highest fish 421 

density was found in the area with the highest modelled HSI values for a majority of experts. 422 

Every time the model was not validated, most of experts predicted a better quality of habitat in 423 

the cooler area while the highest parr density was in the warmer area. For site A, the model was 424 

validated three times out of five surveys. When the model was not validated for this site (day 214 425 

and 229; table 4), the temperatures of the cold area were respectively 14.2 and 13.1 °C.  For 426 

day 214, we note that the velocity and the substrate size were also significantly different between 427 

the two areas (lower velocity and larger substrate in the warm area). For site B, the model was 428 

always validated. At that site, temperature values were always in a range that is adequate for parr 429 

(15.2-20.9 °C). For day 201, depth was significantly higher in the warm area (0.21 vs 0.33 m) 430 

than in the colder area and for day 209, the substrate was significantly larger in the colder area 431 

(100 vs 140 mm) than in the warmer area. At site C, the model was invalidated for the first two 432 

electrofishing surveys. In the first case, the temperature of the cold area was 13.9 °C while 433 

temperature in the warm area was 19.2 °C. Also, the velocity and the substrate size were 434 

significantly higher in the cold area than in the warm area. In the second case, the temperature of 435 

the cold area was 16.1 °C while the temperature of the warm area was only 19.3 °C. The velocity 436 
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was also significantly faster in the cold area. The model was validated for the third electrofishing 437 

survey at this site while the temperature in the warm area was 21.1 °C and 16.2 °C in the cold 438 

area. The depth was also significantly greater in the warm area (0.11 vs 0.17 m) and the substrate 439 

was larger in the cold area (90 vs 105 mm). Finally, for site D, the model has not been validated 440 

for the only electrofishing survey that was completed at that site. The temperatures in the warm 441 

and cold areas were respectively 18.3 °C and 16.5 °C. 442 

3.4.2 Validation of observed densities 443 
 444 

Validation of the model with the additional dataset collected on Sainte-Marguerite and Petite-445 

Cascapedia River is shown in Figure 7. This figure illustrates the link between the logarithmic 446 

transformation of parr density (1+ and 2+) at each site and predicted HSI from the model 447 

considering only depth, velocity and substrate size (a) vs our expert’s model including the same 448 

three variable and water temperature (b). Our model explains respectively 37% and 15 % of the 449 

parr density for Sainte-Marguerite and Petite-Cascapedia rivers while the model without water 450 

temperature explains respectively 18% and 1%.  Based on a F-test comparing the model that 451 

includes HSI to explain log density to a simpler model that includes only an intercept, the p-value of 452 

0.036 means that the model that includes HSI is significantly different than an intercept-only model. 453 
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4. DISCUSSION 454 

The main objective of this project was to include water temperature in an expert based model to 455 

better quantify and qualify habitat preferences for Atlantic salmon parr. This main objective was 456 

achieved by completing two steps. The first one was to codify the knowledge of selected experts 457 

on four habitat variables: water temperature, depth, velocity and substrate size. These experts also 458 

had to qualify the Habitat Suitability Index resulting from the different combinations of these 459 

variables. The second step was to perform a partial validation of the model by putting field data 460 

into the model in order to obtain a numerical HSI, and compare it against parr density with and 461 

without a thermal contrast at different sites. This work therefore presents an improvement from 462 

the models developed by Ahmadi‐Nedushan et al. (2008) and Mocq et al. (2013). 463 

 464 

We selected 20 professionals with an Eastern Canadian experience to optimise the model for this 465 

region. The model has been validated for 58 % of the surveys. Considering that it is the first 466 

fuzzy model that includes water temperature for Atlantic salmon parr, and considering that 467 

sampling was completed in a summer with relatively low temperature contrasts (i.e. no heat 468 

waves or sustained warm periods) this result is promising and constitutes an important 469 

advancement. 470 

 471 

The first validation method aimed to compare habitat quality between cold and warm areas. 472 

When the model was not validated, it predicted that higher quality habitat would be in a cold 473 

area, whereas parr were mostly in warm areas. We suspect that the main cause explaining why 474 

42% of the electrofishing surveys did not agree with the model is that the summer 2017 in 475 

Quebec was not particularly warm and hence, cold water temperature refuges in the sampled 476 



 22

rivers were often not necessary for parr. The temperature sensors placed at the sites under study 477 

revealed that the hottest temperature of the water during the summer period, all sites combined, 478 

was 25.8°C which is not close to the upper incipient lethal temperature for parr (27.8 °C; death of 479 

50% of fish after 7 days). When this temperature was reached, it generally lasted for less than two 480 

hours. For sites A, B and C there was respectively 19, 7 and 18 days where temperature exceeded 481 

22 °C. This temperature represents the upper critical range where normal metabolic functions 482 

cease, but parr can still survive for a long period of time at that temperature (Jonsson and 483 

Jonsson, 2009). However, 22 °C exceedances never persisted for more than 12 hours. At night, 484 

the temperature generally decreased below 20 °C. This might give a respite to fish by recreating 485 

the effect of a thermal refuge. Nonetheless, at site D, there were 31 days where temperature 486 

exceeded 23 °C and rarely cooled down below 20 °C. There was a particular warm period 487 

between day 195 and day 207 (from July 17 to July 23) where the average daily water 488 

temperature remained above 22 °C. The maximum temperature reached during this period was 489 

25.8 °C while the minimum never went below 20.6 °C, which is considerably high for a 490 

prolonged period. Even if Site D was the warmest, our only electrofishing survey at this site was 491 

completed during a cooler period and we suspect that is the reason why the model was not 492 

validated for this survey. Furthermore, among all the surveys, it was common to compare two 493 

areas whose average temperatures were both in the tolerable, almost optimal range for parr.  Such 494 

ranges generally do not trigger movement to cold refugia (Breau et al., 2011). 495 

 496 

We also attempted to test and compare the proposed model on a different, larger dataset, which is 497 

an approach suggested by many authors (Fukuda, 2009; Kampichler et al., 2000; Mouton et al., 498 

2008). We can see on Figure 7 that in both cases, our four-variable model explains better parr 499 

densities then the three-variable model, and this, for every site. This suggests that adding a 500 
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variable such as water temperature improves the predictability of the model. The correlation 501 

between the median HSI and the density of parr is weaker for Petite-Cascapedia (R2 = 0.15) than 502 

for Sainte-Marguerite data (R2 = 0.37). This could be explained by the low heterogeneity of the 503 

habitats studied on the former river. In fact, the lowest HSI model assigned in the Petite-504 

Cascapedia River was 0.4, which is generally considered an average value, according to most 505 

experts. Thus, the patches sampled were all of considerable interest for parr and relatively 506 

similar. It goes without saying that all the parcels cannot be occupied, thus leaving several 507 

interesting habitat patches vacant. Although the concept of transferability is not accepted by all 508 

(Groshens and Orth, 1993; Leftwich et al., 1997; Strakosh et al., 2003), the correlations revealed 509 

by these linear regressions allow us to be enthusiastic about the possibility of transferring this 510 

model to several rivers. Although some authors have tested the transferability of regional models, 511 

the correlation that we obtained on the Sainte-Marguerite River has not, to our knowledge, been 512 

previously equaled (e.g. R2 = 0.02 to 0.31; Guay et al., 2003, Hedger et al., 2004). The fact that 513 

the correlation is considerably higher for the Sainte-Marguerite River raises new questions about 514 

the possible bias of the experts, some of whom may have never seen rivers such as the Petite-515 

Cascapédia. In fact, it is possible to note that the expertise of our respondents comes mainly from 516 

the north shore of Quebec (60%). Thus, perhaps the model could be better optimized for cooler 517 

rivers considering that the specific adaptations of juveniles in the north and south may be 518 

different (Glozier et al., 1997, Hedger et al., 2004). 519 

 520 

Even if the proposed model is less parsimonious than its predecessors, it is still a simplification 521 

of a complex system that influences parr habitat selection. It includes only four physical 522 

variables, but excludes many important ones for habitat selection such as habitat connectivity 523 

(Bardonnet et al., 2000), biomass cover and food abundance (Wilzbach, 1985), circadian and 524 
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seasonal cycle (Cunjak, 1996; Mäki-Petäys et al., 2004), density dependent relationship (Jonsson 525 

et al., 1998; Lindeman et al., 2015), etc.  As habitat selection by parr is based on many biotic and 526 

abiotic factors (Armstrong et al., 2003; Klemetsen et al., 2003), it has been shown many times 527 

that  HSI and WUA are ambiguous concepts because it is often hard to link them to fish 528 

abundance and density (Bourgeois et al., 1996; Milhous et al., 1989). Even in the case where a 529 

large number of good habitat patches exist on a river, parr could actually use few of them. 530 

Conversely, it is also possible to find parr in habitats of poor quality with little or no explanation 531 

for their presence.   532 

 533 

Globally, our expert models suggest that a cooler temperature would offer a better habitat quality, 534 

which is probably more exact during warmer periods but less accurate when both sections offer a 535 

tolerable range of temperature or a contrast that is not optimal, e.g. an area that is too cold vs a 536 

tolerable warm area. We did see that when the warm area was hotter than 20.8 °C, the model is 537 

always validated and parr were mostly in the cold area as predicted by the experts. This 538 

systematic validation for higher temperatures suggests that the model is adequate when limiting 539 

temperatures are reached (Breau et al., 2007; Elliott and Elliot, 2010; Jonsson et al., 2009).  540 

 541 

On the other hand, even if parr can survive near 0° C and still feed at 3.8 °C (Elliott, 1991), 542 

growth is largely linked to feeding (Storebakken et al., 1987) and it starts being suboptimal 543 

below 15 °C (DeCola, 1970). Despite this, for some electrofishing surveys, the majority of 544 

significant experts indicated that 14.2 °C, 13.1 °C and 13.9 °C would offer respectively better 545 

habitat quality than 20.2 °C, 16.1 °C and 19.5 °C. Our electrofishing results suggest that this may 546 

not be accurate. In that context, it would be beneficial to review with the experts, the parameters 547 

assigned for the temperature categories, and the consequent HSI category (de Little et al., 2018). 548 
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Especially considering that a part of the model bias could come from an incomplete 549 

understanding of the instructions to prepare the fuzzy model for the expert or from a 550 

misinterpretation between the interlocutors. For this model, we suspect that questioning the 551 

expert in a feeding context rather than in a survival context would provide a better setting when 552 

discussing parr preferences.  553 

 554 

Also, several experts verbally testified during the exercise that having four categories instead of 555 

three for the output variable (habitat quality) would facilitate the attribution of consequences to 556 

the rules. These categories could be poor, medium, high and very high HSI. Unlike adding a 557 

category to input variables, adding an output category would not affect the number of rules to 558 

answer by experts. This modification could be done during a new consultation with the experts.  559 

 560 

As many other studies on habitat model there is still a need for further validation to prove that 561 

this model could be an effective management tool (Ahmadi‐Nedushan et al., 2008; Bargain et al., 562 

2018; Guay et al., 2000; Lamouroux et al., 2002; Mocq et al., 2013). Even if multiple-experts 563 

based model have been identified as potentially highly exportable (Annear et al., 2002) It would 564 

be important to gather data from other studies on parr from different river types and different 565 

thermal regimes for further validation. Additional validation should include sites within a river 566 

that are separated by a distance that is sufficient to minimize the risk of movement of individual 567 

fish from the warm to the cold area during sampling. 568 

 569 
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Tables 577 

Table 1: Preferred parr physical habitat variables ranges found in the literature  578 
 579 

 Depth (m) Velocity (m/s) Substrate (mm) Reference 
1+ parr*     

 0.10-0.40 0.00-0.20 16-256 Heggenes et al., 
1999 

 0.16-0.28 0.10-0.30 - Gibson, 1993 
 0.10-0.35 0.15-0.60 25-125 Scruton and Gibson, 

1993 
 0.1-0.50 0.00-0.60 Gravel-pebbles Jonsson and 

Jonsson, 2011 
 0.20-0.40 0.20-0.60 20-200 Finstad et al., 2011 

2+ parr**     
 0.17-0.76 0.35-0.80 200-300 Armstrong et al., 

2003 
 < 0.50 0.0-0.25 Small gravel and 

cobble 
Gibson,  1993 

 0.20-0.60 0.03-0.25 64-512 Heggenes et al., 
1999 

 0.19-0.31 0.11-0.29  Gibson, 1993 
 0.10-0.55 0.10-0.70 30-200 Scruton and Gibson, 

1993 
 0.10-0.80 0.0-0.80 Gravel, pebble, 

cobble 
Jonsson and 

Jonsson, 2011 
 0.20-0.70 0.00-0.90 25-450 Finstad et al., 2011 

* Second summer of growth in river 580 
**Third summer of growth in river 581 

Table 21: Medians and ranges (maximum and minimum) of selected limits for fuzzy sets defining the categories of habitat variables. 582 

 

Substrate size 

 (mm) 

Velocity 

 (m/s) 

Depth  

(m) 

Temperature  

(°C) 

 
A B C   D  A  B  C D  A   B  C  D  A  B C   D 

Minimum 5 10 45 64 0.05 0.2 0.45 0.55 0.02 0.15 0.35 0.4 4 8 16 19 
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Median 20 50 240 300 0.15 0.28 0.6 1 0.15 0.3 0.73 1 8 12 18 22 

Maximum 100 200 700 1000 0.6 0.8 1.3 1.8 0.3 0.5 2 5 19 22 25 30 

Where A represents the upper limit values fully belonging to the low category, B and C the limits of the values fully belonging to the medium category and D the 583 
lower limit of the values fully belonging to the high category. See Figure 1 584 
 585 

 Table 3: Average summer water temperature in the main stem and in the tributary for study sites from July 4th to September 20th 2017 586 

Main stem 
temperature  

Tributary 
temperature 

Maximum 
temperature* 

(°C) 
Site A 17.3 10.7 25.2 
Site B 16.5 14.8 23.5 
Site C 17.7 15.4 25.3 
Site D 14.8* 20.7* 25.8 

*experienced at the site 587 
 588 
 589 
 590 

 591 

 592 

Table 4: Median values for each sampled variable and parr density (standardized on 100m2) in the different areas (warm and cold) for each electrofishing 593 
survey. 594 

Day of the 
year 

Depth  
(m) 

Velocity  
(m/s) 

Substrate size 
(mm) 

Temperature  
(°C ) 

Fish density 
 Model 

validation 
Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm 

A 
201 0.29 0.38* 0.29 0.42 110 145 17.6 21.8* 14 0 Yes 
208 0.20 0.28 0.21 0.25 150 150 16.1 21.2* 16 8 Yes 
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214 0.23 0.20 0.24* 0.13 115 175* 14.2 20.2* 9 28 No 
229 0.22 0.26 0.20 0.11 150 140 13.1 16.1* 7 11 No 
269 0.24 0.28 0.27 0.40 85 88 17.1 20.1* 7 6 Yes 

B 
201 0.21 0.33* 0.48 0.71 90 120 19.5 20.9* 5 3 Yes 
209 0.28 0.34 0.76 0.74 140* 100 15.2 18.1* 13 1 Yes 
215 0.27 0.29 0.68 0.63 120 120 17.0 19.2* 7 0 Yes 

C 
206 0.32* 0.20 0.52* 0.42 165 190 13.9 19.5* 4 22 No 
212 0.19 0.22 0.33* 0.24 110 130 16.1 19.3* 9 20 No 
234 0.11   0.17* 0.26 0.36 105* 90 16.2 21.1* 16 13 Yes 

D 206 0.22 0.25 0.43 0.52 100 95 16.5* 18.3* 6 14 No 
(*) indicates that the median was significantly higher. 595 

Table 5: The most frequently used fuzzy rules 596 

Rule Substrate Velocity Depth Temperature 
Number of 
applications 

41 Medium Medium Medium Medium 3798 
42 Medium Medium Medium Warm 2047 

29 Medium Slow Low Medium 1927 

32 Medium Slow Medium Medium 1789 

68 large Medium Medium Medium 1379 

50 Medium Fast Medium Medium 1162 

33 Medium Slow Medium Warm 1074 
Table 6 : Median HSI for both warm and cold areas of each site, according to the 20 experts 597 

   

Experts 

Sites 

Day of 

the year Sections 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

A 

201 
cold 0.57 0.68 0.59 0.64 0.33 0.54 0.64 0.65 0.53 0.77 0.56 0.53 0.81 0.86 0.48 0.72 0.70 0.37 0.52 0.43 

warm 0.38 0.34 0.29 0.80 0.30 0.63 0.78 0.87 0.55 0.80 0.33 0.59 0.36 0.29 0.50 0.55 0.73 0.13 0.54 0.48 

208 
cold 0.60 0.64 0.69 0.56 0.31 0.54 0.51 0.57 0.38 0.49 0.67 0.51 0.61 0.88 0.50 0.60 0.62 0.47 0.29 0.20 

warm 0.38 0.54 0.36 0.51 0.30 0.59 0.55 0.55 0.19 0.77 0.33 0.48 0.39 0.54 0.50 0.60 0.61 0.13 0.44 0.37 
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214 
cold 0.66 0.70 0.69 0.55 0.30 0.54 0.43 0.53 0.40 0.54 0.68 0.51 0.64 0.87 0.50 0.60 0.59 0.48 0.24 0.26 

warm 0.38 0.62 0.46 0.52 0.30 0.53 0.44 0.49 0.18 0.46 0.33 0.50 0.42 0.87 0.50 0.61 0.59 0.12 0.17 0.17 

229 
cold 0.79 0.75 0.69 0.61 0.30 0.56 0.41 0.58 0.55 0.63 0.68 0.51 0.75 0.87 0.50 0.64 0.64 0.48 0.23 0.27 

warm 0.77 0.62 0.69 0.53 0.35 0.56 0.35 0.57 0.54 0.41 0.68 0.52 0.54 0.87 0.50 0.67 0.69 0.47 0.15 0.17 

269 
cold 0.61 0.63 0.50 0.49 0.32 0.54 0.47 0.60 0.52 0.68 0.59 0.51 0.73 0.86 0.50 0.68 0.64 0.38 0.37 0.43 

warm 0.38 0.66 0.40 0.80 0.31 0.53 0.70 0.78 0.52 0.80 0.33 0.63 0.52 0.86 0.31 0.70 0.68 0.13 0.52 0.52 

 B 

201 
cold 0.42 0.64 0.43 0.58 0.29 0.53 0.60 0.65 0.52 0.77 0.42 0.52 0.59 0.63 0.40 0.79 0.59 0.12 0.52 0.47 

warm 0.38 0.88 0.40 0.38 0.31 0.53 0.78 0.56 0.55 0.80 0.33 0.58 0.45 0.50 0.50 0.67 0.63 0.13 0.65 0.52 

209 
cold 0.80 0.88 0.69 0.38 0.35 0.54 0.76 0.57 0.88 0.80 0.85 0.70 0.85 0.49 0.75 0.82 0.63 0.68 0.56 0.58 

warm 0.56 0.88 0.61 0.39 0.36 0.52 0.73 0.57 0.66 0.78 0.52 0.88 0.81 0.50 0.35 0.82 0.67 0.34 0.74 0.63 

215 
cold 0.66 0.88 0.69 0.49 0.35 0.54 0.73 0.59 0.74 0.78 0.63 0.67 0.84 0.50 0.69 0.82 0.63 0.44 0.52 0.58 

warm 0.46 0.88 0.51 0.59 0.32 0.53 0.78 0.59 0.59 0.78 0.44 0.81 0.65 0.50 0.50 0.81 0.64 0.13 0.52 0.58 

 C 

206 
cold 0.80 0.88 0.69 0.63 0.33 0.54 0.52 0.60 0.88 0.80 0.85 0.57 0.85 0.55 0.59 0.78 0.64 0.49 0.52 0.54 

warm 0.42 0.72 0.49 0.55 0.29 0.53 0.54 0.57 0.27 0.58 0.40 0.52 0.61 0.87 0.50 0.76 0.59 0.12 0.52 0.46 

212 
cold 0.75 0.80 0.69 0.72 0.32 0.54 0.70 0.74 0.55 0.76 0.80 0.51 0.85 0.87 0.50 0.73 0.62 0.47 0.52 0.47 

warm 0.44 0.73 0.52 0.63 0.30 0.53 0.71 0.59 0.26 0.62 0.43 0.52 0.62 0.87 0.50 0.69 0.61 0.13 0.37 0.34 

234 
cold 0.49 0.71 0.69 0.60 0.27 0.54 0.52 0.51 0.33 0.50 0.72 0.51 0.83 0.87 0.50 0.63 0.53 0.46 0.30 0.34 

warm 0.36 0.53 0.36 0.61 0.28 0.53 0.58 0.56 0.36 0.66 0.33 0.46 0.43 0.61 0.40 0.55 0.58 0.12 0.44 0.46 

D 206 
cold 0.69 0.88 0.69 0.58 0.33 0.54 0.69 0.60 0.76 0.78 0.68 0.52 0.85 0.86 0.50 0.76 0.61 0.46 0.52 0.49 

warm 0.52 0.74 0.50 0.48 0.31 0.53 0.58 0.57 0.58 0.72 0.50 0.51 0.76 0.50 0.43 0.81 0.62 0.31 0.52 0.47 

The boxes in gray indicate a significant difference between cold and warm areas. The light gray boxes indicate that a majority of significant experts who 598 
established that habitat quality was better in the cold area than in the warm area for this electrofishing survey. In dark grey boxes, the experts established that 599 
habitat quality was significantly better in the warm area.600 
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Figures 602 
 603 

 604 
Figure 1 : Example of fuzzy sets defined by an expert for the velocity. 605 

 606 

 607 

 608 
 609 
 610 
 611 
 612 
 613 
 614 
 615 
 616 
 617 
 618 
 619 
 620 
 621 

 622 
Figure 2 : Fictitious site to represent the sampling model. A site is composed of a cooler area usually generated by 623 

the inflow of a tributary and a corresponding warmer area, with roughly the same size. In both areas, several 624 
patches with an area of 0.79 m2 are sampled for depth, velocity, substrate size and temperature, in presence and 625 

absence of fish. 626 

A B C D 
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Figure 3 : Sites map 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

Figure 4 : Site A Infrared picture taken from upstream of the confluence of a cold tributary and the Sainte-637 
Marguerite river with the Seek thermal XR© device. Left of the dotted line is the river bank. The purple area is the 638 
cold water plume caused by the tributary water emptying in the main stem, while warmer main stem water is shown 639 

in orange:  warm area. 640 

 641 
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 658 
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 661 

 662 

 663 

 664 

 665 

 666 

Figure 5 : a) Application of a  unique fuzzy rule. Fuzzy sets are shown for all four habitat variables. Arrows indicated 667 
the value of each habitat variable. Grey area show the fuzzy set of the associated HSI b) Implication and 668 

aggregation of two conclusion functions associated with two rules. 669 
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 670 

 671 
Figure 6 : Sites map for the second data set on Sainte-Marguerite and Petite-Cascapedia Rivers. Red dots on transects 672 

indicate the typical distribution of points where physical habitat variables were measured within a site. 673 
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674 

 675 

Figure 7 : : Link between density and HSI for the model with temperature (blue) and without temperature (orange) for the Sainte-676 
Marguerite River (a) and the Petite-Cascapédia River (b)  677 
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Highlights: 

• A fuzzy rules-based model was developed for Atlantic salmon parr habitat that 
includes water temperature. 

• A multi-expert approach was used to build the model. 
• The model was partially validated by conducting electrofishing surveys in 

thermally contrasted areas. 
• Mutational processes similar in primary and relapse; radiotherapy can damage 

genome 
• Significant correlations between median Habitat Quality Index and parr density 

were found in multiple rivers in Québec, Canada. 
• The four-variable (depth, velocity, substrate size and temperature) model 

provided a better explanation of parr density than a similar model excluding water 
temperature. 

 


