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Abstract: This paper introduces a novel multi-view multi-learner (MVML) active learning method,
in which the different views are generated by a genetic algorithm (GA). The GA-based view generation
method attempts to construct diverse, sufficient, and independent views by considering both inter-
and intra-view confidences. Hyperspectral data inherently owns high dimensionality, which makes
it suitable for multi-view learning algorithms. Furthermore, by employing multiple learners at
each view, a more accurate estimation of the underlying data distribution can be obtained. We also
implemented a spectral-spatial graph-based semi-supervised learning (SSL) method as the classifier,
which improved the performance of the classification task in comparison with supervised learning.
The evaluation of the proposed method was based on three different benchmark hyperspectral data
sets. The results were also compared with other state-of-the-art AL-SSL methods. The experimental
results demonstrated the efficiency and statistically significant superiority of the proposed method.
The GA-MVML AL method improved the classification performances by 16.68%, 18.37%, and 15.1%
for different data sets after 40 iterations.

Keywords: active learning (AL); multi-view learning; multi-learner learning; multi-view multi-learner
(MVML); genetic algorithms (GA); view generation; hyperspectral image classification

1. Introduction

Supervised machine learning methods require an accurate and sufficient labeled set, which is
complicated and costly to obtain. In remote sensing applications, it is even more challenging to provide
a labeled set for the training procedure. This is mainly because the ground truth data is generally
collected through a field survey and/or visual interpretation, which are both time-consuming and
expensive. Accordingly, we usually have a limited amount of sampling data with known labels.
Both semi-supervised learning (SSL) and active learning (AL) are promising algorithms to address
the incorporation of unlabeled data to improve the learning performance [1]. However, they follow
different assumptions about how unlabeled samples can be beneficial. Generally, SSL methods attempt
to extract more accurate underlying class distributions by considering the unlabeled samples.

Active learning (AL) has been proposed to build a sufficient, compact, and well-chosen training
set by iteratively selecting the most discriminative and informative instances, as labels are provided by
expert users [1]. Therefore, at each iteration, the most informative samples for the current classifier
model are selected, labeled, and added to the training set. Various AL methods have been proposed
to improve the classification performance of remote sensing data, and they clearly proved the high
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potential of AL and its value [2,3]. In [2], the main supervised AL methods were investigated for
applying on the remote sensing images. The main difference between various AL methods lies in how
they estimate the information content of unlabeled samples by query function. However, other essential
specifications determine the AL scheme. AL algorithms can be divided into two broad categories based
on the availability of the candidate set as a fixed pool or in a stream [3]. In the stream-based AL methods,
instances appear individually in a stream, and the learner must decide about each one, whether to be
select it or not. In many applications, like remote sensing image classification, all unlabeled samples
are available in the pool, and at each iteration, all samples are evaluated and ranked [4], and then a
batch of samples or a single sample is chosen to be labeled. In hyperspectral image classification (HIC),
the limited number of the labeled samples is a serious issue with respect to the higher dimension of
the data. If the classification process is formulated as the approximation of a function that identifies,
then for each spectral pixel, it can be inferred that the corresponding estimation errors will increase
when more parameters/features are taken into account, hampering the final classification performance.
This leads to the curse of dimensionality problem that greatly affects supervised classification methods,
in which the size of the training set may not be sufficient to accurately derive the statistical parameters,
thereby leading the classifier to quickly over-fit (Hughes phenomenon). Thus, AL has attracted
attention and proved its great potential to improve HIC performance [5].

Although the supervised methods have shown great performance when improving classification
performance, there is still room for enhancement. For instance, it has been revealed that the distribution
of the initial labeled training samples can affect the final achievement of AL methods [6,7]. The labeling
procedure of the selected samples is also difficult because the most informative samples usually located
in the shadow regions, classes’ boundaries [8]. Due to these problems, some studies have suggested
utilizing a segmentation method and label segments instead of pixels [9,10]. Also, in [11] before
running the AL algorithms, the candidate pool was divided into “pure” and “mixed” candidates,
and pixels were selected based on its purity index.

On the other hand, some recent studies have been proposed to combine both SSL and AL
to reduce the demanding number of the labeled samples [1,12–14]. Nowadays, deep learning
(DL) in HIC is getting increasing attention and has shown outstanding performance [15]. Thus,
some deep-learning-based AL methods have been proposed [16,17], contributing DL as the learner
and using AL to provide suitable labeled set to feed into the DL machine.

Classical AL methods only utilize a single view of the data, but recently, many studies have
been suggested to use multi-view AL (MV-AL) methods [4]. Each view is a disjoint feature subset
of the original data that must be sufficient to learn the machine, and also, multiple views contain
complementary information [18]. Co-training [5] and Co-EM (expectation maximization) [6] are the
earliest MV methods that try to teach a single learner from dual views and maximize the mutual
agreement between them. These views can be created from different sources or different feature subsets
of the original data. However, the views should make some assumptions to guarantee the MV method’s
achievement: sufficiency, compatibility, and conditional independence [4]. The high dimensionality of
hyperspectral data provides multiple, independent, and sufficient views. Therefore, MV-AL methods
can be employed to improve HIC performance, and several MV-AL methods have been proposed [7,8].
However, all of the suggested view generation methods only considered dependency and correlation
between the views and did not take into account the sufficiency of the views.

On the other hand, when only one learner is used to predict the sample label, the final AL
method result is intensely dependent on the efficiency and accuracy of the learner [9]. Hence,
multi-learner AL (ML-AL) methods have been recommended to give a more comprehensive prediction
about the sample by simultaneously integrating different and diverse learners. In [10], the idea of
employing multiple learners at multiple views has been proposed, attempting to get benefits from
both MV and ML methods. By employing multiple learners at each view, more diversity can be
provided, and subsequently, the selection strategy is enhanced. Therefore, based on the number of the
views and the number of the learners employed at each view, AL methods can be divided into four



Remote Sens. 2020, 12, 297 3 of 21

categories: (1) single-view, single-learner (SVSL); (2) single-view, multi-learner (SVML); (3) multi-view,
single-learner (MVSL); and (4) multi-view, multi-learner (MVML).

In this paper, we propose a novel MVML method that is especially characterized by HIC.
The views are constructed based on a novel genetic algorithm (GA) [11] subset feature selection
method, which produces an optimal set of views with the maximum sufficiency for each view and
the minimum mutual information between all views. We also used the graph-based semi-supervised
learning (GB-SSL) method as the learning algorithm to integrate AL and SSL into a unified collaborative
framework. Furthermore, the incorporation of spatial information in classification presents outstanding
advantages [13,19,20].

Recent studies have been carried out on AL-SSL methods in remote sensing communities [12–15],
and they have achieved notable improvements in the learning performance. Various strategies combine
AL and SSL [16]. In this paper, we used an encapsulated way, which uses merely SSL as the classifier
model of the AL. To produce the different learners, we used a single GB-SSL algorithm but with
different kernel functions or kernel parameters’ setup.

To the best of our knowledge, all MV-AL methods which have been conducted on remote sensing
data have only employed a single learner at each view. Previous studies on MVML methods have
proven insufficient [21] in specific areas, which is why this paper proposes semi-supervised MVML
active learning, specifically for hyperspectral data. The main contributions of this work consist of:

1. The introduction of a GA-based filter-wrapper view generation method for the AL method;
2. The proposal of a novel probabilistic MVML heuristic called probabilistic-ambiguity;
3. The implementation of a novel MVML-AL method to improve land cover classifications from

hyperspectral data for the first time.

2. Materials and Methods

2.1. Active Learning

In general, AL algorithms initialize the learning process using a limited number of labeled samples
and then increase the training data set iteratively by adding the most informative ones. In this way,
AL methods attempt to maximize the model’s generalization by selecting the most informative samples
for the specific classifier.

Generalization is the ability of a classification algorithm to correctly predict the label of unseen
data, which is not involved in the learning phase [17]. Various methods have been introduced to
estimate the information content of each unlabeled sample for the current model before ranking.
The classifier’s uncertainty [18] about the label of each pixel is one of the most frequently used
approaches for assessing whether adding the sample to the training set can help improve performance.

Single-view single-learner (SVSL) active learning query methods utilize only one single learner of
one view. As a result, they are the simplest and also the most frequently utilized approach in the remote
sensing community [2]. Despite the advantages of SVSL methods, such as ease of implementation and
speed, there are some drawbacks. Since only one learning hypothesis is employed in single-learner
methods, AL results are strongly dependent on learner performance. Moreover, these methods only use
one view or a merge of views when more than one adequate view is available. Therefore, employing
SVSL is not reasonable in the multi-view problem, such as hyperspectral classification, which has
enormous potential due to its high dimensionality.

2.1.1. Single-View, Multi-Learner (SVML)

The SVML active learning methods have been defined based on the idea that by employing a
committee of learners with different prediction hypotheses, the classifier’s uncertainty can be estimated
more accurately than when using a single learner [22]. Query by committee (QBC) [22] methods
evaluate the uncertainty of a pixel by a committee of the classifiers, and the disagreement between the
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learners is used as the uncertainty measure. Most of the SVML active learning methods measure the
degree of learner disagreement, and the sample which has the maximum disagreement is selected [3].

The main advantage of such methods is that they are model-independent and can be implemented
with any single classifier or a combination of classifiers [23]. Some ensemble methods, such as
normalized entropy query by bagging (nEQB) [23] and boosting [24] have been introduced to relieve
the high computational cost of multi learner methods. Diverse learners can be generated by employing
different: (1) kinds of kernels as the similarity measuring function (called QBC-kernels [25]) and (2)
parameter configuration sets of the same base learner (called QBC-parameters [26]).

2.1.2. Multi-View, Single-Learner (MVSL)

Although high dimensionality and redundant data cause several difficulties, such as overfitting,
inaccurate parameter estimation, and higher complexity, the learning task can take advantage of
multiple view learning [27]. Several multiple-view learning methods have been proposed in the
literature [18,28–31].

Some essential principles should be considered to ensure the success of multiple-view learning.
Each view of the data must be diverse and sufficient. Considering the high dimension feature vector of
hyperspectral data, feature set partitioning, or selection methods are employed to construct different
views. In [18], different view generation methods for hyperspectral data were investigated, and initially,
three different feature partitioning methods were compared: (1) clustering, (2) random selection, and (3)
uniform band slicing. Moreover, A new view generation method has also been proposed in [18] that
incorporates view updating, and feature space bagging aims to grow diversity by enlarging the number
of views. Furthermore, the adaptive maximum disagreement (AMD) query approach was proposed
in [28]. AMD at each iteration selects samples with the highest disagreement between the views.

2.1.3. Multi-View, Multi-Learner (MVML)

Even though multi-view, single-learner (MVSL) active learning could provide a more
comprehensive perspective to choose the most informative sample to enlarge the training set, it still
uses an individual learner in each view. Therefore, in this paper, we employed a group of learners in
each distinct view to take advantage of both complementary information provided by multiple views
and diversity provided by multiple learners. Although the proposed MVML active learning method
imposes more complexity compared to other categories, it also improves the AL performance, which is
worth its higher computational cost.

2.2. General Framework

This paper introduces an encapsulated framework designed to integrate spectral-spatial
semi-supervised learning (SS-SSL) and MVML-AL, and to take advantage of both SSL and AL
to incorporate unlabeled samples in different ways. In other words, we employed an SS-SSL method
as the classifier and MVML-AL as a wrapper active learning method, which aims to enlarge the
labeled training set intelligently. To generate different views, we adopted an automatic genetic
algorithm feature subset selection (GA-FSS) method based on maximizing inter-views and intra-views
confidences, which characterize dependency and sufficiency, respectively. Then, the probabilistic
ambiguity measure was developed as the heuristic query function of MVML-AL. Figure 1 shows the
flowchart of the proposed method in detail.
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Figure 1. The proposed GA-MVML active learning method.

2.2.1. View Generation by GA-FSS

This stage aims to construct multiple diverse, sufficient, and as independent as possible views by
employing a GA, which is one of the most famous evolutionary computation techniques for FSS [32–34].
Depending on whether the learning performance is used to contribute to the fitness function or
not, the FSS methods are divided into two broad categories: (1) wrapper approaches and (2) filter
approaches. In the proposed GA scheme, a binary chromosome is used with the size of V multiplied
by D, where V is the number of views, and D represents the original feature dimension of the dataset.
The first D bits denote the selected features of the first view, based on whether each band is selected or
not, and the corresponding bit is 1 or 0. Figure 2 shows the chromosomal design in our proposed view
generation method.

Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 21 

 

 

Figure 1. The proposed GA-MVML active learning method. 

2.2.1. View Generation by GA-FSS 

This stage aims to construct multiple diverse, sufficient, and as independent as possible views 
by employing a GA, which is one of the most famous evolutionary computation techniques for FSS 
[32–34]. Depending on whether the learning performance is used to contribute to the fitness function 
or not, the FSS methods are divided into two broad categories: (1) wrapper approaches and (2) filter 
approaches. In the proposed GA scheme, a binary chromosome is used with the size of V multiplied 
by D, where V is the number of views, and D represents the original feature dimension of the dataset. 
The first D bits denote the selected features of the first view, based on whether each band is selected 
or not, and the corresponding bit is 1 or 0. Figure 2 shows the chromosomal design in our proposed 
view generation method. 

 
Figure 2. The chromosomal design for the GA-FSS view generation scheme. 

We used a hybrid approach using both filter (i.e., inter-view confidence) and wrapper (i.e., intra-
view confidence) criteria to build the fitness function. A weighted summation combines these two 
evaluation measures with corresponding weights 𝑤௙  and 𝑤௪  for filter and wrapper, respectively. 
Therefore, the qualification of each chromosome of the GA population (ch) is assessed by the fitness 
function below. 
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We used a hybrid approach using both filter (i.e., inter-view confidence) and wrapper (i.e.,
intra-view confidence) criteria to build the fitness function. A weighted summation combines these
two evaluation measures with corresponding weights w f and ww for filter and wrapper, respectively.
Therefore, the qualification of each chromosome of the GA population (ch) is assessed by the fitness
function below.

Fit(ch) = w f ∗ Filter(ch) + ww ∗Wrapper(ch). (1)
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The weights are experimentally set to w f = ww = 0.5. The filter part of the above fitness function
must be designed to ensure the maximum diversity of all distinct views. We employed the mutual
information (MI) method [35] to measure the amount of independence between each different pair of
views of the chromosome. Therefore, I

(
Xi, X j

)
is the MI between views i and j, where Xi and X j are

associated subsets of the original data set, XN×D. N is the number of all pixels throughout the image,
and D is the number of spectral bands of the image. Finally, inter-confidence criterion (Cinter) is defined
as the filter part as follows:

Filter(ch) = Cinter(X) =
∑V

i=1

∑V

j=1

1

I
(
Xi, X j

) . (2)

The view sufficiency is defined by the intra-confidence, which is the mean of the classifier
performance on all views. The classifier performance on the view i is estimated by a function named Pi

using the provided labeled training samples. XL, XU, and YL are the labeled samples, the unlabeled
samples, and the labels provided for the training set, respectively. Consequently, Xi

L and Xi
U, are the

corresponding subsets of XL and XU, according to the view i. Therefore, the wrapper part of the GA
fitness function that represents sufficiency is formed as follows.

Wrapper(ch) = Cintra(X) =
1
V

∑V

i=1
Pi

(
Xi

L, Xi
U, YL

)
. (3)

To implement GA to generate an optimal subset of views, the initial population with
50 chromosomes was randomly generated. The other parameters of GA were chosen as follows:
5%, 20% and 80% as the rates of mutation, migration, and crossover; 200 as the maximum number of
generations; and 20 as the maximum number of generations with no significant improvement in the
fitness function, all which are common choices in similar GA optimization cases [34].

2.2.2. MVML Sampling Strategy

In our proposed method, the multiple learners at each view are adapted for a more accurate
estimation of each samples’ information content. Although the entropy maximization is one of the
previously used measures to compute disagreement level between learners [23], it cannot retain its
different ability in the MVML framework. Therefore, the ambiguity measure was proposed in [21] and
demonstrated outstanding performance. However, there is still room for improvement by incorporating
the classifiers’ confidence. The original method counts merely the number of learners that agree to
assign a specific label to the sample while disregarding each learner’s confidence that it has a significant
influence on the selected samples. We proposed a probabilistic-ambiguity measure that contributes to
the confidence level of each learner at each view and computes disagreement between all the views.

Suppose we construct V distinct views for a multi-class classification problem with Nc classes and
k learners that are combined at each view. For each sample, the confidence that the view i assigns the
sample to the class j, Pi

j is computed as follows. k is the number of the learners combined at each view,

and pi
m, j is the mth learner’s confidence considering the ith view to classifying the sample as class j.

Pi
j =

r/2 +
∑k

m=1 pi
m, j

r + k
, (4)

where r is a small positive constant, which is added to prevent zero value of the confidence. Then,
the general confidence of each label is also calculated, which can be interpreted as the average prediction
confidence of all the views.

P j =
r/2 +

∑V
i=1

∑k
m=1 pi

m, j

r + k
. (5)
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Although one can use an entropy measure of the calculated confidences of each class P j, we adopted
the ambiguity measure because of its better performance, which will be proven by the ensuing
experimental results. In Equation (6), ci is the allocated label to the sample by the majority vote of all
the learners at view i.

ambiguity(x) = Cx

(
−1−

∑V

i=1
Pi

ci
log Pi

ci

)
. (6)

In this definition, the variable Cx indicates agreement or disagreement of the predicted labels
considering their different views; hence, if c1 = c2 = · · · = cV, that means all the views predict the
same label for the sample and completely agree with each other; then, Cx = 1; otherwise, Cx = −1.
In this way, Cx plays an important role in the selection strategy, because it defines the behavior of the
main ambiguity function; i.e., whether all views agree together about that sample or not. In this way,
the samples with disagreement are ranked higher as the more informative samples.

2.2.3. Semi-Supervised Learning Algorithm

The primary goal of the proposed SSL algorithm is finding a real-valued labeling function
f : V → R on the graph G, and then assigning a label to each unlabeled sample. The f should be

consistent with the initial labels of the labeled samples. Furthermore, the labeling function must be
smooth over the graph G, which indicates that the samples that are close together must have a similar
label, and the difference between predicted labels defines the cost function. L is the combinatorial
Laplacian of the graph.

C( f ) =
∑
i, j

wi j
(

fi − f j
)2

= 2 f TL f . (7)

In other words, as the points are closer to each other, a severe change in the labeling function
imposes a higher cost. Hence, the labeling function over the graph is provided by the optimization
problem by considering the initial label samples (XL, YL).

f = arg min
f |XL=YL

C( f ). (8)

To solve the above optimization problem (i.e., Equation (8)), we used harmonic cost minimization
by considering the Gaussian random field [36]. In this paper, a spectral-spatial SSL algorithm was used
as the base classification framework. First, two distinct spectral and spatial graphs were constructed,
wherein each sample connected to it had k-nearest spectral and l-nearest spatial neighbors, respectively.
In the spectral graph, each pixel in the image is connected to its k-nearest neighbors in the spectral
space. The weight of the connecting edge is calculated based on the spectral similarity between the
vertices [37]. The radial basis function (RBF) kernel of width σ calculates the similarity between
data points:

wi j = exp (
−‖xi − x j‖

2

2σ2 ) (9)

To avoid self-similarity, wii is set to zero. The spatial-based graph is constructed based on the
spectral distance between each pixel and its spatial neighbors. In the conventional spatial graph,
each pixel is connected to 4, 8, 12, 20, and 24 spatial neighbors, considering the size of the image.
The laplacians of each graph (Lspect and Lspat) are computed based on the weight of the existing edges;
L = D −W, where W is the affinity matrix and D is the diagonal matrix defined by Dii =

∑
j wi j. Then,

the graphs are combined by a weighted sum of their Laplacian matrices [38,39].

LT = γLspect + (1− γ)Lspat (10)

In this way, the weighted joint graph Laplacian (LT) is constructed and replaced in Equation (7).
Then, semi-supervised learning uses a harmonic cost minimization approach to minimize the cost
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function on both spectral and spatial graphs simultaneously. Therefore, the labeling function for
unlabeled samples is given as follows:

fu = −L−1
Tuu

LTul fl, (11)

where LT should be partitioned into 2 × 2 blocks for labeled and unlabeled nods as LT =

[
LTll LTlu

LTul LTuu

]
.

It can be demonstrated that for each sample xi,
∑k

j=1 fi j = 1. Therefore, we can regard fi j as the

probability of xi to the jth class P
(
c j
∣∣∣xi

)
. Each unlabeled sample is assigned to the class with the

highest probability.

3. Results

3.1. Hyperspectral Data

Our experiments, including the proposed method and the competitor methods, were conducted
on three widely used hyperspectral data sets: Indian Pines, Salinas, and Pavia University. The Indian
Pines and Salinas data sets were acquired by an airborne visible/infrared imaging spectrometer (AVIRIS)
sensor, which initially provided 220 spectral images with different spatial resolutions of 20 m and 3.7 m
in that order. An Indian Pines image with a size of 145 by 145 pixels is given in Figure 3a. The available
ground truth (Figure 3b) contains 16 different agricultural land cover classes ranging in size from 20 to
2468 pixels per class.
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The Salinas image was captured over Salinas Valley, California. The AVIRIS sensor measured
16 different classes from different agriculture crops. It has a precious ground truth containing more
than 54,000 samples, which is an adequate number, and the smallest and largest classes have 916 and
11,271 samples, respectively. Figure 4a,b shows the true-color image of the dataset and the ground
truth map.
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The Pavia University data set was provided by a reflective optics system imaging spectrometer
(ROSIS) 610 by 340 pixels in size. The spatial and spectral resolutions provided by the ROSIS sensor
are 1.3 m and 115 bands, respectively. Pavia University is an urban area with nine different classes that
are shown in Figure 5a,b.
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3.2. Experimental Setup

The hyperspectral bands were normalized in the range from 0 to 1 to provide numerical stability in
calculations and graph matrices. Tuning of the free parameters is one of the most sensitive and essential
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steps to obtaining an optimal classifier. The proposed SSL classifier has only two free parameters:
the kernel width parameter (σ) and the weight of the spectral graph (γ). The best values are defined by
a 2-D grid search method with a search space of 0.05, 0.1, 0.15, . . . , 0.95.

The experiment was conducted using a well-designed cross-validation scheme to test the model’s
ability with separate training and test data sets. Two different “k-fold” and “hold-out” cross-validation
methods were combined to generate a statistically unbiased classification problem, and a small labeled
training set, since the AL algorithm was proposed to overcome difficulties of the inadequately labeled
dataset. The worst-case scenario with the minimum number of labeled samples, i.e., only three pixels
per class, was chosen as the initial state for a fair comparison between the proposed method and
different conventional AL methods. At each step, the five most informative pixels were selected and
added to the labeled training set. The maximum number of iterations was set to 40, which means the
training set was enlarged by adding 200 samples at the end of each algorithm.

More precisely, the initial labeled samples were selected by three pixels per class; i.e., ‖L0‖ = 48 for
Indian Pines and Salinas, and ‖L0‖ = 27 for Pavia University. At the final iteration, the labeled training
set was enlarged by adding 200 samples, which means ‖L40‖ = 248, and ‖L40‖ = 227. The ground
truth (GT) size of each data set is, respectively, 21,025, 207,400, and 111,104 samples. The final sizes of
the training sets were only 1.17%, 0.11%, and 0.22% of the labeled GT samples. The average overall
accuracy (OA) and kappa index (K) over five-fold were reported as the evaluation metrics of the
different baseline and proposed methods.

3.3. Experimental Results

For a comprehensive evaluation of the proposed MVML method, well-known algorithms of the
other three main AL categories with the best performance were implemented and compared to the
proposed method. Breaking tie (BT) [2] is one of the simplest and high-performance AL methods
that was implemented here as the representative of the SVSL category. The GA-comb method was
implemented from the MVSL category, which used our proposed view generation method with AMD
AL query function [28]. The third comparative SVML method is mQBC-kernels [25]. It was also
compared to another MVML method, named entropy to demonstrate the best performance of the
proposed MVML-ambiguity method, [40].

The number of kernels and views for the proposed MVML-AL algorithm are selected using a
2D grid-search with the search space {2, 3, 4, 5, 6, 7} for the number of views and {2, 3, 4, 5} for the
number of learners. Then the cost-performance trade-off is considered to find the optimal values of
each parameter with the highest performance of the algorithm and the lowest computational cost.
Therefore, the MVML methods were implemented by employing four different kernel type learners,
including linear, polynomial, sigmoid, and RBF, which were used to compute the similarities between
the connected samples in the graph. Also, there were two distinct views, which were generated by
the proposed GA-Comb framework. Each experiment was conducted using five randomly selected
initial training data sets, and the average overall accuracy (OA) in percentage was reported as the
performance evaluation.

In remote sensing context, the accuracy of classification methods is usually evaluated by kappa
coefficients. Therefore, the Z-value statistical test [41] will determine the significant difference of
two kappa coefficients as follows. k̂1 and k̂2 are the mean value of the kappa coefficients derived
from two different classification algorithms with different training sets, and σ2

k1
and σ2

k2
are the

corresponding variances.

|Z| =
k̂1 − k̂2√
σ2

k1
+ σ2

k2

. (12)

Based on the test with the 5% significance level, the difference between the two algorithms are
statistically significant if |Z| > 1.96.
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3.3.1. Results of AVIRIS Indian Pine Image

To demonstrate the superiority of the proposed MVML selection strategy, the best-performing
methods of the other categories were included for comparison. Figure 6 presents the learning curve of
different AL schemes for the Indian Pine data set.
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Figure 6. Comparison of different categories of active learning methods for the Indian Pine data set.

Although the other traditional categories of active learning methods achieved excellent results,
the MVML method, especially when using the proposed ambiguity query function, could improve the
performance. Table 1 presents the numerical results of these different methods at iteration numbers
1, 10, 20, 30, and 40. The average overall accuracy (OA) presents the classification performances
over the five runs of each algorithm by the different randomly selected initial training set. At the
final iteration, BT achieved the lowest performance with an OA equal to 91.10%, which is ≈6% lower
than the proposed method. As expected, SVML and MVSL methods showed a higher performance
compared to BT. However, our proposed method can improve the final classification performance
significantly in comparison with SVML (|Z| = 9.3704 > 1.96), SVML (|Z| = 6.8599 > 1.96), MVSL
(|Z| = 5.1450 > 1.96), and MVML-entropy (|Z| = 3.3400 > 1.96). The Z-values were computed based on
Equation (12). As shown in this table, except for the 20th iteration, the proposed methods achieved the
best performance.

Table 1. Average overall accuracy (OA) achieved on the Indian pines dataset after 1, 10, 20, 30, and 40
iterations with a batch size of five samples. The average amounts of accuracy incremented over the ten
prior iterations are given in the second column (diff). All the results were averaged over five runs, and
the best results are presented in bold.

Methods
ITER = 1 ITER = 10 ITER = 20 ITER = 30 ITE = 40

OA diff OA diff OA diff OA diff OA diff

SVSL (BT) 76.74 0.8 83.44 0.68 87.44 0.36 90.20 0.35 91.10 0.04
SVML (mQBC-kernels) 80.36 1.06 86.49 0.62 90.58 0.39 92.57 0.18 93.07 0.08

MVSL (GA-Comb) 81.51 1.05 89.32 0.84 92.03 0.21 93.96 0.21 94.83 0.07
MVML (entropy) 78.29 0.18 87.99 0.83 90.74 0.28 93.80 0.28 95.39 0.17

MVML (ambiguity) 82.17 1.71 89.97 0.98 91.83 0.14 95.08 0.33 97.14 0.20

In addition, the accuracy increment averages over the ten past iterations are given in the second
column as diff, which represents the mean slope of four equal parts of the presented accuracy curves.
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For the first iteration, this quantity shows the difference between the first iteration and the initial
classification accuracy. Therefore, the proposed method improved the initial results at the first
iteration (1.7%), more than other baseline methods. According to Table 1, the proposed method
(MVML-ambiguity) has the largest slope and improvement at the first steps and converges to a higher
achievement compared to the baseline methods. In addition, the classified maps of the proposed
and compared methods at iteration numbers of 1, 20, and 40 are given in Figure 7a–l, respectively.
Since we employed a sophisticated spectral-spatial GB-SSL classifier, the emerged maps originally had
a satisfactory presentation with homogenous objects and accurate borders. However, the proposed
ambiguity AL method improved the achieved accuracies and the classification performances in the
largest amount at all the iterations.
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3.3.2. Results of ROSIS University of Pavia

Similar results for Pavia University data are given in Figure 8. In this data set, the observed
improvement by the proposed MVML-ambiguity method is more significant, while the MVML-entropy
method is more like the SVSL and MVSL methods.
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Figure 8. Comparison of different categories of active learning methods for Pavia University data set.

The corresponding numerical results are presented in Table 2, which shows that the proposed
method made the most significant improvement at the first step (2.7%), which led to a stable superiority
of this method throughout almost all iterations. Although in this data set, the final performance of
the proposed method was closer to the comparative methods, it achieved the highest performance
(98.95%). The proposed method achieved 2.57% higher OA (|Z| = 4.4075 > 1.96) at the final iteration in
comparison with the SVSL method. According to Table 2, the MVSL is the nearest method in terms of
numerical results to the proposed method. However, the difference between them was still statistically
significant (|Z| = 3.1466 > 1.96).

Table 2. Average overall accuracy (OA) achieved on Pavia University dataset after 1, 10, 20, 30, and 40
iterations with a batch size of five samples. The average amounts of accuracy incremented over the ten
prior iterations are given in the second column (diff). All the results were averaged over five runs, and
the best results are presented in bold.

Methods
ITER = 1 ITER = 10 ITER = 20 ITER = 30 ITER = 40

OA diff OA diff OA diff OA diff OA diff

SVSL (BT) 82.81 0.44 88.62 0.59 92.78 0.38 94.31 0.21 96.02 0.14
SVML (mQBC-kernels) 80.60 0.33 92.01 1.15 95.75 0.42 97.48 0.15 98.03 0.03

MVSL (GA-Comb) 81.25 1.11 90.72 0.96 94.32 0.33 95.84 0.22 97.70 0.13
MVML (Entropy) 84.00 0.29 88.92 0.50 90.87 0.18 94.49 0.40 97.66 0.30

MVML (Ambiguity) 82.99 2.77 93.90 1.13 97.36 0.30 98.10 0.02 98.59 0.08

In addition, Figure 9a–l represents the corresponding classified maps at the first, middle, and final
iterations for the different AL methods, namely, SVML (mQBC), MVSL (GA-comb), MVML (entropy),
and MVML (ambiguity). Since the Pavia university data set was acquired with a higher spatial
resolution, the improvements of the proposed AL method improved the final land-cover classification
maps more significantly. Also, the reported numerical results in Table 2 confirm the superiority of the
proposed MVML-AL method.
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Figure 9. Classification maps of Pavia University image. Each column represents the different AL
method, and each row shows the different iterations of the algorithm. The overall accuracies in percent
are reported below the maps.

3.3.3. Results of AVIRIS Salinas Valley

Figure 10 and Table 3 illustrate the overall accuracy curves and the average overall accuracies of
the proposed and compared methods for the Salinas Valley data set, respectively.
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Figure 10. Comparison of different categories of active learning methods for the Salinas Valley data set.

Although after the first ten iterations, the proposed method was very close to the other methods,
from that point on, it made a significant difference and achieved the best improvement. After
40 iterations, and by adding 200 new labeled samples to the training set, the proposed method achieved
an outstanding performance of 99.45%, which was significantly higher than the baseline ones. The final
classified maps by the various AL schemes are presented in Figure 11c–f. By comparing Figure 11f
with other maps, it is obvious that the emerged classes were more homogenous and isolated pixels
were reduced.
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Table 3. Average overall accuracy (OA) achieved on Salinas dataset after 1, 10, 20, 30, and 40 iterations
with a batch size of five samples. The average amounts of accuracy incremented over the ten prior
iterations are given in the second column (diff). All the results were averaged over five runs, and the
best results are presented in bold.

Methods
ITER = 1 ITER = 10 ITER = 20 ITER = 30 ITER = 40

OA diff OA diff OA diff OA diff OA diff

SVSL (BT) 85.49 1.14 88.15 0.38 92.21 0.27 94.92 0.30 95.08 0.00
SVML (mQBC-kernels) 85.31 0.96 89.76 0.43 93.40 0.38 95.07 0.24 96.79 0.09

MVSL (GA-Comb) 83.24 −1.10 86.80 0.44 93.12 0.55 97.13 0.40 98.21 0.10
MVML (Entropy) 84.60 0.25 86.75 0.30 93.31 0.64 96.26 0.23 97.99 0.16

MVML (Ambiguity) 85.10 0.75 89.95 0.55 95.41 0.50 98.27 0.27 99.45 0.11
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MVML (entropy), and MVML (ambiguity). The right map was produced by the proposed method.
The overall accuracies in percent are reported above the maps.
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4. Discussion

4.1. Statistical Significance Analysis

As has been presented, the proposed method performed outstandingly in the conducted
experimental results. However, to prove the effectiveness of the method, we made a new comparison
with a number of recent state-of-the-art methods. Since our method took advantage of both SSL
and AL methods, only AL-SSL methods were added to be compared. The compared methods
include collaborative active and semi-supervised learning (CASSL) [42], random walker-based AL
and SSL framework (RWASL) [14], Markov random field model-based active learning (MRF-AL) [43],
and MVML-AL [21]. The final results of each method and the statistical significance of the proposed
method, in comparison with them, are reported in Table 4.

Table 4. Performance comparison between four compared methods (CASSL, RWASL, MRF-AL, and
MVML-AL) and the modified MVML-AL. Average kappa index values and standard deviations (s)
obtained over five different training sets for all considered hyperspectral datasets. The reported
Z-scores (|Z|) indicate the significance, respectively, of the difference between each algorithm and the
proposed one.

Methods
Indian Pines Pavia University Salinas

kappa s |Z| kappa s |Z| kappa s |Z|

CASSL [42] 0.939 0.0058 4.189 0.955 0.0025 7.208 0.982 0.0034 3.078
RWASL [14] 0.976 0.0056 −0.970 0.982 0.0046 0.524 0.991 0.0025 0.732
MRF-AL [43] 0.891 0.0150 5.007 0.911 0.0191 3.814 0.974 0.0087 2.166

MVML-AL [21] 0.953 0.0062 2.136 0.946 0.0036 7.786 0.987 0.0049 1.194
MVML-AL-proposed 0.969 0.0042 —- 0.985 0.0034 —- 0.993 0.0011 —-

Although all of these algorithms performed well, our method achieved the best numerical
classification accuracy after 40 iterations almost over all three datasets. Only in the Indian Pines dataset
did the RWSAL algorithm show the best performance (KAPPA = 0.976), rather than the proposed
modified-MVML-AL method (KAPPA = 0.969). However, the differences between these two methods
were not significant (|Z| = −0.970 < 1.96) for Indian Pines, (|Z| = −0.524 < 1.96), the Pavia University,
and (|Z| = 0.732 > 1.96) for the Salinas datasets, respectively, which means that their performances
were very close.

4.2. Different View Generation Methods

The different basic view generation methods [18], such as uniform, correlation, and k-means,
were employed as the compared methods, and the selection strategy was AMD [18] for all methods.
In this experiment, the number of views was chosen as two (distinct views), which led to satisfactory
results and low computational cost simultaneously. As expected, the proposed view generation method
using GAs (GA-comb) had the best performance, while the other three baseline view generation
methods had similar results to some extent.

4.2.1. Views’ Diversity Analysis

To summarize, our novel GA-based view generation method has simultaneously maximized the
diversity and efficiency of the views. To demonstrate our method’s better performance, we investigated
the amount of mutual information as a measure of view dependency. The higher value of mutual
information indicates that views have more correlation and dependency on each other. We aimed
to produce more independent views that maximize diversity to construct more diverse classifiers.
The amount of mutual information between two views for different data sets is reported in Table 5.
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Table 5. Mutual Information (MI) and average overall accuracy (OA) of the views by different view
generation methods. The average accuracy was computed using 5-fold cross-validation.

Methods

Indian Pines Pavia University Salinas

MI
OA (%)

MI
OA (%)

MI
OA (%)

View1 View2 View1 View2 View1 View2

Uniform 3.25 77.54 0.7653 3.08 82.13 81.96 4.76 84.63 85.07
Correlation 5.21 76.59 77.36 3.79 81.02 81.82 5.09 84.73 84.85

K-Means 4.25 77.96 78.01 3.52 82.09 82.10 4.97 84.36 83.97
Random 5.26 75.89 76.34 3.68 82.09 82.18 4.82 84.23 84.36
GA-filter 1.36 77.63 77.54 1.13 82.16 81.86 1.27 84.75 84.37

GA-Wrapper 2.56 78.47 78.94 3.22 84.09 83.68 4.37 85.94 86.21
GA-Comb 1.78 79.37 78.51 1.20 83.97 83.62 1.11 85.47 85.75

We investigated three different GA-based view generation methods: filter, wrapper, and a
combinatorial method that used both criteria to provide more diverse and efficient views. As shown,
the proposed GA-based methods significantly reduced the mutual information and dependency
between views, which were 1.78, 1.20, and 1.11 for three data sets. The MIs achieved by the proposed
method were much lower than the conventional methods. For instance, the uniform view generation
method showed the best performance of diversity with MI = 3.25 for Indian Pines, MI = 3.08 for Pavia
University, and MI = 4.76 for the Salinas data set. Although the GA-filter method produced views with
the minimum amount of mutual information, this method did not consider the efficiency of views,
whereas the GA-comb method achieved satisfactory mutual information and more efficient views.

4.2.2. Views’ Efficiency Analysis

Multi-view learning methods aim to construct separate but also sufficient views that can accurately
learn a classifier with each one. Although many view generation methods have been proposed so far,
few of them consider the sufficiency of each view. In our proposed GA-based method, both efficiency
and diversity were considered as the feature selection criteria. Therefore, the average classification
performance at each view, with five different initial training sets, were considered as the efficiency
measure. The comparison results of the different methods are given in Table 5. As expected,
GA-wrapper and GA-comb methods achieved higher accuracies at the first iteration, and consequently,
that led to higher performances in the AL accuracy curve for them. According to Table 5, the reported
OA indicates the sufficiency of each view. As shown, the wrapper GA-based view generation method
constructs the sufficient views at the first iteration of AL for the classification purpose. The two distinct
views generated by the GA-wrapper achieved 78.47–78.94%, 84.09–83.68%, and 85.94–86.21% of the
average OA for Indian pines, Pavia University, and Salinas data sets, respectively. Although the
GA-wrapper method constructs the more efficient views, GA-Comb method could build a set of views
that were efficient and simultaneously diverse.

4.2.3. Time Complexity Analysis

To evaluate the computation complexity of the proposed method, the CPU time was measured at
each iteration, and the average amount is presented in Figure 12.

All the algorithms were implemented using MATLAB software and on a computer with an Intel
Core i7 2.5 GHz CPU with 12 GB RAM. Since at each iteration, the classification algorithm was run at
least once, the required running time for a classification algorithm also was included as a benchmark.
As shown in the graph, the SVSL methods are the fastest, which is the consequence of their simplicity.
On the other hand, the MVML methods with the most substantial number of classifying models were
the most time-consuming. Although in these MVML methods, the eight different models were used,
by employing four learners from two views, the times were less than eight times that of SVSL method.
Thus, although the proposed methods imposed greater computational complexity, which was expected,
they were still executable and feasible by taking advantage of MATLAB’s parallel computing functions.
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5. Conclusions

In this paper, we proposed a multi-view, multi-learner (MVML) active learning method to
improve the learning curve by integrating the previously introduced multi-view and multi learner ALs.
Consequently, the performance of the AL method improved at almost all iterations. Particularly in the
first steps, when the initial labeled training samples were insufficient, this improvement was more
significant and efficient. In almost all data sets, the slope of the learning curve of the proposed method
at the beginning iterations was higher than those of the baseline methods. To the best of our knowledge,
the MVML methods have not yet been adopted for remote sensing image classification, and this
work is the first attempt to use the high potential of these methods for hyperspectral, active learning.
Also in this paper, we proposed a new hybrid GA-based band selection method to generate the
views that are as diverse as possible, and each one is efficient individually. The experimental
results clearly demonstrated the efficiency and the superiority of the suggested GA-based MVML
active learning method. Furthermore, the achieved improvement by the proposed algorithm was
statistically significant compared to the other state-of-the-art AL methods. The only concern is the
high computational complexity of this approach, which can be alleviated by the available parallel
computing facilities.
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